1
|
Singh P, Ray SB. Comparison of Antinociceptive Effect of Octreotide With Morphine in a Rat Model of Acute Inflammatory Pain. Ann Neurosci 2021; 28:13-20. [PMID: 34733050 PMCID: PMC8558988 DOI: 10.1177/09727531211013004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/31/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Opioids such as morphine are used for treating moderate to severe pain. However, they
also produce adverse effects such as nausea, constipation, addiction, and respiratory
depression. Thus, other suitable analgesics need to be identified. Somatostatin is an
inhibitory neuropeptide that modulates the transmission of pain. However, the half-life
of somatostatin is short. In the present study, the antinociceptive effect of octreotide
(a stable long-acting analog of somatostatin) was evaluated in rats with acute
inflammatory pain. Methods: Sprague Dawley rats (n = 42) were divided into control
(n = 6) and carrageenan injected groups (n = 36).
The carrageena group was divided into three equal subgroups and treated with saline,
morphine (10 mg/kg), and octreotide (3 µg). Rats belonging to each subgroup
(n = 12) were again randomly divided into two equal sets. They were
subjected to (a) behavioral evaluation of pain (allodynia) and estimation of paw edema,
followed by immunohistochemical analysis of the expression of somatostatin type 2
receptor (sst2r) in the spinal cord and (b) estimation of open-field activity. Allodynia
and paw edema were measured by von Frey filaments and plethysmometer, respectively, at 3
and 4 h after carrageenan injection. Expression of sst2r was examined after 24 hours,
whereas open-field activity was evaluated after 3 hours. Results: In comparison to the saline-treated group, allodynia was partially attenuated by
octreotide, though this was almost completely reversed by morphine. Paw edema was
unaffected by octreotide, though it was marginally increased by morphine. This was not
related to increased activity of rats, following relief from pain. Immunohistochemistry
revealed a significant increase in the expression of sst2r in saline-treated rats, but a
decrease in other groups. Conclusion: Octreotide has an antinociceptive effect, which was less than morphine. Increased edema
following morphine could result from venodilation. Variations in the sst2r expression
suggest its involvement in pain modulation at the spinal level. This information may
have clinical relevance.
Collapse
Affiliation(s)
- Perminder Singh
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Subrata Basu Ray
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
2
|
Inhibition of ASIC-Mediated Currents by Activation of Somatostatin 2 Receptors in Rat Dorsal Root Ganglion Neurons. Mol Neurobiol 2021; 58:2107-2117. [PMID: 33411247 DOI: 10.1007/s12035-020-02257-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022]
Abstract
Somatostatin (SST) and its analogues like octreotide (OCT) have analgesic effect on a variety of pain through peripheral SST receptors (SSTRs). However, the precise molecular mechanisms have not yet been fully elucidated. This research aimed to identify possible antinociceptive mechanisms, showing functional links of the SSTR2 and acid-sensing ion channels (ASICs). Herein, we reported that OCT inhibited the electrophysiological activity of ASICs in rat dorsal root ganglia (DRG) neurons. OCT concentration-dependently decreased the peak amplitude of acid-evoked inward currents, which were mediated by ASICs. OCT shifted concentration-response curve to protons downwards, with a decrease of 36.53 ± 5.28% in the maximal current response to pH 4.5 in the presence of OCT. OCT inhibited ASIC-mediated currents through SSTR2, since the inhibition was blocked by Cyn 154806, a specific SSTR2 antagonist. The OCT inhibition of ASIC-mediated currents was mimicked by H-89, a membrane-permeable inhibitor of PKA, and reversed by internal treatment of an adenylyl cyclase activator forskolin or 8-Br-cAMP. OCT also decreased the number of action potentials induced by acid stimuli through SSTR2. Finally, peripheral administration of 20 μM OCT, but not 2 μM OCT, significantly relieved nociceptive responses to intraplantar injection of acetic acid in rats. This occurred through local activation of SSTR2 in the injected hindpaw and was reversed following co-application of Cyn 154806. Our results indicate that activation SSTR2 by OCT can inhibit the activity of ASICs via an intracellular cAMP and PKA signaling pathway in rat DRG neurons. These observations demonstrate a cross-talk between ASICs and SSTR2 in peripheral sensory neurons, which was a novel peripheral analgesic mechanism of SST and its analogues.
Collapse
|
3
|
Royds J, Conroy MJ, Dunne MR, Cassidy H, Matallanas D, Lysaght J, McCrory C. Examination and characterisation of burst spinal cord stimulation on cerebrospinal fluid cellular and protein constituents in patient responders with chronic neuropathic pain - A Pilot Study. J Neuroimmunol 2020; 344:577249. [PMID: 32361148 DOI: 10.1016/j.jneuroim.2020.577249] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/11/2020] [Accepted: 04/21/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Patients with neuropathic pain have altered proteomic and neuropeptide constituents in cerebrospinal fluid (CSF) compared to controls. Tonic spinal cord stimulation (SCS) has demonstrated differential expression of neuropeptides in CSF before and after treatment suggesting potential mechanisms of action. Burst-SCS is an evidence-based paraesthesia free waveform utilised for neuropathic pain with a potentially different mechanistic action to tonic SCS. This study examines the dynamic biological changes of CSF at a cellular and proteome level after Burst-SCS. METHODS Patients with neuropathic pain selected for SCS had CSF sampled prior to implant of SCS and following 8 weeks of continuous Burst-SCS. Baseline and 8-week pain scores with demographics were recorded. T cell frequencies were analysed by flow cytometry, proteome analysis was performed using mass spectrometry and secreted cytokines, chemokines and neurotrophins were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS 4 patients (2 females, 2 males) with a mean age of 51 years (+/-SEM 2.74, SD 5.48) achieved a reduction in pain of >50% following 8 weeks of Burst-SCS. Analysis of the CSF proteome indicated a significant alteration in protein expression most related to synapse assembly and immune regulators. There was significantly lower expression of the proteins: growth hormone A1 (PRL), somatostatin (SST), nucleobindin-2 (NUCB2), Calbindin (CALB1), acyl-CoA binding protein (DBI), proSAAS (PCSK1N), endothelin-3 (END3) and cholecystokinin (CCK) after Burst-SCS. The concentrations of secreted chemokines and cytokines and the frequencies of T cells were not significantly changed following Burst-SCS. CONCLUSION This study characterised the alteration in the CSF proteome in response to burst SCS in vivo. Functional analysis indicated that the alterations in the CSF proteome is predominately linked to synapse assembly and immune effectors. Individual protein analysis also suggests potential supraspinal mechanisms.
Collapse
Affiliation(s)
- Jonathan Royds
- Department of Pain Medicine, St. James Hospital, Dublin and School of Medicine, Trinity College Dublin, Ireland.
| | - Melissa J Conroy
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, Dublin 8, Ireland
| | - Margaret R Dunne
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, Dublin 8, Ireland
| | - Hilary Cassidy
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - David Matallanas
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Joanne Lysaght
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, Dublin 8, Ireland
| | - Connail McCrory
- Department of Pain Medicine, St. James Hospital, Dublin and School of Medicine, Trinity College Dublin, Ireland
| |
Collapse
|
4
|
Zhao C, Quan X, He J, Zhao R, Zhang Y, Li X, Sun S, Ma R, Zhang Q. Identification of significant gene biomarkers of low back pain caused by changes in the osmotic pressure of nucleus pulposus cells. Sci Rep 2020; 10:3708. [PMID: 32111963 PMCID: PMC7048739 DOI: 10.1038/s41598-020-60714-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
The incidence of intervertebral disc (IVD) degeneration disease, caused by changes in the osmotic pressure of nucleus pulposus (NP) cells, increases with age. In general, low back pain is associated with IVD degeneration. However, the mechanism and molecular target of low back pain have not been elucidated, and there are no data suggesting specific biomarkers of low back pain. Therefore, the research aims to identify and verify the significant gene biomarkers of low back pain. The differentially expressed genes (DEGs) were screened in the Gene Expression Omnibus (GEO) database, and the identification and analysis of significant gene biomarkers were also performed with various bioinformatics programs. A total of 120 patients with low back pain were recruited. Before surgery, the degree of pain was measured by the numeric rating scale (NRS), which enables comparison of the pain scores from individuals. After surgery, IVD tissues were obtained, and NP cells were isolated. The NP cells were cultured in two various osmotic media, including iso-osmotic media (293 mOsm/kg H2O) to account for the morbid environment of NP cells in IVD degeneration disease and hyper-osmotic media (450 mOsm/kg H2O) to account for the normal condition of NP cells in healthy individuals. The relative mRNA expression levels of CCL5, OPRL1, CXCL13, and SST were measured by quantitative real-time PCR in the in vitro analysis of the osmotic pressure experiments. Finally, correlation analysis and a neural network module were employed to explore the linkage between significant gene biomarkers and pain. A total of 371 DEGs were identified, including 128 downregulated genes and 243 upregulated genes. Furthermore, the four genes (CCL5, OPRL1, SST, and CXCL13) were identified as significant gene biomarkers of low back pain (P < 0.001) based on univariate linear regression, and CCL5 (odds ratio, 34.667; P = 0.003) and OPRL1 (odds ratio, 19.875; P < 0.001) were significantly related to low back pain through multivariate logistic regression. The expression of CCL5 and OPRL1 might be correlated with low back pain in patients with IVD degeneration disease caused by changes in the osmotic pressure of NP cells.
Collapse
Affiliation(s)
- Changsong Zhao
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University, 100015, Beijing, China
| | - Xuemin Quan
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University, 100015, Beijing, China
| | - Jie He
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University, 100015, Beijing, China
| | - Rugang Zhao
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University, 100015, Beijing, China
| | - Yao Zhang
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University, 100015, Beijing, China
| | - Xin Li
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University, 100015, Beijing, China
| | - Sheng Sun
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University, 100015, Beijing, China
| | - Rui Ma
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University, 100015, Beijing, China
| | - Qiang Zhang
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University, 100015, Beijing, China.
| |
Collapse
|
5
|
Habib AM, Matsuyama A, Okorokov AL, Santana-Varela S, Bras JT, Aloisi AM, Emery EC, Bogdanov YD, Follenfant M, Gossage SJ, Gras M, Humphrey J, Kolesnikov A, Le Cann K, Li S, Minett MS, Pereira V, Ponsolles C, Sikandar S, Torres JM, Yamaoka K, Zhao J, Komine Y, Yamamori T, Maniatis N, Panov KI, Houlden H, Ramirez JD, Bennett DLH, Marsili L, Bachiocco V, Wood JN, Cox JJ. A novel human pain insensitivity disorder caused by a point mutation in ZFHX2. Brain 2019; 141:365-376. [PMID: 29253101 PMCID: PMC5837393 DOI: 10.1093/brain/awx326] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/18/2017] [Indexed: 12/13/2022] Open
Abstract
Chronic pain is a major global public health issue causing a severe impact on both the quality of life for sufferers and the wider economy. Despite the significant clinical burden, little progress has been made in terms of therapeutic development. A unique approach to identifying new human-validated analgesic drug targets is to study rare families with inherited pain insensitivity. Here we have analysed an otherwise normal family where six affected individuals display a pain insensitive phenotype that is characterized by hyposensitivity to noxious heat and painless bone fractures. This autosomal dominant disorder is found in three generations and is not associated with a peripheral neuropathy. A novel point mutation in ZFHX2, encoding a putative transcription factor expressed in small diameter sensory neurons, was identified by whole exome sequencing that segregates with the pain insensitivity. The mutation is predicted to change an evolutionarily highly conserved arginine residue 1913 to a lysine within a homeodomain. Bacterial artificial chromosome (BAC) transgenic mice bearing the orthologous murine p.R1907K mutation, as well as Zfhx2 null mutant mice, have significant deficits in pain sensitivity. Gene expression analyses in dorsal root ganglia from mutant and wild-type mice show altered expression of genes implicated in peripheral pain mechanisms. The ZFHX2 variant and downstream regulated genes associated with a human pain-insensitive phenotype are therefore potential novel targets for the development of new analgesic drugs.awx326media15680039660001.
Collapse
Affiliation(s)
- Abdella M Habib
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK.,College of Medicine, Member of Qatar Health Cluster, Qatar University, PO Box 2713, Doha, Qatar
| | - Ayako Matsuyama
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - Andrei L Okorokov
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - Sonia Santana-Varela
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - Jose T Bras
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Anna Maria Aloisi
- Department of Medicine, Surgery and Neuroscience, University of Siena, via Aldo Moro, 2, 53100 Siena, Italy
| | - Edward C Emery
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - Yury D Bogdanov
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - Maryne Follenfant
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - Sam J Gossage
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - Mathilde Gras
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - Jack Humphrey
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - Anna Kolesnikov
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - Kim Le Cann
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - Shengnan Li
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - Michael S Minett
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - Vanessa Pereira
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - Clara Ponsolles
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - Shafaq Sikandar
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - Jesus M Torres
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK.,Department of Biochemistry, Molecular Biology and Immunology, Faculty of Medicine, University of Granada, Granada 18012, Spain
| | - Kenji Yamaoka
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - Jing Zhao
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - Yuriko Komine
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Tetsuo Yamamori
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Nikolas Maniatis
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Konstantin I Panov
- Medical Biology Centre, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Henry Houlden
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Juan D Ramirez
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - David L H Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Letizia Marsili
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Valeria Bachiocco
- Department of Medicine, Surgery and Neuroscience, University of Siena, via Aldo Moro, 2, 53100 Siena, Italy
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - James J Cox
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| |
Collapse
|
6
|
Kumar R, Gautam M, Prasoon P, Gupta S, Ray SB. Comparison of the peripheral antinociceptive effect of somatostatin with bupivacaine and morphine in the rodent postoperative pain model. Eur J Anaesthesiol 2019; 35:955-965. [PMID: 29762151 DOI: 10.1097/eja.0000000000000825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND OBJECTIVES Infiltration of surgical wound with local anaesthetics attenuate postoperative pain. However, side effects can also occur. Somatostatin (SST) and its analogues like octreotide reportedly reduce peripheral sensitisation. The current study evaluates peripherally mediated antinociceptive effect of SST in a rat model of postoperative pain. This was compared with bupivacaine and morphine under identical experimental conditions. DESIGN Randomised vehicle-controlled blind study. SETTING Pain research laboratory, All India Institute of Medical Sciences, New Delhi from February 2014 to July 2017. EXPERIMENTAL SUBJECT Rodent hind paw incision model. INTERVENTIONS Sprague-Dawley rats were subjected to incision and one of the following drugs administered into the open wound once by a micropipette: SST (10, 30 or 100 μg), bupivacaine (3, 10, 30, 50 or 100 μg) or morphine (100 μg). Antinociceptive effect of SST was further evaluated for its reversibility, site of action, effect on spinal c-fos expression and blood glucose level. The site of action of morphine was also investigated. MAIN OUTCOME MEASURE Nociception was estimated by nonevoked (guarding behaviour) and evoked (mechanical allodynia and thermal hyperalgesia) pain behaviours between 2 h and days 4 to 7. RESULTS Nociception was maximum 2 h after incision. SST (10 to 100 μg) significantly attenuated guarding behaviour between 2 h and day 2. A delayed inhibitory effect was observed on allodynia. Bupivacaine (10 to 100 μg doses) similarly decreased guarding score up to day 2 though evoked pain behaviours were relatively unaffected. In contrast, morphine produced a potent but transient inhibitory effect on guarding score at 2 h, which was mediated by both peripheral and central opioid receptors. The antinociceptive effect of SST was peripherally mediated by type 2 receptors and was associated with decreased c-fos staining. Blood glucose level was unaltered. CONCLUSION Guarding behaviour, which likely represents pain-at-rest following surgery, was attenuated by both bupivacaine and SST to comparable extents. This novel peripherally mediated antinociceptive effect of SST needs further evaluation.
Collapse
Affiliation(s)
- Rahul Kumar
- From the Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India (RK, MG, PP, SG, SBR)
| | | | | | | | | |
Collapse
|
7
|
Lambert GA, Zagami AS. Does somatostatin have a role to play in migraine headache? Neuropeptides 2018; 69:1-8. [PMID: 29751998 DOI: 10.1016/j.npep.2018.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/05/2018] [Accepted: 04/15/2018] [Indexed: 11/24/2022]
Abstract
Migraine is a condition without apparent pathology. Its cardinal symptom is the prolonged excruciating headache. Theories about this pain have posited pathologies which run the gamut from neural to vascular to neurovascular, but no observations have detected a plausible pathology. We believe that no pathology can be found for migraine headache because none exists. Migraine is not driven by pathology - it is driven by neural events produced by triggers - or simply by neural noise- noise that has crossed a critical threshold. If these ideas are true, how does the pain arise? We hypothesise that migraine headache is a consequence of withdrawal of descending pain control, produced by "noise" in the cerebral cortex. Nevertheless, there has to be a neural circuit to transform cortical noise to withdrawal of pain control. In our hypothesis, this neural circuit extends from the cortex, synapses in two brainstem nuclei (the periaqueductal gray matter and the raphe magnus nucleus) and ultimately reaches the first synapse of the trigeminal sensory system. The second stage of this circuit uses serotonin (5HT) as a neurotransmitter, but the neuronal projection from the cortex to the brainstem seems to involve relatively uncommon neurotransmitters. We believe that one of these is somatostatin (SST). Temporal changes in levels of circulating SST mirror the temporal changes in the incidence of migraine, particularly in women. The SST2 receptor agonist octreotide has been used with some success in migraine and cluster headache. A cortical to PAG/NRM neural projection certainly exists and we briefly review the anatomical and neurophysiological evidence for it and provide preliminary evidence that SST may the critical neurotransmitter in this pathway. We therefore suggest that the withdrawal of descending tone in SST-containing neurons, might create a false pain signal and hence the headache of migraine.
Collapse
Affiliation(s)
- Geoffrey A Lambert
- Prince of Wales Clinical School, UNSW, Australia; School of Medicine, University of Western Sydney, Australia.
| | - Alessandro S Zagami
- Prince of Wales Clinical School, UNSW, Australia; Institute of Neurological Sciences, Prince of Wales Hospital, Australia
| |
Collapse
|
8
|
Anti-inflammatory Effect of Somatostatin Analogue Octreotide on Rheumatoid Arthritis Synoviocytes. Inflammation 2018; 41:1648-1660. [DOI: 10.1007/s10753-018-0808-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Huang J, Polgár E, Solinski HJ, Mishra SK, Tseng PY, Iwagaki N, Boyle KA, Dickie AC, Kriegbaum MC, Wildner H, Zeilhofer HU, Watanabe M, Riddell JS, Todd AJ, Hoon MA. Circuit dissection of the role of somatostatin in itch and pain. Nat Neurosci 2018; 21:707-716. [PMID: 29556030 PMCID: PMC5923877 DOI: 10.1038/s41593-018-0119-z] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/25/2018] [Indexed: 11/09/2022]
Abstract
Stimuli that elicit itch are detected by sensory neurons that innervate the skin. This information is processed by the spinal cord; however, the way in which this occurs is still poorly understood. Here we investigated the neuronal pathways for itch neurotransmission, particularly the contribution of the neuropeptide somatostatin. We find that in the periphery, somatostatin is exclusively expressed in Nppb+ neurons, and we demonstrate that Nppb+somatostatin+ cells function as pruriceptors. Employing chemogenetics, pharmacology and cell-specific ablation methods, we demonstrate that somatostatin potentiates itch by inhibiting inhibitory dynorphin neurons, which results in disinhibition of GRPR+ neurons. Furthermore, elimination of somatostatin from primary afferents and/or from spinal interneurons demonstrates differential involvement of the peptide released from these sources in itch and pain. Our results define the neural circuit underlying somatostatin-induced itch and characterize a contrasting antinociceptive role for the peptide.
Collapse
Affiliation(s)
- Jing Huang
- Molecular Genetics Unit, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research/NIH, Bethesda, MD, USA
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, PR China
| | - Erika Polgár
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Hans Jürgen Solinski
- Molecular Genetics Unit, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research/NIH, Bethesda, MD, USA
| | - Santosh K Mishra
- Molecular Genetics Unit, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research/NIH, Bethesda, MD, USA
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University; and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Pang-Yen Tseng
- Molecular Genetics Unit, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research/NIH, Bethesda, MD, USA
| | - Noboru Iwagaki
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Kieran A Boyle
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Allen C Dickie
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Mette C Kriegbaum
- Molecular Genetics Unit, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research/NIH, Bethesda, MD, USA
| | - Hendrik Wildner
- Institute of Pharmacology and Toxicology, University of Zurich; and Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich; and Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, Japan
| | - John S Riddell
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Andrew J Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Mark A Hoon
- Molecular Genetics Unit, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research/NIH, Bethesda, MD, USA.
| |
Collapse
|
10
|
Yang N, Anapindi KDB, Rubakhin SS, Wei P, Yu Q, Li L, Kenny PJ, Sweedler JV. Neuropeptidomics of the Rat Habenular Nuclei. J Proteome Res 2018. [PMID: 29518334 DOI: 10.1021/acs.jproteome.7b00811] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Conserved across vertebrates, the habenular nuclei are a pair of small symmetrical structures in the epithalamus. The nuclei functionally link the forebrain and midbrain by receiving input from and projecting to several brain regions. Each habenular nucleus comprises two major asymmetrical subnuclei, the medial and lateral habenula. These subnuclei are associated with different physiological processes and disorders, such as depression, nicotine addiction, and encoding aversive stimuli or omitting expected rewarding stimuli. Elucidating the functions of the habenular nuclei at the molecular level requires knowledge of their neuropeptide complement. In this work, three mass spectrometry (MS) techniques-liquid chromatography (LC) coupled to Orbitrap tandem MS (MS/MS), LC coupled to Fourier transform (FT)-ion cyclotron resonance (ICR) MS/MS, and matrix-assisted laser desorption/ionization (MALDI) FT-ICR MS-were used to uncover the neuropeptide profiles of the rodent medial and lateral habenula. With the assistance of tissue stabilization and bioinformatics, a total of 262 and 177 neuropeptides produced from 27 and 20 prohormones were detected and identified from the medial and lateral habenula regions, respectively. Among these neuropeptides, 136 were exclusively found in the medial habenula, and 51 were exclusively expressed in the lateral habenula. Additionally, novel sites of sulfation, a rare post-translational modification, on the secretogranin I prohormone are identified. The results demonstrate that these two small brain nuclei have a rich and differentiated peptide repertoire, with this information enabling a range of follow-up studies.
Collapse
Affiliation(s)
- Ning Yang
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Krishna D B Anapindi
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Stanislav S Rubakhin
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Pingli Wei
- Chemistry Department , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Qing Yu
- School of Pharmacy , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Lingjun Li
- Chemistry Department , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States.,School of Pharmacy , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Paul J Kenny
- Department of Pharmacology & Systems Therapeutics , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
11
|
Kozłowska A, Mikołajczyk A, Majewski M. Detailed Characterization of Sympathetic Chain Ganglia (SChG) Neurons Supplying the Skin of the Porcine Hindlimb. Int J Mol Sci 2017; 18:ijms18071463. [PMID: 28686209 PMCID: PMC5535954 DOI: 10.3390/ijms18071463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/30/2017] [Accepted: 07/01/2017] [Indexed: 11/16/2022] Open
Abstract
It is generally known that in the skin sympathetic fibers innervate various dermal structures, including sweat glands, blood vessels, arrectores pilorum muscles and hair follicles. However, there is a lack of data about the distribution and chemical phenotyping of the sympathetic chain ganglia (SChG) neurons projecting to the skin of the pig, a model that is physiologically and anatomically very representative for humans. Thus, the present study was designed to establish the origin of the sympathetic fibers supplying the porcine skin of the hind leg, and the pattern(s) of putative co-incidence of dopamine-β-hydroxylase (DβH) with pituitary adenylate cyclase-activating polypeptide (PACAP), somatostatin (SOM), neuronal nitric oxide synthase, substance P, vasoactive intestinal peptide, neuropeptide Y (NPY), leu5-enkephalin and galanin (GAL) using combined retrograde tracing and double-labeling immunohistochemistry. The Fast Blue-positive neurons were found in the L₂-S₂ ganglia. Most of them were small-sized and contained DβH with PACAP, SOM, NPY or GAL. The findings of the present study provide a detailed description of the distribution and chemical coding of the SChG neurons projecting to the skin of the porcine hind leg. Such data may be the basis for further studies concerning the plasticity of these ganglia under experimental or pathological conditions.
Collapse
Affiliation(s)
- Anna Kozłowska
- Department of Human Physiology, Faculty of Medical Sciences, University of Warmia and Mazury Olsztyn, Olsztyn 10-082, Poland.
| | - Anita Mikołajczyk
- Department of Public Health, Epidemiology and Microbiology, Faculty of Medical Sciences, University of Warmia and Mazury Olsztyn, Olsztyn 10-082, Poland.
| | - Mariusz Majewski
- Department of Human Physiology, Faculty of Medical Sciences, University of Warmia and Mazury Olsztyn, Olsztyn 10-082, Poland.
| |
Collapse
|
12
|
Pethő G, Bölcskei K, Füredi R, Botz B, Bagoly T, Pintér E, Szolcsányi J. Evidence for a novel, neurohumoral antinociceptive mechanism mediated by peripheral capsaicin-sensitive nociceptors in conscious rats. Neuropeptides 2017; 62:1-10. [PMID: 28291541 DOI: 10.1016/j.npep.2017.02.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 12/16/2016] [Accepted: 02/07/2017] [Indexed: 11/20/2022]
Abstract
Stimulation of capsaicin-sensitive peripheral sensory nerve terminals induces remote anti-inflammatory effects throughout the body of anesthetized rats and guinea-pigs mediated by somatostatin. As somatostatin has also antinociceptive effects, the study aimed at investigating whether similar remote antinociceptive effects can be demonstrated in awake animals. In conscious rats, nociceptive nerve endings of the right hind paw decentralized by cutting the sciatic and saphenous nerves 18h before were chemically stimulated, and drop of the noxious heat threshold (heat hyperalgesia) induced by prior (18h before) plantar incision was measured on the contralateral, left hind paw using an increasing-temperature water bath. 18h after nerve transection, mustard oil-evoked plasma extravasation was not significantly reduced in the right hind paw as tested by in vivo fluorescence imaging. Applying agonist of either transient receptor potential vanilloid 1 (TRPV1) or transient receptor potential ankyrin 1 (TRPA1) receptor (capsaicin or mustard oil, respectively) to the nerve-transected paw inhibited the plantar incision-induced drop of the noxious heat threshold on the contralateral paw. The onset of these remote antihyperalgesic effects was 10-20min. A similar contralateral inhibitory effect of capsaicin or mustard oil treatment was observed on neuropathic mechanical hyperalgesia evoked by partial sciatic nerve injury 2days before nerve transection and measured by a Randall-Selitto apparatus. The remote thermal antihyperalgesic effect was prevented by chronic (5days) denervation or local capsaicin desensitization of the stimulated paw; reduced by intraperitoneally applied antagonist of somatostatin (cyclosomatostatin) or opioid receptors (naloxone). The response was mimicked by intraperitoneally applied somatostatin and associated with a 72±27% increase in plasma somatostatin-like immunoreactivity that was absent after chronic (5days) denervation. In conclusion, chemical activation of decentralized peripheral capsaicin-sensitive nociceptors evokes remote antihyperalgesic responses initiated outside the central nervous system and mediated by somatostatin and endogenous opioids.
Collapse
Affiliation(s)
- Gábor Pethő
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary.
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary; Molecular Pharmacology Research Team, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Réka Füredi
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Bálint Botz
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary; Molecular Pharmacology Research Team, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Teréz Bagoly
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - János Szolcsányi
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| |
Collapse
|
13
|
Kozłowska A, Mikołajczyk A, Adamiak Z, Majewski M. Distribution and chemical coding of sensory neurons innervating the skin of the porcine hindlimb. Neuropeptides 2017; 61:1-14. [PMID: 27866657 DOI: 10.1016/j.npep.2016.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 10/17/2016] [Accepted: 10/24/2016] [Indexed: 11/18/2022]
Abstract
The aim of the present study was to establish the origin and chemical phenotyping of neurons involved in skin innervation of the porcine hind leg. The dorsal root ganglia (DRGs) of the lumbar (L4-L6) and sacral (S1-S3) spinal nerves were visualized using the fluorescent tracer Fast Blue (FB). The morphometric analysis of FB-positive (FB+)neurons showed that in the L4, L5, S1 and S2 DRGs, the small-sized perikarya constituted the major population, whereas in the L6 and S3 DRGs the medium-sized cells made up the major population. In all these ganglia, large-sized FB+ perikarya constituted only a small percentage of all FB+ neurons. Immunohistochemistry revealed that small- and medium-sized FB+ perikarya contained sensory markers such as: substance P (SP), calcitonin gene related peptide (CGRP) and galanin (GAL); as well as various other factors such as somatostatin (SOM), calbindin-D28k (CB), pituitary adenylate cyclase-activating polypeptide (PACAP) and neuronal nitric oxide synthase (nNOS). Meanwhile large-sized FB+ perikarya usually expressed SP, CGRP or PACAP. In the lumbar DRGs, some large cells also contained SOM and CB. Double-labeling immunohistochemistry showed that SP-positive neurons co-expressed CGRP, GAL or PACAP; while PACAP-positive cells co-expressed GAL or nNOS. Neurons stained for SOM were also immunoreactive for CB or GAL, while neurons stained for nNOS were also immunoreactive for GAL. In conclusion, the present data has indicated that the distribution and chemical phenotyping of the porcine skin-projecting neurons are different within DRGs of the lumbar (forming a femoral nerve) and sacral (forming a sciatic nerve) spinal nerves.
Collapse
Affiliation(s)
- Anna Kozłowska
- Department of Human Physiology, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Poland.
| | - Anita Mikołajczyk
- Department of Public Health, Epidemiology and Microbiology, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Poland
| | - Zbigniew Adamiak
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Poland
| | - Mariusz Majewski
- Department of Human Physiology, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Poland
| |
Collapse
|
14
|
Yao FR, Wang HS, Guo Y, Zhao Y. The local effect of octreotide on mechanical pain sensitivity is more sensitive in DA rats than DA.1U rats. Clin Exp Pharmacol Physiol 2015; 43:213-20. [PMID: 26606866 DOI: 10.1111/1440-1681.12519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 11/14/2015] [Accepted: 11/19/2015] [Indexed: 11/29/2022]
Abstract
A recent study by the authors indicated that major histocompatibility complex (MHC) genes are associated with the differences in basal pain sensitivity and in formalin model between Dark-Agouti (DA) and novel congenic DA.1U rats, which have the same genetic background as DA rats except for the u alleles of MHC. The objective of the present study is to investigate whether there is a difference in the pristane-induced arthritis (PIA) model and local analgesic effect of octreotide (OCT) between DA and DA.1U rats. The hindpaw mechanical withdrawal threshold (MWT) and heat withdrawal latency (HWL) were observed. The C unit firings of the tibial nerve evoked by non-noxious and noxious toe movements were recorded by electrophysiological methods in normal and PIA models in DA and DA.1U rats before and after local OCT administration. The expression of somatostatin receptor 2A (SSTR2A) was observed by immunohistochemistry. The results demonstrate that DA rats have a higher mechanical sensitivity than DA.1U rats after PIA. Local OCT administration significantly elevated MWT in DA rats under normal and PIA sate, but not in DA.1U rats. The electrophysiological experiments showed OCT significantly attenuated the firings of C units evoked by non-noxious and noxious stimulation in DA rats more than those in DA.1U rats both in normal and PIA states. In addition, the expression of SSTR2A in the dorsal horn of the spinal cord was significantly higher in DA than in DA.1U rats. All of the findings suggest a higher local analgesic effect of OCT in DA rats than DA.1U rats, which might be associated with the MHC genes.
Collapse
Affiliation(s)
- Fan-Rong Yao
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Hui-Sheng Wang
- Department of Physiology and Pathophysiology, School of Basal Medical Science, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
| | - Yuan Guo
- Department of Physiology and Pathophysiology, School of Basal Medical Science, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
| | - Yan Zhao
- Department of Physiology and Pathophysiology, School of Basal Medical Science, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
| |
Collapse
|
15
|
Therapeutic uses of somatostatin and its analogues: Current view and potential applications. Pharmacol Ther 2015; 152:98-110. [PMID: 25956467 DOI: 10.1016/j.pharmthera.2015.05.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/28/2015] [Indexed: 01/22/2023]
Abstract
Somatostatin is an endogeneous cyclic tetradecapeptide hormone that exerts multiple biological activities via five ubiquitously distributed receptor subtypes. Classified as a broad inhibitory neuropeptide, somatostatin has anti-secretory, anti-proliferative and anti-angiogenic effects. The clinical use of native somatostatin is limited by a very short half-life (1 to 3min) and the broad spectrum of biological responses. Thus stable, receptor-selective agonists have been developed. The majority of these somatostatin therapeutic agonists bind strongly to two of the five receptor subtypes, although recently an agonist of wider affinity has been introduced. Somatostatin agonists are established in the treatment of acromegaly with recently approved indications in the therapy of neuroendocrine tumours. Potential therapeutic uses for somatostatin analogues include diabetic complications like retinopathy, nephropathy and obesity, due to inhibition of IGF-1, VEGF together with insulin secretion and effects upon the renin-angiotensin-aldosterone system. Wider uses in anti-neoplastic therapy may also be considered and recent studies have further revealed anti-inflammatory and anti-nociceptive effects. This review provides a comprehensive, current view of the biological functions of somatostatin and potential therapeutic uses, informed by the wide range of pharmacological advances reported since the last published review in 2004 by P. Dasgupta. The pharmacology of somatostatin receptors is explained, the current uses of somatostatin agonists are discussed, and the potential future of therapeutic applications is explored.
Collapse
|
16
|
Prasoon P, Kumar R, Gautam M, Sebastian EK, Reeta KH, Ray SB. Role of somatostatin and somatostatin receptor type 2 in postincisional nociception in rats. Neuropeptides 2015; 49:47-54. [PMID: 25599867 DOI: 10.1016/j.npep.2014.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 12/08/2014] [Accepted: 12/23/2014] [Indexed: 12/28/2022]
Abstract
Somatostatin (SST) and the somatostatin receptor type 2 (sstr2) are expressed in the superficial part (Laminae I-III) of the dorsal horn of the spinal cord. Since the neurons in these laminae also receive nociceptive sensation from the periphery, it was hypothesized that both SST and sstr2 could be involved in the modulation of nociceptive transmission. To the best of knowledge, there are no studies on the involvement of SST and sstr2 in hind paw incision model in rats, which mimics postoperative pain in humans. Sprague-Dawley rats were subjected to hind paw incision under isoflurane anaesthesia and the resulting mechanical allodynia and thermal hyperalgesia were evaluated for 5 days. In another set of animals, the spinal cord was isolated at specified time intervals after incision and examined for SST and sstr2 expression using immunohistochemistry and immunoblotting procedures. Finally, nociceptive parameters were again evaluated in incised rats, which had received SST (400 µg/kg i.p. three times per day). Blood glucose level and locomotor activity were determined after SST treatment. Both allodynia and hyperalgesia were highest immediately after incision. Spinal SST expression increased at 2 h. A further increase was noted on day 3. Expression of sstr2 increased initially but decreased at day 1. These changes could be due to exocytosis of SST and internalization of the ligand-receptor complex. SST injection significantly attenuated mechanical allodynia but not thermal hyperalgesia. Significant change in blood glucose level or locomotor activity was absent. SST appears to contribute to postincisional pain. This finding could be of clinical relevance.
Collapse
Affiliation(s)
- Pranav Prasoon
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Rahul Kumar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Mayank Gautam
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Ebin K Sebastian
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - K H Reeta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Subrata Basu Ray
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
17
|
Abstract
Nociceptive primary afferents have three surprising properties: they are highly complex in their expression of neurotransmitters and receptors and most probably participate in autocrine and paracrine interactions; they are capable of exerting tonic and activity-dependent inhibitory control over incoming nociceptive input; they can generate signals in the form of dorsal root reflexes that are transmitted antidromically out to the periphery and these signals can result in neurogenic inflammation in the innervated tissue. Thus, nociceptive primary afferents are highly complicated structures, capable of modifying input before it is ever transmitted to the central nervous system and capable of altering the tissue they innervate.
Collapse
Affiliation(s)
- Susan M Carlton
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77554, USA
| |
Collapse
|
18
|
Shi TJS, Xiang Q, Zhang MD, Barde S, Kai-Larsen Y, Fried K, Josephson A, Glück L, Deyev SM, Zvyagin AV, Schulz S, Hökfelt T. Somatostatin and its 2A receptor in dorsal root ganglia and dorsal horn of mouse and human: expression, trafficking and possible role in pain. Mol Pain 2014; 10:12. [PMID: 24521084 PMCID: PMC3943448 DOI: 10.1186/1744-8069-10-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 02/06/2014] [Indexed: 12/30/2022] Open
Abstract
Background Somatostatin (SST) and some of its receptor subtypes have been implicated in pain signaling at the spinal level. In this study we have investigated the role of SST and its sst2A receptor (sst2A) in dorsal root ganglia (DRGs) and spinal cord. Results SST and sst2A protein and sst2 transcript were found in both mouse and human DRGs, sst2A-immunoreactive (IR) cell bodies and processes in lamina II in mouse and human spinal dorsal horn, and sst2A-IR nerve terminals in mouse skin. The receptor protein was associated with the cell membrane. Following peripheral nerve injury sst2A-like immunoreactivity (LI) was decreased, and SST-LI increased in DRGs. sst2A-LI accumulated on the proximal and, more strongly, on the distal side of a sciatic nerve ligation. Fluorescence-labeled SST administered to a hind paw was internalized and retrogradely transported, indicating that a SST-sst2A complex may represent a retrograde signal. Internalization of sst2A was seen in DRG neurons after systemic treatment with the sst2 agonist octreotide (Oct), and in dorsal horn and DRG neurons after intrathecal administration. Some DRG neurons co-expressed sst2A and the neuropeptide Y Y1 receptor on the cell membrane, and systemic Oct caused co-internalization, hypothetically a sign of receptor heterodimerization. Oct treatment attenuated the reduction of pain threshold in a neuropathic pain model, in parallel suppressing the activation of p38 MAPK in the DRGs Conclusions The findings highlight a significant and complex role of the SST system in pain signaling. The fact that the sst2A system is found also in human DRGs and spinal cord, suggests that sst2A may represent a potential pharmacologic target for treatment of neuropathic pain.
Collapse
Affiliation(s)
- Tie-Jun Sten Shi
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Govea RM, Zhou S, Carlton SM. Group III metabotropic glutamate receptors and transient receptor potential vanilloid 1 co-localize and interact on nociceptors. Neuroscience 2012; 217:130-9. [PMID: 22609935 DOI: 10.1016/j.neuroscience.2012.05.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/03/2012] [Accepted: 05/07/2012] [Indexed: 11/26/2022]
Abstract
Several lines of evidence indicate group III metabotropic glutamate receptors (mGluRs) have systemic anti-hyperalgesic effects. We hypothesized this could occur through modulation of transient receptor potential vanilloid 1 (TRPV1) receptors on nociceptors. To address this question we performed anatomical studies to determine if group III mGluRs were expressed on cutaneous axons and if they co-localized with TRPV1. Immunostaining at the electron microscopic level demonstrated that 22% of unmyelinated axons labeled for mGluR8. Immunostaining at the light microscopic level in lumbar dorsal root ganglia (DRG) demonstrated that 80% and 28% of neurons labeled for mGluR8 or TRPV1, respectively. Of those neurons labeled for mGluR8, 25% labeled for TRPV1; of those labeled for TRPV1, 71% labeled for mGluR8. In behavior studies intraplantar injection of the group III mGluR agonist, L-(+)-2-amino-4-phosphonobutyric acid (L-AP-4: 0.1, 1.0, and 10.0 μM) had no effect on paw withdrawal latency (PWL) to heat in naïve rats but administration of 10 μM L-AP-4 prior to 0.05% capsaicin (CAP), significantly attenuated CAP-induced lifting/licking and reduced flinching behavior. The L-AP-4 effect was specific since administration of a group III antagonist α-methyl-3-methyl-4-phosphonophenylglycine (UBP1112) (100μM) blocked the L-AP-4 effect on CAP, resulting in behaviors similar to CAP alone. Intraplantar injection of UBP1112 alone did not result in nociceptive behaviors, indicating group III mGluRs are not tonically active. Finally, the anti-hyperalgesic effect of group III in this paradigm was local and not systemic since intraplantar administration of L-AP-4 in one hind paw did not attenuate nociceptive behaviors following CAP injection in the contralateral hind paw. Adenyl cyclase/cyclic AMP/PKA may be the second messenger pathway linking these two receptor families because intraplantar injection of forskolin (FSK, 10 μM) reduced PWL to heat and L-AP-4 reversed this FSK effect. Taken together, these results suggest group III mGluRs can negatively modulate TRPV1 through inhibition of adenyl cyclase and downstream intracellular activity, blocking TRPV1-induced activation of nociceptors.
Collapse
Affiliation(s)
- R M Govea
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1069, USA
| | | | | |
Collapse
|
20
|
Bak Foong Pills induce an analgesic effect by inhibiting nociception via the somatostatin pathway in mice. Cell Biol Int 2012; 36:63-9. [PMID: 21980955 DOI: 10.1042/cbi20110015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Dysmenorrhoea, defined as cramping pain in the lower abdomen occurring before or during menstruation, affects, to varying degrees, up to 90% of women of child-bearing age. We investigated whether BFP (Bak Foong Pills), a traditional Chinese medicine treatment for dysmenorrhoea, possesses analgesic properties. Results showed that BFP was able to significantly reduce pain responses following subchronic treatment for 3 days, but not following acute (1 h) treatment in response to acetic acid-induced writhing in C57/B6 mice. The analgesic effect was not due to inhibition of COX (cyclo-oxygenase) activity, evidenced by the lack of inhibition of prostacyclin and PGE2 (prostaglandin E2) production. Molecular analysis revealed that BFP treatment modulated the expression of a number of genes in the spinal cord of mice subjected to acetic acid writhing. RT-PCR (reverse transcription-PCR) analysis of spinal cord samples showed that both sst4 (somatostatin receptor 4) and sst2 receptor mRNA, but not μOR (μ-opiate receptor) and NK1 (neurokinin-1) receptor mRNA, were down-regulated following BFP treatment, thus implicating somatostatin involvement in BFP-induced analgesia. Administration of c-som (cyclo-somatostatin), a somatostatin antagonist, prior to acetic acid-induced writhing inhibited the analgesic effect. Thus subchronic treatment with BFP has anti-nociceptive qualities mediated via the somatostatin pathway.
Collapse
|
21
|
Neural acupuncture unit: a new concept for interpreting effects and mechanisms of acupuncture. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:429412. [PMID: 22474503 PMCID: PMC3310280 DOI: 10.1155/2012/429412] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 12/12/2022]
Abstract
When an acupuncture needle is inserted into a designated point on the body and
mechanical or electrical stimulation is delivered, various neural and neuroactive
components are activated. The collection of the activated neural and neuroactive
components distributed in the skin, muscle, and connective tissues surrounding the
inserted needle is defined as a neural acupuncture unit (NAU). The traditionally defined
acupoints represent an anatomical landmark system that indicates local sites where NAUs
may contain relatively dense and concentrated neural and neuroactive components, upon
which acupuncture stimulation would elicit a more efficient therapeutic response. The
NAU-based local mechanisms of biochemical and biophysical reactions play an important
role in acupuncture-induced analgesia. Different properties of NAUs are associated with
different components of needling sensation. There exist several central pathways to
convey NAU-induced acupuncture signals, Electroacupuncture (EA) frequency-specific
neurochemical effects are related to different peripheral and central pathways transmitting
afferent signals from different frequency of NAU stimulation. More widespread and intense
neuroimaging responses of brain regions to acupuncture may be a consequence of more
efficient NAU stimulation modes. The introduction of the conception of NAU provides a
new theoretical approach to interpreting effects and mechanisms of acupuncture in
modern biomedical knowledge framework.
Collapse
|
22
|
Imhof AK, Glück L, Gajda M, Lupp A, Bräuer R, Schaible HG, Schulz S. Differential antiinflammatory and antinociceptive effects of the somatostatin analogs octreotide and pasireotide in a mouse model of immune-mediated arthritis. ACTA ACUST UNITED AC 2011; 63:2352-62. [PMID: 21506098 DOI: 10.1002/art.30410] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Clinical and preclinical evidence suggests that somatostatin exhibits potent antiinflammatory and antinociceptive properties. However, it is not known which of the 5 somatostatin receptor subtypes (SSTRs 1-5) is involved in these actions. The purpose of this study was to assess the effects of the stable somatostatin analogs octreotide and pasireotide (SOM230) in a mouse model of antigen-induced arthritis (AIA). METHODS Studies were performed in SSTR2-deficient mice (SSTR2(-/-)) and their wild-type littermates (SSTR2(+/+)). The expression of SSTR1, SSTR2A, SSTR3, and SSTR5 in dorsal root ganglia was examined by immunohistochemistry. RESULTS Untreated SSTR2(-/-) mice with AIA displayed joint swelling and mechanical hyperalgesia similar to that seen in SSTR2(+/+) mice. In wild-type mice, both octreotide and pasireotide significantly attenuated knee joint swelling and histopathologic manifestations of arthritis to an extent comparable to that of dexamethasone. In SSTR2(-/-) mice, the antiinflammatory effects of both octreotide and pasireotide were completely abrogated. Prolonged administration of pasireotide also inhibited joint swelling and protected against joint destruction during AIA flare reactions. In addition, both octreotide and pasireotide reduced inflammatory hyperalgesia. The antinociceptive actions of octreotide were abolished in SSTR2(-/-) mice, but those of pasireotide were retained. In dorsal root ganglia of naive wild-type mice, only SSTR1 and SSTR2A, but not SSTR3 or SSTR5, were detected in a subset of small- and medium-diameter neurons. CONCLUSION Our findings indicate that the antinociceptive and antiinflammatory actions of octreotide and pasireotide are largely mediated via the SSTR2 receptor. In addition, we identified the SSTR1 receptor as a novel pharmacologic target for somatostatin-mediated peripheral analgesia in inflammatory pain.
Collapse
Affiliation(s)
- Anne-Katja Imhof
- University Hospital and Friedrich Schiller University Jena, Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Markovics A, Szoke É, Sándor K, Börzsei R, Bagoly T, Kemény Á, Elekes K, Pintér E, Szolcsányi J, Helyes Z. Comparison of the anti-inflammatory and anti-nociceptive effects of cortistatin-14 and somatostatin-14 in distinct in vitro and in vivo model systems. J Mol Neurosci 2011; 46:40-50. [PMID: 21695504 DOI: 10.1007/s12031-011-9577-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 06/08/2011] [Indexed: 10/18/2022]
Abstract
We showed that somatostatin (SST) exerts anti-inflammatory and anti-nociceptive effects through somatostatin receptor subtypes 4 and 1 (sst(4)/sst(1)). Since cortistatin (CST) is a structurally similar peptide, we aimed at comparing the sst(1)- and sst(4)-binding and activating abilities, as well as the effects of SST-14 and CST-14 on inflammatory and nociceptive processes. CST-14 concentration-dependently displaced radiolabeled SST-14 binding, induced similar sst(1) and sst(4)-activation with a less potency, and exerted significantly greater inhibitory effect on endotoxin-stimulated interleukin (IL)-1β production of murine peritoneal macrophages. Capsaicin-induced calcitonin gene-related peptide release from peripheral sensory nerve terminals of isolated rat tracheae was significantly decreased by 2 μM CST and 100 nM SST, but concentration-response correlation was not found. Mustard oil-evoked acute neurogenic plasma protein extravasation in the rat hindpaw skin, carrageenan-induced mouse paw edema, mechanical hyperalgesia, and IL-1β, tumor necrosis factor-α production, as well as mild heat injury-evoked thermal hyperalgesia were similarly attenuated by both peptides. In the latter case, i.pl. and i.p. injections exerted equal inhibitory actions. CST-14 and SST-14 similarly diminish both acute neurogenic and cellular inflammatory processes, as well as mechanical and heat hyperalgesia, in which their inhibitory effect on sensory nerve endings is likely to be involved. However, CST-14 exerts remarkably greater inhibition on cytokine production.
Collapse
Affiliation(s)
- Adrienn Markovics
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti str. 12, 7624, Pécs, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bencivinni I, Ferrini F, Salio C, Beltramo M, Merighi A. The somatostatin analogue octreotide inhibits capsaicin-mediated activation of nociceptive primary afferent fibres in spinal cord lamina II (substantia gelatinosa). Eur J Pain 2010; 15:591-9. [PMID: 21109472 DOI: 10.1016/j.ejpain.2010.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 10/01/2010] [Accepted: 11/01/2010] [Indexed: 11/17/2022]
Abstract
Somatostatin (SST) in spinal cord has been linked with the inhibition of nociceptive neurotransmission in several experimental paradigms. The SST2 receptor (SSTR2) is the main SST receptor subtype in the superficial dorsal horn (DH) and is activated, besides to the naïve peptide, by the SST synthetic analogue octreotide (OCT). In the present work, we have studied the central effects of SSTR2 activation on capsaicin (CAP)-induced glutamate release in mouse DH. In neurons of the lamina II of DH, CAP (2 μM) induced a strong increase of mEPSC frequency that was significantly reduced (70%) by OCT. SSTR2 involvement was assessed by using the specific antagonist CYN 154806. No differences were observed between frequency increase in CAP alone vs. CAP in the presence of CYN 154806+OCT. The effect of OCT was further investigated by studying c-fos expression in spinal cord slices. The CAP-induced increase in density of Fos immunoreactive nuclei in the superficial DH was strongly prevented by OCT. SSTR2a (a splicing variant of SSTR2) immunoreactivity was found in both pre- and post-synaptic compartments of laminae I-II synapses. By light and electron microscopy, SSTR2a was mainly localized onto non-peptidergic isolectin B4 (IB4)-positive primary afferent fibres (PAFs). A subset of them was also found to express the CAP receptor TRPV1. These data show that the SST analogue OCT inhibits CAP-mediated activation of non-peptidergic nociceptive PAFs in lamina II. Our data indicate that SSTR2a plays an important role in the pre-synaptic modulation of central excitatory nociceptive transmission in mouse.
Collapse
Affiliation(s)
- Ileana Bencivinni
- Department of Veterinary Morphophysiology, Via Leonardo da Vinci 44, 10095 Grugliasco, Italy
| | | | | | | | | |
Collapse
|
25
|
Schuelert N, Zhang C, Mogg AJ, Broad LM, Hepburn DL, Nisenbaum ES, Johnson MP, McDougall JJ. Paradoxical effects of the cannabinoid CB2 receptor agonist GW405833 on rat osteoarthritic knee joint pain. Osteoarthritis Cartilage 2010; 18:1536-43. [PMID: 20863899 DOI: 10.1016/j.joca.2010.09.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 08/30/2010] [Accepted: 09/10/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The present study examined whether local administration of the cannabinoid-2 (CB(2)) receptor agonist GW405833 could modulate joint nociception in control rat knee joints and in an animal model of osteoarthritis (OA). METHOD OA was induced in male Wistar rats by intra-articular injection of sodium monoiodo-acetate with a recovery period of 14 days. Immunohistochemistry was used to evaluate the expression of CB(2) and transient receptor potential vanilloid channel-1 (TRPV1) receptors in the dorsal root ganglion (DRG) and synovial membrane of sham- and sodium mono-iodoacetate (MIA)-treated animals. Electrophysiological recordings were made from knee joint primary afferents in response to rotation of the joint both before and following close intra-arterial injection of different doses of GW405833. The effect of intra-articular GW405833 on joint pain perception was determined by hindlimb incapacitance. An in vitro neuronal release assay was used to see if GW405833 caused release of an inflammatory neuropeptide (calcitonin gene-related peptide - CGRP). RESULTS CB(2) and TRPV1 receptors were co-localized in DRG neurons and synoviocytes in both sham- and MIA-treated animals. Local application of the GW405833 significantly reduced joint afferent firing rate by up to 31% in control knees. In OA knee joints, however, GW405833 had a pronounced sensitising effect on joint mechanoreceptors. Co-administration of GW405833 with the CB(2) receptor antagonist AM630 or pre-administration of the TRPV1 ion channel antagonist SB366791 attenuated the sensitising effect of GW405833. In the pain studies, intra-articular injection of GW405833 into OA knees augmented hindlimb incapacitance, but had no effect on pain behaviour in saline-injected control joints. GW405833 evoked increased CGRP release via a TRPV1 channel-dependent mechanism. CONCLUSION These data indicate that GW405833 reduces the mechanosensitivity of afferent nerve fibres in control joints but causes nociceptive responses in OA joints. The observed pro-nociceptive effect of GW405833 appears to involve TRPV1 receptors.
Collapse
Affiliation(s)
- N Schuelert
- Department of Physiology & Pharmacology, University of Calgary, 3330 Hospital Drive NW Calgary, AB T2N 4N1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Luo R, Guo Y, Cao DY, Pickar JG, Li L, Wang J, Zhao Y. Local effects of octreotide on glutamate-evoked activation of Aδ and C afferent fibers in rat hairy skin. Brain Res 2010; 1322:50-8. [DOI: 10.1016/j.brainres.2010.01.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 01/19/2010] [Accepted: 01/22/2010] [Indexed: 10/19/2022]
|
27
|
Engin E, Treit D. Anxiolytic and antidepressant actions of somatostatin: the role of sst2 and sst3 receptors. Psychopharmacology (Berl) 2009; 206:281-9. [PMID: 19609508 DOI: 10.1007/s00213-009-1605-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 06/26/2009] [Indexed: 12/21/2022]
Abstract
RATIONALE AND OBJECTIVES Somatostatin is a cyclic polypeptide that inhibits the release of a variety of regulatory hormones (e.g., growth hormone, insulin, glucagon, and thyrotropin). Somatostatin is also widely distributed within the central nervous system (CNS), acting both as a neurotransmitter and as a neuromodulator. Recently, we showed that intracerebroventricular (i.c.v.) administration of somatostatin reduced anxiety-like and depression-like behaviors in animal models. The somatostatin receptor subtypes that are involved in these behavioral effects, however, have not been investigated. In the CNS, the neurotransmitter actions of somatostatin are mediated through five G-protein coupled receptors (sst1 to sst5). MATERIALS AND METHODS We examined the behavioral effects of i.c.v. microinfusions of different doses of selective agonists of each of the five somatostatin receptor subtypes. Their behavioral effects were assessed in the elevated plus-maze and the forced swim apparatus, rodent models of anxiolytic and antidepressant drug effects, respectively. RESULTS Anxiety-like behavior was reduced following i.c.v. infusions of a selective sst2 receptor agonist, but not after infusions of the other four receptor agonists. An antidepressant-like effect was observed following infusions of either sst2 or sst3 agonists. CONCLUSIONS The results add to our nascent understanding of the role of somatostatin in anxiety- and depression-like behavior and suggest a clinical role for somatostatin agonists for the simultaneous treatment of anxiety and depression, which are often comorbid.
Collapse
Affiliation(s)
- Elif Engin
- Department of Psychology, Centre for Neuroscience, University of Alberta, Edmonton, T6G 2E9, AB, Canada
| | | |
Collapse
|
28
|
Tonic inhibition of somatostatin on C and Aδ afferent fibers in rat dorsal skin in vivo. Brain Res 2009; 1288:50-9. [DOI: 10.1016/j.brainres.2009.06.088] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 06/11/2009] [Accepted: 06/30/2009] [Indexed: 11/18/2022]
|
29
|
Van Op den bosch J, Van Nassauw L, Van Marck E, Timmermans JP. Somatostatin modulates mast cell-induced responses in murine spinal neurons and satellite cells. Am J Physiol Gastrointest Liver Physiol 2009; 297:G406-17. [PMID: 19477916 PMCID: PMC2724080 DOI: 10.1152/ajpgi.00059.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The course of intestinal inflammatory responses is tightly coordinated by the extensive communication between the immune system and the enteric nervous system, among which the bidirectional mast cell-neuron interaction within the intestinal wall plays a prominent role. Recent research suggests that somatostatin (SOM) is able to inhibit this self-reinforcing network by simultaneously suppressing the inflammatory activities of both neurons and mast cells. Therefore, we assessed the modulatory effects of SOM on both the short-term and long-term effects induced by the main mast cell mediators histamine (HIS) and 5-HT on spinal sensory neurons. Short-term incubation of dorsal root ganglion cultures with HIS and 5-HT induced neuronal CGRP-release and calcium-mediated activation of both neurons and nonneuronal cells, both of which effects were significantly reduced by SOM. In addition, SOM was also able to suppress the increased neuronal expression of pro- and anti-inflammatory peptides induced by long-term exposure to HIS and 5-HT. Immunocytochemical and molecular-biological experiments revealed the possible involvement of somatostatin receptor 1 (SSTR1) and SSTR2A in these profound SOM-dependent effects. These data, combined with the increased expression of pro- and anti-inflammatory peptides and several SSTRs in murine dorsal root ganglia following intestinal inflammation, reveal that intestinal inflammation not only induces the onset of proinflammatory cascades but simultaneously triggers endogenous systems destined to prevent excessive tissue damage. Moreover, these data provide for the first time functional evidence that SOM is able to directly modulate intestinal inflammatory responses by interference with the coordinating mast cell-neuron communication.
Collapse
Affiliation(s)
- Joeri Van Op den bosch
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp; Laboratory of Human Anatomy and Embryology, Faculty of Medicine, University of Antwerp, Antwerp; and Laboratory of Pathology, Faculty of Medicine, University of Antwerp, Wilrijk, Belgium
| | - Luc Van Nassauw
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp; Laboratory of Human Anatomy and Embryology, Faculty of Medicine, University of Antwerp, Antwerp; and Laboratory of Pathology, Faculty of Medicine, University of Antwerp, Wilrijk, Belgium
| | - Eric Van Marck
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp; Laboratory of Human Anatomy and Embryology, Faculty of Medicine, University of Antwerp, Antwerp; and Laboratory of Pathology, Faculty of Medicine, University of Antwerp, Wilrijk, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp; Laboratory of Human Anatomy and Embryology, Faculty of Medicine, University of Antwerp, Antwerp; and Laboratory of Pathology, Faculty of Medicine, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
30
|
Pinto-Ribeiro F, Moreira V, Pêgo JM, Leão P, Almeida A, Sousa N. Antinociception induced by chronic glucocorticoid treatment is correlated to local modulation of spinal neurotransmitter content. Mol Pain 2009; 5:41. [PMID: 19630968 PMCID: PMC2727498 DOI: 10.1186/1744-8069-5-41] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 07/24/2009] [Indexed: 12/26/2022] Open
Abstract
Background While acute effects of stress on pain are well described, those produced by chronic stress are still a matter of dispute. Previously we demonstrated that chronic unpredictable stress results in antinociception in the tail-flick test, an effect that is mediated by increased levels of corticosteroids. In the present study, we evaluated nociception in rats after chronic treatment with corticosterone (CORT) and dexamethasone (DEX) in order to discriminate the role of each type of corticosteroid receptors in antinociception. Results Both experimental groups exhibited a pronounced antinociceptive effect after three weeks of treatment when compared to controls (CONT); however, at four weeks the pain threshold in CORT-treated animals returned to basal levels whereas in DEX-treated rats antinociception was maintained. In order to assess if these differences are associated with altered expression of neuropeptides involved in nociceptive transmission we evaluated the density of substance P (SP), calcitonin gene-related peptide (CGRP), somatostatin (SS) and B2-γ-aminobutiric acid receptors (GABAB2) expression in the spinal dorsal horn using light density measurements and stereological techniques. After three weeks of treatment the expression of CGRP in the superficial dorsal horn was significantly decreased in both CORT and DEX groups, while GABAB2 was significantly increased; the levels of SP for both experimental groups remained unchanged at this point. At 4 weeks, CGRP and SP are reduced in DEX-treated animals and GABAB2 unchanged, but all changes were restored to CONT levels in CORT-treated animals. The expression of SS remained unaltered throughout the experimental period. Conclusion These data indicate that corticosteroids modulate nociception since chronic corticosteroid treatment alters the expression of neuropeptides involved in nociceptive transmission at the spinal cord level. As previously observed in some supraspinal areas, the exclusive GR activation resulted in more profound and sustained behavioural and neurochemical changes, than the one observed with a mixed ligand of corticosteroid receptors. These results might be of relevance for the pharmacological management of certain types of chronic pain, in which corticosteroids are used as adjuvant analgesics.
Collapse
Affiliation(s)
- Filipa Pinto-Ribeiro
- Life and Health Science Research Institute, School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | | | | | | | |
Collapse
|
31
|
Van Op den Bosch J, Torfs P, De Winter BY, De Man JG, Pelckmans PA, Van Marck E, Grundy D, Van Nassauw L, Timmermans JP. Effect of genetic SSTR4 ablation on inflammatory peptide and receptor expression in the non-inflamed and inflamed murine intestine. J Cell Mol Med 2009; 13:3283-95. [PMID: 19426160 PMCID: PMC4516485 DOI: 10.1111/j.1582-4934.2009.00760.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The recently suggested pivotal role of somatostatin (SOM) receptor 4 (SSTR4) in inflammation and nociception in several non-intestinal organs and in gastrointestinal (GI) physiology, necessitates exploration of the role of SSTR4 in GI pathophysiology. Therefore, the role of SSTR4 in GI activity was explored by investigating the effects of SSTR4 deficiency on intestinal motility, smooth muscle contractility and on the expression of SSTRs and neuropeptides in the healthy and Schistosoma mansoni-infected murine small intestine. Functional experiments revealed no differences in intestinal motility or smooth muscle cell contractility between wild-type and SSTR4 knockout (SSTR4–/–) mice in physiological conditions. As revealed by multiple immunofluorescent labellings, RT-PCR and quantitative real time RT-PCR (qPCR), genetic deficiency of SSTR4 considerably altered the expression of SOM and SSTRs in non-inflamed and inflamed conditions, affecting both extrinsic and intrinsic components of the intestinal innervation, along with SSTR expression in several non-neuronal cell types. Moreover, substance P and calcitonin gene-related peptide expression were significantly elevated in SSTR4–/– mice, confirming the modulatory role of SSTR4 on intestinal pro-inflammatory neuropeptide expression. These data suggest that SSTR4 plays a previously unexpected modulatory role in the regulation of intestinal SSTR expression. Moreover, in addition to the recently described inhibitory effects of SSTR4 on the neuronal release of pro-inflammatory peptides, SSTR4 appears also to be involved in the neuronal expression of both pro- and anti-inflammatory peptides in the murine small intestine.
Collapse
Affiliation(s)
- Joeri Van Op den Bosch
- Laboratory of Cell Biology & Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Schaible HG, Richter F, Ebersberger A, Boettger MK, Vanegas H, Natura G, Vazquez E, Segond von Banchet G. Joint pain. Exp Brain Res 2009; 196:153-62. [PMID: 19363606 DOI: 10.1007/s00221-009-1782-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 03/20/2009] [Indexed: 12/18/2022]
Abstract
Both inflammatory and degenerative diseases of joints are major causes of chronic pain. This overview addresses the clinical problem of joint pain, the nociceptive system of the joint, the mechanisms of peripheral and central sensitization during joint inflammation and long term changes during chronic joint inflammation. While the nature of inflammatory pain is obvious the nature and site of origin of osteoarthritic pain is less clear. However, in both pathological conditions mechanical hyperalgesia is the major pain problem, and indeed, both joint nociceptors and spinal nociceptive neurons with joint input show pronounced sensitization for mechanical stimulation. Molecular mechanisms of mechanical sensitization of joint nociceptors are addressed with an emphasis on cytokines, and molecular mechanisms of central sensitization include data on the role of excitatory amino acids, neuropeptides and spinal prostaglandins. The overview will also address long-term changes of pain-related behavior, response properties of neurons and receptor expression in chronic animal models of arthritis.
Collapse
Affiliation(s)
- Hans-Georg Schaible
- Institute of Physiology 1/Neurophysiology, University Hospital Jena, Teichgraben 8, 07740 Jena, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Van Op den Bosch J, Adriaensen D, Van Nassauw L, Timmermans JP. The role(s) of somatostatin, structurally related peptides and somatostatin receptors in the gastrointestinal tract: a review. ACTA ACUST UNITED AC 2009; 156:1-8. [PMID: 19362110 DOI: 10.1016/j.regpep.2009.04.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 04/05/2009] [Indexed: 12/19/2022]
Abstract
Extensive functional and morphological research has demonstrated the pivotal role of somatostatin (SOM) in the regulation of a wide variety of gastrointestinal activities. In addition to its profound inhibitory effects on gastrointestinal motility and exocrine and endocrine secretion processes along the entire gastrointestinal tract, SOM modulates several organ-specific activities. In contrast to these well-known SOM-dependent effects, knowledge on the SOM receptors (SSTR) involved in these effects is much less conclusive. Experimental data on the identities of the SSTRs, although species- and tissue-dependent, point towards the involvement of multiple receptor subtypes in the vast majority of gastrointestinal SOM-mediated effects. Recent evidence demonstrating the role of SOM in intestinal pathologies has extended the interest of gastrointestinal research in this peptide even further. More specifically, SOM is supposed to suppress intestinal inflammatory responses by interfering with the extensive bidirectional communication between mucosal mast cells and neurons. This way, SOM not only acts as a powerful inhibitor of the inflammatory cascade at the site of inflammation, but exerts a profound antinociceptive effect through the modulation of extrinsic afferent nerve fibres. The combination of these physiological and pathological activities opens up new opportunities to explore the potential of stable SOM analogues in the treatment of GI inflammatory pathologies.
Collapse
Affiliation(s)
- Joeri Van Op den Bosch
- Laboratory of Cell Biology & Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | | | | | | |
Collapse
|
34
|
Hulsebosch CE, Hains BC, Crown ED, Carlton SM. Mechanisms of chronic central neuropathic pain after spinal cord injury. ACTA ACUST UNITED AC 2008; 60:202-13. [PMID: 19154757 DOI: 10.1016/j.brainresrev.2008.12.010] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2008] [Indexed: 12/25/2022]
Abstract
Not all spinal contusions result in mechanical allodynia, in which non-noxious stimuli become noxious. The studies presented use the NYU impactor at 12.5 mm drop or the Infinite Horizons Impactor (150 kdyn, 1 s dwell) devices to model spinal cord injury (SCI). Both of these devices and injury parameters, if done correctly, will result in animals with above level (forelimb), at level (trunk) and below level (hindlimb) mechanical allodynia that model the changes in evoked somatosensation experienced by the majority of people with SCI. The sections are as follows: 1) Mechanisms of remote microglial activation and pain signaling in "below-level" central pain 2) Intracellular signaling mechanisms in central sensitization in "at-level" pain 3) Peripheral sensitization contributes to "above level" injury pain following spinal cord injury and 4) Role of reactive oxygen species in central sensitization in regional neuropathic pain following SCI. To summarize, differential regional mechanisms contribute to the regional chronic pain states. We propose the importance of understanding the mechanisms in the differential regional pain syndromes after SCI in the chronic condition. Targeting regional mechanisms will be of enormous benefit to the SCI population that suffer chronic pain, and will contribute to better treatment strategies for other chronic pain syndromes.
Collapse
Affiliation(s)
- Claire E Hulsebosch
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1043, USA.
| | | | | | | |
Collapse
|
35
|
Carlton SM, Du J, Zhou S. Group II metabotropic glutamate receptor activation on peripheral nociceptors modulates TRPV1 function. Brain Res 2008; 1248:86-95. [PMID: 19026992 DOI: 10.1016/j.brainres.2008.10.066] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 10/22/2008] [Accepted: 10/23/2008] [Indexed: 11/25/2022]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) receptors are critical to nociceptive processing. Understanding how these receptors are modulated gives insight to potential therapies for pain. We demonstrate using double labeling immunohistochemistry that Group II metabotropic glutamate receptors (mGluRs) are co-expressed with TRPV1 on rat dorsal root ganglion (DRG) cells. In behavioral studies, intraplantar 0.1 microM APDC, a group II agonist, significantly attenuates capsaicin-induced nociceptive behaviors through a local effect. The APDC-induced inhibition of capsaicin responses is blocked by 1 microM LY341495, a group II antagonist. At the single fiber level, nociceptor responses to capsaicin are significantly decreased following exposure to APDC and this effect is blocked by LY341495. Finally, activation of peripheral group II mGluRs inhibits forskolin-induced thermal hyperalgesia and nociceptor heat sensitization, suggesting group II receptors are negatively coupled to the cAMP/PKA pathway. The data indicate that group II mGluRs and TRPV1 receptors are co-expressed on peripheral nociceptors and activation of mGluRs can inhibit painful sensory transmission following TRPV1 activation. The data are consistent with group II and TRPV1 receptors being linked intracellularly by the cAMP/PKA pathway. Peripheral group II mGluRs are important targets for drug discovery in controlling TRPV1-induced nociception.
Collapse
Affiliation(s)
- Susan M Carlton
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1069, USA.
| | | | | |
Collapse
|
36
|
Jung SJ, Jo SH, Lee S, Oh E, Kim MS, Nam WD, Oh SB. Effects of somatostatin on the responses of rostrally projecting spinal dorsal horn neurons to noxious stimuli in cats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2008; 12:253-8. [PMID: 19967064 DOI: 10.4196/kjpp.2008.12.5.253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Somatostatin (SOM) is a widely distributed peptide in the central nervous system and exerts a variety of hormonal and neural actions. Although SOM is assumed to play an important role in spinal nociceptive processing, its exact function remains unclear. In fact, earlier pharmacological studies have provided results that support either a facilitatory or inhibitory role for SOM in nociception. In the current study, the effects of SOM were investigated using anesthetized cats. Specifically, the responses of rostrally projecting spinal dorsal horn neurons (RPSDH neurons) to different kinds of noxious stimuli (i.e., heat, mechanical and cold stimuli) and to the Adelta-and C-fiber activation of the sciatic nerve were studied. Iontophoretically applied SOM suppressed the responses of RPSDH neurons to noxious heat and mechanical stimuli as well as to C-fiber activation. Conversely, it enhanced these responses to noxious cold stimulus and Adelta-fiber activation. In addition, SOM suppressed glutamate-evoked activities of RPSDH neurons. The effects of SOM were blocked by the SOM receptor antagonist cyclo-SOM. These findings suggest that SOM has a dual effect on the activities of RPSDH neurons; that is, facilitation and inhibition, depending on the modality of pain signaled through them and its action site.
Collapse
Affiliation(s)
- Sung Jun Jung
- Department of Physiology, Kangwon National University College of Medicine, Chunchon 200-701, Korea
| | | | | | | | | | | | | |
Collapse
|
37
|
Mechanical hyperalgesia is attenuated by local administration of octreotide in pristane-induced arthritis in Dark-Agouti rats. Life Sci 2008; 83:732-8. [PMID: 18930069 DOI: 10.1016/j.lfs.2008.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 09/12/2008] [Accepted: 09/16/2008] [Indexed: 01/22/2023]
Abstract
AIMS The Dark-Agouti (DA) rat is very susceptible to pristane-induced arthritis (PIA) and represents a suitable model for rheumatoid arthritis. In the present study, we examined the pain sensitivity and the effect of local administration of octreotide (OCT) on mechanical hyperalgesia in PIA DA rats. MAIN METHODS Arthritis was induced by intradermal injection of pristane (300 microl). The mechanical withdrawal threshold (MWT) and heat withdrawal latency (HWL) were used to evaluate the pain sensitivity. In addition, we recorded the discharge firings in the tibial nerve sensory C-fibers innervating the inflamed toe joints of arthritic DA rats. KEY FINDINGS Two weeks after injection of pristane, all DA rats developed severe arthritis. This symptom was associated with a decreased MWT (78.50+/-5.68 mN before pristane injection, 19.50+/-6.27 mN on day 14 after pristane injection), indicating a mechanical hyperalgesia in PIA. In contrast, HWL was comparable before and after pristane injection (10.25+/-0.70 s before injection; 9.45+/-1.23 s on day 14 after injection). Local injection of OCT markedly increased MWT and relieved the hyperalgesia in PIA. In addition, OCT significantly decreased the discharge rate of afferent C units evoked by both non-noxious and noxious joint movements. SIGNIFICANCE Taken together, the results demonstrate that mechanical hyperalgesia, but not thermal hyperalgesia is associated with PIA and that the mechanical hyperalgesia and the discharge of afferent C units are attenuated by local administration of OCT. These observations provide evidence for a novel therapeutic strategy for pain control in rheumatoid arthritis.
Collapse
|
38
|
Somatostatin inhibits activation of dorsal cutaneous primary afferents induced by antidromic stimulation of primary afferents from an adjacent thoracic segment in the rat. Brain Res 2008; 1229:61-71. [PMID: 18640104 DOI: 10.1016/j.brainres.2008.06.111] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 06/30/2008] [Accepted: 06/30/2008] [Indexed: 01/17/2023]
Abstract
To investigate the effect of somatostatin on the cross-excitation between adjacent primary afferent terminals in the rats, we recorded single unit activity from distal cut ends of dorsal cutaneous branches of the T10 and T12 spinal nerves in response to antidromic stimulation of the distal cut end of the T11 dorsal root in the presence and absence of somatostatin and its receptor antagonist applied to the receptive field of the recorded nerve. Afferent fibers were classified based upon their conduction velocity. Mean mechanical thresholds decreased and spontaneous discharge rates increased significantly in C and Adelta but not Abeta fibers of the T10 and T12 spinal nerves in both male and female rats following antidromic electrical stimulation (ADES) of the dorsal root from adjacent spinal segment (DRASS) indicating cross-excitation of thin fiber afferents. The cross-excitation was not significantly different between male and female rats. Microinjection of somatostatin into the receptive field of recorded units inhibited the cross-excitation. This inhibitory effect, in turn, was reversed by the somatostation receptor antagonist cyclo-somatostatin (c-SOM). Application of c-SOM alone followed by ADES of DRASS significantly decreased the mechanical thresholds and increased the discharge rates of C and Adelta fibers, indicating that endogenous release of somatostatin plays a tonic inhibitory role on the cross-excitation between peripheral nerves. These results suggest that somatostatin could inhibit the cross-excitation involved in peripheral hyperalgesia and have a peripheral analgesic effect.
Collapse
|
39
|
Ji G, Zhou S, Carlton SM. Intact Adelta-fibers up-regulate transient receptor potential A1 and contribute to cold hypersensitivity in neuropathic rats. Neuroscience 2008; 154:1054-66. [PMID: 18514429 DOI: 10.1016/j.neuroscience.2008.04.039] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 03/14/2008] [Accepted: 04/09/2008] [Indexed: 10/22/2022]
Abstract
Mechanisms underlying cold hypersensitivity in neuropathic states are unclear. Recent data indicate both transient receptor potential (TRP) M8 and TRPA1 play a role. In relation to TRPA1, there are reported increases in mRNA. However, it is unknown whether TRPA1 mRNA is translated into functional receptors, whether these receptors are found on peripheral nociceptors and what population of primary afferents expresses the receptors. The present study provides several lines of evidence that TRPA1 receptors are expressed on intact primary sensory neurons and contribute to cold hypersensitivity following spinal nerve ligation (SNL). Immunohistochemical studies show that expression of TRPA1 is significantly increased in the ipsilateral compared with the contralateral L4 dorsal root ganglion (DRG). Using mustard oil (MO, selective TRPA1 agonist), Ca(2+) imaging demonstrates an increase in the percentage of MO-sensitive L4 DRG cells in SNL compared with sham and naive rats. The magnitude of the Ca(2+) response evoked by MO is also significantly larger in SNL compared with sham and naive rats. Behavioral studies demonstrate that SNL results in increased nocifensive behaviors to mechanical and cold stimulation that is not seen in sham or naive rats. Behavioral responses in sham rats are no different from naive rats. In vitro single fiber recordings demonstrate Adelta-fibers (intact L4 axons) in the nerve-injured hind paw have conduction velocities no different from naive rats. In contrast, compared with naive rats, mechanical thresholds of the Adelta-fibers in SNL rats are significantly decreased, the proportion of cold-sensitive and MO-sensitive Adelta-fibers is significantly increased and the response magnitude of Adelta-fibers to MO is significantly increased. MO-induced activity in Adelta-fibers is significantly reduced by Ruthenium Red (TRPA1 receptor antagonist). These results demonstrate that TRPA1 is expressed on peripheral nociceptors, and they are up-regulated on intact Adelta-fibers following nerve injury, contributing to cold hypersensitivity.
Collapse
Affiliation(s)
- G Ji
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Marine Biomedical Institute, 301 University Boulevard, Galveston, TX 77555-1069, USA
| | | | | |
Collapse
|
40
|
Grudell ABM, Camilleri M, Jensen KL, Foxx-Orenstein AE, Burton DD, Ryks MD, Baxter KL, Cox DS, Dukes GE, Kelleher DL, Zinsmeister AR. Dose-response effect of a beta3-adrenergic receptor agonist, solabegron, on gastrointestinal transit, bowel function, and somatostatin levels in health. Am J Physiol Gastrointest Liver Physiol 2008; 294:G1114-9. [PMID: 18372395 DOI: 10.1152/ajpgi.00051.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
beta(3)-Adrenoceptors(beta(3)-AR) are expressed by cholinergic myenteric neurons and beta(3)-AR agonists are effective in experimental models of diarrhea. Our aim was to explore the effects of a beta(3)-AR agonist, solabegron, on gastrointestinal transit, safety, bowel function, plasma somatostatin, and solabegron pharmacokinetics (PK) following single and multiple doses. In a single-center, double-blind, parallel-group trial, 36 healthy volunteers were randomized to oral solabegron (50 or 200 mg twice daily) or placebo. Transit was measured by a validated method ((99m)Tc-labeled egg meal and (111)In charcoal delivered to the colon via delayed-release capsule). Stool frequency, form, and ease of passage were measured on a validated daily diary; plasma somatostatin by radioimmunoassay and plasma solabegron and its active metabolite by validated liquid chromatography-tandem mass spectroscopy analysis followed by PK analysis using noncompartmental methods. There were no overall or dose-related effects of solabegron on gastric, small bowel, or colonic transit, plasma somatostatin levels, stool frequency, form, or ease of passage in healthy volunteers. Solabegron and active metabolite exposures (area under the curve and maximum serum concentration) at both dose levels were consistent with PK at similar doses in previous phase I studies. We concluded that 7 days of the beta(3)-AR agonist, solabegron, 50 or 200 mg twice daily, did not significantly alter gastrointestinal or colonic transit or bowel function. In this study, medication was generally well tolerated with few adverse events reported and no clinically significant changes in vital signs observed. Further studies on clinical efficacy, visceral sensitivity, and gastrointestinal transit are required in irritable bowel syndrome patients.
Collapse
|
41
|
Du J, Zhou S, Carlton SM. Group II metabotropic glutamate receptor activation attenuates peripheral sensitization in inflammatory states. Neuroscience 2008; 154:754-66. [PMID: 18487022 DOI: 10.1016/j.neuroscience.2008.03.084] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 03/21/2008] [Accepted: 03/22/2008] [Indexed: 01/13/2023]
Abstract
Several lines of evidence indicate that Group II metabotropic glutamate receptor (mGluR) activation can depress sensory transmission. We have reported the expression of Group II mGluRs on unmyelinated axons, many of which were presumed to be nociceptors, in the rat digital nerve [Carlton SM, Hargett GL, Coggeshall RE (2001b) Localization of metabotropic glutamate receptors 2/3 on primary afferent axons in the rat. Neuroscience 105:957-969]. The goals of the present study are to further our understanding of Group II modulation of nociceptor processing in the periphery, documenting behavioral changes using inflammatory models and documenting, for the first time, cutaneous single fiber activity following exposure to a Group II agonist (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate (APDC) and antagonist (2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495, LY). The data indicate that peripheral Group II mGluR activation does not depress nociceptive behaviors or nociceptor fiber responses in the non-sensitized state (i.e. following brief nociceptive mechanical or thermal stimulation) but can depress these responses when nociceptors are sensitized by exposure to formalin or inflammatory soup. Group II mGluR agonist-induced inhibition can be blocked by a selective Group II antagonist. Peripheral Group II mGluR-induced inhibition evoked in these studies occurs through activation of local receptors and not through spinal or supraspinal mechanisms. The data indicate that administration of selective Group II agonists may be potent therapeutic agents for prevention of peripheral sensitization and for treatment of inflammatory pain.
Collapse
Affiliation(s)
- J Du
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Marine Biomedical Institute, Galveston, TX 77555-1069, USA
| | | | | |
Collapse
|
42
|
Takeda M, Kadoi J, Takahashi M, Nasu M, Matsumoto S. Somatostatin inhibits the excitability of rat small-diameter trigeminal ganglion neurons that innervate nasal mucosa and project to the upper cervical dorsal horn via activation of somatostatin 2a receptor. Neuroscience 2007; 148:744-56. [PMID: 17706880 DOI: 10.1016/j.neuroscience.2007.06.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 06/25/2007] [Accepted: 07/10/2007] [Indexed: 01/21/2023]
Abstract
This study investigated whether somatostatin (SST) modulates the excitability of nociceptive trigeminal ganglion (TRG) neurons that innervate the nasal mucosa and project to the upper cervical (C(1)) dorsal horn by using perforated-patch clamping, retrograde-labeling, and immunohistochemistry. Fluorogold (FG) retrograde labeling was used to identify the rat TRG neurons innervating the nasal mucosa, while microbeads (MB) were used to label neurons projected onto the superficial layer of the C(1) dorsal horn. FG-labeled small-diameter TRG neurons exhibited SST(2A) receptor immunoreactivity (19%) and half of these neurons were also labeled with MB. In whole-cell current-clamp mode, most (72%) of the dissociated FG-/MB-labeled TRG neurons were hyperpolarized by application of SST. The hyperpolarization was evoked by SST in a concentration-dependent manner (0.1-10 microM) and the responses were associated with a decrease in the cell input resistance. The minimum concentration to elicit a significant hyperpolarization was 1 microM. The repetitive firings during a depolarizing pulse were significantly reduced by SST (1 microM) application. The hyperpolarization and decreased firing evoked by SST were both blocked by the SST(2) receptor antagonist, CYN154806 (1 microM). Under voltage-clamp conditions, SST (1 microM) significantly increased the voltage-gated K(+) transient (I(A)) and sustained (I(K)) currents and these increases were abolished by coapplication of CYN154806 (1 microM). In the presence of both 4-aminopyridine (6 mM) and tetraethylammonium (10 mM), no significant changes in the membrane potential in response to SST application were found. These results suggest that modulation of trigeminal nociceptive transmission in the C(1) dorsal horn by activation of SST(2A) receptors occurs at the level of small-diameter TRG cell bodies and/or their afferent terminals, and that this may be related to regulation of protective upper-airway reflexes.
Collapse
Affiliation(s)
- M Takeda
- Department of Physiology, School of Life Dentistry at Tokyo, Nippon Dental University, 1-9-20, Fujimi-cho, Chiyoda-ku, Tokyo 102-8159, Japan.
| | | | | | | | | |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW When tissue is destroyed, pain arises. Tissue destruction is associated with an inflammatory reaction. This leads to activation of nociceptors. The following review will concentrate on pro-algesic and analgesic mediators, which arise from immune cells or resident cells in the periphery or the circulation during inflammation. RECENT FINDINGS In early inflammation endogenous hyperalgesic mediators are produced, including cytokines, chemokines, nerve growth factor as well as bradykinin, prostaglandins and ATP. Simultaneously, analgesic mediators are secreted: opioid peptides, somatostatin, endocannabinoids and certain cytokines. Inflammation increases the expression of peripheral opioid receptors on sensory nerve terminals and enhances their signal transduction, as well as the amount of opioid peptides in infiltrating immune cells. Interference with the recruitment of opioid-containing immune cells into inflamed tissue by blockade of adhesion molecules or by intrathecal morphine injection reduces endogenous analgesia. SUMMARY Inflammatory pain is the result of the interplay between pro-algesic and analgesic mediators. To avoid central side effects, future analgesic therapy should be targeted at either selectively blocking novel pro-algesic mediators or at enhancing endogenous peripheral analgesic effects.
Collapse
Affiliation(s)
- Heike L Rittner
- Department of Anaesthesiology and Intensive Care Medicine, Charité-University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany.
| | | | | |
Collapse
|
44
|
Rong W, Winchester WJ, Grundy D. Spontaneous hypersensitivity in mesenteric afferent nerves of mice deficient in the sst2 subtype of somatostatin receptor. J Physiol 2007; 581:779-86. [PMID: 17363388 PMCID: PMC2075175 DOI: 10.1113/jphysiol.2006.125187] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Somatostatin is an inhibitory peptide present in abundance in the gastrointestinal (GI) tract. The effects of somatostatin are mediated through its interaction with a family of G-protein-coupled receptors, namely sst1-5. Previous evidence suggested that the sst2 receptor mediates an inhibitory role of somatostatin on GI afferent nerve sensitivity. In the present study we further evaluated mechanical and chemical sensitivity of mesenteric afferents in mice deficient in the sst2 receptor. Multi-unit recordings were made from mesenteric afferents from mouse jejunal segments perfused in vitro. Ramp distension of the jejunum up to 60 mmHg induced biphasic increases in afferent activity in both wild-type (WT) and sst2 gene knock-out (KO) mice. However, the level of afferent activity was significantly higher in the KO (n=15) compared to the WT (n=16) mice across the entire pressure range. The mesenteric afferent sensitivity to acid was evaluated by intraluminal infusion of hydrochloric acid (HCl 20 mM) for 2 min. Peak afferent discharge rate following acid infusion was significantly greater in KO (36.76 +/- 6.47 impulses s(-1), n=7) than in WT preparations (16.53 +/- 3.91 impulses s(-1), n=5, P<0.01). The response to bath-applied bradykinin (1 microm, 3 ml) was not significantly different in the KO and the WT preparations. It is interesting that in the WT preparations, octreotide inhibited both low- and high-threshold mechanosensory responses, whereas in the sst2 KO group it appeared to inhibit the low-threshold responses preferentially and failed to affect the high-threshold responses. The results of the present investigation demonstrate that sst2 deficiency is associated with exaggerated jejunal afferent sensitivity to both mechanical and chemical stimulations, suggesting that somatostatin plays an important inhibitory role in the control of visceral sensitivity by interacting with the sst2 receptor.
Collapse
Affiliation(s)
- Weifang Rong
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | | | |
Collapse
|
45
|
Abstract
Pain research has uncovered important neuronal mechanisms that underlie clinically relevant pain states such as inflammatory and neuropathic pain. Importantly, both the peripheral and the central nociceptive system contribute significantly to the generation of pain upon inflammation and nerve injury. Peripheral nociceptors are sensitized during inflammation, and peripheral nerve fibres develop ectopic discharges upon nerve injury or disease. As a consequence a complex neuronal response is evoked in the spinal cord where neurons become hyperexcitable, and a new balance is set between excitation and inhibition. The spinal processes are significantly influenced by brain stem circuits that inhibit or facilitate spinal nociceptive processing. Numerous mechanisms are involved in peripheral and central nociceptive processes including rapid functional changes of signalling and long-term regulatory changes such as up-regulation of mediator/receptor systems. Conscious pain is generated by thalamocortical networks that produce both sensory discriminative and affective components of the pain response.
Collapse
Affiliation(s)
- H G Schaible
- Institut für Physiologie/Neurophysiologie, Teichgraben 8, 07740 Jena, Germany.
| |
Collapse
|
46
|
Pintér E, Helyes Z, Szolcsányi J. Inhibitory effect of somatostatin on inflammation and nociception. Pharmacol Ther 2006; 112:440-56. [PMID: 16764934 DOI: 10.1016/j.pharmthera.2006.04.010] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 04/27/2006] [Indexed: 10/24/2022]
Abstract
The present review focuses on promising new opportunities for anti-inflammatory and analgesic therapy. The theoretical background is an original observation based on our own experimental results. These data demonstrate that somatostatin is released from capsaicin-sensitive, peptidergic sensory nerve endings in response to noxious heat and chemical stimuli such as vanilloids, protons or lipoxygenase products. It reaches distant parts of the body via the circulation and exerts systemic anti-inflammatory and analgesic effects. Somatostatin binds to G-protein-coupled membrane receptors (sst(1)-sst(5)) and diminishes neurogenic inflammation by prejunctional action on sensory-efferent nerve terminals, as well as by postjunctional mechanisms on target cells. It decreases the release of pro-inflammatory neuropeptides from sensory nerve endings and also acts on receptors of vascular endothelial, inflammatory and immune cells. Analgesic effect is mediated by an inhibitory action on peripheral terminals of nociceptive neurons, since circulating somatostatin cannot exert central action. Somatostatin itself is not suitable for drug development because of its broad spectrum and short elimination half life, stable, receptor-selective agonists have been synthesized and investigated. The present overview is aimed at summarizing the physiological importance of somatostatin and sst receptors, pharmacological significance of synthetic agonists and their potential in the development of novel anti-inflammatory and analgesic drugs. These compounds might provide novel perspectives in the pharmacotherapy of acute and chronic painful inflammatory diseases, as well as neuropathic conditions.
Collapse
Affiliation(s)
- Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, H-7624 Pécs, Szigeti u. 12, Hungary.
| | | | | |
Collapse
|
47
|
Ji GC, Zhou ST, Shapiro G, Reubi JC, Jurczyk S, Carlton SM. Analgesic activity of a non-peptide imidazolidinedione somatostatin agonist: in vitro and in vivo studies in rat. Pain 2006; 124:34-49. [PMID: 16650579 DOI: 10.1016/j.pain.2006.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 03/10/2006] [Accepted: 03/20/2006] [Indexed: 01/13/2023]
Abstract
Several lines of evidence support an important role for somatostatin receptors (SSTRs) in pain modulation. The therapeutic use of established SSTR peptide agonists for this indication is limited by their broad range of effects, need for intrathecal delivery, and short half-life. Therefore, the goal of the present study was to investigate the analgesic effect of SCR007, a new, highly selective SSTR2 non-peptide agonist. Behavioral studies demonstrated that paw withdrawal latencies to heat were significantly increased following intraplantar SCR007. Furthermore, both intraperitoneal and intraplantar injection of SCR007 significantly reduced formalin- and capsaicin-induced flinching and lifting/licking nociceptive behaviors. Recordings from nociceptors using an in vitro glabrous skin-nerve preparation showed that SCR007 reduced heat responses in a dose-dependent fashion, bradykinin-induced excitation, heat sensitization and capsaicin-induced excitation. In both the behavioral and single fiber studies, the SCR007 effects were reversed by the SSTR antagonist cyclo-somatostatin, demonstrating receptor specificity. In the single fiber studies, the opioid antagonist naloxone did not reverse SCR007-induced anti-nociception suggesting that SCR007 did not exert its effects through activation of opioid receptors. Analysis of cAMP/protein kinase A (PKA) involvement demonstrated that SCR007 prevented forskolin- and Sp-8-Br-cAMPS (a PKA activator)-induced heat sensitization, supporting the hypothesis that SCR007-induced inhibition could involve a down-regulation of the cAMP/PKA pathway. These data provide several lines of evidence that the non-peptide imidazolidinedione SSTR2 agonist SCR007 is a promising anti-nociceptive and analgesic agent for the treatment of pain of peripheral and/or central origin.
Collapse
Affiliation(s)
- G C Ji
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1069, USA
| | | | | | | | | | | |
Collapse
|
48
|
Du J, Zhou S, Carlton SM. Kainate-induced excitation and sensitization of nociceptors in normal and inflamed rat glabrous skin. Neuroscience 2005; 137:999-1013. [PMID: 16330152 DOI: 10.1016/j.neuroscience.2005.10.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 10/06/2005] [Accepted: 10/12/2005] [Indexed: 11/25/2022]
Abstract
This study investigates contributions of peripheral kainate receptors to acute nociception and persistent inflammatory pain in rat. Immunohistochemical analysis of kainate receptor expression using antibodies recognizing glutamate receptor subunits 5, 6, and 7 demonstrates that 28% of unmyelinated axons in normal digital nerve are positively labeled. Following intraplantar injection of complete Freund's adjuvant, a significant increase in glutamate receptor subunits 5, 6, and 7-labeled axons occurs at 2 days (40%), but not 7 (31%) or 14 days (28%) post-complete Freund's adjuvant. In behavioral studies, we confirm an increased mechanical sensitivity in complete Freund's adjuvant-injected hind paws. Furthermore, activation of kainate receptors following intraplantar injection of 1.0 mM kainate in normal animals results in a mechanical sensitivity similar to that observed in inflamed animals. A 1.0 mM kainate injection into inflamed hind paws further enhances the mechanical sensitivity. Injection of the non-N-methyl-D-aspartate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (0.1 mM) reverses complete Freund's adjuvant-induced mechanical sensitivity through a local effect. In single unit recordings from nociceptors in a glabrous skin-nerve preparation, mechanical sensitization is present in inflamed skin evidenced by a decrease in mechanical threshold and an increase in discharge rate during a suprathreshold, constant force stimulus. Thermal sensitization is also present evidenced by a decrease in heat threshold. There is a dose-dependent increase in kainate-induced nociceptor activity in both normal and inflamed skin but the kainate required to induce activation is reduced in inflamed skin. Although proportions of kainate-activated nociceptors are the same in normal and inflamed skin, the kainate-induced mean discharge rate is significantly enhanced in inflamed skin. Exposure of normal and inflamed nociceptors to 0.3 mM kainate sensitizes fibers to re-application of kainate and heat. This sensitization is blocked in the presence of 6-cyano-7-nitroquinoxaline-2,3-dione or the glutamate receptor subunit 5 selective antagonist 3S,4aR,6S,8aR-6-[4-carboxy-phenyl] methyl-1,2,3,4,4a,5,6,7,8,8a-deca-hydroisoquinoline-3-carboxylic acid. The data indicate that peripheral kainate receptors not only play an important role in normal nociception but also contribute to mechanical sensitivity and heat sensitization accompanying inflammatory pain.
Collapse
Affiliation(s)
- J Du
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1069, USA
| | | | | |
Collapse
|
49
|
Bölcskei K, Helyes Z, Szabó Á, Sándor K, Elekes K, Németh J, Almási R, Pintér E, Pethő G, Szolcsányi J. Investigation of the role of TRPV1 receptors in acute and chronic nociceptive processes using gene-deficient mice. Pain 2005; 117:368-376. [PMID: 16150543 DOI: 10.1016/j.pain.2005.06.024] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 06/09/2005] [Accepted: 06/27/2005] [Indexed: 11/26/2022]
Abstract
Capsaicin-sensitive, TRPV1 (transient receptor potential vanilloid 1) receptor-expressing primary sensory neurons exert local and systemic efferent effects besides the classical afferent function. The TRPV1 receptor is considered a molecular integrator of various physico-chemical noxious stimuli. In the present study its role was analysed in acute nociceptive tests and chronic neuropathy models by comparison of wild-type (WT) and TRPV1 knockout (KO) mice. The formalin-induced acute nocifensive behaviour, carrageenan-evoked inflammatory mechanical hyperalgesia and partial sciatic nerve lesion-induced neuropathic mechanical hyperalgesia were not different in WT and KO animals. Acute nocifensive behaviour after intraplantar injection of phorbol 12-myristate 13-acetate, an activator of protein kinase C (PKC), was absent in TRPV1 KO animals showing that PKC activation elicits nociception exclusively through TRPV1 receptor sensitization/activation. Thermal hyperalgesia (drop of noxious heat threshold) and mechanical hyperalgesia induced by a mild heat injury (51 degrees C, 15s) was smaller in KO mice suggesting a pronociceptive role for TRPV1 receptor in burn injury. Chronic mechanical hyperalgesia evoked by streptozotocin-induced diabetic and cisplatin-evoked toxic polyneuropathy occurred earlier and were greater in the TRPV1 KO group. In both polyneuropathy models, at time points when maximal difference in mechanical hyperalgesia between the two groups was measured, plasma somatostatin concentrations determined by radioimmunoassay significantly increased in WT but not in TRPV1 KO mice. It is concluded that sensitization/activation of the TRPV1 receptor plays a pronociceptive role in certain models of acute tissue injury but under chronic polyneuropathic conditions it can initiate antinociceptive counter-regulatory mechanisms possibly mediated by somatostatin released from sensory neurons.
Collapse
Affiliation(s)
- Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, H-7643, Pécs, Szigeti u. 12, Pecs, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Alo' R, Facciolo RM, Madeo M, Giusi G, Carelli A, Canonaco M. Effects of the xenoestrogen bisphenol A in diencephalic regions of the teleost fish Coris julis occur preferentially via distinct somatostatin receptor subtypes. Brain Res Bull 2005; 65:267-73. [PMID: 15811591 DOI: 10.1016/j.brainresbull.2005.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The xenoestrogen bisphenol A, a contaminant used in the manufacturing of polymers for many consumer products, has been shown to mimic estrogenic actions. This xenoestrogen regulates secretion and expression of pituitary lactotrophs plus morphological and structural features of estrogen target tissues in rodents. Recently, ecological hazards produced by bisphenol A have drawn interests towards the effects of this environmental chemical on neurobiological functions of aquatic vertebrates of which little is known. In this study, the effects of bisphenol A on the distribution of the biologically more active somatostatin receptor subtypes in diencephalic regions of the teleost fish Coris julis were assessed using nonpeptide agonists (L-779, 976 and L-817, 818) that are highly selective for subtype(2) and subtype(5), respectively. Bisphenol A proved to be responsible for highly significant increased binding levels of subtype(2) in hypothalamic areas, while markedly decreased levels of subtype(5) were found in these diencephalic areas, as well as in the medial preglomerular nucleus. The extensive distribution of somatostatin receptor subtype(2) and subtype(5) in the teleost diencephalic areas suggests that, like in mammals, this receptor system may not only be involved in enhanced hypophysiotropic neurohormonal functions but might also promote neuroplasticity events.
Collapse
Affiliation(s)
- Raffaella Alo'
- Laboratorio di Neuroanatomia Comparata, Dipartimento di Ecologia, Università della Calabria, Arcavacata di Rende, Cosenza 87030, Italy
| | | | | | | | | | | |
Collapse
|