1
|
James EC, Tomaskovic‐Crook E, Crook JM. Engineering 3D Scaffold-Free Nanoparticle-Laden Stem Cell Constructs for Piezoelectric Enhancement of Human Neural Tissue Formation and Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310010. [PMID: 39049737 PMCID: PMC11516115 DOI: 10.1002/advs.202310010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/04/2024] [Indexed: 07/27/2024]
Abstract
Electrical stimulation (ES) of cellular systems can be utilized for biotechnological applications and electroceuticals (bioelectric medicine). Neural cell stimulation especially has a long history in neuroscience research and is increasingly applied for clinical therapies. Application of ES via conventional electrodes requires external connectors and power sources, hindering scientific and therapeutic applications. Here engineering novel 3D scaffold-free human neural stem cell constructs with integrated piezoelectric nanoparticles for enhanced neural tissue induction and function is described. Tetragonal barium titanate (BaTi03) nanoparticles are employed as piezoelectric stimulators prepared as cytocompatible dispersions, incorporated into 3D self-organizing neural spheroids, and activated wirelessly by ultrasound. Ultrasound delivery (low frequency; 40 kHz) is optimized for cell survival, and nanoparticle activation enabled ES throughout the spheroids during differentiation, tissue formation, and maturation. The resultant human neural tissues represent the first example of direct tissue loading with piezoelectric particles for ensuing 3D ultrasound-mediated piezoelectric enhancement of human neuronal induction from stem cells, including augmented neuritogenesis and synaptogenesis. It is anticipated that the platform described will facilitate advanced tissue engineering and in vitro modeling of human neural (and potentially non-neural) tissues, with modeling including tissue development and pathology, and applicable to preclinical testing and prototyping of both electroceuticals and pharmaceuticals.
Collapse
Affiliation(s)
- Emma Claire James
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research InstituteAIIM FacilityUniversity of WollongongFairy MeadowNSW2519Australia
- Arto Hardy Family Biomedical Innovation HubChris O'Brien LifehouseCamperdownNSW2050Australia
| | - Eva Tomaskovic‐Crook
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research InstituteAIIM FacilityUniversity of WollongongFairy MeadowNSW2519Australia
- Arto Hardy Family Biomedical Innovation HubChris O'Brien LifehouseCamperdownNSW2050Australia
- School of Medical SciencesFaculty of Medicine and HealthThe University of SydneyCamperdownNSW2006Australia
| | - Jeremy Micah Crook
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research InstituteAIIM FacilityUniversity of WollongongFairy MeadowNSW2519Australia
- Arto Hardy Family Biomedical Innovation HubChris O'Brien LifehouseCamperdownNSW2050Australia
- School of Medical SciencesFaculty of Medicine and HealthThe University of SydneyCamperdownNSW2006Australia
- Institute of Innovative MaterialsAIIM FacilityInnovation CampusFaculty of Engineering and Information SystemsUniversity of WollongongFairy MeadowNSW2519Australia
| |
Collapse
|
2
|
Pöpplau JA, Hanganu-Opatz IL. Development of Prefrontal Circuits and Cognitive Abilities. Cold Spring Harb Perspect Biol 2024; 16:a041502. [PMID: 38692836 PMCID: PMC11444252 DOI: 10.1101/cshperspect.a041502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The prefrontal cortex is considered as the site of multifaceted higher-order cognitive abilities. These abilities emerge late in life long after full sensorimotor maturation, in line with the protracted development of prefrontal circuits that has been identified on molecular, structural, and functional levels. Only recently, as a result of the impressive methodological progress of the last several decades, the mechanisms and clinical implications of prefrontal development have begun to be elucidated, yet major knowledge gaps still persist. Here, we provide an overview on how prefrontal circuits develop to enable multifaceted cognitive processing at adulthood. First, we review recent insights into the mechanisms of prefrontal circuit assembly, with a focus on the contribution of early electrical activity. Second, we highlight the major reorganization of prefrontal circuits during adolescence. Finally, we link the prefrontal plasticity during specific developmental time windows to mental health disorders and discuss potential approaches for therapeutic interventions.
Collapse
Affiliation(s)
- Jastyn A Pöpplau
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience (HCNS), University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience (HCNS), University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
3
|
Pochinok I, Stöber TM, Triesch J, Chini M, Hanganu-Opatz IL. A developmental increase of inhibition promotes the emergence of hippocampal ripples. Nat Commun 2024; 15:738. [PMID: 38272901 PMCID: PMC10810866 DOI: 10.1038/s41467-024-44983-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
Sharp wave-ripples (SPW-Rs) are a hippocampal network phenomenon critical for memory consolidation and planning. SPW-Rs have been extensively studied in the adult brain, yet their developmental trajectory is poorly understood. While SPWs have been recorded in rodents shortly after birth, the time point and mechanisms of ripple emergence are still unclear. Here, we combine in vivo electrophysiology with optogenetics and chemogenetics in 4 to 12-day-old mice to address this knowledge gap. We show that ripples are robustly detected and induced by light stimulation of channelrhodopsin-2-transfected CA1 pyramidal neurons only from postnatal day 10 onwards. Leveraging a spiking neural network model, we mechanistically link the maturation of inhibition and ripple emergence. We corroborate these findings by reducing ripple rate upon chemogenetic silencing of CA1 interneurons. Finally, we show that early SPW-Rs elicit a more robust prefrontal cortex response than SPWs lacking ripples. Thus, development of inhibition promotes ripples emergence.
Collapse
Affiliation(s)
- Irina Pochinok
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology (ZMNH), Hamburg Center of Neuroscience (HCNS), University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Tristan M Stöber
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
| | - Jochen Triesch
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
| | - Mattia Chini
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology (ZMNH), Hamburg Center of Neuroscience (HCNS), University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology (ZMNH), Hamburg Center of Neuroscience (HCNS), University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| |
Collapse
|
4
|
Haddad FL, De Oliveira C, Schmid S. Investigating behavioral phenotypes related to autism spectrum disorder in a gene-environment interaction model of Cntnap2 deficiency and Poly I:C maternal immune activation. Front Neurosci 2023; 17:1160243. [PMID: 36998729 PMCID: PMC10043204 DOI: 10.3389/fnins.2023.1160243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
IntroductionAutism Spectrum Disorder (ASD) has been associated with a wide variety of genetic and environmental risk factors in both human and preclinical studies. Together, findings support a gene-environment interaction hypothesis whereby different risk factors independently and synergistically impair neurodevelopment and lead to the core symptoms of ASD. To date, this hypothesis has not been commonly investigated in preclinical ASD models. Mutations in the Contactin-associated protein-like 2 (Cntnap2) gene and exposure to maternal immune activation (MIA) during pregnancy have both been linked to ASD in humans, and preclinical rodent models have shown that both MIA and Cntnap2 deficiency lead to similar behavioral deficits.MethodsIn this study, we tested the interaction between these two risk factors by exposing Wildtype, Cntnap2+/–, and Cntnap2–/– rats to Polyinosinic: Polycytidylic acid (Poly I:C) MIA at gestation day 9.5.ResultsOur findings showed that Cntnap2 deficiency and Poly I:C MIA independently and synergistically altered ASD-related behaviors like open field exploration, social behavior, and sensory processing as measured through reactivity, sensitization, and pre-pulse inhibition (PPI) of the acoustic startle response. In support of the double-hit hypothesis, Poly I:C MIA acted synergistically with the Cntnap2–/– genotype to decrease PPI in adolescent offspring. In addition, Poly I:C MIA also interacted with the Cntnap2+/– genotype to produce subtle changes in locomotor hyperactivity and social behavior. On the other hand, Cntnap2 knockout and Poly I:C MIA showed independent effects on acoustic startle reactivity and sensitization.DiscussionTogether, our findings support the gene-environment interaction hypothesis of ASD by showing that different genetic and environmental risk factors could act synergistically to exacerbate behavioral changes. In addition, by showing the independent effects of each risk factor, our findings suggest that ASD phenotypes could be caused by different underlying mechanisms.
Collapse
Affiliation(s)
- Faraj L. Haddad
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Cleusa De Oliveira
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Susanne Schmid
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- Department of Psychology, The University of Western Ontario, London, ON, Canada
- *Correspondence: Susanne Schmid,
| |
Collapse
|
5
|
Gamma oscillations provide insights into cortical circuit development. Pflugers Arch 2023; 475:561-568. [PMID: 36864347 PMCID: PMC10105678 DOI: 10.1007/s00424-023-02801-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
Rhythmic coordination in gamma oscillations provides temporal structure to neuronal activity. Gamma oscillations are commonly observed in the mammalian cerebral cortex, are altered early on in several neuropsychiatric disorders, and provide insights into the development of underlying cortical networks. However, a lack of knowledge on the developmental trajectory of gamma oscillations prevented the combination of findings from the immature and the adult brain. This review is intended to provide an overview on the development of cortical gamma oscillations, the maturation of the underlying network, and the implications for cortical function and dysfunction. The majority of information is drawn from work in rodents with particular emphasis on the prefrontal cortex, the developmental trajectory of gamma oscillations, and potential implications for neuropsychiatric disorders. Current evidence supports the idea that fast oscillations during development are indeed an immature form of adult gamma oscillations and can help us understand the pathology of neuropsychiatric disorders.
Collapse
|
6
|
Kringel R, Song L, Xu X, Bitzenhofer SH, Hanganu-Opatz IL. Layer-specific impairment in the developing lateral entorhinal cortex of immune-challenged Disc1 +/- mice. J Physiol 2023; 601:847-857. [PMID: 36647326 DOI: 10.1113/jp283896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Cognitive deficits in mental disorders result from dysfunctional activity in large-scale brain networks centred around the hippocampus and the prefrontal cortex. Dysfunctional activity emerges early during development and precedes the cognitive disabilities. The prefrontal-hippocampal network is driven by a prominent input from the lateral entorhinal cortex. We have previously shown that during early development, the entorhinal drive of the prefrontal-hippocampal network is impaired in a mouse model of mental disorders, yet the cellular substrate of this impairment is still poorly understood. Here, we address this question by a detailed characterization of projection neurons across the layers of the lateral entorhinal cortex in immune-challenged Disc1+/- mice at the beginning of the second postnatal week. We found that the activity and morphology of neurons in layers 2b and 3, which project to the hippocampus, are impaired. Neurons in layer 2b show increased spike-frequency adaptation, whereas neurons in layer 3 have reduced dendritic complexity but increased spike density. These findings identify the developmental alterations of entorhinal-hippocampal communication that underlie network dysfunction in immune-challenged Disc1+/- mice. KEY POINTS: Neonatal immune-challenged Disc1+/- mice show layer-specific changes in the lateral entorhinal cortex. Entorhinal layer 2b pyramidal neurons have increased spike-frequency adaptation. Reduced dendritic complexity but increased spine density characterize layer 3 pyramidal neurons.
Collapse
Affiliation(s)
- Rebecca Kringel
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience (HCNS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lingzhen Song
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience (HCNS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Xiaxia Xu
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience (HCNS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastian H Bitzenhofer
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience (HCNS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience (HCNS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Günther A, Hanganu-Opatz IL. Neuronal oscillations: early biomarkers of psychiatric disease? Front Behav Neurosci 2022; 16:1038981. [PMID: 36600993 PMCID: PMC9806131 DOI: 10.3389/fnbeh.2022.1038981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
Our understanding of the environmental and genetic factors contributing to the wide spectrum of neuropsychiatric disorders has significantly increased in recent years. Impairment of neuronal network activity during early development has been suggested as a contributor to the emergence of neuropsychiatric pathologies later in life. Still, the neurobiological substrates underlying these disorders remain yet to be fully understood and the lack of biomarkers for early diagnosis has impeded research into curative treatment options. Here, we briefly review current knowledge on potential biomarkers for emerging neuropsychiatric disease. Moreover, we summarize recent findings on aberrant activity patterns in the context of psychiatric disease, with a particular focus on their potential as early biomarkers of neuropathologies, an essential step towards pre-symptomatic diagnosis and, thus, early intervention.
Collapse
|
8
|
Ge X, Wang L, Cui Q, Yan H, Wang Z, Ye S, Zhang Q, Fei A. Electroacupuncture improves cognitive impairment in diabetic cognitive dysfunction rats by regulating the mitochondrial autophagy pathway. J Physiol Sci 2022; 72:29. [DOI: 10.1186/s12576-022-00854-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022]
Abstract
Abstract
Background
Diabetes-associated cognitive dysfunction has become a major public health concern. However, the mechanisms driving this disease are elusive. Herein, we explored how electroacupuncture improves learning and memory function in diabetic rats.
Methods
The diabetic model was established by intraperitoneal injection of streptozotocin (STZ) in adult Sprague–Dawley rats. Rats were fed on high-fat and high-sugar diets. Learning and memory functions were assessed using behavioral tests. The hematoxylin and eosin (H&E) staining, Western blotting, real-time PCR, ELISA, immunohistochemistry, and transmission electronic microscopy (TEM) was performed to test related indicators.
Results
High-fat and high-sugar diets impaired learning and memory function in rats, while electroacupuncture treatment reversed these changes. The model group presented highly prolonged escape latency compared to the control group, indicating impaired learning and memory functions. The TEM examination showed that electroacupuncture enhanced Aβ clearance and mitochondrial autophagy in hippocampal neuronal cells by increasing DISC1 expression.
Conclusions
Electroacupuncture improves learning and memory function in diabetic rats by increasing DISC1 expression to promote mitophagy. This enhanced Aβ clearance, alleviating cytotoxicity in hippocampal neuronal cells.
Collapse
|
9
|
Raharjo S, Rejeki P, Kurniawan A, Widiastuti, Taufik M, Siregar A, Harisman A, Andiana O, Hidayati H. Pattern of serum brain-derived neurotrophic factor levels after acute interval exercise versus acute continuous exercise in obese adolescent females. COMPARATIVE EXERCISE PHYSIOLOGY 2022. [DOI: 10.3920/cep220017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Obesity has been linked to lower cognitive function, while exercise is known to be beneficial in enhancing the cognitive function. Exercise is also known to increase brain-derived neurotrophic factor (BDNF), as the biological marker of cognitive function. This study aimed to analyse the pattern of serum BDNF levels after acute interval exercise (MIE) versus acute continuous exercise (MCE) in obese adolescent females. A total of 24 obese females were enrolled in this study and given acute interval exercise and acute continuous exercise with moderate intensity. The serum level of BDNF in all samples was quantified using ELISA. Statistical analysis was performed using two-way repeated measures ANOVA, and LSD post-hoc test with a 5% significance level. The results revealed pre-exercise mean serum BDNF levels of 254.17±86.90 pg/ml (Control), 263.21±79.82 pg/ml (MIE) and 266.01±33.29 pg/ml (MCE) (P=0.948). The mean serum BDNF levels at 10 min post-exercise were 248.84±44.42 pg/ml (Control), 397.00±31.36 pg/ml (MIE), and 582.82±79.24 pg/ml (MCE) (P=0.000). The mean serum BDNF levels at 6 h post-exercise were 250.05±70.44 pg/ml (Control), 344.50±68.84 pg/ml (MIE), and 364.42±100.87 pg/ml (MCE) (P=0.029). The mean serum BDNF levels at 24 h post-exercise were 244.20±48.55 pg/ml (Control), 252.49±89.11 pg/ml (MIE), and 250.99±65.86 pg/ml (MCE) (P=0.986). It was concluded that serum BDNF in obese adolescent females increased but transiently. Serum BDNF levels increased by acute exercise in both MIE and MCE at 10 min and 6 h post-exercise. However, serum BDNF level at 24 h post-exercise decreased close to the pre-exercise serum BDNF level in all groups. Further research is needed studying the effect of chronic exercise on the kinetics of serum BDNF levels in obese adolescent females.
Collapse
Affiliation(s)
- S. Raharjo
- Department of Sport Science, Faculty of Sport Science, State University of Malang, Semarang No. 5, Malang 65145, Indonesia
| | - P.S. Rejeki
- Physiology Division, Department of Medical Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga, Prof. Dr. Moestopo No. 47, Surabaya 60131, Indonesia
| | - A.W. Kurniawan
- Department of Physical Education, Health and Recreation, Faculty of Sports Sciences, State University of Malang, Semarang No. 5, Malang 65145, Indonesia
| | - Widiastuti
- Department of Sport Science, Faculty of Sport Science, State University of Jakarta, Pemuda No. 10, Jakarta 13220, Indonesia
| | - M.S. Taufik
- Department of Physical Education, Health and Recreation, Faculty of Teacher and Education, University of Suryakancana, Pasirgede Raya, Cianjur 43216, Indonesia
| | - A.H. Siregar
- Department of Physical Education, Health and Recreation, Faculty of Sports Sciences, State University of Medan, Willem Iskandar, Medan 20221, Indonesia
| | - A.S.M. Harisman
- Department of Sport Science, Faculty of Sport Science, State University of Malang, Semarang No. 5, Malang 65145, Indonesia
| | - O. Andiana
- Department of Sport Science, Faculty of Sport Science, State University of Malang, Semarang No. 5, Malang 65145, Indonesia
| | - H.B. Hidayati
- Department of Neurology, Faculty of Medicine, Universitas Airlangga, Prof. Dr. Moestopo No. 47, Surabaya 60131, Indonesia
| |
Collapse
|
10
|
Chini M, Pfeffer T, Hanganu-Opatz I. An increase of inhibition drives the developmental decorrelation of neural activity. eLife 2022; 11:78811. [PMID: 35975980 PMCID: PMC9448324 DOI: 10.7554/elife.78811] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Throughout development, the brain transits from early highly synchronous activity patterns to a mature state with sparse and decorrelated neural activity, yet the mechanisms underlying this process are poorly understood. The developmental transition has important functional consequences, as the latter state is thought to allow for more efficient storage, retrieval, and processing of information. Here, we show that, in the mouse medial prefrontal cortex (mPFC), neural activity during the first two postnatal weeks decorrelates following specific spatial patterns. This process is accompanied by a concomitant tilting of excitation-inhibition (E-I) ratio toward inhibition. Using optogenetic manipulations and neural network modeling, we show that the two phenomena are mechanistically linked, and that a relative increase of inhibition drives the decorrelation of neural activity. Accordingly, in mice mimicking the etiology of neurodevelopmental disorders, subtle alterations in E-I ratio are associated with specific impairments in the correlational structure of spike trains. Finally, capitalizing on EEG data from newborn babies, we show that an analogous developmental transition takes place also in the human brain. Thus, changes in E-I ratio control the (de)correlation of neural activity and, by these means, its developmental imbalance might contribute to the pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Mattia Chini
- Institute of Developmental Neurophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Pfeffer
- Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ileana Hanganu-Opatz
- Institute of Developmental Neurophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
11
|
Schepanski S, Chini M, Sternemann V, Urbschat C, Thiele K, Sun T, Zhao Y, Poburski M, Woestemeier A, Thieme MT, Zazara DE, Alawi M, Fischer N, Heeren J, Vladimirov N, Woehler A, Puelles VG, Bonn S, Gagliani N, Hanganu-Opatz IL, Arck PC. Pregnancy-induced maternal microchimerism shapes neurodevelopment and behavior in mice. Nat Commun 2022; 13:4571. [PMID: 35931682 PMCID: PMC9356013 DOI: 10.1038/s41467-022-32230-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
Life-long brain function and mental health are critically determined by developmental processes occurring before birth. During mammalian pregnancy, maternal cells are transferred to the fetus. They are referred to as maternal microchimeric cells (MMc). Among other organs, MMc seed into the fetal brain, where their function is unknown. Here, we show that, in the offspring's developing brain in mice, MMc express a unique signature of sensome markers, control microglia homeostasis and prevent excessive presynaptic elimination. Further, MMc facilitate the oscillatory entrainment of developing prefrontal-hippocampal circuits and support the maturation of behavioral abilities. Our findings highlight that MMc are not a mere placental leak out, but rather a functional mechanism that shapes optimal conditions for healthy brain function later in life.
Collapse
Affiliation(s)
- Steven Schepanski
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mattia Chini
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Veronika Sternemann
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christopher Urbschat
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristin Thiele
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ting Sun
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Yu Zhao
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mareike Poburski
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Woestemeier
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marie-Theres Thieme
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dimitra E Zazara
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Service Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicole Fischer
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nikita Vladimirov
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Andrew Woehler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Victor G Puelles
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Petra C Arck
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
12
|
Xu X, Song L, Kringel R, Hanganu-Opatz IL. Developmental decrease of entorhinal-hippocampal communication in immune-challenged DISC1 knockdown mice. Nat Commun 2021; 12:6810. [PMID: 34815409 PMCID: PMC8611076 DOI: 10.1038/s41467-021-27114-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 11/02/2021] [Indexed: 01/06/2023] Open
Abstract
The prefrontal-hippocampal dysfunction that underlies cognitive deficits in mental disorders emerges during early development. The lateral entorhinal cortex (LEC) is tightly interconnected with both prefrontal cortex (PFC) and hippocampus (HP), yet its contribution to the early dysfunction is fully unknown. Here we show that mice that mimic the dual genetic (G) -environmental (E) etiology (GE mice) of psychiatric risk have poor LEC-dependent recognition memory at pre-juvenile age and abnormal communication within LEC-HP-PFC networks throughout development. These functional and behavioral deficits relate to sparser projections from LEC to CA1 and decreased efficiency of axonal terminals to activate the hippocampal circuits in neonatal GE mice. In contrast, the direct entorhinal drive to PFC is not affected, yet the PFC is indirectly compromised, as target of the under-activated HP. Thus, the entorhinal-hippocampal circuit is already impaired from neonatal age on in GE mice. The authors show that mice that mimic the dual genetic-environmental etiology of psychiatric risk have poor lateral entorhinal cortex-dependent recognition memory already at pre-juvenile age and abnormal communication within LECHP-PFC networks throughout development.
Collapse
Affiliation(s)
- Xiaxia Xu
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| | - Lingzhen Song
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Rebecca Kringel
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| |
Collapse
|
13
|
Lippmann B, Barmashenko G, Funke K. Effects of repetitive transcranial magnetic and deep brain stimulation on long-range synchrony of oscillatory activity in a rat model of developmental schizophrenia. Eur J Neurosci 2021; 53:2848-2869. [PMID: 33480084 DOI: 10.1111/ejn.15125] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/23/2020] [Accepted: 01/19/2021] [Indexed: 12/14/2022]
Abstract
Aberrant neuronal network activity likely resulting from disturbed interactions of excitatory and inhibitory systems may be a major cause of cognitive deficits in neuropsychiatric diseases, like within the spectrum of schizophrenic phenotypes. In particular, the synchrony and pattern of oscillatory brain activity appears to be disturbed within limbic networks, e.g. between prefrontal cortex and hippocampus. In a rat model of maternal immune activation (MIA), we compared the acute effects of deep brain stimulation within either medial prefrontal cortex or ventral hippocampus with the effects of repetitive transcranial magnetic stimulation (rTMS), using the intermittent theta-burst protocol (iTBS), on oscillatory activity within limbic structures. Simultaneous local field potential recordings were made from medial prefrontal cortex, ventral hippocampus, nucleus accumbens and rostral part of ventral tegmental area before and after deep brain stimulation in anaesthetized rats previously (~3 h) treated with sham or verum rTMS. We found a waxing and waning pattern of theta and gamma activity in all structures which was less synchronous in particular between medial prefrontal cortex and ventral hippocampus in MIA offspring. Deep brain stimulation in medial prefrontal cortex and pre-treatment with iTBS-rTMS partly improved this pattern. Gamma-theta cross-frequency coupling was stronger in MIA offspring and could partly be reduced by deep brain stimulation in medial prefrontal cortex. We can confirm aberrant limbic network activity in a rat MIA model, and at least acute normalizing effects of the neuromodulatory methods. It has to be proven whether these procedures can have chronic effects suitable for therapeutic purposes.
Collapse
Affiliation(s)
- Benjamin Lippmann
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Gleb Barmashenko
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany.,AIO-Studien-gGmbH, Berlin, Germany
| | - Klaus Funke
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
14
|
Hanganu-Opatz IL, Butt SJB, Hippenmeyer S, De Marco García NV, Cardin JA, Voytek B, Muotri AR. The Logic of Developing Neocortical Circuits in Health and Disease. J Neurosci 2021; 41:813-822. [PMID: 33431633 PMCID: PMC7880298 DOI: 10.1523/jneurosci.1655-20.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
The sensory and cognitive abilities of the mammalian neocortex are underpinned by intricate columnar and laminar circuits formed from an array of diverse neuronal populations. One approach to determining how interactions between these circuit components give rise to complex behavior is to investigate the rules by which cortical circuits are formed and acquire functionality during development. This review summarizes recent research on the development of the neocortex, from genetic determination in neural stem cells through to the dynamic role that specific neuronal populations play in the earliest circuits of neocortex, and how they contribute to emergent function and cognition. While many of these endeavors take advantage of model systems, consideration will also be given to advances in our understanding of activity in nascent human circuits. Such cross-species perspective is imperative when investigating the mechanisms underlying the dysfunction of early neocortical circuits in neurodevelopmental disorders, so that one can identify targets amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Simon J B Butt
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
| | - Natalia V De Marco García
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021
| | - Jessica A Cardin
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut 06520
| | - Bradley Voytek
- University of California San Diego, Department of Cognitive Science, Halıcıoğlu Data Science Institute, Neurosciences Graduate Program, La Jolla, California 92093
- University of California San Diego, Kavli Institute for Brain and Mind, La Jolla, California 92093
| | - Alysson R Muotri
- University of California San Diego, Kavli Institute for Brain and Mind, La Jolla, California 92093
- University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Center for Academic Research and Training in Anthropogeny, La Jolla, California 92037
| |
Collapse
|
15
|
Xu X, Song L, Hanganu-Opatz IL. Knock-Down of Hippocampal DISC1 in Immune-Challenged Mice Impairs the Prefrontal-Hippocampal Coupling and the Cognitive Performance Throughout Development. Cereb Cortex 2021; 31:1240-1258. [PMID: 33037815 PMCID: PMC7786359 DOI: 10.1093/cercor/bhaa291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/21/2020] [Accepted: 09/07/2020] [Indexed: 12/31/2022] Open
Abstract
Disrupted-in-schizophrenia 1 (DISC1) gene represents an intracellular hub of developmental processes. When combined with early environmental stressors, such as maternal immune activation, but not in the absence of thereof, whole-brain DISC1 knock-down leads to memory and executive deficits as result of impaired prefrontal–hippocampal communication throughout development. While synaptic dysfunction in neonatal prefrontal cortex (PFC) has been recently identified as one source of abnormal long-range coupling, the contribution of hippocampus (HP) is still unknown. Here, we aim to fill this knowledge gap by combining in vivo electrophysiology and optogenetics with morphological and behavioral assessment of immune-challenged mice with DISC1 knock-down either in the whole brain (GE) or restricted to pyramidal neurons in hippocampal CA1 area (GHPE). We found abnormal network activity, sharp-waves, and neuronal firing in CA1 that complement the deficits in upper layer of PFC. Moreover, optogenetic activating CA1 pyramidal neurons fails to activate the prefrontal local circuits. These deficits that persist till prejuvenile age relate to dendrite sparsification and loss of spines of CA1 pyramidal neurons. As a long-term consequence, DISC1 knock-down in HP leads to poorer recognition memory at prejuvenile age. Thus, DISC1-controlled developmental processes in HP in immune-challenged mice are critical for circuit function and cognitive behavior.
Collapse
Affiliation(s)
- Xiaxia Xu
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Lingzhen Song
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
16
|
Chini M, Hanganu-Opatz IL. Prefrontal Cortex Development in Health and Disease: Lessons from Rodents and Humans. Trends Neurosci 2020; 44:227-240. [PMID: 33246578 DOI: 10.1016/j.tins.2020.10.017] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/15/2020] [Accepted: 10/29/2020] [Indexed: 12/22/2022]
Abstract
The role of the prefrontal cortex (PFC) takes center stage among unanswered questions in modern neuroscience. The PFC has a Janus-faced nature: it enables sophisticated cognitive and social abilities that reach their maximum expression in humans, yet it underlies some of the devastating symptoms of psychiatric disorders. Accordingly, appropriate prefrontal development is crucial for many high-order cognitive abilities and dysregulation of this process has been linked to various neuropsychiatric diseases. Reviewing recent advances in the field, with a primary focus on rodents and humans, we highlight why, despite differences across species, a cross-species approach is a fruitful strategy for understanding prefrontal development. We briefly review the developmental contribution of molecules and extensively discuss how electrical activity controls the early maturation and wiring of prefrontal areas, as well as the emergence and refinement of input-output circuitry involved in cognitive processing. Finally, we highlight the mechanisms of developmental dysfunction and their relevance for psychiatric disorders.
Collapse
Affiliation(s)
- Mattia Chini
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
17
|
Dolleman-van der Weel MJ, Witter MP. The thalamic midline nucleus reuniens: potential relevance for schizophrenia and epilepsy. Neurosci Biobehav Rev 2020; 119:422-439. [PMID: 33031816 DOI: 10.1016/j.neubiorev.2020.09.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 09/03/2020] [Accepted: 09/28/2020] [Indexed: 01/08/2023]
Abstract
Anatomical, electrophysiological and behavioral studies in rodents have shown that the thalamic midline nucleus reuniens (RE) is a crucial link in the communication between hippocampal formation (HIP, i.e., CA1, subiculum) and medial prefrontal cortex (mPFC), important structures for cognitive and executive functions. A common feature in neurodevelopmental and neurodegenerative brain diseases is a dysfunctional connectivity/communication between HIP and mPFC, and disturbances in the cognitive domain. Therefore, it is assumed that aberrant functioning of RE may contribute to behavioral/cognitive impairments in brain diseases characterized by cortico-thalamo-hippocampal circuit dysfunctions. In the human brain the connections of RE are largely unknown. Yet, recent studies have found important similarities in the functional connectivity of HIP-mPFC-RE in humans and rodents, making cautious extrapolating experimental findings from animal models to humans justifiable. The focus of this review is on a potential involvement of RE in schizophrenia and epilepsy.
Collapse
Affiliation(s)
- M J Dolleman-van der Weel
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU Norwegian University of Science and Technology, Trondheim NO-7491, Norway.
| | - M P Witter
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU Norwegian University of Science and Technology, Trondheim NO-7491, Norway.
| |
Collapse
|
18
|
Dehorter N, Del Pino I. Shifting Developmental Trajectories During Critical Periods of Brain Formation. Front Cell Neurosci 2020; 14:283. [PMID: 33132842 PMCID: PMC7513795 DOI: 10.3389/fncel.2020.00283] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022] Open
Abstract
Critical periods of brain development are epochs of heightened plasticity driven by environmental influence necessary for normal brain function. Recent studies are beginning to shed light on the possibility that timely interventions during critical periods hold potential to reorient abnormal developmental trajectories in animal models of neurological and neuropsychiatric disorders. In this review, we re-examine the criteria defining critical periods, highlighting the recently discovered mechanisms of developmental plasticity in health and disease. In addition, we touch upon technological improvements for modeling critical periods in human-derived neural networks in vitro. These scientific advances associated with the use of developmental manipulations in the immature brain of animal models are the basic preclinical systems that will allow the future translatability of timely interventions into clinical applications for neurodevelopmental disorders such as intellectual disability, autism spectrum disorders (ASD) and schizophrenia.
Collapse
Affiliation(s)
- Nathalie Dehorter
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Isabel Del Pino
- Principe Felipe Research Center (Centro de Investigación Principe Felipe, CIPF), Valencia, Spain
| |
Collapse
|
19
|
Abstract
One of the fundamental questions in neuroscience is how brain activity relates to conscious experience. Even though self-consciousness is considered an emergent property of the brain network, a quantum physics-based theory assigns a momentum of consciousness to the single neuron level. In this work, we present a brain self theory from an evolutionary biological perspective by analogy with the immune self. In this scheme, perinatal reactivity to self inputs would guide the selection of neocortical neurons within the subplate, similarly to T lymphocytes in the thymus. Such self-driven neuronal selection would enable effective discrimination of external inputs and avoid harmful "autoreactive" responses. Multiple experimental and clinical evidences for this model are provided. Based on this self tenet, we outline the postulates of the so-called autophrenic diseases, to then make the case for schizophrenia, an archetypic disease with rupture of the self. Implications of this model are discussed, along with potential experimental verification.
Collapse
Affiliation(s)
- Silvia Sánchez-Ramón
- Department of Clinical Immunology, IML and IdISSC, Hospital Clínico San Carlos, Madrid, Spain.,Department of Immunology, ENT and Ophthalmology, Complutense University School of Medicine, Madrid, Spain
| | - Florence Faure
- INSERM U932, PSL Research University, Institut Curie, Paris, France
| |
Collapse
|
20
|
Yang K, Kondo MA, Jaaro-Peled H, Cash-Padgett T, Kano SI, Ishizuka K, Pevsner J, Tomoda T, Sawa A, Niwa M. The transcriptome landscape associated with Disrupted-in-Schizophrenia-1 locus impairment in early development and adulthood. Schizophr Res 2019; 210:149-156. [PMID: 31204062 PMCID: PMC8050833 DOI: 10.1016/j.schres.2019.05.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/21/2019] [Accepted: 05/26/2019] [Indexed: 01/08/2023]
Abstract
DISC1 was originally expected to be a genetic risk factor for schizophrenia, but the genome wide association studies have not supported this idea. In contrast, neurobiological studies of DISC1 in cell and animal models have demonstrated that direct perturbation of DISC1 protein elicits neurobiological and behavioral abnormalities relevant to a wide range of psychiatric conditions, in particular psychosis. Thus, the utility of DISC1 as a biological lead for psychosis research is clear. In the present study, we aimed to capture changes in the molecular landscape in the prefrontal cortex upon perturbation of DISC1, using the Disc1 locus impairment (Disc1-LI) model in which the majority of Disc1 isoforms have been depleted, and to explore potential molecular mediators relevant to psychiatric conditions. We observed a robust change in gene expression profile elicited by Disc1-LI in which the stronger effects on molecular networks were observed in early stage compared with those in adulthood. Significant alterations were found in specific pathways relevant to psychiatric conditions, such as pathways of signaling by G protein-coupled receptor, neurotransmitter release cycle, and voltage gated potassium channels. The differentially expressed genes (DEGs) between Disc1-LI and wild-type mice are significantly enriched not only in neurons, but also in astrocytes and oligodendrocyte precursor cells. The brain-disorder-associated genes at the mRNA and protein levels rather than those at the genomic levels are enriched in the DEGs. Together, our present study supports the utility of Disc1-LI mice in biological research for psychiatric disorder-associated molecular networks.
Collapse
Affiliation(s)
- Kun Yang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mari A Kondo
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hanna Jaaro-Peled
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tyler Cash-Padgett
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Shin-Ichi Kano
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Koko Ishizuka
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jonathan Pevsner
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Toshifumi Tomoda
- Medical Innovation Center, Kyoto University, Kyoto 606-8397, Japan
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Mental Health, Johns Hopkins University Bloomberg School of Medicine, Baltimore, MD 21205, USA.
| | - Minae Niwa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
21
|
Oberlander VC, Xu X, Chini M, Hanganu-Opatz IL. Developmental dysfunction of prefrontal-hippocampal networks in mouse models of mental illness. Eur J Neurosci 2019; 50:3072-3084. [PMID: 31087437 PMCID: PMC6851774 DOI: 10.1111/ejn.14436] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/18/2019] [Accepted: 05/08/2019] [Indexed: 12/28/2022]
Abstract
Despite inherent difficulties to translate human cognitive phenotype into animals, a large number of animal models for psychiatric disorders, such as schizophrenia, have been developed over the last decades. To which extent they reproduce common patterns of dysfunction related to mental illness and abnormal processes of maturation is still largely unknown. While the devastating symptoms of disease are firstly detectable in adulthood, they are considered to reflect profound miswiring of brain circuitry as result of abnormal development. To reveal whether different disease models share common dysfunction early in life, we investigate the prefrontal-hippocampal communication at neonatal age in (a) mice mimicking the abnormal genetic background (22q11.2 microdeletion, DISC1 knockdown), (b) mice mimicking the challenge by environmental stressors (maternal immune activation during pregnancy), (c) mice mimicking the combination of both aetiologies (dual-hit models) and pharmacological mouse models. Simultaneous extracellular recordings in vivo from all layers of prelimbic subdivision (PL) of prefrontal cortex (PFC) and CA1 area of intermediate/ventral hippocampus (i/vHP) show that network oscillations have a more fragmented structure and decreased power mainly in neonatal mice that mimic both genetic and environmental aetiology of disease. These mice also show layer-specific firing deficits in PL. Similar early network dysfunction was present in mice with 22q11.2 microdeletion. The abnormal activity patterns are accompanied by weaker synchrony and directed interactions within prefrontal-hippocampal networks. Thus, only severe genetic defects or combined genetic environmental stressors are disruptive enough for reproducing the early network miswiring in mental disorders.
Collapse
Affiliation(s)
- Victoria C Oberlander
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Xiaxia Xu
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mattia Chini
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|