1
|
Mishra S, Kell P, Scherrer D, Dietzen DJ, Vite CH, Berry-Kravis E, Davidson C, Cologna SM, Porter FD, Ory DS, Jiang X. Accumulation of alkyl-lysophosphatidylcholines in Niemann-Pick disease type C1. J Lipid Res 2024; 65:100600. [PMID: 39048052 PMCID: PMC11367646 DOI: 10.1016/j.jlr.2024.100600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
Lysosomal function is impaired in Niemann-Pick disease type C1 (NPC1), a rare and inherited neurodegenerative disorder, resulting in late endosomal/lysosomal accumulation of unesterified cholesterol. The precise pathogenic mechanism of NPC1 remains incompletely understood. In this study, we employed metabolomics to uncover secondary accumulated substances in NPC1. Our findings unveiled a substantial elevation in the levels of three alkyl-lysophosphatidylcholine [alkyl-LPC, also known as lyso-platelet activating factor (PAF)] species in NPC1 compared to controls across various tissues, including brain tissue from individuals with NPC1, liver, spleen, cerebrum, cerebellum, and brain stem from NPC1 mice, as well as in both brain and liver tissue from NPC1 cats. The three elevated alkyl-LPC species were as follows: LPC O-16:0, LPC O-18:1, and LPC O-18:0. However, the levels of PAF 16:0, PAF 18:1, and PAF 18:0 were not altered in NPC1. In the NPC1 feline model, the brain and liver alkyl-LPC levels were reduced following 2-hydroxypropyl-β-cyclodextrin (HPβCD) treatment, suggesting that alkyl-LPCs are secondary storage metabolites in NPC1 disease. Unexpectedly, cerebrospinal fluid (CSF) levels of LPC O-16:0 and LPC O-18:1 were decreased in individuals with NPC1 compared to age-appropriate comparison samples, and their levels were increased in 80% of participants 2 years after intrathecal HPβCD treatment. The fold increases in CSF LPC O-16:0 and LPC O-18:1 levels were more pronounced in responders compared to nonresponders. This study identified alkyl-LPC species as secondary storage metabolites in NPC1 and indicates that LPC O-16:0 and LPC O-18:1, in particular, could serve as potential biomarkers for tracking treatment response in NPC1 patients.
Collapse
Affiliation(s)
- Sonali Mishra
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Pamela Kell
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - David Scherrer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Dennis J Dietzen
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles H Vite
- Department of Clinical Studies and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, PA, USA
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Neurological Sciences and Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - Cristin Davidson
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, Bethesda, MD, USA
| | | | - Forbes D Porter
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, Bethesda, MD, USA
| | | | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Yasamineh S, Mehrabani FJ, Derafsh E, Danihiel Cosimi R, Forood AMK, Soltani S, Hadi M, Gholizadeh O. Potential Use of the Cholesterol Transfer Inhibitor U18666A as a Potent Research Tool for the Study of Cholesterol Mechanisms in Neurodegenerative Disorders. Mol Neurobiol 2024; 61:3503-3527. [PMID: 37995080 DOI: 10.1007/s12035-023-03798-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
Cholesterol is an essential component of mammalian cell membranes and a precursor for crucial signaling molecules. The brain contains the highest level of cholesterol in the body, and abnormal cholesterol metabolism links to many neurodegenerative disorders. The results indicate that faulty cholesterol metabolism is a common feature among people living with neurodegenerative conditions. The researchers suggest that restoring cholesterol levels may become a beneficial new strategy in treating certain neurodegenerative conditions. Several neurodegenerative disorders, such as Alzheimer's disease (AD), Niemann-Pick type C (NPC) disease, and Parkinson's disease (PD), have been connected to abnormalities in brain cholesterol metabolism. Consequently, using a lipid research tool is vital to study further and understand the effect of lipids in neurodegenerative disorders such as NPC, AD, PD, and Huntington's disease (HD). U18666A, also known as 3-(2-(diethylamino) ethoxy) androst-5-en-17-one, is a pharmaceutical drug that suppresses cholesterol trafficking and is a well-known class-2 amphiphile. U18666A has performed many functions, allowing for essential discoveries in lipid studies and shedding light on the pathophysiology of neurodegenerative disorders. Additionally, U18666A prevented the downregulation of low-density lipoprotein (LDL) receptors that are induced by LDL and led to the buildup of cholesterol in lysosomes. Numerous studies show that U18666A impacts the function of cholesterol trafficking to control the metabolism and transport of amyloid precursor proteins (APPs). Treating cortical neurons with U18666A may provide a new in vitro model system for studying the underlying molecular process of NPC, AD, HD, and PD. In this article, we review the mechanism and function of U18666A as a vital tool for studying cholesterol mechanisms in neurological diseases related to abnormal cholesterol metabolism, such as AD, NPC, HD, and PD.
Collapse
Affiliation(s)
| | | | - Ehsan Derafsh
- Windsor University School of Medicine, Cayon, Saint Kitts and Nevis
| | | | | | - Siamak Soltani
- Department of Forensic Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Meead Hadi
- Department Of Microbiology, Faculty of Basic Sciences, Tehran Central Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
3
|
Fabiano M, Oikawa N, Kerksiek A, Furukawa JI, Yagi H, Kato K, Schweizer U, Annaert W, Kang J, Shen J, Lütjohann D, Walter J. Presenilin Deficiency Results in Cellular Cholesterol Accumulation by Impairment of Protein Glycosylation and NPC1 Function. Int J Mol Sci 2024; 25:5417. [PMID: 38791456 PMCID: PMC11121565 DOI: 10.3390/ijms25105417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Presenilin proteins (PS1 and PS2) represent the catalytic subunit of γ-secretase and play a critical role in the generation of the amyloid β (Aβ) peptide and the pathogenesis of Alzheimer disease (AD). However, PS proteins also exert multiple functions beyond Aβ generation. In this study, we examine the individual roles of PS1 and PS2 in cellular cholesterol metabolism. Deletion of PS1 or PS2 in mouse models led to cholesterol accumulation in cerebral neurons. Cholesterol accumulation was also observed in the lysosomes of embryonic fibroblasts from Psen1-knockout (PS1-KO) and Psen2-KO (PS2-KO) mice and was associated with decreased expression of the Niemann-Pick type C1 (NPC1) protein involved in intracellular cholesterol transport in late endosomal/lysosomal compartments. Mass spectrometry and complementary biochemical analyses also revealed abnormal N-glycosylation of NPC1 and several other membrane proteins in PS1-KO and PS2-KO cells. Interestingly, pharmacological inhibition of N-glycosylation resulted in intracellular cholesterol accumulation prominently in lysosomes and decreased NPC1, thereby resembling the changes in PS1-KO and PS2-KO cells. In turn, treatment of PS1-KO and PS2-KO mouse embryonic fibroblasts (MEFs) with the chaperone inducer arimoclomol partially normalized NPC1 expression and rescued lysosomal cholesterol accumulation. Additionally, the intracellular cholesterol accumulation in PS1-KO and PS2-KO MEFs was prevented by overexpression of NPC1. Collectively, these data indicate that a loss of PS function results in impaired protein N-glycosylation, which eventually causes decreased expression of NPC1 and intracellular cholesterol accumulation. This mechanism could contribute to the neurodegeneration observed in PS KO mice and potentially to the pathogenesis of AD.
Collapse
Affiliation(s)
- Marietta Fabiano
- Department of Neurology, Universitätsklinikum Bonn, 53127 Bonn, Germany
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Naoto Oikawa
- Department of Neurology, Universitätsklinikum Bonn, 53127 Bonn, Germany
| | - Anja Kerksiek
- Institute of Clinical Chemistry and Clinical Pharmacology, Universitätsklinikum Bonn, 53127 Bonn, Germany
| | - Jun-ichi Furukawa
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
- Division of Glyco-Systems Biology, Institute for Glyco-Core Research, Tokai National Higher Education and Research System, Nagoya 466-8550, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium
- Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Jongkyun Kang
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jie Shen
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, Universitätsklinikum Bonn, 53127 Bonn, Germany
| | - Jochen Walter
- Department of Neurology, Universitätsklinikum Bonn, 53127 Bonn, Germany
| |
Collapse
|
4
|
Essayan-Perez S, Südhof TC. Neuronal γ-secretase regulates lipid metabolism, linking cholesterol to synaptic dysfunction in Alzheimer's disease. Neuron 2023; 111:3176-3194.e7. [PMID: 37543038 PMCID: PMC10592349 DOI: 10.1016/j.neuron.2023.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 08/07/2023]
Abstract
Presenilin mutations that alter γ-secretase activity cause familial Alzheimer's disease (AD), whereas ApoE4, an apolipoprotein for cholesterol transport, predisposes to sporadic AD. Both sporadic and familial AD feature synaptic dysfunction. Whether γ-secretase is involved in cholesterol metabolism and whether such involvement impacts synaptic function remains unknown. Here, we show that in human neurons, chronic pharmacological or genetic suppression of γ-secretase increases synapse numbers but decreases synaptic transmission by lowering the presynaptic release probability without altering dendritic or axonal arborizations. In search of a mechanism underlying these synaptic impairments, we discovered that chronic γ-secretase suppression robustly decreases cholesterol levels in neurons but not in glia, which in turn stimulates neuron-specific cholesterol-synthesis gene expression. Suppression of cholesterol levels by HMG-CoA reductase inhibitors (statins) impaired synaptic function similar to γ-secretase inhibition. Thus, γ-secretase enables synaptic function by maintaining cholesterol levels, whereas the chronic suppression of γ-secretase impairs synapses by lowering cholesterol levels.
Collapse
Affiliation(s)
- Sofia Essayan-Perez
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Rudajev V, Novotny J. Cholesterol-dependent amyloid β production: space for multifarious interactions between amyloid precursor protein, secretases, and cholesterol. Cell Biosci 2023; 13:171. [PMID: 37705117 PMCID: PMC10500844 DOI: 10.1186/s13578-023-01127-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023] Open
Abstract
Amyloid β is considered a key player in the development and progression of Alzheimer's disease (AD). Many studies investigating the effect of statins on lowering cholesterol suggest that there may be a link between cholesterol levels and AD pathology. Since cholesterol is one of the most abundant lipid molecules, especially in brain tissue, it affects most membrane-related processes, including the formation of the most dangerous form of amyloid β, Aβ42. The entire Aβ production system, which includes the amyloid precursor protein (APP), β-secretase, and the complex of γ-secretase, is highly dependent on membrane cholesterol content. Moreover, cholesterol can affect amyloidogenesis in many ways. Cholesterol influences the stability and activity of secretases, but also dictates their partitioning into specific cellular compartments and cholesterol-enriched lipid rafts, where the amyloidogenic machinery is predominantly localized. The most complicated relationships have been found in the interaction between cholesterol and APP, where cholesterol affects not only APP localization but also the precise character of APP dimerization and APP processing by γ-secretase, which is important for the production of Aβ of different lengths. In this review, we describe the intricate web of interdependence between cellular cholesterol levels, cholesterol membrane distribution, and cholesterol-dependent production of Aβ, the major player in AD.
Collapse
Affiliation(s)
- Vladimir Rudajev
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
6
|
Yang W, Wang S, Zhao Y, Jiang Q, Loor JJ, Tian Y, Fan W, Li M, Zhang B, Cao J, Xu C. Regulation of cholesterol metabolism during high fatty acid-induced lipid deposition in calf hepatocytes. J Dairy Sci 2023:S0022-0302(23)00370-3. [PMID: 37419743 DOI: 10.3168/jds.2022-23136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/23/2023] [Indexed: 07/09/2023]
Abstract
Cholesterol in the circulation is partly driven by changes in feed intake, but aspects of cholesterol metabolism during development of fatty liver are not well known. The objective of this study was to investigate mechanisms of cholesterol metabolism in calf hepatocytes challenged with high concentrations of fatty acids (FA). To address mechanistic insights regarding cholesterol metabolism, liver samples were collected from healthy control dairy cows (n = 6; 7-13 d in milk) and cows with fatty liver (n = 6; 7-11 d in milk). In vitro, hepatocytes isolated from 3 healthy female calves (1 d old) were challenged with or without a mix of 1.2 mM FA to induce metabolic stress. In addition, hepatocytes were processed with 10 µmol/L of the cholesterol synthesis inhibitor simvastatin or 6 µmol/L of the cholesterol intracellular transport inhibitor U18666A with or without the 1.2 mM FA mix. To evaluate the role of cholesterol addition, hepatocytes were treated with 0.147 mg/mL methyl-β-cyclodextrin (MβCD + FA) or 0.147 mg/mL MβCD with or without 10 and 100 µmol/L cholesterol before incubation with FA (CHO10 + FA and CHO100 + FA). In vivo data from liver biopsies were analyzed by 2-tailed unpaired Student's t-test. Data from in vitro calf hepatocytes were analyzed by one-way ANOVA. Compared with healthy cows, blood plasma total cholesterol and plasma low-density lipoprotein cholesterol content in cows with fatty liver was markedly lower, whereas the hepatic total cholesterol content did not differ. In contrast, compared with healthy controls, the triacylglycerol content in the liver and the content of FA, β-hydroxybutyrate, and aspartate aminotransferase in the plasma of cows with fatty liver were greater. The results revealed that both fatty liver in vivo and challenge of calf hepatocytes with 1.2 mM FA in vitro led to greater mRNA and protein abundance of sterol regulatory element binding transcription factor 1 (SREBF1) and fatty acid synthase (FASN). In contrast, mRNA and protein abundance of sterol regulatory element binding transcription factor 2 (SREBF2), acyl coenzyme A-cholesterol acyltransferase, and ATP-binding cassette subfamily A member 1 (ABCA1) were lower. Compared with the FA group, the cholesterol synthesis inhibitor simvastatin led to greater protein abundance of microsomal triglyceride transfer protein and mRNA abundance of SREBF2, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), ACAT2, and lower ABCA1 and FASN protein abundance. In contrast, compared with the FA group, the cholesterol intracellular transport inhibitor U18666A + FA led to greater total cholesterol concentration and greater protein and mRNA abundance of FASN. Compared with the MβCD + FA group, the addition of 10 µmol/L cholesterol led to greater concentration of cholesteryl ester and excretion of apolipoprotein B100, and greater protein and mRNA abundance of ABCA1 and microsomal triglyceride transfer protein, and lower concentration of malondialdehyde. Overall, a reduction in cholesterol synthesis promoted FA metabolism in hepatocytes likely to relieve the oxidative stress caused by the high FA load. The data suggest that maintenance of normal cholesterol synthesis promotes very low-density lipoprotein excretion and can reduce lipid accumulation and oxidative stress in dairy cows that experience fatty liver.
Collapse
Affiliation(s)
- Wei Yang
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Shuang Wang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yingying Zhao
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Yan Tian
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Wenwen Fan
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Ming Li
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Bingbing Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jie Cao
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China.
| | - Chuang Xu
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| |
Collapse
|
7
|
Pfrieger FW. The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res 2023; 90:101225. [PMID: 37003582 DOI: 10.1016/j.plipres.2023.101225] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Disturbances of lipid homeostasis in cells provoke human diseases. The elucidation of the underlying mechanisms and the development of efficient therapies represent formidable challenges for biomedical research. Exemplary cases are two rare, autosomal recessive, and ultimately fatal lysosomal diseases historically named "Niemann-Pick" honoring the physicians, whose pioneering observations led to their discovery. Acid sphingomyelinase deficiency (ASMD) and Niemann-Pick type C disease (NPCD) are caused by specific variants of the sphingomyelin phosphodiesterase 1 (SMPD1) and NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2) genes that perturb homeostasis of two key membrane components, sphingomyelin and cholesterol, respectively. Patients with severe forms of these diseases present visceral and neurologic symptoms and succumb to premature death. This synopsis traces the tortuous discovery of the Niemann-Pick diseases, highlights important advances with respect to genetic culprits and cellular mechanisms, and exposes efforts to improve diagnosis and to explore new therapeutic approaches.
Collapse
|
8
|
Rudajev V, Novotny J. Cholesterol as a key player in amyloid β-mediated toxicity in Alzheimer’s disease. Front Mol Neurosci 2022; 15:937056. [PMID: 36090253 PMCID: PMC9453481 DOI: 10.3389/fnmol.2022.937056] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder that is one of the most devastating and widespread diseases worldwide, mainly affecting the aging population. One of the key factors contributing to AD-related neurotoxicity is the production and aggregation of amyloid β (Aβ). Many studies have shown the ability of Aβ to bind to the cell membrane and disrupt its structure, leading to cell death. Because amyloid damage affects different parts of the brain differently, it seems likely that not only Aβ but also the nature of the membrane interface with which the amyloid interacts, helps determine the final neurotoxic effect. Because cholesterol is the dominant component of the plasma membrane, it plays an important role in Aβ-induced toxicity. Elevated cholesterol levels and their regulation by statins have been shown to be important factors influencing the progression of neurodegeneration. However, data from many studies have shown that cholesterol has both neuroprotective and aggravating effects in relation to the development of AD. In this review, we attempt to summarize recent findings on the role of cholesterol in Aβ toxicity mediated by membrane binding in the pathogenesis of AD and to consider it in the broader context of the lipid composition of cell membranes.
Collapse
|
9
|
Li CD, Junaid M, Shan X, Wang Y, Wang X, Khan A, Wei DQ. Effect of Cholesterol on C99 Dimerization: Revealed by Molecular Dynamics Simulations. Front Mol Biosci 2022; 9:872385. [PMID: 35928227 PMCID: PMC9343951 DOI: 10.3389/fmolb.2022.872385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/18/2022] [Indexed: 11/28/2022] Open
Abstract
C99 is the immediate precursor for amyloid beta (Aβ) and therefore is a central intermediate in the pathway that is believed to result in Alzheimer’s disease (AD). It has been suggested that cholesterol is associated with C99, but the dynamic details of how cholesterol affects C99 assembly and the Aβ formation remain unclear. To investigate this question, we employed coarse-grained and all-atom molecular dynamics simulations to study the effect of cholesterol and membrane composition on C99 dimerization. We found that although the existence of cholesterol delays C99 dimerization, there is no direct competition between C99 dimerization and cholesterol association. In contrast, the existence of cholesterol makes the C99 dimer more stable, which presents a cholesterol binding C99 dimer model. Cholesterol and membrane composition change the dimerization rate and conformation distribution of C99, which will subsequently influence the production of Aβ. Our results provide insights into the potential influence of the physiological environment on the C99 dimerization, which will help us understand Aβ formation and AD’s etiology.
Collapse
Affiliation(s)
- Cheng-Dong Li
- State Key Laboratory of Microbial Metabolism, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Junaid
- State Key Laboratory of Microbial Metabolism, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoqi Shan
- State Key Laboratory of Microbial Metabolism, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanjing Wang
- State Key Laboratory of Microbial Metabolism, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangeng Wang
- State Key Laboratory of Microbial Metabolism, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Abbas Khan
- State Key Laboratory of Microbial Metabolism, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Peng Cheng Laboratory, Shenzhen, China
- *Correspondence: Dong-Qing Wei,
| |
Collapse
|
10
|
Pasha R, Azmi S, Ferdousi M, Kalteniece A, Bashir B, Gouni-Berthold I, Malik RA, Soran H. Lipids, Lipid-Lowering Therapy, and Neuropathy: A Narrative Review. Clin Ther 2022; 44:1012-1025. [PMID: 35810030 DOI: 10.1016/j.clinthera.2022.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 11/17/2022]
Abstract
Statins, or 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, are the mainstay of treatment for hypercholesterolemia as they effectively reduce LDL-C levels and risk of atherosclerotic cardiovascular disease. Apart from hyperglycemia, dyslipidemia and HDL dysfunction are known risk factors for neuropathy in people with obesity and diabetes. Although there are case reports of statin-induced neuropathy, ad hoc analyses of clinical trials and observational studies have shown that statins may improve peripheral neuropathy. However, large randomized controlled trials and meta-analyses of cardiovascular outcome trials with statins and other lipid-lowering drugs have not reported on neuropathy outcomes. Because neuropathy was not a prespecified outcome in major cardiovascular trials, one cannot conclude whether statins or other lipid-lowering therapies increase or decrease the risk of neuropathy. The aim of this review was to assess if statins have beneficial or detrimental effects on neuropathy and whether there is a need for large well-powered interventional studies using objective neuropathy end points.
Collapse
Affiliation(s)
- Raabya Pasha
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Shazli Azmi
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Trust, Manchester, United Kingdom
| | - Maryam Ferdousi
- Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Trust, Manchester, United Kingdom
| | - Alise Kalteniece
- Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Trust, Manchester, United Kingdom
| | - Bilal Bashir
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Ioanna Gouni-Berthold
- Polyclinic for Endocrinology, Diabetes, and Preventive Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Rayaz A Malik
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Handrean Soran
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Trust, Manchester, United Kingdom.
| |
Collapse
|
11
|
Pfrieger FW. Neurodegenerative Diseases and Cholesterol: Seeing the Field Through the Players. Front Aging Neurosci 2021; 13:766587. [PMID: 34803658 PMCID: PMC8595328 DOI: 10.3389/fnagi.2021.766587] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/14/2021] [Indexed: 12/18/2022] Open
Abstract
Neurodegenerative diseases, namely Alzheimer’s (AD), Parkinson’s (PD), and Huntington’s disease (HD) together with amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS), devastate millions of lives per year worldwide and impose an increasing socio-economic burden across nations. Consequently, these diseases occupy a considerable portion of biomedical research aiming to understand mechanisms of neurodegeneration and to develop efficient treatments. A potential culprit is cholesterol serving as an essential component of cellular membranes, as a cofactor of signaling pathways, and as a precursor for oxysterols and hormones. This article uncovers the workforce studying research on neurodegeneration and cholesterol using the TeamTree analysis. This new bibliometric approach reveals the history and dynamics of the teams and exposes key players based on citation-independent metrics. The team-centered view reveals the players on an important field of biomedical research.
Collapse
Affiliation(s)
- Frank W Pfrieger
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| |
Collapse
|
12
|
Sharma N, Tan MA, An SSA. Phytosterols: Potential Metabolic Modulators in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms222212255. [PMID: 34830148 PMCID: PMC8618769 DOI: 10.3390/ijms222212255] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Phytosterols constitute a class of natural products that are an important component of diet and have vast applications in foods, cosmetics, and herbal medicines. With many and diverse isolated structures in nature, they exhibit a broad range of biological and pharmacological activities. Among over 200 types of phytosterols, stigmasterol and β-sitosterol were ubiquitous in many plant species, exhibiting important aspects of activities related to neurodegenerative diseases. Hence, this mini-review presented an overview of the reported studies on selected phytosterols related to neurodegenerative diseases. It covered the major phytosterols based on biosynthetic considerations, including other phytosterols with significant in vitro and in vivo biological activities.
Collapse
Affiliation(s)
- Niti Sharma
- Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Korea;
| | - Mario A. Tan
- Research Center for the Natural and Applied Sciences, College of Science, University of Santo Tomas, Manila 1015, Philippines;
| | - Seong Soo A. An
- Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Korea;
- Correspondence: ; Tel.: +82-31-750-8755
| |
Collapse
|
13
|
Wu Q, Cortez L, Kamali-Jamil R, Sim V, Wille H, Kar S. Implications of exosomes derived from cholesterol-accumulated astrocytes in Alzheimer's disease pathology. Dis Model Mech 2021; 14:dmm048929. [PMID: 34524402 PMCID: PMC8560497 DOI: 10.1242/dmm.048929] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 09/06/2021] [Indexed: 12/25/2022] Open
Abstract
Amyloid β (Aβ) peptides generated from the amyloid precursor protein (APP) play a critical role in the development of Alzheimer's disease (AD) pathology. Aβ-containing neuronal exosomes, which represent a novel form of intercellular communication, have been shown to influence the function/vulnerability of neurons in AD. Unlike neurons, the significance of exosomes derived from astrocytes remains unclear. In this study, we evaluated the significance of exosomes derived from U18666A-induced cholesterol-accumulated astrocytes in the development of AD pathology. Our results show that cholesterol accumulation decreases exosome secretion, whereas lowering cholesterol increases exosome secretion, from cultured astrocytes. Interestingly, exosomes secreted from U18666A-treated astrocytes contain higher levels of APP, APP-C-terminal fragments, soluble APP, APP secretases and Aβ1-40 than exosomes secreted from control astrocytes. Furthermore, we show that exosomes derived from U18666A-treated astrocytes can lead to neurodegeneration, which is attenuated by decreasing Aβ production or by neutralizing exosomal Aβ peptide with an anti-Aβ antibody. These results, taken together, suggest that exosomes derived from cholesterol-accumulated astrocytes can play an important role in trafficking APP/Aβ peptides and influencing neuronal viability in the affected regions of the AD brain.
Collapse
Affiliation(s)
- Qi Wu
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Leonardo Cortez
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Razieh Kamali-Jamil
- Department of Biochemistry, Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Valerie Sim
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Holger Wille
- Department of Biochemistry, Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Satyabrata Kar
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB T6G 2G3, Canada
- Department of Biochemistry, Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2G3, Canada
| |
Collapse
|
14
|
Gadhave K, Kumar D, Uversky VN, Giri R. A multitude of signaling pathways associated with Alzheimer's disease and their roles in AD pathogenesis and therapy. Med Res Rev 2021; 41:2689-2745. [PMID: 32783388 PMCID: PMC7876169 DOI: 10.1002/med.21719] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
The exact molecular mechanisms associated with Alzheimer's disease (AD) pathology continue to represent a mystery. In the past decades, comprehensive data were generated on the involvement of different signaling pathways in the AD pathogenesis. However, the utilization of signaling pathways as potential targets for the development of drugs against AD is rather limited due to the immense complexity of the brain and intricate molecular links between these pathways. Therefore, finding a correlation and cross-talk between these signaling pathways and establishing different therapeutic targets within and between those pathways are needed for better understanding of the biological events responsible for the AD-related neurodegeneration. For example, autophagy is a conservative cellular process that shows link with many other AD-related pathways and is crucial for maintenance of the correct cellular balance by degrading AD-associated pathogenic proteins. Considering the central role of autophagy in AD and its interplay with many other pathways, the finest therapeutic strategy to fight against AD is the use of autophagy as a target. As an essential step in this direction, this comprehensive review represents recent findings on the individual AD-related signaling pathways, describes key features of these pathways and their cross-talk with autophagy, represents current drug development, and introduces some of the multitarget beneficial approaches and strategies for the therapeutic intervention of AD.
Collapse
Affiliation(s)
- Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Deepak Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| |
Collapse
|
15
|
Lam SM, Zhang C, Wang Z, Ni Z, Zhang S, Yang S, Huang X, Mo L, Li J, Lee B, Mei M, Huang L, Shi M, Xu Z, Meng FP, Cao WJ, Zhou MJ, Shi L, Chua GH, Li B, Cao J, Wang J, Bao S, Wang Y, Song JW, Zhang F, Wang FS, Shui G. A multi-omics investigation of the composition and function of extracellular vesicles along the temporal trajectory of COVID-19. Nat Metab 2021; 3:909-922. [PMID: 34158670 DOI: 10.1038/s42255-021-00425-4] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 06/09/2021] [Indexed: 12/14/2022]
Abstract
Exosomes represent a subtype of extracellular vesicle that is released through retrograde transport and fusion of multivesicular bodies with the plasma membrane1. Although no perfect methodologies currently exist for the high-throughput, unbiased isolation of pure plasma exosomes2,3, investigation of exosome-enriched plasma fractions of extracellular vesicles can confer a glimpse into the endocytic pathway on a systems level. Here we conduct high-coverage lipidomics with an emphasis on sterols and oxysterols, and proteomic analyses of exosome-enriched extracellular vesicles (EVs hereafter) from patients at different temporal stages of COVID-19, including the presymptomatic, hyperinflammatory, resolution and convalescent phases. Our study highlights dysregulated raft lipid metabolism that underlies changes in EV lipid membrane anisotropy that alter the exosomal localization of presenilin-1 (PS-1) in the hyperinflammatory phase. We also show in vitro that EVs from different temporal phases trigger distinct metabolic and transcriptional responses in recipient cells, including in alveolar epithelial cells, which denote the primary site of infection, and liver hepatocytes, which represent a distal secondary site. In comparison to the hyperinflammatory phase, EVs from the resolution phase induce opposing effects on eukaryotic translation and Notch signalling. Our results provide insights into cellular lipid metabolism and inter-tissue crosstalk at different stages of COVID-19 and are a resource to increase our understanding of metabolic dysregulation in COVID-19.
Collapse
Affiliation(s)
- Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- LipidALL Technologies Company Limited, Changzhou, China
| | - Chao Zhang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Zehua Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zhen Ni
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Shaohua Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Siyuan Yang
- Laboratory of Infectious Diseases Center, Beijing Ditan Hospital Capital Medical University, Beijing, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Lesong Mo
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jie Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Bernett Lee
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Mei Mei
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Lei Huang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ming Shi
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Zhe Xu
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Fan-Ping Meng
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Wen-Jing Cao
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- Department of Clinical Medicine, Bengbu Medical College, Anhui, China
| | - Ming-Ju Zhou
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- Department of Clinical Medicine, Bengbu Medical College, Anhui, China
| | - Lei Shi
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Gek Huey Chua
- LipidALL Technologies Company Limited, Changzhou, China
| | - Bowen Li
- LipidALL Technologies Company Limited, Changzhou, China
| | - Jiabao Cao
- University of the Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jin-Wen Song
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.
| | - Fujie Zhang
- The Clinical and Research Center for Infectious Diseases, Beijing Ditan Hospital Capital Medical University, Beijing, China.
| | - Fu-Sheng Wang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of the Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
16
|
Cariati I, Masuelli L, Bei R, Tancredi V, Frank C, D’Arcangelo G. Neurodegeneration in Niemann-Pick Type C Disease: An Updated Review on Pharmacological and Non-Pharmacological Approaches to Counteract Brain and Cognitive Impairment. Int J Mol Sci 2021; 22:ijms22126600. [PMID: 34202978 PMCID: PMC8234817 DOI: 10.3390/ijms22126600] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023] Open
Abstract
Niemann–Pick type C (NPC) disease is an autosomal recessive storage disorder, characterized by abnormal sequestration of unesterified cholesterol in the late endo-lysosomal system of cells. Progressive neurological deterioration and the onset of symptoms, such as ataxia, seizures, cognitive decline, and severe dementia, are pathognomonic features of the disease. In addition, different pathological similarities, including degeneration of hippocampal and cortical neurons, hyperphosphorylated tau, and neurofibrillary tangle formation, have been identified between NPC disease and other neurodegenerative pathologies. However, the underlying pathophysiological mechanisms are not yet well understood, and even a real cure to counteract neurodegeneration has not been identified. Therefore, the combination of current pharmacological therapies, represented by miglustat and cyclodextrin, and non-pharmacological approaches, such as physical exercise and appropriate diet, could represent a strategy to improve the quality of life of NPC patients. Based on this evidence, in our review we focused on the neurodegenerative aspects of NPC disease, summarizing the current knowledge on the molecular and biochemical mechanisms responsible for cognitive impairment, and suggesting physical exercise and nutritional treatments as additional non-pharmacologic approaches to reduce the progression and neurodegenerative course of NPC disease.
Collapse
Affiliation(s)
- Ida Cariati
- Medical-Surgical Biotechnologies and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy;
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Virginia Tancredi
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Claudio Frank
- UniCamillus-Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
| | - Giovanna D’Arcangelo
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Correspondence:
| |
Collapse
|
17
|
Azmi S, Ferdousi M, Liu Y, Adam S, Siahmansur T, Ponirakis G, Marshall A, Petropoulos IN, Ho JH, Syed AA, Gibson JM, Ammori BJ, Durrington PN, Malik RA, Soran H. The role of abnormalities of lipoproteins and HDL functionality in small fibre dysfunction in people with severe obesity. Sci Rep 2021; 11:12573. [PMID: 34131170 PMCID: PMC8206256 DOI: 10.1038/s41598-021-90346-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity and associated dyslipidemia may contribute to increased cardiovascular disease. Obesity has also been associated with neuropathy. We have investigated presence of peripheral nerve damage in patients with severe obesity without type 2 diabetes and the status of metabolic syndrome and lipoprotein abnormalities. 47participants with severe obesity and 30 age-matched healthy controls underwent detailed phenotyping of neuropathy and an assessment of lipoproteins and HDL-functionality. Participants with severe obesity had a higher neuropathy symptom profile, lower sural and peroneal nerve amplitudes, abnormal thermal thresholds, heart rate variability with deep breathing and corneal nerve parameters compared to healthy controls. Circulating apolipoprotein A1 (P = 0.009), HDL cholesterol (HDL-C) (P < 0.0001), cholesterol efflux (P = 0.002) and paroxonase-1 (PON-1) activity (P < 0.0001) were lower, and serum amyloid A (SAA) (P < 0.0001) was higher in participants with obesity compared to controls. Obese participants with small nerve fibre damage had higher serum triglycerides (P = 0.02), lower PON-1 activity (P = 0.002) and higher prevalence of metabolic syndrome (58% vs. 23%, P = 0.02) compared to those without. However, HDL-C (P = 0.8), cholesterol efflux (P = 0.08), apoA1 (P = 0.8) and SAA (P = 0.8) did not differ significantly between obese participants with and without small nerve fibre damage. Small nerve fibre damage occurs in people with severe obesity. Patients with obesity have deranged lipoproteins and compromised HDL functionality compared to controls. Obese patients with evidence of small nerve fibre damage, compared to those without, had significantly higher serum triglycerides, lower PON-1 activity and a higher prevalence of metabolic syndrome.
Collapse
Affiliation(s)
- Shazli Azmi
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Diabetes, Endocrine and Metabolism Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Maryam Ferdousi
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Yifen Liu
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Safwaan Adam
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Cardiovascular Trials Unit, The Old St Mary's Hospital, Central Manchester University Hospitals, Manchester, M13 9WL, UK.,The Christie NHS Foundation Trust, Manchester, UK
| | - Tarza Siahmansur
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | | | - Andrew Marshall
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | | | - Jan Hoong Ho
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Cardiovascular Trials Unit, The Old St Mary's Hospital, Central Manchester University Hospitals, Manchester, M13 9WL, UK.,The Christie NHS Foundation Trust, Manchester, UK
| | - Akheel A Syed
- Department of Diabetes and Endocrinology, Salford Royal Trust NHS Foundation Trust, Salford, UK
| | - John M Gibson
- Department of Diabetes and Endocrinology, Salford Royal Trust NHS Foundation Trust, Salford, UK
| | - Basil J Ammori
- Department Surgery, Salford Royal Trust NHS Foundation Trust, Salford, UK
| | - Paul N Durrington
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Rayaz A Malik
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Handrean Soran
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK. .,Cardiovascular Trials Unit, The Old St Mary's Hospital, Central Manchester University Hospitals, Manchester, M13 9WL, UK.
| |
Collapse
|
18
|
Brain metastases-derived extracellular vesicles induce binding and aggregation of low-density lipoprotein. J Nanobiotechnology 2020; 18:162. [PMID: 33160390 PMCID: PMC7648399 DOI: 10.1186/s12951-020-00722-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/24/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cancer cell-derived extracellular vesicles (EVs) have previously been shown to contribute to pre-metastatic niche formation. Specifically, aggressive tumors secrete pro-metastatic EVs that travel in the circulation to distant organs to modulate the microenvironment for future metastatic spread. Previous studies have focused on the interface between pro-metastatic EVs and epithelial/endothelial cells in the pre-metastatic niche. However, EV interactions with circulating components such as low-density lipoprotein (LDL) have been overlooked. RESULTS This study demonstrates that EVs derived from brain metastases cells (Br-EVs) and corresponding regular cancer cells (Reg-EVs) display different interactions with LDL. Specifically, Br-EVs trigger LDL aggregation, and the presence of LDL accelerates Br-EV uptake by monocytes, which are key components in the brain metastatic niche. CONCLUSIONS Collectively, these data are the first to demonstrate that pro-metastatic EVs display distinct interactions with LDL, which impacts monocyte internalization of EVs.
Collapse
|
19
|
The Role of Vesicle Trafficking Defects in the Pathogenesis of Prion and Prion-Like Disorders. Int J Mol Sci 2020; 21:ijms21197016. [PMID: 32977678 PMCID: PMC7582986 DOI: 10.3390/ijms21197016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 11/26/2022] Open
Abstract
Prion diseases are fatal and transmissible neurodegenerative diseases in which the cellular form of the prion protein ‘PrPc’, misfolds into an infectious and aggregation prone isoform termed PrPSc, which is the primary component of prions. Many neurodegenerative diseases, like Alzheimer’s disease, Parkinson’s disease, and polyglutamine diseases, such as Huntington’s disease, are considered prion-like disorders because of the common characteristics in the propagation and spreading of misfolded proteins that they share with the prion diseases. Unlike prion diseases, these are non-infectious outside experimental settings. Many vesicular trafficking impairments, which are observed in prion and prion-like disorders, favor the accumulation of the pathogenic amyloid aggregates. In addition, many of the vesicular trafficking impairments that arise in these diseases, turn out to be further aggravating factors. This review offers an insight into the currently known vesicular trafficking defects in these neurodegenerative diseases and their implications on disease progression. These findings suggest that these impaired trafficking pathways may represent similar therapeutic targets in these classes of neurodegenerative disorders.
Collapse
|
20
|
Gutierrez E, Lütjohann D, Kerksiek A, Fabiano M, Oikawa N, Kuerschner L, Thiele C, Walter J. Importance of γ-secretase in the regulation of liver X receptor and cellular lipid metabolism. Life Sci Alliance 2020; 3:3/6/e201900521. [PMID: 32354700 PMCID: PMC7195048 DOI: 10.26508/lsa.201900521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Inhibition of the Alzheimer associated γ-secretase impairs the regulation of cellular lipid droplet homeostasis. Presenilins (PS) are the catalytic components of γ-secretase complexes that mediate intramembrane proteolysis. Mutations in the PS genes are a major cause of familial early-onset Alzheimer disease and affect the cleavage of the amyloid precursor protein, thereby altering the production of the amyloid β-peptide. However, multiple additional protein substrates have been identified, suggesting pleiotropic functions of γ-secretase. Here, we demonstrate that inhibition of γ-secretase causes dysregulation of cellular lipid homeostasis, including up-regulation of liver X receptors, and complex changes in the cellular lipid composition. Genetic and pharmacological inhibition of γsecretase leads to strong accumulation of cytoplasmic lipid droplets, associated with increased levels of acylglycerols, but lowered cholesteryl esters. Furthermore, accumulation of lipid droplets was augmented by increasing levels of amyloid precursor protein C-terminal fragments, indicating a critical involvement of this γ-secretase substrate. Together, these data provide a mechanism that functionally connects γ-secretase activity to cellular lipid metabolism. These effects were also observed in human astrocytic cells, indicating an important function of γ-secretase in cells critical for lipid homeostasis in the brain.
Collapse
Affiliation(s)
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Anja Kerksiek
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Marietta Fabiano
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Naoto Oikawa
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Lars Kuerschner
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Christoph Thiele
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Jochen Walter
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
21
|
Khatib T, Chisholm DR, Whiting A, Platt B, McCaffery P. Decay in Retinoic Acid Signaling in Varied Models of Alzheimer's Disease and In-Vitro Test of Novel Retinoic Acid Receptor Ligands (RAR-Ms) to Regulate Protective Genes. J Alzheimers Dis 2020; 73:935-954. [PMID: 31884477 PMCID: PMC7081102 DOI: 10.3233/jad-190931] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2019] [Indexed: 12/22/2022]
Abstract
Retinoic acid has been previously proposed in the treatment of Alzheimer's disease (AD). Here, five transgenic mouse models expressing AD and frontotemporal dementia risk genes (i.e., PLB2APP, PLB2TAU, PLB1Double, PLB1Triple, and PLB4) were used to investigate if consistent alterations exist in multiple elements of the retinoic acid signaling pathway in these models. Many steps of the retinoic acid signaling pathway including binding proteins and metabolic enzymes decline, while the previously reported increase in RBP4 was only consistent at late (6 months) but not early (3 month) ages. The retinoic acid receptors were exceptional in their consistent decline in mRNA and protein with transcript decline of retinoic acid receptors β and γ by 3 months, before significant pathology, suggesting involvement in early stages of disease. Decline in RBP1 transcript may also be an early but not late marker of disease. The decline in the retinoic acid signaling system may therefore be a therapeutic target for AD and frontotemporal dementia. Thus, novel stable retinoic acid receptor modulators (RAR-Ms) activating multiple genomic and non-genomic pathways were probed for therapeutic control of gene expression in rat primary hippocampal and cortical cultures. RAR-Ms promoted the non-amyloidogenic pathway, repressed lipopolysaccharide induced inflammatory genes and induced genes with neurotrophic action. RAR-Ms had diverse effects on gene expression allowing particular RAR-Ms to be selected for maximal therapeutic effect. Overall the results demonstrated the early decline of retinoic acid signaling in AD and frontotemporal dementia models and the activity of stable and potent alternatives to retinoic acid as potential therapeutics.
Collapse
Affiliation(s)
- Thabat Khatib
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | - David R. Chisholm
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, UK
| | - Andrew Whiting
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, UK
| | - Bettina Platt
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | - Peter McCaffery
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| |
Collapse
|
22
|
DelBove CE, Strothman CE, Lazarenko RM, Huang H, Sanders CR, Zhang Q. Reciprocal modulation between amyloid precursor protein and synaptic membrane cholesterol revealed by live cell imaging. Neurobiol Dis 2019; 127:449-461. [PMID: 30885793 PMCID: PMC6588454 DOI: 10.1016/j.nbd.2019.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/03/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
The amyloid precursor protein (APP) has been extensively studied because of its association with Alzheimer's disease (AD). However, APP distribution across different subcellular membrane compartments and its function in neurons remains unclear. We generated an APP fusion protein with a pH-sensitive green fluorescent protein at its ectodomain and a pH-insensitive blue fluorescent protein at its cytosolic domain and used it to measure APP's distribution, subcellular trafficking, and cleavage in live neurons. This reporter, closely resembling endogenous APP, revealed only a limited correlation between synaptic activities and APP trafficking. However, the synaptic surface fraction of APP was increased by a reduction in membrane cholesterol levels, a phenomenon that involves APP's cholesterol-binding motif. Mutations at or near binding sites not only reduced both the surface fraction of APP and membrane cholesterol levels in a dominant negative manner, but also increased synaptic vulnerability to moderate membrane cholesterol reduction. Our results reveal reciprocal modulation of APP and membrane cholesterol levels at synaptic boutons.
Collapse
Affiliation(s)
- Claire E DelBove
- Department of Pharmacology, Vanderbilt University, United States of America
| | - Claire E Strothman
- Department of Cell and Developmental Biology, Vanderbilt University, United States of America
| | - Roman M Lazarenko
- Department of Pharmacology, Vanderbilt University, United States of America
| | - Hui Huang
- Department of Biochemistry, Vanderbilt University, United States of America
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University, United States of America; Department of Medicine, Vanderbilt University Medical Center, United States of America
| | - Qi Zhang
- Department of Pharmacology, Vanderbilt University, United States of America; Brain Institute, Florida Atlantic University, United States of America.
| |
Collapse
|
23
|
Toro CA, Zhang L, Cao J, Cai D. Sex differences in Alzheimer's disease: Understanding the molecular impact. Brain Res 2019; 1719:194-207. [PMID: 31129153 DOI: 10.1016/j.brainres.2019.05.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/10/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder that presents with cognitive impairment and behavioral disturbance. Approximately 5.5 million people in the United States live with AD, most of whom are over the age of 65 with two-thirds being woman. There have been major advancements over the last decade or so in the understanding of AD neuropathological changes and genetic involvement. However, studies of sex impact in AD have not been adequately integrated into the investigation of disease development and progression. It becomes indispensable to acknowledge in both basic science and clinical research studies the importance of understanding sex-specific differences in AD pathophysiology and pathogenesis, which could guide future effort in the discovery of novel targets for AD. Here, we review the latest and most relevant literature on this topic, highlighting the importance of understanding sex dimorphism from a molecular perspective and its association to clinical trial design and development in AD research field.
Collapse
Affiliation(s)
- Carlos A Toro
- National Center for the Medical Consequences of Spinal Cord Injury, James J Peters VA Medical Center, Bronx, NY 10468, United States; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Larry Zhang
- Research and Development, James J Peters VA Medical Center, Bronx, NY 10468, United States; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Jiqing Cao
- Research and Development, James J Peters VA Medical Center, Bronx, NY 10468, United States; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Dongming Cai
- Research and Development, James J Peters VA Medical Center, Bronx, NY 10468, United States; Neurology Section, James J Peters VA Medical Center, Bronx, NY 10468, United States; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
24
|
Lee S, Youn K, Jun M. Major compounds of red ginseng oil attenuate Aβ 25-35-induced neuronal apoptosis and inflammation by modulating MAPK/NF-κB pathway. Food Funct 2018; 9:4122-4134. [PMID: 30014084 DOI: 10.1039/c8fo00795k] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
β-Amyloid (Aβ)-induced neuronal toxicity in Alzheimer's disease (AD) is associated with complex mechanisms. Thus, a multi-target approach might be suitable for AD treatment. Following our previous study on the neuroprotective effects of red ginseng oil extract, its major compounds, including linoleic acid (LA), β-sitosterol (BS), and stigmasterol (SS), were examined to elucidate the mechanism of anti-apoptosis and anti-inflammation in Aβ25-35-stimulated PC12 cells. The results showed that the three compounds mitigated Aβ25-35 toxicity by regulating oxidative stress, apoptotic responses, and pro-inflammatory mediators. LA and SS strongly regulated intrinsic apoptosis markers, such as mitochondrial membrane potential, intracellular Ca2+, Bax/Bcl-2 ratio, and caspases-9, -3, and -8. However, BS blocked only the intrinsic apoptotic pathway, particularly by suppressing Ca2+ accumulation. Furthermore, all three compounds downregulated iNOS and phospho-nuclear factor-κB, but only LA and SS inhibited the expression of cyclooxygenase-2 and phospho-IκB. In assays to evaluate MAPK expression for confirming upstream signal pathways, BS decreased the phosphorylation of p38 and ERK, but not JNK, while SS markedly decreased the phosphorylation of all three MAPKs, and LA clearly decreased the phosphorylation of ERK and JNK, but not p38. These results indicate that LA, BS, and SS act as neuroprotectives against Aβ25-35-induced injury by distinct molecular mechanisms, indicating their preventive and/or therapeutic potential to treat AD.
Collapse
Affiliation(s)
- Seonah Lee
- Department of Food Science and Nutrition, Dong-A University, Busan 604-714, Korea.
| | | | | |
Collapse
|
25
|
Wehrle A, Witkos TM, Schneider JC, Hoppmann A, Behringer S, Köttgen A, Elting M, Spranger J, Lowe M, Lausch E. A common pathomechanism in GMAP-210- and LBR-related diseases. JCI Insight 2018; 3:121150. [PMID: 30518689 PMCID: PMC6328090 DOI: 10.1172/jci.insight.121150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022] Open
Abstract
Biallelic loss-of-function mutations in TRIP11, encoding the golgin GMAP-210, cause the lethal human chondrodysplasia achondrogenesis 1A (ACG1A). We now find that a homozygous splice-site mutation of the lamin B receptor (LBR) gene results in the same phenotype. Intrigued by the genetic heterogeneity, we compared GMAP-210- and LBR-deficient primary cells to unravel how particular mutations in LBR cause a phenocopy of ACG1A. We could exclude a regulatory interaction between LBR and GMAP-210 in patients' cells. However, we discovered a common disruption of Golgi apparatus architecture that was accompanied by decreased secretory trafficking in both cases. Deficiency of Golgi-dependent glycan processing indicated a similar downstream effect of the disease-causing mutations upon Golgi function. Unexpectedly, our results thus point to a common pathogenic mechanism in GMAP-210- and LBR-related diseases attributable to defective secretory trafficking at the Golgi apparatus.
Collapse
Affiliation(s)
- Anika Wehrle
- Department of Pediatrics, Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tomasz M. Witkos
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Judith C. Schneider
- Department of Pediatrics, Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anselm Hoppmann
- Department of Pediatrics, Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Genetic Epidemiology, Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sidney Behringer
- Department of Pediatrics, Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mariet Elting
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, Netherlands
| | - Jürgen Spranger
- Department of Pediatrics, Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Lowe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Ekkehart Lausch
- Department of Pediatrics, Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
26
|
Petek B, Villa-Lopez M, Loera-Valencia R, Gerenu G, Winblad B, Kramberger MG, Ismail MAM, Eriksdotter M, Garcia-Ptacek S. Connecting the brain cholesterol and renin-angiotensin systems: potential role of statins and RAS-modifying medications in dementia. J Intern Med 2018; 284:620-642. [PMID: 30264910 DOI: 10.1111/joim.12838] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Millions of people worldwide receive agents targeting the renin-angiotensin system (RAS) to treat hypertension or statins to lower cholesterol. The RAS and cholesterol metabolic pathways in the brain are autonomous from their systemic counterparts and are interrelated through the cholesterol metabolite 27-hydroxycholesterol (27-OHC). These systems contribute to memory and dementia pathogenesis through interference in the amyloid-beta cascade, vascular mechanisms, glucose metabolism, apoptosis, neuroinflammation and oxidative stress. Previous studies examining the relationship between these treatments and cognition and dementia risk have produced inconsistent results. Defining the blood-brain barrier penetration of these medications has been challenging, and the mechanisms of action on cognition are not clearly established. Potential biases are apparent in epidemiological and clinical studies, such as reverse epidemiology, indication bias, problems defining medication exposure, uncertain and changing doses, and inappropriate grouping of outcomes and medications. This review summarizes current knowledge of the brain cholesterol and RAS metabolism and the mechanisms by which these pathways affect neurodegeneration. The putative mechanisms of action of statins and medications inhibiting the RAS will be examined, together with prior clinical and animal studies on their effects on cognition. We review prior epidemiological studies, analysing their strengths and biases, and identify areas for future research. Understanding the pathophysiology of the brain cholesterol system and RAS and their links to neurodegeneration has enormous potential. In future, well-designed epidemiological studies could identify potential treatments for Alzheimer's disease (AD) amongst medications that are already in use for other indications.
Collapse
Affiliation(s)
- B Petek
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, University Medical Centre, Ljubljana, Slovenia.,University of Ljubljana, Ljubljana, Slovenia
| | - M Villa-Lopez
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - R Loera-Valencia
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - G Gerenu
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Neurosciences, Biodonostia Health Research Institute, San Sebastian, Spain.,Center for Networked Biomedical Research in Neurodegenerative Diseases, CIBERNED, Health Institute Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - B Winblad
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Geriatric Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - M G Kramberger
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, University Medical Centre, Ljubljana, Slovenia.,University of Ljubljana, Ljubljana, Slovenia
| | - M-A-M Ismail
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Theme Neuro, Diseases of the Nervous System patient flow, Karolinska University Hospital, Huddinge, Sweden
| | - M Eriksdotter
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Geriatric Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - S Garcia-Ptacek
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Internal Medicine, Neurology Section, Södersjukhuset, Stockholm, Sweden
| |
Collapse
|
27
|
Mohamed A, Robinson H, Erramouspe PJ, Hill MM. Advances and challenges in understanding the role of the lipid raft proteome in human health. Expert Rev Proteomics 2018; 15:1053-1063. [PMID: 30403891 DOI: 10.1080/14789450.2018.1544895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Phase separation as a biophysical principle drives the formation of liquid-ordered 'lipid raft' membrane microdomains in cellular membranes, including organelles. Given the critical role of cellular membranes in both compartmentalization and signaling, clarifying the roles of membrane microdomains and their mutual regulation of/by membrane proteins is important in understanding the fundamentals of biology, and has implications for health. Areas covered: This article will consider the evidence for lateral membrane phase separation in model membranes and organellar membranes, critically evaluate the current methods for lipid raft proteomics and discuss the biomedical implications of lipid rafts. Expert commentary: Lipid raft homeostasis is perturbed in numerous chronic conditions; hence, understanding the precise roles and regulation of the lipid raft proteome is important for health and medicine. The current technical challenges in performing lipid raft proteomics can be overcome through well-controlled experimental design and careful interpretation. Together with technical developments in mass spectrometry and microscopy, our understanding of lipid raft biology and function will improve through recognition of the similarity between organelle and plasma membrane lipid rafts and considered integration of published lipid raft proteomics data.
Collapse
Affiliation(s)
- Ahmed Mohamed
- a Precision & Systems Biomedicine Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - Harley Robinson
- a Precision & Systems Biomedicine Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Australia.,b Faculty of Medicine , The University of Queensland , Brisbane , Australia
| | - Pablo Joaquin Erramouspe
- c Department of Emergency Medicine , University of California, Davis Medical Center , Sacramento , CA , USA
| | - Michelle M Hill
- a Precision & Systems Biomedicine Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Australia.,d The University of Queensland Diamantina Institute, Faculty of Medicine , Translational Research Institute, The University of Queensland , Brisbane , Australia
| |
Collapse
|
28
|
Karahan H, Lüle S, Kelicen-Uğur P. Aromatase/Seladin-1 Interactions in Human Neuronal Cell Culture, the Hippocampus of Healthy Rats and Transgenic Alzheimer’s Disease Mice. Pharmacology 2018; 102:42-52. [DOI: 10.1159/000488765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/26/2018] [Indexed: 01/15/2023]
Abstract
Background/Aims: Decreasing levels of aromatase and seladin-1 could be one of the molecular mechanisms of Alzheimer’s disease (AD). Aromatase is an enzyme that catalyzes estrogen biosynthesis from androgen precursors, and seladin-1 is an enzyme that converts desmosterol to cholesterol, which is the precursor of all hormones. Verifying the potential relationship between these proteins and accordingly determining new therapeutic targets constitute the aims of this study. Methods: Changes in protein levels were compared in vitro in aromatase and seladin-1 inhibitor-administered human neuroblastoma (SH-SY5Y) cells in vivo in intracerebroventricular (icv) aromatase or seladin-1 inhibitor-administered rats, as well as in transgenic AD mice in which the genes encoding these proteins were knocked out. Results and Conclusions: In the cell cultures, we observed that seladin-1 protein levels increased after aromatase enzyme inhibition. The hippocampal aromatase protein levels decreased following chronic seladin-1 inhibition in icv inhibitor-administered rats; however, the aromatase levels in the dentate gyrus of seladin-1 knockout (SelKO) AD male mice increased. These findings indicate a partial relationship between these proteins and their roles in AD pathology.
Collapse
|
29
|
Endosomal-Lysosomal Cholesterol Sequestration by U18666A Differentially Regulates Amyloid Precursor Protein (APP) Metabolism in Normal and APP-Overexpressing Cells. Mol Cell Biol 2018. [PMID: 29530923 DOI: 10.1128/mcb.00529-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Amyloid β (Aβ) peptide, derived from amyloid precursor protein (APP), plays a critical role in the development of Alzheimer's disease. Current evidence indicates that altered levels or subcellular distribution of cholesterol can regulate Aβ production and clearance, but it remains unclear how cholesterol sequestration within the endosomal-lysosomal (EL) system can influence APP metabolism. Thus, we evaluated the effects of U18666A, which triggers cholesterol redistribution within the EL system, on mouse N2a cells expressing different levels of APP in the presence or absence of extracellular cholesterol and lipids provided by fetal bovine serum (FBS). Our results reveal that U18666A and FBS differentially increase the levels of APP and its cleaved products, the α-, β-, and η-C-terminal fragments, in N2a cells expressing normal levels of mouse APP (N2awt), higher levels of human wild-type APP (APPwt), or "Swedish" mutant APP (APPsw). The cellular levels of Aβ1-40/Aβ1-42 were markedly increased in U18666A-treated APPwt and APPsw cells. Our studies further demonstrate that APP and its cleaved products are partly accumulated in the lysosomes, possibly due to decreased clearance. Finally, we show that autophagy inhibition plays a role in mediating U18666A effects. Collectively, these results suggest that altered levels and distribution of cholesterol and lipids can differentially regulate APP metabolism depending on the nature of APP expression.
Collapse
|
30
|
Yang G, Yu K, Kubicek J, Labahn J. Expression, purification, and preliminary characterization of human presenilin-2. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Embedded in the Membrane: How Lipids Confer Activity and Specificity to Intramembrane Proteases. J Membr Biol 2017; 251:369-378. [PMID: 29260282 DOI: 10.1007/s00232-017-0008-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/12/2017] [Indexed: 10/18/2022]
Abstract
Proteases, sharp yet unforgivable tools of every cell, require tight regulation to ensure specific non-aberrant cleavages. The relatively recent discovered class of intramembrane proteases has gained increasing interest due to their involvement in important signaling pathways linking them to diseases including Alzheimer's disease and cancer. Despite tremendous efforts, their regulatory mechanisms have only started to unravel. There is evidence that the membrane composition itself can regulate intramembrane protease activity and specificity. In this review, we highlight the work on γ-secretase and rhomboid proteases and summarize several studies as to how different lipids impact on enzymatic activity.
Collapse
|
32
|
Ilacqua N, Sánchez-Álvarez M, Bachmann M, Costiniti V, Del Pozo MA, Giacomello M. Protein Localization at Mitochondria-ER Contact Sites in Basal and Stress Conditions. Front Cell Dev Biol 2017; 5:107. [PMID: 29312934 PMCID: PMC5733094 DOI: 10.3389/fcell.2017.00107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/24/2017] [Indexed: 12/17/2022] Open
Abstract
Mitochondria-endoplasmic reticulum (ER) contacts (MERCs) are sites at which the outer mitochondria membrane and the Endoplasmic Reticulum surface run in parallel at a constant distance. The juxtaposition between these organelles determines several intracellular processes such as to name a few, Ca2+ and lipid homeostasis or autophagy. These specific tasks can be exploited thanks to the enrichment (or re-localization) of dedicated proteins at these interfaces. Recent proteomic studies highlight the tissue specific composition of MERCs, but the overall mechanisms that control MERCs plasticity remains unclear. Understanding how proteins are targeted at these sites seems pivotal to clarify such contextual function of MERCs. This review aims to summarize the current knowledge on protein localization at MERCs and the possible contribution of the mislocalization of MERCs components to human disorders.
Collapse
Affiliation(s)
- Nicolò Ilacqua
- Department of Biology, University of Padova, Padova, Italy
| | - Miguel Sánchez-Álvarez
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | | | | | - Miguel A Del Pozo
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | | |
Collapse
|
33
|
Yang H, Wang Y, Kar S. Effects of cholesterol transport inhibitor U18666A on APP metabolism in rat primary astrocytes. Glia 2017; 65:1728-1743. [PMID: 28722194 DOI: 10.1002/glia.23191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022]
Abstract
Amyloid β (Aβ) peptides generated from the amyloid precursor protein (APP) play an important role in the degeneration of neurons and development of Alzheimer's disease (AD). Current evidence indicates that high levels of cholesterol-which increase the risk of developing AD-can influence Aβ production in neurons. However, it remains unclear how altered level/subcellular distribution of cholesterol in astrocytes can influence APP metabolism. In this study, we evaluated the effects of cholesterol transport inhibitor U18666A-a class II amphiphile that triggers redistribution of cholesterol within the endosomal-lysosomal (EL) system-on APP levels and metabolism in rat primary cultured astrocytes. Our results revealed that U18666A increased the levels of the APP holoprotein and its cleaved products (α-/β-/η-CTFs) in cultured astrocytes, without altering the total levels of cholesterol or cell viability. The cellular levels of Aβ1-40 were also found to be markedly increased, while secretory levels of Aβ1-40 were decreased in U18666A-treated astrocytes. We further report a corresponding increase in the activity of the enzymes regulating APP processing, such as α-secretase, β-secretase, and γ-secretase as a consequence of U18666A treatment. Additionally, APP-cleaved products are partly accumulated in the lysosomes following cholesterol sequestration within EL system possibly due to decreased clearance. Interestingly, serum delipidation attenuated enhanced levels of APP and its cleaved products following U18666A treatment. Collectively, these results suggest that cholesterol sequestration within the EL system in astrocytes can influence APP metabolism and the accumulation of APP-cleaved products including Aβ peptides, which can contribute to the development of AD pathology.
Collapse
Affiliation(s)
- Hongyan Yang
- Department of Psychiatry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
- Department of Pharmacology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Yanlin Wang
- Department of Psychiatry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| | - Satyabrata Kar
- Department of Psychiatry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
- Department of Medicine, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| |
Collapse
|
34
|
Willén K, Edgar JR, Hasegawa T, Tanaka N, Futter CE, Gouras GK. Aβ accumulation causes MVB enlargement and is modelled by dominant negative VPS4A. Mol Neurodegener 2017; 12:61. [PMID: 28835279 PMCID: PMC5569475 DOI: 10.1186/s13024-017-0203-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/15/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD)-linked β-amyloid (Aβ) accumulates in multivesicular bodies (MVBs) with the onset of AD pathogenesis. Alterations in endosomes are among the earliest changes associated with AD but the mechanism(s) that cause endosome enlargement and the effects of MVB dysfunction on Aβ accumulation and tau pathology are incompletely understood. METHODS MVB size and Aβ fibrils in primary neurons were visualized by electron microscopy and confocal fluorescent microscopy. MVB-dysfunction, modelled by expression of dominant negative VPS4A (dnVPS4A), was analysed by biochemical methods and exosome isolation. RESULTS Here we show that AD transgenic neurons have enlarged MVBs compared to wild type neurons. Uptake of exogenous Aβ also leads to enlarged MVBs in wild type neurons and generates fibril-like structures in endocytic vesicles. With time fibrillar oligomers/fibrils can extend out of the endocytic vesicles and are eventually detectable extracellularly. Further, endosomal sorting complexes required for transport (ESCRT) components were found associated with amyloid plaques in AD transgenic mice. The phenotypes previously reported in AD transgenic neurons, with net increased intracellular levels and reduced secretion of Aβ, were mimicked by blocking recycling of ESCRT-III by dnVPS4A. DnVPS4A further resembled AD pathology by increasing tau phosphorylation at serine 396 and increasing markers of autophagy. CONCLUSIONS We demonstrate that Aβ leads to MVB enlargement and that amyloid fibres can form within the endocytic pathway of neurons. These results are consistent with the scenario of the endosome-lysosome system representing the site of initiation of Aβ aggregation. In turn, a dominant negative form of the CHMP2B-interacting protein VPS4A, which alters MVBs, leads to accumulation and aggregation of Aβ as well as tau phosphorylation, mimicking the cellular changes in AD.
Collapse
Affiliation(s)
- Katarina Willén
- Department of Experimental Medical Science, Lund University, 221 84, Lund, Sweden
| | - James R Edgar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
- UCL Institute of Ophthalmology, London, EC1V 9EL, UK
| | - Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Nobuyuki Tanaka
- Division of Cancer Biology and Therapeutics, Miyagi Cancer Center Research Institute, Natori, 981-1293, Japan
| | | | - Gunnar K Gouras
- Department of Experimental Medical Science, Lund University, 221 84, Lund, Sweden.
| |
Collapse
|
35
|
Li CD, Xu Q, Gu RX, Qu J, Wei DQ. The dynamic binding of cholesterol to the multiple sites of C99: as revealed by coarse-grained and all-atom simulations. Phys Chem Chem Phys 2017; 19:3845-3856. [DOI: 10.1039/c6cp07873g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The multi-site cholesterol binding model of C99.
Collapse
Affiliation(s)
- Cheng-Dong Li
- State Key Laboratory of Microbial Metabolism and College of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
- China
- Beijing Key Laboratory of Bioprocess
| | - Qin Xu
- State Key Laboratory of Microbial Metabolism and College of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Ruo-Xu Gu
- Centre for Molecular Simulation and Department of Biological Sciences
- University of Calgary
- Calgary
- Canada
| | - Jing Qu
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing
- P. R. China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism and College of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|
36
|
Ebrahimi-Fakhari D, Wahlster L, Bartz F, Werenbeck-Ueding J, Praggastis M, Zhang J, Joggerst-Thomalla B, Theiss S, Grimm D, Ory DS, Runz H. Reduction of TMEM97 increases NPC1 protein levels and restores cholesterol trafficking in Niemann-pick type C1 disease cells. Hum Mol Genet 2016; 25:3588-3599. [PMID: 27378690 PMCID: PMC5179952 DOI: 10.1093/hmg/ddw204] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 02/07/2023] Open
Abstract
Niemann-Pick type C disease (NP-C) is a progressive lysosomal lipid storage disease caused by mutations in the NPC1 and NPC2 genes. NPC1 is essential for transporting cholesterol and other lipids out of lysosomes, but little is known about the mechanisms that control its cellular abundance and localization. Here we show that a reduction of TMEM97, a cholesterol-responsive NPC1-binding protein, increases NPC1 levels in cells through a post-transcriptional mechanism. Reducing TMEM97 through RNA-interference reduces lysosomal lipid storage and restores cholesterol trafficking to the endoplasmic reticulum in cell models of NP-C. In TMEM97 knockdown cells, NPC1 levels can be reinstated with wild type TMEM97, but not TMEM97 missing an ER-retention signal suggesting that TMEM97 contributes to controlling the availability of NPC1 to the cell. Importantly, knockdown of TMEM97 also increases levels of residual NPC1 in NPC1-mutant patient fibroblasts and reduces cholesterol storage in an NPC1-dependent manner. Our findings propose TMEM97 inhibition as a novel strategy to increase residual NPC1 levels in cells and a potential therapeutic target for NP-C.
Collapse
Affiliation(s)
- Darius Ebrahimi-Fakhari
- Institute of Human Genetics, Ruprecht-Karls-University Heidelberg
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Lara Wahlster
- Institute of Human Genetics, Ruprecht-Karls-University Heidelberg
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Fabian Bartz
- Institute of Human Genetics, Ruprecht-Karls-University Heidelberg
| | | | - Maria Praggastis
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jessie Zhang
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Susanne Theiss
- Institute of Human Genetics, Ruprecht-Karls-University Heidelberg
| | - Dirk Grimm
- Center for Infectious Diseases/Virology, BioQuant BQ0030, Heidelberg, Germany
| | - Daniel S Ory
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Heiko Runz
- Institute of Human Genetics, Ruprecht-Karls-University Heidelberg
- Molecular Medicine Partnership Unit (MMPU), Ruprecht-Karls-University Heidelberg/European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| |
Collapse
|
37
|
Amyloid Beta Peptides Affect Pregnenolone and Pregnenolone Sulfate Levels in PC-12 and SH-SY5Y Cells Depending on Cholesterol. Neurochem Res 2016; 41:1700-12. [DOI: 10.1007/s11064-016-1886-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 02/28/2016] [Accepted: 03/09/2016] [Indexed: 01/02/2023]
|
38
|
The unfolded protein response in the therapeutic effect of hydroxy-DHA against Alzheimer's disease. Apoptosis 2015; 20:712-24. [PMID: 25663172 DOI: 10.1007/s10495-015-1099-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The unfolded protein response (UPR) and autophagy are two cellular processes involved in the clearing of intracellular misfolded proteins. Both pathways are targets for molecules that may serve as treatments for several diseases, including neurodegenerative disorders like Alzheimer's disease (AD). In the present work, we show that 2-hydroxy-DHA (HDHA), a docosahexaenoic acid (DHA) derivate that restores cognitive function in a transgenic mouse model of AD, modulates UPR and autophagy in differentiated neuron-like SH-SY5Y cells. Mild therapeutic HDHA exposure induced UPR activation, characterized by the up-regulation of the molecular chaperone Bip as well as PERK-mediated stimulation of eIF2α phosphorylation. Key proteins involved in initiating autophagy, such as beclin-1, and several Atg proteins involved in autophagosome maturation (Atg3, Atg5, Atg12 and Atg7), were also up-regulated on exposure to HDHA. Moreover, when HDHA-mediated autophagy was studied after amyloid-β peptide (Aβ) stimulation to mimic the neurotoxic environment of AD, it was associated with increased cell survival, suggesting that HDHA driven modulation of this process at least in part mediates the neuroprotective effects of this new anti-neurodegenerative drug. The present results in part explain the pharmacological effects of HDHA inducing full recovery of the cognitive scores in murine models of AD.
Collapse
|
39
|
Hou X, Adeosun SO, Zhang Q, Barlow B, Brents M, Zheng B, Wang J. Differential contributions of ApoE4 and female sex to BACE1 activity and expression mediate Aβ deposition and learning and memory in mouse models of Alzheimer's disease. Front Aging Neurosci 2015; 7:207. [PMID: 26582141 PMCID: PMC4628114 DOI: 10.3389/fnagi.2015.00207] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/15/2015] [Indexed: 12/01/2022] Open
Abstract
Alzheimer’s disease (AD), the most common form of dementia, disproportionately affects women in both prevalence and severity. This increased vulnerability to AD in women is strongly associated with age-related ovarian hormone loss and apolipoprotein E 4 allele (ApoE4), the most important genetic risk factor for sporadic AD. Up to date, the mechanism involved in the interaction between ApoE4 and sex/gender in AD is still unclear. This study evaluated the sex-dependent ApoE4 effects on learning and memory, Aβ deposition and potential mechanisms, using mice bearing both sporadic (ApoE4) and familial (APPSwe, PS1M146V, tauP301L; 3xTg) AD risk factors and compared with sex- and age-matched 3xTg or nonTg mice. Compared to nonTg mice, transgenic mice of both sexes showed spatial learning and memory deficits in the radial arm water maze and novel arm discrimination tests at 20 months of age. However, at 10 months, only ApoE4/3xTg mice showed significant learning and memory impairment. Moreover, molecular studies of hippocampal tissue revealed significantly higher protein levels of Aβ species, β-site APP cleavage enzyme (BACE1) and Sp1, a transcription factor of BACE1, in female ApoE4/3xTg when compared with female nonTg, female 3xTg, and male ApoE4/3xTg mice. Significantly increased BACE1 enzymatic activities were observed in both male and female mice carrying ApoE4; however, only the females showed significant higher BACE1 expressions. Together, these data suggest that ApoE4 allele is associated with increased BACE1 enzymatic activity, while female sex plays an important role in increasing BACE1 expression. The combination of both provides a molecular basis for high Aβ pathology and the resultant hippocampus-dependent learning and memory deficits in female ApoE4 carriers.
Collapse
Affiliation(s)
- Xu Hou
- Program in Neuroscience, University of Mississippi Medical Center, Jackson MS, USA
| | - Samuel O Adeosun
- Department of Pathology, University of Mississippi Medical Center, Jackson MS, USA
| | - Qinli Zhang
- Department of Pathology, University of Mississippi Medical Center, Jackson MS, USA
| | - Brett Barlow
- Department of Pathology, University of Mississippi Medical Center, Jackson MS, USA
| | - Melissa Brents
- Department of Pathology, University of Mississippi Medical Center, Jackson MS, USA
| | - Baoying Zheng
- Department of Pathology, University of Mississippi Medical Center, Jackson MS, USA
| | - Junming Wang
- Program in Neuroscience, University of Mississippi Medical Center, Jackson MS, USA ; Department of Pathology, University of Mississippi Medical Center, Jackson MS, USA ; Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson MS, USA ; Center of Memory Impairment and Neurodegenerative Dementia, University of Mississippi Medical Center, Jackson MS, USA
| |
Collapse
|
40
|
Massive accumulation of luminal protease-deficient axonal lysosomes at Alzheimer's disease amyloid plaques. Proc Natl Acad Sci U S A 2015; 112:E3699-708. [PMID: 26124111 DOI: 10.1073/pnas.1510329112] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Through a comprehensive analysis of organellar markers in mouse models of Alzheimer's disease, we document a massive accumulation of lysosome-like organelles at amyloid plaques and establish that the majority of these organelles reside within swollen axons that contact the amyloid deposits. This close spatial relationship between axonal lysosome accumulation and extracellular amyloid aggregates was observed from the earliest stages of β-amyloid deposition. Notably, we discovered that lysosomes that accumulate in such axons are lacking in multiple soluble luminal proteases and thus are predicted to be unable to efficiently degrade proteinaceous cargos. Of relevance to Alzheimer's disease, β-secretase (BACE1), the protein that initiates amyloidogenic processing of the amyloid precursor protein and which is a substrate for these proteases, builds up at these sites. Furthermore, through a comparison between the axonal lysosome accumulations at amyloid plaques and neuronal lysosomes of the wild-type brain, we identified a similar, naturally occurring population of lysosome-like organelles in neuronal processes that is also defined by its low luminal protease content. In conjunction with emerging evidence that the lysosomal maturation of endosomes and autophagosomes is coupled to their retrograde transport, our results suggest that extracellular β-amyloid deposits cause a local impairment in the retrograde axonal transport of lysosome precursors, leading to their accumulation and a blockade in their further maturation. This study both advances understanding of Alzheimer's disease brain pathology and provides new insights into the subcellular organization of neuronal lysosomes that may have broader relevance to other neurodegenerative diseases with a lysosomal component to their pathology.
Collapse
|
41
|
Heiler S, Mu W, Zöller M, Thuma F. The importance of claudin-7 palmitoylation on membrane subdomain localization and metastasis-promoting activities. Cell Commun Signal 2015; 13:29. [PMID: 26054340 PMCID: PMC4459675 DOI: 10.1186/s12964-015-0105-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/21/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Claudin-7 (cld7), a tight junction (TJ) component, is also found basolaterally and in the cytoplasm. Basolaterally located cld7 is enriched in glycolipid-enriched membrane domains (GEM), where it associates with EpCAM (EpC). The conditions driving cld7 out of TJ into GEM, which is associated with a striking change in function, were not defined. Thus, we asked whether cld7 serines or palmitoylation affect cld7 location and protein, particularly EpCAM, associations. RESULTS HEK cells were transfected with EpCAM and wild type cld7 or cld7, where serine phopsphorylation or the palmitoylation sites (AA184, AA186) (cld7(mPalm)) were mutated. Exchange of individual serine phosphorylation sites did not significantly affect the GEM localization and the EpCAM association. Instead, cld7(mPalm) was poorly recruited into GEM. This has consequences on migration and invasiveness as palmitoylated cld7 facilitates integrin and EpCAM recruitment, associates with cytoskeletal linker proteins and cooperates with MMP14, CD147 and TACE, which support motility, matrix degradation and EpCAM cleavage. On the other hand, only cld7(mPalm) associates with TJ proteins. CONCLUSION Cld7 palmitoylation prohibits TJ integration and fosters GEM recruitment. Via associated molecules, palmitoylated cld7 supports motility and invasion.
Collapse
Affiliation(s)
- Sarah Heiler
- Department of Tumor Cell Biology, University Hospital of Surgery, Im Neuenheimer Feld 365, 69120, Heidelberg, Germany.
| | - Wei Mu
- Department of Tumor Cell Biology, University Hospital of Surgery, Im Neuenheimer Feld 365, 69120, Heidelberg, Germany.
| | - Margot Zöller
- Department of Tumor Cell Biology, University Hospital of Surgery, Im Neuenheimer Feld 365, 69120, Heidelberg, Germany.
| | - Florian Thuma
- Department of Tumor Cell Biology, University Hospital of Surgery, Im Neuenheimer Feld 365, 69120, Heidelberg, Germany.
| |
Collapse
|
42
|
Zhu D, Bungart BL, Yang X, Zhumadilov Z, Lee JCM, Askarova S. Role of membrane biophysics in Alzheimer's-related cell pathways. Front Neurosci 2015; 9:186. [PMID: 26074758 PMCID: PMC4444756 DOI: 10.3389/fnins.2015.00186] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/11/2015] [Indexed: 01/04/2023] Open
Abstract
Cellular membrane alterations are commonly observed in many diseases, including Alzheimer's disease (AD). Membrane biophysical properties, such as membrane molecular order, membrane fluidity, organization of lipid rafts, and adhesion between membrane and cytoskeleton, play an important role in various cellular activities and functions. While membrane biophysics impacts a broad range of cellular pathways, this review addresses the role of membrane biophysics in amyloid-β peptide aggregation, Aβ-induced oxidative pathways, amyloid precursor protein processing, and cerebral endothelial functions in AD. Understanding the mechanism(s) underlying the effects of cell membrane properties on cellular processes should shed light on the development of new preventive and therapeutic strategies for this devastating disease.
Collapse
Affiliation(s)
- Donghui Zhu
- Department of Chemical, Biological and Bioengineering, North Carolina A&T State UniversityGreensboro, NC, USA
| | - Brittani L. Bungart
- Indiana University School of Medicine Medical Scientist Training Program, Indiana University School of MedicineIndianapolis, IN, USA
| | - Xiaoguang Yang
- Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of GothenburgGothenburg, Sweden
- The Hope Center for Neurological Disorders and Department of Neurology, Washington University School of MedicineSt. Louis, MO, USA
| | - Zhaxybay Zhumadilov
- Department of Bioengineering and Regenerative Medicine, Center for Life Sciences, Nazarbayev UniversityAstana, Kazakhstan
| | - James C-M. Lee
- Department of Bioengineering, University of Illinois at ChicagoChicago, IL, USA
| | - Sholpan Askarova
- Department of Bioengineering and Regenerative Medicine, Center for Life Sciences, Nazarbayev UniversityAstana, Kazakhstan
| |
Collapse
|
43
|
Early etiology of Alzheimer's disease: tipping the balance toward autophagy or endosomal dysfunction? Acta Neuropathol 2015; 129:363-81. [PMID: 25556159 PMCID: PMC4331606 DOI: 10.1007/s00401-014-1379-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/18/2014] [Accepted: 12/20/2014] [Indexed: 12/11/2022]
Abstract
Alzheimer’s disease (AD) is the most common form of dementia in the elderly. This brain neuropathology is characterized by a progressive synaptic dysfunction and neuronal loss, which lead to decline in memory and other cognitive functions. Histopathologically, AD manifests via synaptic abnormalities, neuronal degeneration as well as the deposition of extracellular amyloid plaques and intraneuronal neurofibrillary tangles. While the exact pathogenic contribution of these two AD hallmarks and their abundant constituents [aggregation-prone amyloid β (Aβ) peptide species and hyperphosphorylated tau protein, respectively] remain debated, a growing body of evidence suggests that their development may be paralleled or even preceded by the alterations/dysfunctions in the endolysosomal and the autophagic system. In AD-affected neurons, abnormalities in these cellular pathways are readily observed already at early stages of disease development, and even though many studies agree that defective lysosomal degradation may relate to or even underlie some of these deficits, specific upstream molecular defects are still deliberated. In this review we summarize various pathogenic events that may lead to these cellular abnormalities, in light of our current understanding of molecular mechanisms that govern AD progression. In addition, we also highlight the increasing evidence supporting mutual functional dependence of the endolysosomal trafficking and autophagy, in particular focusing on those molecules and processes which may be of significance to AD.
Collapse
|
44
|
Vorobyeva AG, Lee R, Miller S, Longen C, Sharoni M, Kandelwal PJ, Kim FJ, Marenda DR, Saunders AJ. Cyclopamine modulates γ-secretase-mediated cleavage of amyloid precursor protein by altering its subcellular trafficking and lysosomal degradation. J Biol Chem 2014; 289:33258-74. [PMID: 25281744 DOI: 10.1074/jbc.m114.591792] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alzheimer disease (AD) is a progressive neurodegenerative disease leading to memory loss. Numerous lines of evidence suggest that amyloid-β (Aβ), a neurotoxic peptide, initiates a cascade that results in synaptic dysfunction, neuronal death, and eventually cognitive deficits. Aβ is generated by the proteolytic processing of the amyloid precursor protein (APP), and alterations to this processing can result in Alzheimer disease. Using in vitro and in vivo models, we identified cyclopamine as a novel regulator of γ-secretase-mediated cleavage of APP. We demonstrate that cyclopamine decreases Aβ generation by altering APP retrograde trafficking. Specifically, cyclopamine treatment reduced APP-C-terminal fragment (CTF) delivery to the trans-Golgi network where γ-secretase cleavage occurs. Instead, cyclopamine redirects APP-CTFs to the lysosome. These data demonstrate that cyclopamine treatment decreases γ-secretase-mediated cleavage of APP. In addition, cyclopamine treatment decreases the rate of APP-CTF degradation. Together, our data demonstrate that cyclopamine alters APP processing and Aβ generation by inducing changes in APP subcellular trafficking and APP-CTF degradation.
Collapse
Affiliation(s)
- Anna G Vorobyeva
- From the Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104 and
| | - Randall Lee
- From the Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104 and
| | - Sean Miller
- From the Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104 and
| | | | - Michal Sharoni
- From the Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104 and
| | - Preeti J Kandelwal
- From the Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104 and
| | - Felix J Kim
- the Departments of Pharmacology and Physiology
| | - Daniel R Marenda
- From the Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104 and Neurobiology and Anatomy, and
| | - Aleister J Saunders
- From the Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104 and Neurobiology and Anatomy, and Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| |
Collapse
|
45
|
Joshi G, Gan KA, Johnson DA, Johnson JA. Increased Alzheimer's disease-like pathology in the APP/ PS1ΔE9 mouse model lacking Nrf2 through modulation of autophagy. Neurobiol Aging 2014; 36:664-79. [PMID: 25316599 DOI: 10.1016/j.neurobiolaging.2014.09.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/01/2014] [Accepted: 09/01/2014] [Indexed: 12/21/2022]
Abstract
The presence of senile plaques is one of the major pathologic hallmarks of the brain with Alzheimer's disease (AD). The plaques predominantly contain insoluble amyloid β-peptide, a cleavage product of the larger amyloid precursor protein (APP). Two enzymes, named β and γ secretase, generate the neurotoxic amyloid-β peptide from APP. Mature APP is also turned over endogenously by autophagy, more specifically by the endosomal-lysosomal pathway. A defective lysosomal system is known to be pathogenic in AD. Modulation of NF-E2 related factor 2 (Nrf2) has been shown in several neurodegenerative disorders, and Nrf2 has become a potential therapeutic target for various neurodegenerative disorders, including AD, Parkinson's disease, and amyotrophic lateral sclerosis. In the current study, we explored the effect of genetic ablation of Nrf2 on APP/Aβ processing and/or aggregation as well as changes in autophagic dysfunction in APP/PS1 mice. There was a significant increase in inflammatory response in APP/PS1 mice lacking Nrf2. This was accompanied by increased intracellular levels of APP, Aβ (1-42), and Aβ (1-40), without a change total full-length APP. There was a shift of APP and Aβ into the insoluble fraction, as well as increased poly-ubiquitin conjugated proteins in mice lacking Nrf2. APP/PS1-mediated autophagic dysfunction is also enhanced in Nrf2-deficient mice. Finally, neurons in the APP/PS1/Nrf2-/- mice had increased accumulation of multivesicular bodies, endosomes, and lysosomes. These outcomes provide a better understanding of the role of Nrf2 in modulating autophagy in an AD mouse model and may help design better Nrf2 targeted therapeutics that could be efficacious in the treatment of AD.
Collapse
Affiliation(s)
- Gururaj Joshi
- School of Pharmacy, University of Wisconsin-Madison, WI, USA
| | - Kok Ann Gan
- School of Pharmacy, University of Wisconsin-Madison, WI, USA
| | - Delinda A Johnson
- School of Pharmacy, University of Wisconsin-Madison, WI, USA; Center of Neuroscience, University of Wisconsin-Madison, WI, USA; Waisman Center, University of Wisconsin-Madison, WI, USA
| | - Jeffrey A Johnson
- School of Pharmacy, University of Wisconsin-Madison, WI, USA; Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, WI, USA; Center of Neuroscience, University of Wisconsin-Madison, WI, USA; Waisman Center, University of Wisconsin-Madison, WI, USA.
| |
Collapse
|
46
|
Wolfe MS. Unlocking truths of γ-secretase in Alzheimer's disease: what is the translational potential? FUTURE NEUROLOGY 2014; 9:419-429. [PMID: 26146489 DOI: 10.2217/fnl.14.35] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Considerable evidence, particularly from genetics, points to the aggregation-prone amyloid β-peptide as a pathogenic entity in Alzheimer's disease. Hence, the proteases that produce this peptide from its precursor protein have been prime targets for the development of potential therapeutics. One of these proteases, γ-secretase, has been a particular focus. Many inhibitors and modulators of this membrane-embedded protease complex have been identified, with some brought into late-stage clinical trials, where they have spectacularly failed. The reasons for these failures will be discussed, along with recent findings on the mechanism of γ-secretase and of Alzheimer-causing mutations that may suggest new strategies for targeting this enzyme.
Collapse
Affiliation(s)
- Michael S Wolfe
- Center for Neurologic Disease, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Tel.: +1 617 525 5511
| |
Collapse
|
47
|
Malnar M, Hecimovic S, Mattsson N, Zetterberg H. Bidirectional links between Alzheimer's disease and Niemann-Pick type C disease. Neurobiol Dis 2014; 72 Pt A:37-47. [PMID: 24907492 DOI: 10.1016/j.nbd.2014.05.033] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 05/17/2014] [Accepted: 05/27/2014] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) and Niemann-Pick type C (NPC) disease are progressive neurodegenerative diseases with very different epidemiology and etiology. AD is a common cause of dementia with a complex polyfactorial etiology, including both genetic and environmental risk factors, while NPC is a very rare autosomal recessive disease. However, the diseases share some disease-related molecular pathways, including abnormal cholesterol metabolism, and involvement of amyloid-β (Aβ) and tau pathology. Here we review recent studies on these pathological traits, focusing on studies of Aβ and tau pathology in NPC, and the importance of the NPC1 gene in AD. Further studies of similarities and differences between AD and NPC may be useful to increase the understanding of both these devastating neurological diseases.
Collapse
Affiliation(s)
- Martina Malnar
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Silva Hecimovic
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia.
| | - Niklas Mattsson
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Gothenburg, Sweden; Center for Imaging of Neurodegenerative Diseases (CIND), San Francisco VA Medical Center, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Gothenburg, Sweden; UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
48
|
Wong BX, Hung YH, Bush AI, Duce JA. Metals and cholesterol: two sides of the same coin in Alzheimer's disease pathology. Front Aging Neurosci 2014; 6:91. [PMID: 24860500 PMCID: PMC4030154 DOI: 10.3389/fnagi.2014.00091] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/28/2014] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease. It begins years prior to the onset of clinical symptoms, such as memory loss and cognitive decline. Pathological hallmarks of AD include the accumulation of β-amyloid in plaques and hyperphosphorylated tau in neurofibrillary tangles. Copper, iron, and zinc are abnormally accumulated and distributed in the aging brain. These metal ions can adversely contribute to the progression of AD. Dysregulation of cholesterol metabolism has also been implicated in the development of AD pathology. To date, large bodies of research have been carried out independently to elucidate the role of metals or cholesterol on AD pathology. Interestingly, metals and cholesterol affect parallel molecular and biochemical pathways involved in AD pathology. The possible links between metal dyshomeostasis and altered brain cholesterol metabolism in AD are reviewed.
Collapse
Affiliation(s)
- Bruce X Wong
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, VIC, Australia
| | - Ya Hui Hung
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, VIC, Australia
| | - Ashley I Bush
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, VIC, Australia
| | - James A Duce
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, VIC, Australia ; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds Leeds, North Yorkshire, UK
| |
Collapse
|
49
|
Pathological roles of ceramide and its metabolites in metabolic syndrome and Alzheimer's disease. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:793-8. [DOI: 10.1016/j.bbalip.2013.08.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 02/03/2023]
|
50
|
Cellular membrane fluidity in amyloid precursor protein processing. Mol Neurobiol 2014; 50:119-29. [PMID: 24553856 DOI: 10.1007/s12035-014-8652-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/23/2014] [Indexed: 12/20/2022]
Abstract
The senile plaque is a pathologic hallmark of Alzheimer's disease (AD). Amyloid-β peptide (Aβ), the main constituent of senile plaques, is neurotoxic especially in its oligomeric form. Aβ is derived from the sequential cleavage of amyloid precursor protein (APP) by β- and γ-secretases in the amyloidogenic pathway. Alternatively, APP can be cleaved by α-secretases within the Aβ domain to produce neurotrophic and neuroprotective α-secretase-cleaved soluble APP (sAPPα) in the nonamyloidogenic pathway. Since APP and α-, β-, and γ-secretases are membrane proteins, APP processing should be highly dependent on the membrane composition and the biophysical properties of cellular membrane. In this review, we discuss the role of the biophysical properties of cellular membrane in APP processing, especially the effects of phospholipases A(2) (PLA(2)s), fatty acids, cholesterol, and Aβ on membrane fluidity in relation to their effects on APP processing.
Collapse
|