1
|
Wei Z, Xu X, Fang Y, Khater M, Naughton SX, Hu G, Terry AV, Wu G. Rab43 GTPase directs postsynaptic trafficking and neuron-specific sorting of G protein-coupled receptors. J Biol Chem 2021; 296:100517. [PMID: 33676895 PMCID: PMC8050390 DOI: 10.1016/j.jbc.2021.100517] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 12/31/2022] Open
Abstract
G protein–coupled receptors (GPCRs) are important modulators of synaptic functions. A fundamental but poorly addressed question in neurobiology is how targeted GPCR trafficking is achieved. Rab GTPases are the master regulators of vesicle-mediated membrane trafficking, but their functions in the synaptic presentation of newly synthesized GPCRs are virtually unknown. Here, we investigate the role of Rab43, via dominant-negative inhibition and CRISPR–Cas9–mediated KO, in the export trafficking of α2-adrenergic receptor (α2-AR) and muscarinic acetylcholine receptor (mAChR) in primary neurons and cells. We demonstrate that Rab43 differentially regulates the overall surface expression of endogenous α2-AR and mAChR, as well as their signaling, in primary neurons. In parallel, Rab43 exerts distinct effects on the dendritic and postsynaptic transport of specific α2B-AR and M3 mAChR subtypes. More interestingly, the selective actions of Rab43 toward α2B-AR and M3 mAChR are neuronal cell specific and dictated by direct interaction. These data reveal novel, neuron-specific functions for Rab43 in the dendritic and postsynaptic targeting and sorting of GPCRs and imply multiple forward delivery routes for different GPCRs in neurons. Overall, this study provides important insights into regulatory mechanisms of GPCR anterograde traffic to the functional destination in neurons.
Collapse
Affiliation(s)
- Zhe Wei
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Xin Xu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yinquan Fang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA; Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Mostafa Khater
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Sean X Naughton
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Gang Hu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.
| |
Collapse
|
2
|
Darmon M, Al Awabdh S, Emerit MB, Masson J. Insights into Serotonin Receptor Trafficking: Cell Membrane Targeting and Internalization. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:97-126. [PMID: 26055056 DOI: 10.1016/bs.pmbts.2015.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Serotonin receptors (5-HTRs) mediate both central and peripheral control on numerous physiological functions such as sleep/wake cycle, thermoregulation, food intake, nociception, locomotion, sexual behavior, gastrointestinal motility, blood coagulation, and cardiovascular homeostasis. Six families of the G-protein-coupled receptors comprise most of serotonin receptors besides the conserved 5-HT3R Cys-loop type which belongs to the family of Cys-loop ligand-gated cation channel receptors. Many of these receptors are targets of pharmaceutical drugs, justifying the importance for elucidating their coupling, signaling and functioning. Recently, special interest has been focused on their trafficking inside cell lines or neurons in conjunction with their interaction with partner proteins. In this review, we describe the trafficking of 5-HTRs including their internalization, desensitization, or addressing to the plasma membrane depending on specific mechanisms which are peculiar for each class of serotonin receptor.
Collapse
Affiliation(s)
- Michèle Darmon
- INSERM U894, Centre de Psychiatrie et Neurosciences, Paris, France; Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Sana Al Awabdh
- INSERM U894, Centre de Psychiatrie et Neurosciences, Paris, France; Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Michel-Boris Emerit
- INSERM U894, Centre de Psychiatrie et Neurosciences, Paris, France; Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Justine Masson
- INSERM U894, Centre de Psychiatrie et Neurosciences, Paris, France; Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
3
|
Vidal R, Diaz A, Pazos A, Castro E. Region-specific regulation of 5-HT1B receptors in the rat brain by chronic venlafaxine treatment. Psychopharmacology (Berl) 2013; 229:177-85. [PMID: 23609771 DOI: 10.1007/s00213-013-3104-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 03/26/2013] [Indexed: 11/29/2022]
Abstract
RATIONALE Venlafaxine is a non-selective serotonin and noradrenaline reuptake inhibitor antidepressant drug for which clinical studies have suggested a high level efficacy and a possible early action onset compared to the classical antidepressants. Its therapeutic effects might be due, at least in part, to adaptive changes in serotonergic neurotransmission, through the activation of the different 5-HT receptor subtypes. 5-HT(1B) receptors are located in the axon terminals of both serotonergic and non-serotonergic neurons, where they act as inhibitory autoreceptors or heteroreceptors, respectively. However, the information about the involvement of this subtype in the mechanism of action of antidepressants is limited and quite controversial. OBJECTIVES The aim of this study was to evaluate the effect of venlafaxine (10 mg kg⁻¹ day⁻¹, p.o.) after 21 days of treatment on the density of 5-HT(1B) receptors and their functionality in rat brain. METHODS Effects of chronic venlafaxine were evaluated at different levels of 5-HT(1B) receptor by using receptor autoradiography, [³⁵S]GTPγS binding, and the regulation of body temperature induced by selective 5-HT(1B) agonist. RESULTS Our results show that venlafaxine induced an increase in sensitivity of 5-HT(1B) receptors in hypothalamus both at G-protein level and the control of core temperature without affecting the receptor density. CONCLUSIONS These results demonstrate that adaptive changes on 5-HT(1B) receptors induced by chronic administration of venlafaxine exhibit regional differences suggesting that the hypothalamus might be an important site of drug action.
Collapse
Affiliation(s)
- R Vidal
- Instituto de Biomedicina y Biotecnología-IBBTEC, UC-CSIC-SODERCAN, Santander, Cantabria, Spain
| | | | | | | |
Collapse
|
4
|
DuBose DR, Wolff SC, Qi AD, Naruszewicz I, Nicholas RA. Apical targeting of the P2Y(4) receptor is directed by hydrophobic and basic residues in the cytoplasmic tail. Am J Physiol Cell Physiol 2013; 304:C228-39. [PMID: 23054062 PMCID: PMC3566436 DOI: 10.1152/ajpcell.00251.2012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 10/03/2012] [Indexed: 11/22/2022]
Abstract
The P2Y(4) receptor is selectively targeted to the apical membrane in polarized epithelial cell lines and has been shown to play a key role in intestinal chloride secretion. In this study, we delimit a 23 amino acid sequence within the P2Y(4) receptor C-tail that directs its apical targeting. Using a mutagenesis approach, we found that four hydrophobic residues near the COOH-terminal end of the signal are necessary for apical sorting, whereas two basic residues near the NH(2)-terminal end of the signal are involved to a lesser extent. Interestingly, mutation of the key hydrophobic residues results in a basolateral enrichment of the receptor construct, suggesting that the apical targeting sequence may prevent insertion or disrupt stability of the receptor at the basolateral membrane. The signal is not sequence specific, as an inversion of the 23 amino acid sequence does not disrupt apical targeting. We also show that the apical targeting sequence is an autonomous signal and is capable of redistributing the normally basolateral P2Y(12) receptor, suggesting that the apical signal is dominant over the basolateral signal in the main body of the P2Y(12) receptor. The targeting sequence is unique to the P2Y(4) receptor, and sequence alignments of the COOH-terminal tail of mammalian orthologs reveal that the hydrophobic residues in the targeting signal are highly conserved. These data define the novel apical sorting signal of the P2Y(4) receptor, which may represent a common mechanism for trafficking of epithelial transmembrane proteins.
Collapse
Affiliation(s)
- D Ross DuBose
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
5
|
Carrel D, Simon A, Emerit MB, Rivals I, Leterrier C, Biard M, Hamon M, Darmon M, Lenkei Z. Axonal Targeting of the 5-HT1B Serotonin Receptor Relies on Structure-Specific Constitutive Activation. Traffic 2011; 12:1501-20. [DOI: 10.1111/j.1600-0854.2011.01260.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
5-HT1A-receptor over-expressing mice: Genotype and sex dependent responses to antidepressants in the forced swim-test. Neuropharmacology 2011; 61:433-41. [DOI: 10.1016/j.neuropharm.2011.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/24/2011] [Accepted: 03/02/2011] [Indexed: 11/19/2022]
|
7
|
Peddie CJ, Davies HA, Colyer FM, Stewart MG, Rodríguez JJ. A subpopulation of serotonin 1B receptors colocalize with the AMPA receptor subunit GluR2 in the hippocampal dentate gyrus. Neurosci Lett 2010; 485:251-5. [PMID: 20849926 DOI: 10.1016/j.neulet.2010.09.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 09/08/2010] [Indexed: 11/18/2022]
Abstract
The serotonin(1B) receptor (5-HT(1B)R) plays a role in cognitive processes that also involve glutamatergic neurotransmission via amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) receptors. Accumulating experimental evidence also highlights the involvement of 5-HT(1B)Rs in several neurological disorders. Consequently, the 5-HT(1B)R is increasingly implicated as a potential therapeutic target for intervention in cognitive dysfunction. Within the hippocampus, a brain region critical to cognitive processing, populations of pre- and post-synaptic 5-HT(1B)Rs have been identified. Thus, 5-HT(1B)Rs could have a role in the modulation of hippocampal pre- and post-synaptic conductance. Previously, we demonstrated colocalization of 5-HT(1B)Rs with the N-methyl-D-aspartate (NMDA) receptor subunit NR1 in a subpopulation of granule cell dendrites (Peddie et al. [53]). In this study, we have examined the cellular and subcellular distribution of 5-HT(1B)Rs with the AMPA receptor subunit GluR2. Of 5-HT(1B)R positive profiles, 28% displayed colocalization with GluR2. Of these, 87% were dendrites, corresponding to 41% and 10% of all 5-HT(1B)R labeled or GluR2 labeled dendrites, respectively. Dendritic labeling was both cytoplasmic and membranous but was not usually associated with synaptic sites. Colocalization within dendritic spines and axons was comparatively rare. These findings indicate that within the dentate gyrus molecular layer, dendritic 5-HT(1B)Rs are expressed predominantly on GluR2 negative granule cell processes. However, a subpopulation of 5-HT(1B)Rs is expressed on GluR2 positive dendrites. Here, it is suggested that activation of the 5-HT(1B)R may play a role in the modulation of AMPA receptor mediated conductance, further supporting the notion that the 5-HT(1B)R represents an interesting therapeutic target for modulation of cognitive function.
Collapse
Affiliation(s)
- C J Peddie
- Department of Life Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| | | | | | | | | |
Collapse
|
8
|
Wolff SC, Qi AD, Harden TK, Nicholas RA. Charged residues in the C-terminus of the P2Y1 receptor constitute a basolateral-sorting signal. J Cell Sci 2010; 123:2512-20. [PMID: 20592187 PMCID: PMC2894661 DOI: 10.1242/jcs.060723] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2010] [Indexed: 11/20/2022] Open
Abstract
The P2Y(1) receptor is localized to the basolateral membrane of polarized Madin-Darby canine kidney (MDCK) cells. In the present study, we identified a 25-residue region within the C-terminal tail (C-tail) of the P2Y(1) receptor that directs basolateral sorting. Deletion of this sorting signal caused redirection of the receptor to the apical membrane, indicating that the region from the N-terminus to transmembrane domain 7 (TM7) contains an apical-sorting signal that is overridden by a dominant basolateral signal in the C-tail. Location of the signal relative to TM7 is crucial, because increasing its distance from the end of TM7 resulted in loss of basolateral sorting. The basolateral-sorting signal does not use any previously established basolateral-sorting motifs, i.e. tyrosine-containing or di-hydrophobic motifs, for function, and it is functional even when inverted or when its amino acids are scrambled, indicating that the signal is sequence independent. Mutagenesis of different classes of amino acids within the signal identified charged residues (five basic and four acidic amino acids in 25 residues) as crucial determinants for sorting function, with amidated amino acids having a lesser role. Mutational analyses revealed that whereas charge balance (+1 overall) of the signal is unimportant, the total number of charged residues (nine), either positive or negative, is crucial for basolateral targeting. These data define a new class of targeting signal that relies on total charge and might provide a common mechanism for polarized trafficking of epithelial proteins.
Collapse
MESH Headings
- Amino Acid Sequence/genetics
- Amino Acids, Acidic/chemistry
- Amino Acids, Acidic/genetics
- Amino Acids, Basic/chemistry
- Amino Acids, Basic/genetics
- Animals
- Cell Line
- Cell Polarity/genetics
- Cloning, Molecular
- Dogs
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Kidney/pathology
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation/genetics
- Protein Sorting Signals/genetics
- Protein Structure, Tertiary/genetics
- Protein Transport/genetics
- Receptors, Purinergic P2Y1/chemistry
- Receptors, Purinergic P2Y1/genetics
- Receptors, Purinergic P2Y1/metabolism
Collapse
Affiliation(s)
- Samuel C. Wolff
- Curriculum in Neurobiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA
| | - Ai-Dong Qi
- Curriculum in Neurobiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA
| | - T. Kendall Harden
- Curriculum in Neurobiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA
| | - Robert A. Nicholas
- Curriculum in Neurobiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA
| |
Collapse
|
9
|
Vitalis T, Lainé J, Simon A, Roland A, Leterrier C, Lenkei Z. The type 1 cannabinoid receptor is highly expressed in embryonic cortical projection neurons and negatively regulates neurite growth in vitro. Eur J Neurosci 2009; 28:1705-18. [PMID: 18973587 DOI: 10.1111/j.1460-9568.2008.06484.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the rodent and human embryonic brains, the cerebral cortex and hippocampus transiently express high levels of type 1 cannabinoid receptors (CB(1)Rs), at a developmental stage when these areas are composed mainly of glutamatergic neurons. However, the precise cellular and subcellular localization of CB(1)R expression as well as effects of CB(1)R modulation in this cell population remain largely unknown. We report that, starting from embryonic day 12.5, CB(1)Rs are strongly expressed in both reelin-expressing Cajal-Retzius cells and newly differentiated postmitotic glutamatergic neurons of the mouse telencephalon. CB(1)R protein is localized first to somato-dendritic endosomes and at later developmental stages it localizes mostly to developing axons. In young axons, CB(1)Rs are localized both to the axolemma and to large, often multivesicular endosomes. Acute maternal injection of agonist CP-55940 results in the relocation of receptors from axons to somato-dendritic endosomes, indicating the functional competence of embryonic CB(1)Rs. The adult phenotype of CB(1)R expression is established around postnatal day 5. By using pharmacological and mutational modulation of CB(1)R activity in isolated cultured rat hippocampal neurons, we also show that basal activation of CB(1)R acts as a negative regulatory signal for dendritogenesis, dendritic and axonal outgrowth, and branching. Together, the overall negative regulatory role in neurite development suggests that embryonic CB(1)R signaling may participate in the correct establishment of neuronal connectivity and suggests a possible mechanism for the development of reported glutamatergic dysfunction in the offspring following maternal cannabis consumption.
Collapse
Affiliation(s)
- Tania Vitalis
- CNRS-UMR 7637, Laboratoire de neurobiologie et diversité cellulaire, Paris, France.
| | | | | | | | | | | |
Collapse
|
10
|
de Almeida J, Mengod G. Serotonin 1A receptors in human and monkey prefrontal cortex are mainly expressed in pyramidal neurons and in a GABAergic interneuron subpopulation: implications for schizophrenia and its treatment. J Neurochem 2008; 107:488-96. [PMID: 18761712 DOI: 10.1111/j.1471-4159.2008.05649.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Serotonin 1A (5-HT(1A)) receptors are found in high densities in prefrontal cortex. However, their distribution within cortical cell populations is unknown in both humans and primates. We used double in situ hybridization histochemistry to quantify the percentage of glutamatergic and GABAergic neurons expressing 5-HT(1A) receptors in human and monkey prefrontal cortex. Moreover, in the case of the monkey, we also quantified the parvalbumin and calbindin GABAergic subpopulations expressing this receptor. 5-HT(1A) receptor mRNAs were expressed in about 80% of glutamatergic neurons in external layers II and upper III, and in around 50% in layer VI; they were also present in approximately 20% of GABAergic neurons in both species. Although they were found in up to 43% of the calbindin cell subpopulation they were rarely present in parvalbumin cells in monkey prefrontal cortex. The knowledge of the phenotype of the prefrontal cortex (PFC) cells expressing 5-HT(1A) will help understanding serotonin actions in PFC.
Collapse
Affiliation(s)
- Julián de Almeida
- Departament de Neuroquimica i Neurofarmacologia, Institut d'Investigacions Biomèdiques de Barcelona (CSIC), IDIBAPS, Barcelona, Spain
| | | |
Collapse
|
11
|
Peddie C, Davies H, Colyer F, Stewart M, Rodríguez J. Dendritic colocalisation of serotonin1B receptors and the glutamate NMDA receptor subunit NR1 within the hippocampal dentate gyrus: An ultrastructural study. J Chem Neuroanat 2008; 36:17-26. [DOI: 10.1016/j.jchemneu.2008.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 04/08/2008] [Accepted: 05/06/2008] [Indexed: 10/22/2022]
|
12
|
Carrel D, Hamon M, Darmon M. Role of the C-terminal di-leucine motif of 5-HT1A and 5-HT1B serotonin receptors in plasma membrane targeting. J Cell Sci 2006; 119:4276-84. [PMID: 17003106 DOI: 10.1242/jcs.03189] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 5-HT1A and 5-HT1B serotonin receptors exhibit different subcellular localizations in neurons. Evidence has been reported that the C-terminal domain is involved in the somato-dendritic and axonal targeting of 5-HT1AR and 5-HT1BR, respectively. Here we analyzed the consequences of the mutation of a di-leucine motif and palmitoylated cysteines within this domain. Replacement of I414-I415 by a di-alanine in 5-HT1AR led to endoplasmic reticulum (ER) sequestration of the corresponding mutant expressed in cell lines as well as in hippocampal neurons in culture. Furthermore, di-leucine-mutated receptors were unable to bind 5-HT1A agonists and presented a major deficit in their glycosylation state, suggesting that they are misfolded. By contrast, mutation of the di-leucine motif in the C-terminal domain of 5-HT1BR had no major consequence on its subcellular targeting. However, in the case of the 1ActB chimera (substitution of the C-terminal domain of the 5-HT1BR into 5-HT1AR), this mutation was also found to cause sequestration within the ER. Replacement of palmitoylated cysteines by serines had no consequence on either receptor type. These data indicate that the di-leucine motif of the 5-HT1AR and 5-HT1BR tails is implicated in proper folding of these receptors, which is necessary for their ER export.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Binding Sites/genetics
- COS Cells
- Cell Membrane/metabolism
- Cells, Cultured
- Chlorocebus aethiops
- Cysteine/genetics
- Cysteine/metabolism
- Endoplasmic Reticulum/metabolism
- Fluorescent Antibody Technique, Indirect/methods
- Leucine/genetics
- Leucine/metabolism
- Leucine/physiology
- Molecular Sequence Data
- Mutation/genetics
- Protein Binding
- Protein Transport/drug effects
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT1B/genetics
- Receptor, Serotonin, 5-HT1B/metabolism
- Serotonin 5-HT1 Receptor Agonists
- Serotonin Receptor Agonists/pharmacology
- Swine
Collapse
Affiliation(s)
- Damien Carrel
- INSERM, U677, University Pierre et Marie Curie, Paris 75013, France
| | | | | |
Collapse
|
13
|
Chmelar RS, Nathanson NM. Identification of a novel apical sorting motif and mechanism of targeting of the M2 muscarinic acetylcholine receptor. J Biol Chem 2006; 281:35381-96. [PMID: 16968700 DOI: 10.1074/jbc.m605954200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Previous studies have shown that the M2 receptor is localized at steady state to the apical domain in Madin-Darby canine kidney (MDCK) epithelial cells. In this study, we identify the molecular determinants governing the localization and the route of apical delivery of the M2 receptor. First, by confocal analysis of a transiently transfected glycosylation mutant in which the three putative glycosylation sites were mutated, we determined that N-glycans are not necessary for the apical targeting of the M2 receptor. Next, using a chimeric receptor strategy, we found that two independent sequences within the M2 third intracellular loop can confer apical targeting to the basolaterally targeted M4 receptor, Val270-Lys280 and Lys280-Ser350. Experiments using Triton X-100 extraction followed by OptiPrep density gradient centrifugation and cholera toxin beta-subunit-induced patching demonstrate that apical targeting is not because of association with lipid rafts. 35S-Metabolic labeling experiments with domain-specific surface biotinylation as well as immunocytochemical analysis of the time course of surface appearance of newly transfected confluent MDCK cells expressing FLAG-M2-GFP demonstrate that the M2 receptor achieves its apical localization after first appearing on the basolateral domain. Domain-specific application of tannic acid of newly transfected cells indicates that initial basolateral plasma membrane expression is required for subsequent apical localization. This is the first demonstration that a G-protein-coupled receptor achieves its apical localization in MDCK cells via transcytosis.
Collapse
Affiliation(s)
- Renée S Chmelar
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195-7750, USA
| | | |
Collapse
|
14
|
Rumajogee P, Vergé D, Hamon M, Miquel MC. Somato-dendritic distribution of 5-HT(1A) and 5-HT(1B) autoreceptors in the BDNF- and cAMP-differentiated RN46A serotoninergic raphe cell line. Brain Res 2006; 1085:121-6. [PMID: 16579976 DOI: 10.1016/j.brainres.2006.02.086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 02/21/2006] [Accepted: 02/22/2006] [Indexed: 11/20/2022]
Abstract
The rapid differentiating effects of brain-derived neurotrophic factor (BDNF) or dibutyryl-cAMP (dBcAMP) were characterized on RN46A, a rat raphe-derived neuronal cell line. After BDNF treatment, RN46A cells were serotonin-immunopositive and bipolar, and expressed the microtubule-associated-protein 2 (Map2). After dBcAMP treatment, the cells often became multipolar, bearing very long processes strongly immunopositive for serotonin and Map2. Under both conditions, the expression and distribution of 5-HT(1A) and 5-HT(1B) autoreceptors remained identical. 5-HT(1A) and Map2 immunolabelings were superimposable, as expected of their somato-dendritic targeting. Surprisingly, the distribution of 5-HT(1B) immunoreactivity was similar, in contrast with its usual localization in axons and nerve terminals in the brain. In conclusion, both BDNF and cAMP-differentiated RN46A cells towards a neuronal serotoninergic-like phenotype without the typical differential targeting of the 5-HT(1) autoreceptors, an interesting model to study the molecular mechanisms ensuing the targeting of 5-HT(1) autoreceptors to somas and dendrites.
Collapse
Affiliation(s)
- Prakasham Rumajogee
- Laboratoire de Neurobiologie des Signaux Intercellulaires, CNRS UMR 7101, Université Pierre et Marie Curie, 75005 Paris, France
| | | | | | | |
Collapse
|
15
|
Qi AD, Wolff SC, Nicholas RA. The apical targeting signal of the P2Y2 receptor is located in its first extracellular loop. J Biol Chem 2005; 280:29169-75. [PMID: 15908695 DOI: 10.1074/jbc.m501301200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P2Y2 and P2Y4 receptors, which have 52% sequence identity, are both expressed at the apical membrane of Madin-Darby canine kidney cells, but the locations of their apical targeting signals are distinctly different. The targeting signal of the P2Y2 receptor is located between the N terminus and 7TM, whereas that of the P2Y4 receptor is present in its C-terminal tail. To identify the apical targeting signal in the P2Y2 receptor, regions of the P2Y2 receptor were progressively substituted with the corresponding regions of the P2Y4 receptor lacking its targeting signal. Characterization of these chimeras and subsequent mutational analysis revealed that four amino acids (Arg95, Gly96, Asp97, and Leu108) in the first extracellular loop play a major role in apical targeting of the P2Y2 receptor. Mutation of RGD to RGE had no effect on P2Y2 receptor targeting, indicating that receptor-integrin interactions are not involved in apical targeting. P2Y2 receptor mutants were localized in a similar manner in Caco-2 colon epithelial cells. This is the first identification of an extracellular protein-based targeting signal in a seven-transmembrane receptor.
Collapse
Affiliation(s)
- Ai-Dong Qi
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA
| | | | | |
Collapse
|
16
|
Abstract
G protein-coupled receptors (GPCRs) modulate diverse physiological and behavioral signaling pathways by virtue of changes in receptor activation and inactivation states. Functional changes in receptor properties include dynamic interactions with regulatory molecules and trafficking to various cellular compartments at various stages of the life cycle of a GPCR. This review focuses on trafficking of GPCRs to the cell surface, stabilization there, and agonist-regulated turnover. GPCR interactions with a variety of newly revealed partners also are reviewed with the intention of provoking further analysis of the relevance of these interactions in GPCR trafficking, signaling, or both. The disease consequences of mislocalization of GPCRs also are described.
Collapse
Affiliation(s)
- Christopher M Tan
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
In order to carry out their physiological functions, ion transport proteins must be targeted to the appropriate domains of cell membranes. Regulation of ion transport activity frequently involves the tightly controlled delivery of intracellular populations of transport proteins to the plasma membrane or the endocytic retrieval of transport proteins from the cell surface. Transport proteins carry signals embedded within their structures that specify their subcellular distributions and endow them with the capacity to participate in regulated membrane trafficking processes. Recently, a great deal has been learned about the biochemical nature of these signals, as well as about the cellular machinery that interprets them and acts upon their messages.
Collapse
Affiliation(s)
- Theodore R Muth
- Department of Biology, CUNY Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11231, USA.
| | | |
Collapse
|
18
|
Gaspar P, Cases O, Maroteaux L. The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci 2004; 4:1002-12. [PMID: 14618156 DOI: 10.1038/nrn1256] [Citation(s) in RCA: 939] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
New genetic models that target the serotonin system show that transient alterations in serotonin homeostasis cause permanent changes to adult behaviour and modify the fine wiring of brain connections. These findings have revived a long-standing interest in the developmental role of serotonin. Molecular genetic approaches are now showing us that different serotonin receptors, acting at different developmental stages, modulate different developmental processes such as neurogenesis, apoptosis, axon branching and dendritogenesis. Our understanding of the specification of the serotonergic phenotype is improving. In addition, studies have revealed that serotonergic traits are dissociable, as there are populations of neurons that contain serotonin but do not synthesize it.
Collapse
Affiliation(s)
- Patricia Gaspar
- INSERM U 106, Hôpital Salpêtrière, 47, Boulevard de l'Hôpital, 75651, Paris cedex 13, France.
| | | | | |
Collapse
|
19
|
Abstract
Targeting of proteins to specific subcellular locations within pre- and postsynaptic neurons is essential for synapse formation. The heparan sulfate proteoglycan agrin orchestrates postsynaptic differentiation of the neuromuscular junction and may be involved in synaptic development and signaling in the central nervous system (CNS). Agrin is expressed as transmembrane and secretory isoforms with distinct N-termini. We examined the distribution of recombinant agrin in cultured motor and hippocampal neurons by transfection with agrin-GFP constructs. Immunostaining revealed a vesicular transport compartment within all neurites. Plasma membrane insertion and secretion of recombinant agrin were targeted to axonal growth cones of motor neurons; transmembrane agrin-GFP was targeted predominantly to axons and axonal growth cones in hippocampal neurons. We used agrin deletion mutants to show that axonal targeting of agrin depends on multiple domains that function in an additive fashion, including the very N-terminal portions and the C-terminal half of the molecule.
Collapse
Affiliation(s)
- Birgit Neuhuber
- Laboratory of Cell Biology, NHLBI-NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
20
|
Inukai K, Shewan AM, Pascoe WS, Katayama S, James DE, Oka Y. Carboxy terminus of glucose transporter 3 contains an apical membrane targeting domain. Mol Endocrinol 2003; 18:339-49. [PMID: 14605095 DOI: 10.1210/me.2003-0089] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We previously demonstrated that distinct facilitative glucose transporter isoforms display differential sorting in polarized epithelial cells. In Madin-Darby canine kidney (MDCK) cells, glucose transporter 1 and 2 (GLUT1 and GLUT2) are localized to the basolateral cell surface whereas GLUTs 3 and 5 are targeted to the apical membrane. To explore the molecular mechanisms underlying this asymmetric distribution, we analyzed the targeting of chimeric glucose transporter proteins in MDCK cells. Replacement of the carboxy-terminal cytosolic tail of GLUT1, GLUT2, or GLUT4 with that from GLUT3 resulted in apical targeting. Conversely, a GLUT3 chimera containing the cytosolic carboxy terminus of GLUT2 was sorted to the basolateral membrane. These findings are not attributable to the presence of a basolateral signal in the tails of GLUTs 1, 2, and 4 because the basolateral targeting of GLUT1 was retained in a GLUT1 chimera containing the carboxy terminus of GLUT5. In addition, we were unable to demonstrate the presence of an autonomous basolateral sorting signal in the GLUT1 tail using the low-density lipoprotein receptor as a reporter. By examining the targeting of a series of more defined GLUT1/3 chimeras, we found evidence of an apical targeting signal involving residues 473-484 (DRSGKDGVMEMN) in the carboxy tail. We conclude that the targeting of GLUT3 to the apical cell surface in MDCK cells is regulated by a unique cytosolic sorting motif.
Collapse
Affiliation(s)
- Kouichi Inukai
- Fourth Department of Internal Medicine, Saitama Medical School, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Sun AQ, Salkar R, Xu S, Zeng L, Zhou MM, Suchy FJ. A 14-amino acid sequence with a beta-turn structure is required for apical membrane sorting of the rat ileal bile acid transporter. J Biol Chem 2003; 278:4000-9. [PMID: 12435749 DOI: 10.1074/jbc.m207163200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rat ileal sodium-dependent bile acid transporter (Asbt) is a polytopic membrane glycoprotein, which is specifically expressed on the apical domain of the ileal brush-border membrane. In the present study, an essential 14-amino acid (aa 335-348) sorting signal was defined on the cytoplasmic tail of Asbt with two potential phosphorylation sites motifs for casein kinase II ((335)SFQE) and protein kinase C (PKC) ((339)TNK). Two-dimension NMR spectra analysis demonstrated that a tetramer, (340)NKGF, which overlaps with the potential PKC site within the 14-mer signal sequence, adopts a type I beta-turn conformation. Replacement of the potential phosphorylation residue Ser(335) and Thr(339) with alanine or deletion of either the 4 ((335)SFQE) or 10 aa (338-348, containing (339)TNKGF) from the C terminus of Asbt resulted in a significantly decreased initial bile acid transport activity and increased the basolateral distribution of the mutants by 2-3-fold compared with that of wild type Asbt. Deletion of the entire last 14 amino acids (335-348) from the C terminus of Asbt abolished the apical expression of the truncated Asbt. Moreover, replacement of the cytoplasmic tail of the liver basolateral membrane protein, Na(+)/taurocholate cotransporting polypeptide, with the 14-mer peptide tail of Asbt redirected the chimera to the apical domain. In contrast, a chimera consisting of the 14-mer peptide of Asbt fused with green fluorescent protein was expressed in an intracellular transport vesicle-like distribution in transfected Madin-Darby canine kidney and COS 7 cells. This suggests that the apical localization of the 14-mer peptide requires a membrane anchor to support proper targeting. The results from biological reagent treatment and low temperature shift (20 degrees C) suggests that Asbt follows a transport vesicle-mediated apical sorting pathway that is brefeldin A-sensitive and insensitive to protein glycosylation, monensin treatment, and low temperature shift.
Collapse
Affiliation(s)
- An-Qiang Sun
- Department of Pediatrics and Structural Biology Program, Mount Sinai School of Medicine, New York, New York 10029-6574, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Xia Z, Hufeisen SJ, Gray JA, Roth BL. The PDZ-binding domain is essential for the dendritic targeting of 5-HT2A serotonin receptors in cortical pyramidal neurons in vitro. Neuroscience 2003; 122:907-20. [PMID: 14643760 DOI: 10.1016/s0306-4522(03)00589-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The 5-HT(2A) serotonin receptor represents an important molecular target for atypical antipsychotic drugs and for most hallucinogens. In the mammalian cerebral cortex, 5-HT(2A) receptors are enriched in pyramidal neurons, within which 5-HT(2A) receptors are preferentially sorted to the apical dendrites. In primary cortical cultures, 5-HT(2A) receptors are sorted to dendrites and not found in the axons of pyramidal neurons. We identified a sorting motif that mediates the preferential targeting of 5-HT(2A) receptors to the dendrites of cortical pyramidal neurons in vitro. We constructed green fluorescent protein-tagged 5-HT(2A) receptors wherein potential sorting motifs were disrupted, and subsequently employed either the Semliki Forest virus or calcium phosphate for the transient expression of recombinant 5-HT(2A) receptors in cultured cortical pyramidal neurons. Using dual-labeling immunofluorescent confocal microscopy, we quantified the axonal and dendritic sorting patterns of endogenous and recombinant 5-HT(2A) receptors. We discovered that disruption of the PDZ-binding domain of the 5-HT(2A) receptor greatly attenuates the dendritic targeting of 5-HT(2A) receptors without inappropriately sorting 5-HT(2A) receptors to axons. The PDZ-binding domain is therefore a necessary signal for the preferential targeting of the 5-HT(2A) receptor to the dendritic compartment of cultured cortical pyramidal neurons, the first such role ascribed to this protein-protein interaction motif of any G protein-coupled receptor.
Collapse
Affiliation(s)
- Z Xia
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
23
|
Rumajogee P, Madeira A, Vergé D, Hamon M, Miquel MC. Up-regulation of the neuronal serotoninergic phenotype in vitro: BDNF and cAMP share Trk B-dependent mechanisms. J Neurochem 2002; 83:1525-8. [PMID: 12472905 DOI: 10.1046/j.1471-4159.2002.01264.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of brain-derived neurotrophic factor (BDNF) and cAMP on the neuronal serotoninergic phenotype were studied in primary cultures of E14 rat embryonic rostral raphe. Short treatments (for 18 h) with BDNF or dibutyryl-cAMP induced an almost two-fold increase in the number of serotoninergic neurones and a dramatic extension and ramification of their neurites. These changes were associated with marked increases in the levels of mRNAs encoding the serotonin transporter, the 5-HT1A and 5-HT1B receptors and the BDNF receptor tyrosine kinase B (TrkB). Concomitant blockade of tyrosine kinases by genistein suppressed all the up-regulating effects of BDNF and cAMP on 5-hydroxytryptamine (5-HT) neurones. These findings suggest that an auto-amplifying mechanism underlies the promoting effect of BDNF on the differentiation of serotoninergic neurones through TrkB activation, which is also triggered by cAMP.
Collapse
MESH Headings
- Animals
- Brain-Derived Neurotrophic Factor/metabolism
- Brain-Derived Neurotrophic Factor/pharmacology
- Bucladesine/pharmacology
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Differentiation/drug effects
- Cells, Cultured
- Cyclic AMP/metabolism
- Enzyme Inhibitors/pharmacology
- Genistein/pharmacology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Membrane Transport Proteins
- Nerve Tissue Proteins
- Neurites/drug effects
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- Phenotype
- RNA, Messenger/metabolism
- Raphe Nuclei/cytology
- Rats
- Rats, Wistar
- Receptor, Serotonin, 5-HT1B
- Receptor, trkB/genetics
- Receptor, trkB/metabolism
- Receptors, Serotonin/genetics
- Receptors, Serotonin/metabolism
- Receptors, Serotonin, 5-HT1
- Serotonin/metabolism
- Serotonin Plasma Membrane Transport Proteins
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Prakasham Rumajogee
- Laboratoire de Neurobiologie des Signaux Intercellulaires, CNRS UMR 7101, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | |
Collapse
|
24
|
Sanders AR, Duan J, Gejman PV. DNA variation and psychopharmacology of the human serotonin receptor 1B (HTR1B) gene. Pharmacogenomics 2002; 3:745-62. [PMID: 12437478 DOI: 10.1517/14622416.3.6.745] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
One of the neurotransmitter serotonin's receptors, HTR1B, is of interest for many neuropsychiatric traits, illnesses and treatments for multiple reasons, especially its tissue distribution, pharmacological profile and findings from mice lacking the receptor, along with reasons generally implicating serotonin. Eight mutation scans have uncovered sixteen polymorphisms in the coding sequence and surrounding 5'- and 3'-untranslated regions and much is now known of the distribution of these polymorphisms in various ethnic groups and their linkage disequilibrium relationships. Thus far, evidence exists that the uncommon missense T371G (Phe124Cys) and the common promoter region A-161T polymorphisms may exhibit functional effects and possibly that the common synonymous G861C (or more likely a variant in linkage disequilibrium with G861C) does as well. From the eighteen reported population-based case control studies of HTR1B to multiple disorders, several facts stand out. There exists preliminary evidence for association of G861C with i) antisocial alcoholism in the Finnish; ii) alcoholism in the presence of inactive aldehyde dehydrogenase 2 in the Japanese; iii) a history of suicide attempts in European-American personality disorder patients; and iv) minimum lifetime body mass index in Canadian bulimia nervosa patients. From the three reported family-based case control studies of HTR1B to various disorders, one provides preliminary evidence for association of G861C with obsessive compulsive disorder. Although many association studies have been completed, positive results should still be considered preliminary. As these preliminary reports are tested for replication with larger, more powerful samples, there should be increased clarity as to which findings remain robust; in some cases this will require the application of meta-analytic techniques.
Collapse
Affiliation(s)
- Alan R Sanders
- Schizophrenia Genetics Research Program, Department of Psychiatry, The University of Chicago, Jules F Knapp Research Building, 924 East 57th Street, Room R-004, IL 60637, USA.
| | | | | |
Collapse
|
25
|
Adell A, Celada P, Abellán MT, Artigas F. Origin and functional role of the extracellular serotonin in the midbrain raphe nuclei. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2002; 39:154-80. [PMID: 12423765 DOI: 10.1016/s0165-0173(02)00182-0] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is considerable interest in the regulation of the extracellular compartment of the transmitter serotonin (5-hydroxytryptamine, 5-HT) in the midbrain raphe nuclei because it can control the activity of ascending serotonergic systems and the release of 5-HT in terminal areas of the forebrain. Several intrinsic and extrinsic factors of 5-HT neurons that regulate 5-HT release in the dorsal (DR) and median (MnR) raphe nucleus are reviewed in this article. Despite its high concentration in the extracellular space of the raphe nuclei, the origin of this pool of the transmitter remains to be determined. Regardless of its origin, is has been shown that the release of 5-HT in the rostral raphe nuclei is partly dependent on impulse flow and Ca(2+) ions. The release in the DR and MnR is critically dependent on the activation of 5-HT autoreceptors in these nuclei. Yet, it appears that 5-HT autoreceptors do not tonically inhibit 5-HT release in the raphe nuclei but rather play a role as sensors that respond to an excess of the endogenous transmitter. Both DR and MnR are equally responsive to the reduction of 5-HT release elicited by the local perfusion of 5-HT(1A) receptor agonists. In contrast, the effects of selective 5-HT(1B) receptor agonists are more pronounced in the MnR than in the DR. However, the cellular localization of 5-HT(1B) receptors in the raphe nuclei remains to be established. Furthermore, endogenous noradrenaline and GABA tonically regulate the extracellular concentration of 5-HT although the degree of tonicity appears to depend upon the sleep/wake cycle and the behavioral state of the animal. Glutamate exerts a phasic facilitatory control over the release of 5-HT in the raphe nuclei through ionotropic glutamate receptors. Overall, it appears that the extracellular concentration of 5-HT in the DR and the MnR is tightly controlled by intrinsic serotonergic mechanisms as well as afferent connections.
Collapse
Affiliation(s)
- Albert Adell
- Department of Neurochemistry, Institut d'Investigacions Biomèdiques de Barcelona, CSIC (IDIBAPS), Carrer Rosselló 161, 6th floor, E-08036 Barcelona, Spain.
| | | | | | | |
Collapse
|
26
|
Emerit MB, Doucet E, Darmon M, Hamon M. Native and cloned 5-HT(3A)(S) receptors are anchored to F-actin in clonal cells and neurons. Mol Cell Neurosci 2002; 20:110-24. [PMID: 12056843 DOI: 10.1006/mcne.2002.1133] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using selective antibodies to visualize the short isoform of the 5-HT(3A) receptor, we report here that both native and cloned 5-HT(3A)(S) receptors formed clusters associated with F-actin in all cell types studied. NG 108-15 cells expressing native 5-HT(3A)(S) receptors, COS-7 cells transiently expressing 5-HT(3A)(S) subunits, and CHO cells stably transfected with a plasmid encoding the 5-HT(3A)(S) sequence all exhibited similar surface receptor topology with 5-HT(3A)(S) receptor cluster accumulation in F-actin-rich lamellipodia and microspikes. Colocalization and coclustering of 5-HT(3A)(S) subunits and F-actin were also observed in transfected hippocampal neurons. Treatment of the neurons with latrunculin-A, a compound altering F-actin polymerization, demonstrated that 5-HT(3A)(S) receptor cluster size and topology were dependent on F-actin integrity. These results suggest that the anchoring of 5-HT(3A)(S) receptor clusters to the cytoskeletal network probably plays a key role in the physiological regulation of the receptor topology and dynamics, as is the case for other members of the 4-TMD ion channel receptor family.
Collapse
Affiliation(s)
- Michel B Emerit
- INSERM U288, Neuropsychopharmacologie Moléculaire, Cellulaire et Fonctionnelle, C.H.U. Pitié-Salpêtrière, 91 Bd de l'Hôpital, 75634 Paris Cedex 13, France.
| | | | | | | |
Collapse
|
27
|
Wetherington JP, Lambert NA. Differential desensitization of responses mediated by presynaptic and postsynaptic A1 adenosine receptors. J Neurosci 2002; 22:1248-55. [PMID: 11850452 PMCID: PMC6757553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) often desensitize during continuous activation, but it is not known whether desensitization is influenced by subcellular location. In hippocampal neurons, activation of adenosine A1 receptors (A1Rs) or GABA(B) receptors on synaptic terminals inhibits neurotransmitter release, whereas activation of the same receptors on cell bodies and dendrites decreases excitability by activating inwardly rectifying potassium (GIRK) channels. Here we report that responses mediated by presynaptic A1Rs desensitize more slowly than responses mediated by postsynaptic (somatodendritic) A1Rs in cultured neurons. Agonist treatment for 2 hr has no effect on adenosine-induced presynaptic inhibition, whereas such treatment nearly abolishes adenosine-induced activation of postsynaptic GIRK channels. Agonist treatment for longer periods (>12 hr) eventually desensitizes A1R-mediated presynaptic inhibition. Presynaptic and postsynaptic responses both recover from desensitization after agonist removal, but recovery of presynaptic inhibition requires more time. Desensitization of postsynaptic responses apparently occurs at the level of the receptor, because postsynaptic G-proteins and GIRK channels appear to be fully functional. Inhibition of voltage-gated calcium channels by postsynaptic A1Rs also desensitizes rapidly, although this desensitization is less complete than is observed for activation of postsynaptic GIRK channels. Comparison of concentration-response curves for presynaptic and postsynaptic responses suggests that a receptor reserve exists for presynaptic inhibition, but that the magnitude of this reserve is insufficient to account for the absence of presynaptic desensitization after brief agonist exposure. These results suggest that agonist-induced desensitization of responses mediated by neuronal GPCRs may depend on the subcellular location of the receptors.
Collapse
Affiliation(s)
- Jonathon P Wetherington
- Department of Pharmacology and Toxicology, Medical College of Georgia, and Medical Research Service, Augusta Veterans Affairs Medical Center, Augusta, Georgia 30912, USA
| | | |
Collapse
|