1
|
Sharma P, Sharma B, Ghildiyal S, Kharkwal H. ML218 modulates calcium binding protein, oxidative stress, and inflammation during ischemia-reperfusion brain injury in mice. Eur J Pharmacol 2024; 982:176919. [PMID: 39179092 DOI: 10.1016/j.ejphar.2024.176919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
Cerebral ischemia disrupts calcium homeostasis in the brain causing excitotoxicity, oxidative stress, inflammation, and neuronal cell apoptosis. During ischemic conditions, T-type calcium channel channels contribute to increase in intracellular calcium ions in both neurons and glial cells therefore, the current study hypothesizes the antagonism of these channels using ML218, a novel specific T-Type inhibitor in experimental model of cerebral ischemia-reperfusion (CI/R) brain injury. CI/R injury was induced in Swiss Albino mice by occlusion of common carotid arteries followed by reperfusion. Animals were assessed for learning and memory (MWM), motor coordination (Rota rod), neurological function (neurological deficit score), cerebral infarction, edema, and histopathological alterations. Biochemical assessments were made for calcium binding proteins (Calmodulin- CaM, calcium/calmodulin-dependent protein kinase II-CaMKII, S100B), oxidative stress (4-hydroxy 2-nonenal-4-HNE, glutathione-GSH, inflammation (nuclear factor kappa-light-chain-enhancer of activated B-p65-NF-kB, tumor necrosis factor-TNF-α, interleukin-IL-10) inducible nitric oxide synthase (iNOS) levels, and acetylcholinesterase activity (AChE) in brain supernatants. Furthermore, serum levels of NF-kB, iNOS, and S100B were also assessed. CI/R animals showed impairment in learning, memory, motor coordination, and neurological function along with increase in cerebral infarction, edema, and histopathological alterations. Furthermore, increase in brain calcium binding proteins, oxidative stress, inflammation, and AChE activity along with serum NF-kB, iNOS, and S100B levels were recorded in CI/R animals. Administration of ML218 (5 mg/kg and 10 mg/kg; i.p.) was observed to recuperate CI/R induced impairments in behavioral, biochemical, and histopathological analysis. Hence, it may be concluded that ML218 mediates neuroprotection during CI/R via decreasing brain and serum calcium binding proteins, inflammation, iNOS, and oxidative stress markers.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India.
| | - Bhupesh Sharma
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, Gurugram University (A State Govt. University), Gurugram, Haryana, India.
| | - Shivani Ghildiyal
- Department of DravyaGuna, All India Institute of Ayurveda, An autonomous organization under Ministry of Ayush, Government of India, Sarita Vihar, New Delhi, India
| | - Harsha Kharkwal
- Amity Natural and Herbal Product Research, Amity Institute of Phytochemistry and Phytomedicine, Amity University Uttar Pradesh, India
| |
Collapse
|
2
|
Maeda T, Sekiguchi F, Mitani K, Yamagata R, Tsubota M, Yoshida S, Kawabata A. Opioid modulation of T-type Ca 2+ channel-dependent neuritogenesis/neurite outgrowth through the prostaglandin E 2/EP 4 receptor/protein kinase A pathway in mouse dorsal root ganglion neurons. Biochem Biophys Res Commun 2023; 639:142-149. [PMID: 36493557 DOI: 10.1016/j.bbrc.2022.11.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
Irregular regeneration or inappropriate remodeling of the axons of the primary afferent neurons after peripheral nerve trauma could be associated with the development of neuropathic pain. We analyzed the molecular mechanisms for the neuritogenesis and neurite outgrowth caused by prostaglandin E2 (PGE2) in mouse dorsal root ganglion (DRG) neurons, and evaluated their opioid modulation. PGE2 in combination with IBMX, a phosphodiesterase inhibitor, caused neuritogenesis/neurite outgrowth in DRG cells, an effect abolished by a prostanoid EP4, but not EP2, receptor antagonist, and inhibitors of adenylyl cyclase or protein kinase A (PKA). Blockers of T-type Ca2+ channels (T-channels), that are responsible for window currents involving the sustained low-level Ca2+ entry at voltages near the resting membrane potentials and can be functionally upregulated by PKA, inhibited the neuritogenesis/neurite outgrowth caused by PGE2/IBMX or dibutylyl cyclic AMP, a PKA activator, in DRG neurons, an inhibitory effect mimicked by ZnCl2 and ascorbic acid that block Cav3.2, but not Cav3.1 or Cav3.3, T-channels. Morphine and DAMGO, μ-opioid receptor (MOR) agonists, suppressed the neuritogenesis and/or neurite outgrowth induced by PGE2/IBMX in DRG neurons and also DRG neuron-like ND7/23 cells, an effect reversed by naloxone or β-funaltrexamine, a selective MOR antagonist. Our data suggest that the EP4 receptor/PKA/Cav3.2 pathway is involved in the PGE2-induced neuritogenesis/neurite outgrowth in DRG neurons, which can be suppressed by MOR stimulation. We propose that MOR agonists including morphine in the early phase after peripheral nerve trauma might delay the axonal regeneration of the primary afferent neurons but prevent the development of neuropathic pain.
Collapse
Affiliation(s)
- Takashi Maeda
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Fumiko Sekiguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Kenji Mitani
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Ryosuke Yamagata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Shigeru Yoshida
- Department of Life Science, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Atsufumi Kawabata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan.
| |
Collapse
|
3
|
Andhika Rhaditya PA, Oishi K, Nishimura YV, Motoyama J. [Ca 2+] i fluctuation mediated by T-type Ca 2+ channel is required for the differentiation of cortical neural progenitor cells. Dev Biol 2022; 489:84-97. [PMID: 35690104 DOI: 10.1016/j.ydbio.2022.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 11/17/2022]
Abstract
The fluctuation of intracellular calcium concentration ([Ca2+]i) is known to be involved in various processes in the development of central nervous system, such as the proliferation of neural progenitor cells (NPCs), migration of intermediate progenitor cells (IPCs) from the ventricular zone (VZ) to the subventricular zone (SVZ), and migration of immature neurons from the SVZ to cortical plate. However, the roles of [Ca2+]i fluctuation in NPC development, especially in the differentiation of the self-renewing NPCs into neuron-generating NPCs and immature neurons have not been elucidated. Using calcium imaging of acute cortical slices and cells isolated from mouse embryonic cortex, we examined temporal changes in the pattern of [Ca2+]i fluctuations in VZ cells from E12 to E16. We observed intracellular Ca2+ levels in Pax6-positive self-renewing NPCs decreased with their neural differentiation. In E11, Pax6-positive NPCs and Tuj1-positive immature neurons exhibited characteristic [Ca2+]i fluctuations; few Pax6-positive NPCs exhibited [Ca2+]i transient, but many Tuj1-positive immature neurons did, suggesting that the change in pattern of [Ca2+]i fluctuation correlate to their differentiation. The [Ca2+]i fluctuation during NPCs development was mostly mediated by the T-type calcium channel and blockage of T-type calcium channel in neurosphere cultures increased the number of spheres and inhibited neuronal differentiation. Consistent with this finding, knockdown of Cav3.1 by RNAi in vivo maintained Pax6-positive cells as self-renewing NPCs, and simultaneously suppressing their neuronal differentiation of NPCs into Tbr1-positive immature neurons. These results reveal that [Ca2+]i fluctuation mediated by Cav3.1 is required for the neural differentiation of Pax6-positive self-renewing NPCs.
Collapse
Affiliation(s)
- Putu Adi Andhika Rhaditya
- Laboratory of Developmental Neurobiology, Graduate School of Brain Science, Doshisha University, 1-3, Tatara-miyakodani, Kyotanabe, Kyoto, 610-0394, Japan
| | - Koji Oishi
- Organization of Advanced Research and Education, Doshisha University, 1-3, Tatara-miyakodani, Kyotanabe, Kyoto, 610-0394, Japan
| | - Yoshiaki V Nishimura
- Organization of Advanced Research and Education, Doshisha University, 1-3, Tatara-miyakodani, Kyotanabe, Kyoto, 610-0394, Japan; Division of Neuroscience, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai, Miyagi, 983-8536, Japan
| | - Jun Motoyama
- Laboratory of Developmental Neurobiology, Graduate School of Brain Science, Doshisha University, 1-3, Tatara-miyakodani, Kyotanabe, Kyoto, 610-0394, Japan.
| |
Collapse
|
4
|
[Effects of CACNA1H gene knockout on autistic-like behaviors and the morphology of hippocampal neurons in mice]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2022; 54. [PMID: 35435181 PMCID: PMC9069025 DOI: 10.19723/j.issn.1671-167x.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To investigate the effects of CACNA1H gene knockout (KO) on autistic-like behaviors and the morphology of hippocampal neurons in mice. METHODS In the study, 25 CACNA1H KO mice of 3-4 weeks old and C57BL/6 background were recruited as the experimental group, and 26 wild type (WT) mice of the same age and background were recruited as the control group. Three-chamber test and open field test were used to observe the social interaction, anxiety, and repetitive behaviors in mice. After that, their brain weight and size were measured, and the number of hippocampal neurons were observed by Nissl staining. Furthermore, the CACNA1H heterozygote mice were interbred with Thy1-GFP-O mice to generate CACNA1H-/--Thy1+(KO-GFP) and CACNA1H+/+-Thy1+ (WT-GFP) mice. The density and maturity of dendritic spines of hippocampal neurons were observed. RESULTS In the sociability test session of the three-chamber test, the KO mice spent more time in the chamber of the stranger mice than in the object one (F1, 14=95.086, P < 0.05; Post-Hoc: P < 0.05), without any significant difference for the explored preference index between the two groups (t=1.044, P>0.05). However, in the social novelty recognition test session, no difference was observed between the time of the KO mice spend in the chamber of new stranger mice and the stranger one (F1, 14=18.062, P < 0.05; Post-Hoc: P>0.05), and the explored preference index of the KO mice was less than that of the control group (t=2.390, P < 0.05). In the open field test, the KO mice spent less time in the center of the open field apparatus than the control group (t=2.503, P < 0.05), but the self-grooming time was significantly increased compared with the control group (t=-2.299, P < 0.05). Morphological results showed that the brain weight/body weight ratio (t=0.356, P>0.05) and brain size (t=-0.660, P>0.05) of the KO mice were not significantly different from those of the control group, but the number of neurons were significantly reduced in hippocampal dentate gyrus compared with the control group (t=2.323, P < 0.05). Moreover, the density of dendritic spine of dentate gyrus neurons in the KO-GFP mice was significantly increased compared with the control group (t=-2.374, P < 0.05), without any significant difference in spine maturity (t=-1.935, P>0.05). CONCLUSION CACNA1H KO mice represent autistic-like behavior, which may be related to the decrease in the number of neurons and the increase in the density of dendritic spine in the dentate gyrus.
Collapse
|
5
|
El Ghaleb Y, Schneeberger PE, Fernández-Quintero ML, Geisler SM, Pelizzari S, Polstra AM, van Hagen JM, Denecke J, Campiglio M, Liedl KR, Stevens CA, Person RE, Rentas S, Marsh ED, Conlin LK, Tuluc P, Kutsche K, Flucher BE. CACNA1I gain-of-function mutations differentially affect channel gating and cause neurodevelopmental disorders. Brain 2021; 144:2092-2106. [PMID: 33704440 PMCID: PMC8422349 DOI: 10.1093/brain/awab101] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
T-type calcium channels (Cav3.1 to Cav3.3) regulate low-threshold calcium spikes, burst firing and rhythmic oscillations of neurons and are involved in sensory processing, sleep, and hormone and neurotransmitter release. Here, we examined four heterozygous missense variants in CACNA1I, encoding the Cav3.3 channel, in patients with variable neurodevelopmental phenotypes. The p.(Ile860Met) variant, affecting a residue in the putative channel gate at the cytoplasmic end of the IIS6 segment, was identified in three family members with variable cognitive impairment. The de novo p.(Ile860Asn) variant, changing the same amino acid residue, was detected in a patient with severe developmental delay and seizures. In two additional individuals with global developmental delay, hypotonia, and epilepsy, the variants p.(Ile1306Thr) and p.(Met1425Ile), substituting residues at the cytoplasmic ends of IIIS5 and IIIS6, respectively, were found. Because structure modelling indicated that the amino acid substitutions differentially affect the mobility of the channel gate, we analysed possible effects on Cav3.3 channel function using patch-clamp analysis in HEK293T cells. The mutations resulted in slowed kinetics of current activation, inactivation, and deactivation, and in hyperpolarizing shifts of the voltage-dependence of activation and inactivation, with Cav3.3-I860N showing the strongest and Cav3.3-I860M the weakest effect. Structure modelling suggests that by introducing stabilizing hydrogen bonds the mutations slow the kinetics of the channel gate and cause the gain-of-function effect in Cav3.3 channels. The gating defects left-shifted and increased the window currents, resulting in increased calcium influx during repetitive action potentials and even at resting membrane potentials. Thus, calcium toxicity in neurons expressing the Cav3.3 variants is one likely cause of the neurodevelopmental phenotype. Computer modelling of thalamic reticular nuclei neurons indicated that the altered gating properties of the Cav3.3 disease variants lower the threshold and increase the duration and frequency of action potential firing. Expressing the Cav3.3-I860N/M mutants in mouse chromaffin cells shifted the mode of firing from low-threshold spikes and rebound burst firing with wild-type Cav3.3 to slow oscillations with Cav3.3-I860N and an intermediate firing mode with Cav3.3-I860M, respectively. Such neuronal hyper-excitability could explain seizures in the patient with the p.(Ile860Asn) mutation. Thus, our study implicates CACNA1I gain-of-function mutations in neurodevelopmental disorders, with a phenotypic spectrum ranging from borderline intellectual functioning to a severe neurodevelopmental disorder with epilepsy.
Collapse
Affiliation(s)
- Yousra El Ghaleb
- Institute of Physiology, Medical University Innsbruck, Innsbruck 6020, Austria
| | - Pauline E Schneeberger
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Monica L Fernández-Quintero
- Institute of Physiology, Medical University Innsbruck, Innsbruck 6020, Austria
- Institute of Theoretical Chemistry, University of Innsbruck, Innsbruck 6020, Austria
| | - Stefanie M Geisler
- Department of Pharmacology, University of Innsbruck, Innsbruck 6020, Austria
| | - Simone Pelizzari
- Institute of Physiology, Medical University Innsbruck, Innsbruck 6020, Austria
| | - Abeltje M Polstra
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, 1012 WX, The Netherlands
| | - Johanna M van Hagen
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, 1012 WX, The Netherlands
| | - Jonas Denecke
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Marta Campiglio
- Institute of Physiology, Medical University Innsbruck, Innsbruck 6020, Austria
| | - Klaus R Liedl
- Institute of Theoretical Chemistry, University of Innsbruck, Innsbruck 6020, Austria
| | - Cathy A Stevens
- Department of Pediatrics, University of Tennessee College of Medicine, Chattanooga, TN 37403, USA
| | | | - Stefan Rentas
- Division of Genomic Diagnostics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eric D Marsh
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Laura K Conlin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Petronel Tuluc
- Department of Pharmacology, University of Innsbruck, Innsbruck 6020, Austria
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Bernhard E Flucher
- Institute of Physiology, Medical University Innsbruck, Innsbruck 6020, Austria
| |
Collapse
|
6
|
The Synthetic Cannabinoids THJ-2201 and 5F-PB22 Enhance In Vitro CB 1 Receptor-Mediated Neuronal Differentiation at Biologically Relevant Concentrations. Int J Mol Sci 2020; 21:ijms21176277. [PMID: 32872617 PMCID: PMC7503567 DOI: 10.3390/ijms21176277] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 01/07/2023] Open
Abstract
Recreational use of synthetic cannabinoids (SCs) before and during pregnancy poses a major public health risk, due to the potential onset of neurodevelopmental disorders in the offspring. Herein, we report the assessment of the neurotoxic potential of two commonly abused SCs, THJ-2201 and 5F-PB22, particularly focusing on how they affect neuronal differentiation in vitro. Differentiation ratios, total neurite length, and neuronal marker expression were assessed in NG108-15 neuroblastoma x glioma cells exposed to the SCs at non-toxic, biologically relevant concentrations (≤1 μM), either in acute or repeated exposure settings. Both SCs enhanced differentiation ratios and total neurite length of NG108-15 cells near two-fold compared to vehicle-treated cells, in a CB1R activation-dependent way, as the CB1R blockade with a specific antagonist (SR141718) abrogated SC-induced effects. Interestingly, repeated 5F-PB22 exposure was required to reach effects similar to a single THJ-2201 dose. Cell viability and proliferation, mitochondrial membrane potential, and intracellular ATP levels were also determined. The tested SCs increased mitochondrial tetramethyl rhodamine ethyl ester (TMRE) accumulation after 24 h at biologically relevant concentrations but did not affect any of the other toxicological parameters. Overall, we report firsthand the CB1R-mediated enhancement of neurodifferentiation by 5F-PB22 and THJ-2201 at biologically relevant concentrations.
Collapse
|
7
|
Bouasse M, Impheng H, Servant Z, Lory P, Monteil A. Functional expression of CLIFAHDD and IHPRF pathogenic variants of the NALCN channel in neuronal cells reveals both gain- and loss-of-function properties. Sci Rep 2019; 9:11791. [PMID: 31409833 PMCID: PMC6692409 DOI: 10.1038/s41598-019-48071-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 07/29/2019] [Indexed: 12/24/2022] Open
Abstract
The excitability of neurons is tightly dependent on their ion channel repertoire. Among these channels, the leak sodium channel NALCN plays a crucial role in the maintenance of the resting membrane potential. Importantly, NALCN mutations lead to complex neurodevelopmental syndromes, including infantile hypotonia with psychomotor retardation and characteristic facies (IHPRF) and congenital contractures of limbs and face, hypotonia and developmental delay (CLIFAHDD), which are recessively and dominantly inherited, respectively. Unfortunately, the biophysical properties of NALCN are still largely unknown to date, as well as the functional consequences of both IHPRF and CLIFAHDD mutations on NALCN current. Here we have set-up the heterologous expression of NALCN in the neuronal cell line NG108-15 to investigate the electrophysiological properties of NALCN carrying representative IHPRF and CLIFAHDD mutations. Several original properties of the wild-type (wt) NALCN current were retrieved: mainly carried by external Na+, blocked by Gd3+, insensitive to TTX and potentiated by low external Ca2+ concentration. However, we found that this current displays a time-dependent inactivation in the −80/−40 mV range of membrane potential, and a non linear current-voltage relationship indicative of voltage sensitivity. Importantly, no detectable current was recorded with the IHPRF missense mutation p.Trp1287Leu (W1287L), while the CLIFAHDD mutants, p.Leu509Ser (L509S) and p.Tyr578Ser (Y578S), showed higher current densities and slower inactivation, compared to wt NALCN current. This study reveals that heterologous expression of NALCN channel can be achieved in the neuronal cell line NG108-15 to study the electrophysiological properties of wt and mutants. From our results, we conclude that IHPRF and CLIFAHDD missense mutations are loss- and gain-of-function variants, respectively.
Collapse
Affiliation(s)
- Malik Bouasse
- IGF, CNRS, INSERM, University of Montpellier, LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Hathaichanok Impheng
- IGF, CNRS, INSERM, University of Montpellier, LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Zoe Servant
- IGF, CNRS, INSERM, University of Montpellier, LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Philippe Lory
- IGF, CNRS, INSERM, University of Montpellier, LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Arnaud Monteil
- IGF, CNRS, INSERM, University of Montpellier, LabEx 'Ion Channel Science and Therapeutics', Montpellier, France.
| |
Collapse
|
8
|
Bondarenko O, Corzo G, Santana FL, Río‐Portilla F, Darszon A, López‐González I. Nonenzymatically oxidized arachidonic acid regulates T‐type Ca
2+
currents in mouse spermatogenic cells. FEBS Lett 2019; 593:1735-1750. [DOI: 10.1002/1873-3468.13448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Olga Bondarenko
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología Universidad Nacional Autónoma de México México México
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología Universidad Nacional Autónoma de México México México
| | - Félix L. Santana
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología Universidad Nacional Autónoma de México México México
| | - Federico Río‐Portilla
- Departamento de Biomacromoléculas. Instituto de Química Universidad Nacional Autónoma de México México México
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología Universidad Nacional Autónoma de México México México
| | - Ignacio López‐González
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología Universidad Nacional Autónoma de México México México
| |
Collapse
|
9
|
Rebellato P, Kaczynska D, Kanatani S, Rayyes IA, Zhang S, Villaescusa C, Falk A, Arenas E, Hermanson O, Louhivuori L, Uhlén P. The T-type Ca 2+ Channel Ca v3.2 Regulates Differentiation of Neural Progenitor Cells during Cortical Development via Caspase-3. Neuroscience 2019; 402:78-89. [PMID: 30677486 DOI: 10.1016/j.neuroscience.2019.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/11/2018] [Accepted: 01/12/2019] [Indexed: 01/02/2023]
Abstract
Here we report that the low-voltage-dependent T-type calcium (Ca2+) channel Cav3.2, encoded by the CACNA1H gene, regulates neuronal differentiation during early embryonic brain development through activating caspase-3. At the onset of neuronal differentiation, neural progenitor cells exhibited spontaneous Ca2+ activity. This activity strongly correlated with the upregulation of CACNA1H mRNA. Cells exhibiting robust spontaneous Ca2+ signaling had increased caspase-3 activity unrelated to apoptosis. Inhibition of Cav3.2 by drugs or viral CACNA1H knock down resulted in decreased caspase-3 activity followed by suppressed neurogenesis. In contrast, when CACNA1H was overexpressed, increased neurogenesis was detected. Cortical slices from Cacna1h knockout mice showed decreased spontaneous Ca2+ activity, a significantly lower protein level of cleaved caspase-3, and microanatomical abnormalities in the subventricular/ventricular and cortical plate zones when compared to their respective embryonic controls. In summary, we demonstrate a novel relationship between Cav3.2 and caspase-3 signaling that affects neurogenesis in the developing brain.
Collapse
Affiliation(s)
- Paola Rebellato
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Dagmara Kaczynska
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Shigeaki Kanatani
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Ibrahim Al Rayyes
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Songbai Zhang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Carlos Villaescusa
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Ernest Arenas
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Ola Hermanson
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Lauri Louhivuori
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
10
|
T-type calcium channels: From molecule to therapeutic opportunities. Int J Biochem Cell Biol 2019; 108:34-39. [DOI: 10.1016/j.biocel.2019.01.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 12/27/2022]
|
11
|
Sekiguchi F, Fujita T, Deguchi T, Yamaoka S, Tomochika K, Tsubota M, Ono S, Horaguchi Y, Ichii M, Ichikawa M, Ueno Y, Koike N, Tanino T, Nguyen HD, Okada T, Nishikawa H, Yoshida S, Ohkubo T, Toyooka N, Murata K, Matsuda H, Kawabata A. Blockade of T-type calcium channels by 6-prenylnaringenin, a hop component, alleviates neuropathic and visceral pain in mice. Neuropharmacology 2018; 138:232-244. [PMID: 29913186 DOI: 10.1016/j.neuropharm.2018.06.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/30/2018] [Accepted: 06/14/2018] [Indexed: 10/14/2022]
Abstract
Since Cav3.2 T-type Ca2+ channels (T-channels) expressed in the primary afferents and CNS contribute to intractable pain, we explored T-channel-blocking components in distinct herbal extracts using a whole-cell patch-clamp technique in HEK293 cells stably expressing Cav3.2 or Cav3.1, and purified and identified sophoraflavanone G (SG) as an active compound from SOPHORAE RADIX (SR). Interestingly, hop-derived SG analogues, (2S)-6-prenylnaringenin (6-PNG) and (2S)-8-PNG, but not naringenin, also blocked T-channels; IC50 (μM) of SG, (2S)-6-PNG and (2S)-8-PNG was 0.68-0.75 for Cav3.2 and 0.99-1.41 for Cav3.1. (2S)-6-PNG and (2S)-8-PNG, but not SG, exhibited reversible inhibition. The racemic (2R/S)-6-PNG as well as (2S)-6-PNG potently blocked Cav3.2, but exhibited minor effect on high-voltage-activated Ca2+ channels and voltage-gated Na+ channels in differentiated NG108-15 cells. In mice, the mechanical allodynia following intraplantar (i.pl.) administration of an H2S donor was abolished by oral or i.p. SR extract and by i.pl. SG, (2S)-6-PNG or (2S)-8-PNG, but not naringenin. Intraperitoneal (2R/S)-6-PNG strongly suppressed visceral pain and spinal ERK phosphorylation following intracolonic administration of an H2S donor in mice. (2R/S)-6-PNG, administered i.pl. or i.p., suppressed the neuropathic allodynia induced by partial sciatic nerve ligation or oxaliplatin, an anti-cancer agent, in mice. (2R/S)-6-PNG had little or no effect on open-field behavior, motor performance or cardiovascular function in mice, and on the contractility of isolated rat aorta. (2R/S)-6-PNG, but not SG, was detectable in the brain after their i.p. administration in mice. Our data suggest that 6-PNG, a hop component, blocks T-channels, and alleviates neuropathic and visceral pain with little side effects.
Collapse
Affiliation(s)
- Fumiko Sekiguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Tomoyo Fujita
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Takahiro Deguchi
- Division of Natural Drug Resources, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Sakura Yamaoka
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Ken Tomochika
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Sumire Ono
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Yamato Horaguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Maki Ichii
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Mio Ichikawa
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Yumiko Ueno
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Nene Koike
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Tadatoshi Tanino
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Huy Du Nguyen
- Graduate School of Innovative Life Science, University of Toyama, Toyama, 930-8555, Japan
| | - Takuya Okada
- Graduate School of Innovative Life Science, University of Toyama, Toyama, 930-8555, Japan
| | - Hiroyuki Nishikawa
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Shigeru Yoshida
- Department of Life Science, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Tsuyako Ohkubo
- Division of Basic Medical Sciences and Fundamental Nursing, Faculty of Nursing, Fukuoka Nursing College, Fukuoka, 814-0193, Japan
| | - Naoki Toyooka
- Graduate School of Innovative Life Science, University of Toyama, Toyama, 930-8555, Japan; Graduate School of Science and Engineering, University of Toyama, Toyama, 930-8555, Japan
| | - Kazuya Murata
- Division of Natural Drug Resources, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Hideaki Matsuda
- Division of Natural Drug Resources, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Atsufumi Kawabata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan.
| |
Collapse
|
12
|
T-type Ca2+ Channels: T for Targetable. Cancer Res 2018; 78:603-609. [DOI: 10.1158/0008-5472.can-17-3061] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/24/2017] [Accepted: 11/14/2017] [Indexed: 11/16/2022]
|
13
|
Modulation of T-type Ca2+ channels by Lavender and Rosemary extracts. PLoS One 2017; 12:e0186864. [PMID: 29073181 PMCID: PMC5658086 DOI: 10.1371/journal.pone.0186864] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/09/2017] [Indexed: 12/19/2022] Open
Abstract
Medicinal plants represent a significant reservoir of unexplored substances for early-stage drug discovery. Of interest, two flowering Mediterranean plants have been used for thousands of years for their beneficial effects on nervous disorders, including anxiety and mood. However, the therapeutic potential of these plants regarding their ability to target ion channels and neuronal excitability remains largely unknown. Towards this goal, we have investigated the ability of Lavender and Rosemary to modulate T-type calcium channels (TTCCs). TTCCs play important roles in neuronal excitability, neuroprotection, sensory processes and sleep. These channels are also involved in epilepsy and pain. Using the whole-cell patch-clamp technique, we have characterized how Lavender and Rosemary extracts, as well as their major active compounds Linalool and Rosmarinic acid, modulate the electrophysiological properties of recombinant TTCCs (CaV3.2) expressed in HEK-293T cells. Both the methanolic and essential oil extracts as well as the active compounds of these plants inhibit Cav3.2 current in a concentration-dependent manner. In addition, these products also induce a negative shift of the steady-state inactivation of CaV3.2 current with no change in the activation properties. Taken together, our findings reveal that TTCCs are a molecular target of the Lavender and Rosemary compounds, suggesting that inhibition of TTCCs could contribute to the anxiolytic and the neuroprotective effects of these plants.
Collapse
|
14
|
Cazade M, Bidaud I, Lory P, Chemin J. Activity-dependent regulation of T-type calcium channels by submembrane calcium ions. eLife 2017; 6. [PMID: 28109159 PMCID: PMC5308894 DOI: 10.7554/elife.22331] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/20/2017] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated Ca2+ channels are involved in numerous physiological functions and various mechanisms finely tune their activity, including the Ca2+ ion itself. This is well exemplified by the Ca2+-dependent inactivation of L-type Ca2+ channels, whose alteration contributes to the dramatic disease Timothy Syndrome. For T-type Ca2+ channels, a long-held view is that they are not regulated by intracellular Ca2+. Here we challenge this notion by using dedicated electrophysiological protocols on both native and expressed T-type Ca2+ channels. We demonstrate that a rise in submembrane Ca2+ induces a large decrease in T-type current amplitude due to a hyperpolarizing shift in the steady-state inactivation. Activation of most representative Ca2+-permeable ionotropic receptors similarly regulate T-type current properties. Altogether, our data clearly establish that Ca2+ entry exerts a feedback control on T-type channel activity, by modulating the channel availability, a mechanism that critically links cellular properties of T-type Ca2+ channels to their physiological roles. DOI:http://dx.doi.org/10.7554/eLife.22331.001 Neurons, muscle cells and many other types of cells use electrical signals to exchange information and coordinate their behavior. Proteins known as calcium channels sit in the membrane that surrounds the cell and can generate electrical signals by allowing calcium ions to cross the membrane and enter the cell during electrical activities. Although calcium ions are needed to generate these electrical signals, and for many other processes in cells, if the levels of calcium ions inside cells become too high they can be harmful and cause disease. Cells have a “feedback” mechanism that prevents calcium ion levels from becoming too high. This mechanism relies on the calcium ions that are already in the cell being able to close the calcium channels. This feedback mechanism has been extensively studied in two types of calcium channel, but it is not known whether a third group of channels – known as Cav3 channels – are also regulated in this way. Cav3 channels are important in electrical signaling in neurons and have been linked with epilepsy, chronic pain and various other conditions in humans. Cazade et al. investigated whether calcium ions can regulate the activity of human Cav3 channels. The experiments show that these channels are indeed regulated by calcium ions, but using a distinct mechanism to other types of calcium channels. For the Cav3 channels, calcium ions alter the gating properties of the channels so that they are less easily activated . As a result, fewer Cav3 channels are “available” to provide calcium ions with a route into the cell. The next steps following on from this work will be to identify the molecular mechanisms underlying this new feedback mechanism. Another challenge will be to find out what role this calcium ion-driven feedback plays in neurological disorders that are linked with altered Cav3 channel activity. DOI:http://dx.doi.org/10.7554/eLife.22331.002
Collapse
Affiliation(s)
- Magali Cazade
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Isabelle Bidaud
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Philippe Lory
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Jean Chemin
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| |
Collapse
|
15
|
Vaz GC, Sharma NM, Zheng H, Zimmerman MC, Santos RS, Frezard F, Fontes MAP, Patel KP. Liposome-entrapped GABA modulates the expression of nNOS in NG108-15 cells. J Neurosci Methods 2016; 273:55-63. [PMID: 27523033 DOI: 10.1016/j.jneumeth.2016.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/25/2016] [Accepted: 08/05/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Liposomes are concentric lipid vesicles that allow a sustained release of entrapped substances. GABA (γ-aminobutyric acid) is the most prevalent inhibitory neurotransmitter in the central nervous system. NEW METHOD Using GABA-containing liposomes (GL) prepared by the freeze-thawing method, we determined the effect of sustained release of GABA on expression of neuronal nitric oxide synthase (nNOS) and GABAA receptor (GABAAR) in an in vitro neuronal model. RESULTS Neuronal cell line NG108-15 treated with different doses of GL during 24h showed an increase in expression of GABAAR (54 and 50% with 10 and 20ng doses, respectively) and nNOS (138, 157 and 165% with 20, 50 and 100ng doses, respectively) compared with cells treated with empty liposomes (EL). Additionally, cells treated with 50ng of GL showed an increase in GABAAR (23%) after 1h followed by an increase in nNOS (55, 46 and 55%) at 8, 12 and 24h time points, respectively. Immunofluorescence experiments confirmed an increase in nNOS (134%) and basal intracellular levels of nitric oxide (84%) after GL treatment. Further, treatment of cells with GL showed a decrease in expression of a protein inhibitor of nNOS (PIN) (26, 66 and 57% with 20, 50 and 100ng doses respectively) compared with control. COMPARISON WITH EXISTING METHODS This is first demonstration for the development of GL that allows sustained slow release of this neurotransmitter. CONCLUSION These results suggest that a slow release of GABA can change the expression of nNOS possibly via alteration in PIN levels in neuronal cells.
Collapse
Affiliation(s)
- Gisele C Vaz
- Department of Physiology & Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Neeru M Sharma
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, United States
| | - Hong Zheng
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, United States
| | - Matthew C Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, United States
| | - Robson S Santos
- Department of Physiology & Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Frederic Frezard
- Department of Physiology & Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Marco A P Fontes
- Department of Physiology & Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Kaushik P Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, United States.
| |
Collapse
|
16
|
Weaver EM, Zamora FJ, Hearne JL, Martin-Caraballo M. Posttranscriptional regulation of T-type Ca 2+ channel expression by interleukin-6 in prostate cancer cells. Cytokine 2015. [DOI: 10.1016/j.cyto.2015.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Dayer AG, Jacobshagen M, Chaumont-Dubel S, Marin P. 5-HT6 Receptor: A New Player Controlling the Development of Neural Circuits. ACS Chem Neurosci 2015; 6:951-60. [PMID: 25590789 DOI: 10.1021/cn500326z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
5-HT6 receptor (5-HT6R) is a G protein-coupled receptor that has recently emerged as a new regulator of neural development. In addition to the canonical Gs adenylyl cyclase pathway, recent proteomics approaches reveal that 5-HT6R is able to engage key developmental signaling pathways controlling neuronal circuit formation, neuronal connectivity, and psychiatric-relevant behaviors. For example, at early stages of neuronal development, expression of 5-HT6R constitutively regulates the activity of the cyclin-dependent kinase (Cdk)5 and, through this mechanism, controls cellular processes involved in circuit formation, including neuronal migration and neurite outgrowth. In addition to the Cdk5 pathway, 5-HT6R modulates a variety of key developmental targets such as Fyn, Jab1, and mammalian target of rapamycin (mTOR). Engagement of developmental pathways through 5-HT6R pharmacological manipulation has led to interesting new therapeutic perspectives in the field of psychiatric-related disorders. Indeed, 5-HT6R blockade can rescue a pathological overactivation of the mTOR pathway induced by early life insults in rodents and normalizes the associated social and episodic memory deficits. Here, we review recent evidence supporting the notion that 5-HT6R is at the interface of key developmental signaling pathways and a novel actor in the orchestration of neural circuit formation.
Collapse
Affiliation(s)
| | | | - Séverine Chaumont-Dubel
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, INSERM U661, Universités Montpellier I & II, 34094 Montpellier, France
| | - Philippe Marin
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, INSERM U661, Universités Montpellier I & II, 34094 Montpellier, France
| |
Collapse
|
18
|
Kim CH. Cav3.1 T-type calcium channel modulates the epileptogenicity of hippocampal seizures in the kainic acid-induced temporal lobe epilepsy model. Brain Res 2015; 1622:204-16. [PMID: 26111648 DOI: 10.1016/j.brainres.2015.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 10/23/2022]
Abstract
The molecular mechanism of temporal lobe epilepsy has not been clearly identified. T-type calcium channels play a role in burst firing in neurons and have been implicated in several seizure models. In this study, the role of Cav3.1 T-type (α1G) calcium channel has been investigated in the kainic acid (KA)-induced temporal lobe epilepsy model (TLE) by using conventional α1G knock-out (ko) mice. After intraperitoneal (i.p.) administration or intrahippocampal injection of KA, depth hippocampal and cortical electroencephalogram (EEG) and behavioral monitoring were recorded, and timm and Nissl staining of brain sections were made later. Seizure was mainly identified by EEG signals, rather than behaviorally, with analytic criteria. During the acute status epilepticus (SE) period, both the duration and the frequency of hippocampal seizures were significantly reduced and increased, respectively, in αlG ko mice compared to those of wild type mice. Epileptogenicity, the total period of seizures (hr(-1)), was also significantly reduced in α1G ko mice. However, the latency of seizure occurrence was not significantly different between wild type and ko mice. These differential effects were not observed in cortical seizures. Furthermore, the injection of KA caused a strong increase in δ rhythm power spectrum density (PSD) of EEG in αlG ko mice compared to that in wild type mice. The results with conventional ko mice indicate that α1G T-type calcium channel plays a modulatory role in the duration and frequency of hippocampal seizures as well as the epileptogenicity of KA-induced TLE in mice, mostly during acute periods.
Collapse
Affiliation(s)
- Chong-Hyun Kim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science & Technology, Seoul 136-791, Republic of Korea; Department of Neuroscience, Korea University of Science & Technology, Daejeon 305-333, Republic of Korea.
| |
Collapse
|
19
|
Hydrogen sulfide and neuronal differentiation: focus on Ca2+ channels. Nitric Oxide 2015; 46:50-4. [PMID: 25660006 DOI: 10.1016/j.niox.2015.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/26/2015] [Accepted: 02/02/2015] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide (H2S) is considered the third gasotransmitter following nitric oxide (NO) and carbon monoxide (CO) in the mammalian body including the brain, heart, blood vessels, liver, kidney, pancreas, lung, gastrointestinal tract and reproductive organs. H2S is formed endogenously from L-cysteine by multiple enzymes, such as cystathionine-γ-lyase, cystathionine-β-synthase and 3-mercaptopyruvate sulfurtransferase in combination with cysteine aminotransferase, and participates in a variety of biological events through a number of target molecules. Exogenous and/or endogenous H2S enhances the activity of T-type Ca(2+) channels in NG108-15 cells and isolated dorsal root ganglion neurons that abundantly express Cav3.2, and in Cav3.2-transfected HEK293 cells. Cav3.2 mediates not only the H2S-induced enhancement of pain signals in nociceptor neurons, but also neuronal differentiation characterized by neuritogenesis and functional upregulation of high voltage-activated Ca(2+) channels in NG108-15 cells. In this review, we focus on the functional modulation by H2S of primarily Cav3.2 T-type Ca(2+) channels and the molecular mechanisms underlying the H2S-induced neuronal differentiation.
Collapse
|
20
|
Weaver EM, Zamora FJ, Puplampu-Dove YA, Kiessu E, Hearne JL, Martin-Caraballo M. Regulation of T-type calcium channel expression by sodium butyrate in prostate cancer cells. Eur J Pharmacol 2015; 749:20-31. [DOI: 10.1016/j.ejphar.2014.12.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/15/2014] [Accepted: 12/15/2014] [Indexed: 10/24/2022]
|
21
|
Cdk5 induces constitutive activation of 5-HT6 receptors to promote neurite growth. Nat Chem Biol 2014; 10:590-7. [DOI: 10.1038/nchembio.1547] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 04/30/2014] [Indexed: 02/07/2023]
|
22
|
Cav3.2 T-type calcium channel is required for the NFAT-dependent Sox9 expression in tracheal cartilage. Proc Natl Acad Sci U S A 2014; 111:E1990-8. [PMID: 24778262 DOI: 10.1073/pnas.1323112111] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Intracellular Ca(2+) transient is crucial in initiating the differentiation of mesenchymal cells into chondrocytes, but whether voltage-gated Ca(2+) channels are involved remains uncertain. Here, we show that the T-type voltage-gated Ca(2+) channel Cav3.2 is essential for tracheal chondrogenesis. Mice lacking this channel (Cav3.2(-/-)) show congenital tracheal stenosis because of incomplete formation of cartilaginous tracheal support. Conversely, Cav3.2 overexpression in ATDC5 cells enhances chondrogenesis, which could be blunted by both blocking T-type Ca(2+) channels and inhibiting calcineurin and suggests that Cav3.2 is responsible for Ca(2+) influx during chondrogenesis. Finally, the expression of sex determination region of Y chromosome (SRY)-related high-mobility group-Box gene 9 (Sox9), one of the earliest markers of committed chondrogenic cells, is reduced in Cav3.2(-/-) tracheas. Mechanistically, Ca(2+) influx via Cav3.2 activates the calcineurin/nuclear factor of the activated T-cell (NFAT) signaling pathway, and a previously unidentified NFAT binding site is identified within the mouse Sox9 promoter using a luciferase reporter assay and gel shift and ChIP studies. Our findings define a previously unidentified mechanism that Ca(2+) influx via the Cav3.2 T-type Ca(2+) channel regulates Sox9 expression through the calcineurin/NFAT signaling pathway during tracheal chondrogenesis.
Collapse
|
23
|
Chemin J, Cazade M, Lory P. Modulation of T-type calcium channels by bioactive lipids. Pflugers Arch 2014; 466:689-700. [PMID: 24531745 DOI: 10.1007/s00424-014-1467-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 01/24/2014] [Accepted: 01/29/2014] [Indexed: 01/10/2023]
Abstract
T-type calcium channels (T-channels/CaV3) have unique biophysical properties allowing a calcium influx at resting membrane potential of most cells. T-channels are ubiquitously expressed in many tissues and contribute to low-threshold spikes and burst firing in central neurons as well as to pacemaker activities in cardiac cells. They also emerged as potential targets to treat cancer and hypertension. Regulation of these channels appears complex, and several studies have indicated that CaV3.1, CaV3.2, and CaV3.3 currents are directly inhibited by multiple endogenous lipids independently of membrane receptors or intracellular pathways. These bioactive lipids include arachidonic acid and ω3 poly-unsaturated fatty acids; the endocannabinoid anandamide and other N-acylethanolamides; the lipoamino-acids and lipo-neurotransmitters; the P450 epoxygenase metabolite 5,6-epoxyeicosatrienoic acid; as well as similar molecules with 18-22 carbons in the alkyl chain. In this review, we summarize evidence for direct effects of these signaling molecules, the molecular mechanisms underlying the current inhibition, and the involved chemical features. The impact of this modulation in physiology and pathophysiology is discussed with a special emphasis on pain aspects and vasodilation. Overall, these data clearly indicate that T-current inhibition is an important mechanism by which bioactive lipids mediate their physiological functions.
Collapse
Affiliation(s)
- Jean Chemin
- Institut de Génomique Fonctionnelle, Universités Montpellier 1 & 2, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, 141, rue de la Cardonille, 34094, Montpellier cedex 05, France,
| | | | | |
Collapse
|
24
|
Bernard M, Dejos C, Bergès T, Régnacq M, Voisin P. Activation of rhodopsin gene transcription in cultured retinal precursors of chicken embryo: role of Ca2+
signaling and hyperpolarization-activated cation channels. J Neurochem 2013; 129:85-98. [DOI: 10.1111/jnc.12624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/13/2013] [Accepted: 11/22/2013] [Indexed: 11/29/2022]
|
25
|
Sekiguchi F, Aoki Y, Nakagawa M, Kanaoka D, Nishimoto Y, Tsubota-Matsunami M, Yamanaka R, Yoshida S, Kawabata A. AKAP-dependent sensitization of Ca(v) 3.2 channels via the EP(4) receptor/cAMP pathway mediates PGE(2) -induced mechanical hyperalgesia. Br J Pharmacol 2013; 168:734-45. [PMID: 22924591 DOI: 10.1111/j.1476-5381.2012.02174.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 07/30/2012] [Accepted: 08/15/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE The Ca(v) 3.2 isoform of T-type Ca(2+) channels (T channels) is sensitized by hydrogen sulfide, a pro-nociceptive gasotransmitter, and also by PKA that mediates PGE(2) -induced hyperalgesia. Here we examined and analysed Ca(v) 3.2 sensitization via the PGE(2) /cAMP pathway in NG108-15 cells that express Ca(v) 3.2 and produce cAMP in response to PGE(2) , and its impact on mechanical nociceptive processing in rats. EXPERIMENTAL APPROACH In NG108-15 cells and rat dorsal root ganglion (DRG) neurons, T-channel-dependent currents (T currents) were measured with the whole-cell patch-clamp technique. The molecular interaction of Ca(v) 3.2 with A-kinase anchoring protein 150 (AKAP150) and its phosphorylation were analysed by immunoprecipitation/immunoblotting in NG108-15 cells. Mechanical nociceptive threshold was determined by the paw pressure test in rats. KEY RESULTS In NG108-15 cells and/or rat DRG neurons, dibutyryl cAMP (db-cAMP) or PGE(2) increased T currents, an effect blocked by AKAP St-Ht31 inhibitor peptide (AKAPI) or KT5720, a PKA inhibitor. The effect of PGE(2) was abolished by RQ-00015986-00, an EP(4) receptor antagonist. AKAP150 was co-immunoprecipitated with Ca(v) 3.2, regardless of stimulation with db-cAMP, and Ca(v) 3.2 was phosphorylated by db-cAMP or PGE(2) . In rats, intraplantar (i.pl.) administration of db-cAMP or PGE(2) caused mechanical hyperalgesia, an effect suppressed by AKAPI, two distinct T-channel blockers, NNC 55-0396 and ethosuximide, or ZnCl(2) , known to inhibit Ca(v) 3.2 among T channels. Oral administration of RQ-00015986-00 suppressed the PGE(2) -induced mechanical hyperalgesia. CONCLUSION AND IMPLICATIONS Our findings suggest that PGE(2) causes AKAP-dependent phosphorylation and sensitization of Ca(v) 3.2 through the EP(4) receptor/cAMP/PKA pathway, leading to mechanical hyperalgesia in rats.
Collapse
Affiliation(s)
- Fumiko Sekiguchi
- Division of Pharmacology & Pathophysiology, Kinki University School of Pharmacy, Higashi-Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Louhivuori LM, Louhivuori V, Wigren HK, Hakala E, Jansson LC, Nordström T, Castrén ML, Akerman KE. Role of low voltage activated calcium channels in neuritogenesis and active migration of embryonic neural progenitor cells. Stem Cells Dev 2013; 22:1206-19. [PMID: 23234460 DOI: 10.1089/scd.2012.0234] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The central role of calcium influx and electrical activity in embryonic development raises important questions about the role and regulation of voltage-dependent calcium influx. Using cultured neural progenitor cell (NPC) preparations, we recorded barium currents through voltage-activated channels using the whole-cell configuration of the patch-clamp technique and monitored intracellular free calcium concentrations with Fura-2 digital imaging. We found that NPCs as well as expressing high-voltage-activated (HVA) calcium channels express functional low-threshold voltage-dependent calcium channels in the very early stages of differentiation (5 h to 1 day). The size of the currents recorded at -50 versus -20 mV after 1 day in differentiation was dependent on the nature of the charge carrier. Peak currents measured at -20 mV in the presence 10 mM Ca2+ instead of 10 mM Ba2+ had a tendency to be smaller, whereas the nature of the divalent species did not influence the amplitude measured at -50 mV. The T-type channel blockers mibefradil and NNC 55-0396 significantly reduced the calcium responses elicited by depolarizing with extracellular potassium, while the overall effect of the HVA calcium channel blockers was small at differentiation day 1. At differentiation day 20, the calcium responses were effectively blocked by nifedipine. Time-lapse imaging of differentiating neurospheres cultured in the presence of low-voltage-activated (LVA) blockers showed a significant decrease in the number of active migrating neuron-like cells and neurite extensions. Together, these data provide evidence that LVA calcium channels are involved in the physiology of differentiating and migrating NPCs.
Collapse
Affiliation(s)
- Lauri M Louhivuori
- Biomedicum Helsinki, Institute of Biomedicine/Physiology, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhang Y, Zhang J, Jiang D, Zhang D, Qian Z, Liu C, Tao J. Inhibition of T-type Ca²⁺ channels by endostatin attenuates human glioblastoma cell proliferation and migration. Br J Pharmacol 2012; 166:1247-60. [PMID: 22233416 DOI: 10.1111/j.1476-5381.2012.01852.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AND PURPOSE Endostatin (ES) is a c-terminal proteolytic fragment of collagen XVIII with promising antitumour properties in several tumour models, including human glioblastoma. We hypothesized that this peptide could interact with plasma membrane ion channels and modulate their functions. EXPERIMENTAL APPROACH Using cell proliferation and migration assays, patch clamp and Western blot analysis, we studied the effects of ES on the proliferation and migration of human glioblastoma U87 cells, mediated by T-type Ca²⁺ channels. KEY RESULTS Extracellular application of ES reversibly inhibited T-type Ca²⁺ channel currents (T-currents) in U87 cells, whereas L-type Ca²⁺ currents were not affected. This inhibitory effect was associated with a hyperpolarizing shift in the voltage-dependence of inactivation but was independent of G-protein and protein tyrosine kinase-mediated pathways. All three α₁ subunits of T-type Ca²⁺ channels (Ca(V) 3), α(1G) (Ca(V) 3.1), α(1H) (Ca(V) 3.2) and α(1I) (Ca(V) 3.3), were endogenously expressed in U87 cells. Using transfected HEK293 or CHO cells, we showed that only Ca(V) 3.1 and Ca(V) 3.2, but not Ca(V) 3.3 or Ca(V) 1.2 (L-type), channel currents were significantly inhibited. More interestingly, ES inhibited the proliferation and migration of U87 cells in a dose-dependent manner. Pretreatment of the cells with the specific T-type Ca²⁺ channel blocker mibefradil occluded these inhibitory effects of ES. CONCLUSION AND IMPLICATIONS This study provides the first evidence that the antitumour effects of ES on glioblastoma cells is through direct inhibition of T-type Ca²⁺ channels and gives new insights into the future development of a new class of antiglioblastoma agents that target the proliferation and migration of these cells.
Collapse
Affiliation(s)
- Yuan Zhang
- The Special Procurement Ward & Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Modulation of low-voltage-activated T-type Ca²⁺ channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1550-9. [PMID: 22975282 DOI: 10.1016/j.bbamem.2012.08.032] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 12/16/2022]
Abstract
Low-voltage-activated T-type Ca²⁺ channels contribute to a wide variety of physiological functions, most predominantly in the nervous, cardiovascular and endocrine systems. Studies have documented the roles of T-type channels in sleep, neuropathic pain, absence epilepsy, cell proliferation and cardiovascular function. Importantly, novel aspects of the modulation of T-type channels have been identified over the last few years, providing new insights into their physiological and pathophysiological roles. Although there is substantial literature regarding modulation of native T-type channels, the underlying molecular mechanisms have only recently begun to be addressed. This review focuses on recent evidence that the Ca(v)3 subunits of T-type channels, Ca(v)3.1, Ca(v)3.2 and Ca(v)3.3, are differentially modulated by a multitude of endogenous ligands including anandamide, monocyte chemoattractant protein-1, endostatin, and redox and oxidizing agents. The review also provides an overview of recent knowledge gained concerning downstream pathways involving G-protein-coupled receptors. This article is part of a Special Issue entitled: Calcium channels.
Collapse
|
29
|
Tadmouri A, Kiyonaka S, Barbado M, Rousset M, Fablet K, Sawamura S, Bahembera E, Pernet-Gallay K, Arnoult C, Miki T, Sadoul K, Gory-Faure S, Lambrecht C, Lesage F, Akiyama S, Khochbin S, Baulande S, Janssens V, Andrieux A, Dolmetsch R, Ronjat M, Mori Y, De Waard M. Cacnb4 directly couples electrical activity to gene expression, a process defective in juvenile epilepsy. EMBO J 2012; 31:3730-44. [PMID: 22892567 DOI: 10.1038/emboj.2012.226] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 07/17/2012] [Indexed: 12/11/2022] Open
Abstract
Calcium current through voltage-gated calcium channels (VGCC) controls gene expression. Here, we describe a novel signalling pathway in which the VGCC Cacnb4 subunit directly couples neuronal excitability to transcription. Electrical activity induces Cacnb4 association to Ppp2r5d, a regulatory subunit of PP2A phosphatase, followed by (i) nuclear translocation of Cacnb4/Ppp2r5d/PP2A, (ii) association with the tyrosine hydroxylase (TH) gene promoter through the nuclear transcription factor thyroid hormone receptor alpha (TRα), and (iii) histone binding through association of Cacnb4 with HP1γ concomitantly with Ser(10) histone H3 dephosphorylation by PP2A. This signalling cascade leads to TH gene repression by Cacnb4 and is controlled by the state of interaction between the SH3 and guanylate kinase (GK) modules of Cacnb4. The human R482X CACNB4 mutation, responsible for a form of juvenile myoclonic epilepsy, prevents association with Ppp2r5 and nuclear targeting of the complex by altering Cacnb4 conformation. These findings demonstrate that an intact VGCC subunit acts as a repressor recruiting platform to control neuronal gene expression.
Collapse
Affiliation(s)
- Abir Tadmouri
- Unité Inserm U, Grenoble Institute of Neuroscience, Université Joseph Fourier, La Tronche, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gaffuri AL, Ladarre D, Lenkei Z. Type-1 cannabinoid receptor signaling in neuronal development. Pharmacology 2012; 90:19-39. [PMID: 22776780 DOI: 10.1159/000339075] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 04/13/2012] [Indexed: 01/21/2023]
Abstract
The type-1 cannabinoid receptor (CB1R) was initially identified as the neuronal target of Δ(9)-tetrahydrocannabinol (THC), the major psychoactive substance of marijuana. This receptor is one of the most abundant G-protein-coupled receptors in the adult brain, the target of endocannabinoid ligands and a well-characterized retrograde synaptic regulator. However, CB1Rs are also highly and often transiently expressed in neuronal populations in the embryonic and early postnatal brain, even before the formation of synapses. This suggests important physiological roles for CB1Rs during neuronal development. Several recent reviews have summarized our knowledge about the role of the endocannabinoid (eCB) system in neurodevelopment and neurotransmission by focusing on the metabolism of endocannabinoid molecules. Here, we review current knowledge about the effects of the modulation of CB1R signaling during the different phases of brain development. More precisely, we focus on reports that directly implicate CB1Rs during progenitor cell migration and differentiation, neurite outgrowth, axonal pathfinding and synaptogenesis. Based on theoretical considerations and on the reviewed experimental data, we propose a new model to explain the diversity of experimental findings on eCB signaling on neurite growth and axonal pathfinding. In our model, cell-autonomus and paracrine eCBs acting on CB1Rs are part of a global inhibitory network of cytoskeletal effectors, which act in concert with positive-feedback local-excitation loops, to ultimately yield highly polarized neurons.
Collapse
Affiliation(s)
- Anne-Lise Gaffuri
- Neurobiology Laboratory, ESPCI-ParisTech, ESPCI-CNRS UMR 7637, Paris, France
| | | | | |
Collapse
|
31
|
|
32
|
Neurotrophin-4 modulates the mechanotransducer Cav3.2 T-type calcium current in mice down-hair neurons. Biochem J 2012; 441:463-71. [PMID: 21892923 DOI: 10.1042/bj20111147] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The T-type Ca2+ channel Cav3.2 is expressed in nociceptive and mechanosensitive sensory neurons. The mechanosensitive D-hair (down-hair) neurons, which innervate hair follicles, are characterized by a large-amplitude Cav3.2 T-current involved in the amplification of slow-moving stimuli. The molecules and signalling pathways that regulate T-current expression in mechanoreceptors are unknown. In the present study, we investigated the effects of NT-4 (neurotrophin-4) on Cav3.2 T-current expression in D-hair neurons in vitro. Interruption of the supply of NT-4 with peripheral nerve axotomy induced a non-transcriptional decrease in the T-current amplitude of fluorogold-labelled axotomized sensory neurons. The T-current amplitude was restored by incubation with NT-4. Deletion of NT-4 through genetic ablation resulted in a similar selective loss of the large-amplitude T-current in NT-4-/- sensory neurons, which was rescued by the addition of NT-4. NT-4 had no effect on the T-current in Cav3.2-/- D-hair neurons. Neither the biophysical properties of the T-current nor the transcript expression of Cav3.2 were modified by NT-4. Pharmacological screening of signalling pathways activated under the high-affinity NT-4 receptor TrkB (tropomyosin receptor kinase B) identified a role for PI3K (phosphoinositide 3-kinase) in the potentiation of T-current. The results of the present study demonstrate the post-transcriptional up-regulation of the Cav3.2 T-current through TrkB activation and identify NT-4 as a target-derived factor that regulates the mechanosensitive function of D-hair neurons through expression of the T-current.
Collapse
|
33
|
Chafai M, Basille M, Galas L, Rostene W, Gressens P, Vaudry H, Gonzalez B, Louiset E. Pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal polypeptide promote the genesis of calcium currents in differentiating mouse embryonic stem cells. Neuroscience 2011; 199:103-15. [DOI: 10.1016/j.neuroscience.2011.09.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 08/28/2011] [Accepted: 09/26/2011] [Indexed: 01/11/2023]
|
34
|
Iftinca MC. Neuronal T-type calcium channels: what's new? Iftinca: T-type channel regulation. J Med Life 2011; 4:126-38. [PMID: 21776294 PMCID: PMC3124264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 05/12/2011] [Indexed: 11/24/2022] Open
Abstract
This review summarizes recent advances in our understanding of neuronal T-type calcium channel regulation as well as their physiological and pathophysiological roles. Through their ability to conduct calcium across the cellular membrane at potentials close to the resting potential, T-type calcium channels are critically important for regulating neuronal excitability, both in the central and peripheral nervous system. T-type channels are also linked to an increasing number of neurological disorders such as the absence epilepsy and neuropathic pain. Although there is substantial literature dealing with regulation of native T-type channels, the underlying molecular mechanism has only recently been addressed. It is, therefore, critical to understand the cellular mechanisms that control T-type channel activity and expression, because this could provide important insight into designing novel therapeutic strategies targeting these channels.
Collapse
Affiliation(s)
- M C Iftinca
- Foothills Medical Centre, Department of Pathology, Calgary, AB, T2N 2T9, Canada.
| |
Collapse
|
35
|
Dey D, Shepherd A, Pachuau J, Martin-Caraballo M. Leukemia inhibitory factor regulates trafficking of T-type Ca2+ channels. Am J Physiol Cell Physiol 2010; 300:C576-87. [PMID: 21178106 DOI: 10.1152/ajpcell.00115.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neuropoietic cytokines such as ciliary neurotrophic factor (CNTF) and leukemia inhibitory factor (LIF) stimulate the functional expression of T-type Ca(2+) channels in developing sensory neurons. However, the molecular and cellular mechanisms involved in the cytokine-evoked membrane expression of T-type Ca(2+) channels are not fully understood. In this study we investigated the role of LIF in promoting the trafficking of T-type Ca(2+) channels in a heterologous expression system. Our results demonstrate that transfection of HEK-293 cells with the rat green fluorescent protein (GFP)-tagged T-type Ca(2+) channel α(1H)-subunit resulted in the generation of transient Ca(2+) currents. Overnight treatment of α(1H)-GFP-transfected cells with LIF caused a significant increase in the functional expression of T-type Ca(2+) channels as indicated by changes in current density. LIF also evoked a significant increase in membrane fluorescence compared with untreated cells. Disruption of the Golgi apparatus with brefeldin A inhibited the stimulatory effect of LIF, indicating that protein trafficking regulates the functional expression of T-type Ca(2+) channels. Trafficking of α(1H)-GFP was also disrupted by cotransfection of HEK-293 cells with the dominant-negative form of ADP-ribosylation factor (ARF)1 but not ARF6, suggesting that ARF1 regulates the LIF-evoked membrane trafficking of α(1H)-GFP subunits. Trafficking of T-type Ca(2+) channels required transient activation of the JAK and ERK signaling pathways since stimulation of HEK-293 cells with LIF evoked a considerable increase in the phosphorylation of the downstream JAK targets STAT3 and ERK. Pretreatment of HEK-293 cells with the JAK inhibitor P6 or the ERK inhibitor U0126 blocked ERK phosphorylation. Both P6 and U0126 also inhibited the stimulatory effect of LIF on T-type Ca(2+) channel expression. These findings demonstrate that cytokines like LIF promote the trafficking of T-type Ca(2+) channels.
Collapse
Affiliation(s)
- Deblina Dey
- Department of Biology, University of Vermont, Burlington, Vermont, USA
| | | | | | | |
Collapse
|
36
|
Sánchez-Alonso J, Muñoz-Cuevas J, Vicente-Torres M, Colino A. Role of low-voltage-activated calcium current on the firing pattern alterations induced by hypothyroidism in the rat hippocampus. Neuroscience 2010; 171:993-1005. [DOI: 10.1016/j.neuroscience.2010.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 09/29/2010] [Accepted: 10/01/2010] [Indexed: 01/20/2023]
|
37
|
Tarui T, Fukami K, Nagasawa K, Yoshida S, Sekiguchi F, Kawabata A. Involvement of Src kinase in T-type calcium channel-dependent neuronal differentiation of NG108-15 cells by hydrogen sulfide. J Neurochem 2010; 114:512-9. [DOI: 10.1111/j.1471-4159.2010.06774.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Godwin DW, Graef JD. A rising tide of calcium channels in acquired epilepsy. FUTURE NEUROLOGY 2009. [DOI: 10.2217/fnl.09.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Dwayne W Godwin
- Department of Neurobiology & Anatomy, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC 27157, USA
| | - John D Graef
- Department of Neurobiology & Anatomy, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC 27157, USA
| |
Collapse
|
39
|
Moruzzi AM, Abedini NC, Hansen MA, Olson JE, Bosma MM. Differential expression of membrane conductances underlies spontaneous event initiation by rostral midline neurons in the embryonic mouse hindbrain. J Physiol 2009; 587:5081-93. [PMID: 19736299 DOI: 10.1113/jphysiol.2009.180091] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Spontaneous activity is expressed in many developing CNS structures and is crucial in correct network development. Previous work using [Ca(2+)](i) imaging showed that in the embryonic mouse hindbrain spontaneous activity is initiated by a driver population, the serotonergic neurons of the nascent raphe. Serotonergic neurons derived from former rhombomere 2 drive 90% of all hindbrain events at E11.5. We now demonstrate that the electrical correlate of individual events is a spontaneous depolarization, which originates at the rostral midline and drives events laterally. Midline events have both a rapid spike and a large plateau component, while events in lateral tissue comprise only a smaller amplitude plateau. Lateral cells have a large resting conductance and are highly coupled via neurobiotin-permeant gap junctions, while midline cells are significantly less gap junction-coupled and uniquely express a T-type Ca(2+) channel. We propose that the combination of low resting conductance and expression of T-type Ca(2+) current is permissive for midline neurons to acquire the initiator or driver phenotype, while cells without these features cannot drive activity. This demonstrates that expression of specific conductances contributes to the ability to drive spontaneous activity in a developing network.
Collapse
Affiliation(s)
- Audrey M Moruzzi
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | | | | | | | | |
Collapse
|
40
|
Huc S, Monteil A, Bidaud I, Barbara G, Chemin J, Lory P. Regulation of T-type calcium channels: Signalling pathways and functional implications. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:947-52. [DOI: 10.1016/j.bbamcr.2008.11.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 11/04/2008] [Accepted: 11/06/2008] [Indexed: 11/15/2022]
|
41
|
Nagasawa K, Tarui T, Yoshida S, Sekiguchi F, Matsunami M, Ohi A, Fukami K, Ichida S, Nishikawa H, Kawabata A. Hydrogen sulfide evokes neurite outgrowth and expression of high-voltage-activated Ca2+ currents in NG108-15 cells: involvement of T-type Ca2+ channels. J Neurochem 2008; 108:676-84. [PMID: 19054275 DOI: 10.1111/j.1471-4159.2008.05808.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated if stimulation of T-type Ca(2+) channels with sodium hydrosulfide (NaHS), a donor of hydrogen sulfide (H(2)S), could cause neuronal differentiation of NG108-15 cells. Like dibutyryl cyclic AMP (db-cAMP), treatment with NaHS at 1.5-13.5 mM for 16 h enhanced neurite outgrowth in a concentration-dependent manner. Synergistic neuritogenic effect was obtained in the cells stimulated with NaHS in combination with db-cAMP at subeffective concentrations. Exposure to NaHS or db-cAMP for 2 days resulted in enhancement of expression of high-voltage-activated currents consisting of N-, P/Q-, L- and also other types, but not of T-type currents. Mibefradil, a pan-T-type channel blocker, abolished the neuritogenesis induced by NaHS, but not by db-cAMP. The NaHS-evoked neuritogenesis was also completely blocked by pretreatment with BAPTA/AM, a chelator of intracellular Ca(2+), and by zinc chloride at a concentration known to selectively inhibit Ca(v)3.2 isoform of T-type Ca(2+) channels, but not Ca(v)3.1 or Ca(v)3.3. Further, L-ascorbate, recently proven to selectively inhibit Ca(v)3.2, abolished the neuritogenic effect of NaHS, but not db-cAMP. Our data thus demonstrate that NaHS/H(2)S is a novel inducer of neuronal differentiation in NG108-15 cells, as characterized by neuritogenesis and expression of high-voltage-activated currents, and suggest the involvement of T-type Ca(2+) channels, especially Ca(v)3.2.
Collapse
Affiliation(s)
- Keita Nagasawa
- Division of Pharmacology and Pathophysiology, Kinki University School of Pharmacy, Higashi-Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Regulation of T-type Cav3.1 channels expression by synthetic glucocorticoid dexamethasone in neonatal cardiac myocytes. Mol Cell Biochem 2008; 320:173-83. [PMID: 18820838 DOI: 10.1007/s11010-008-9919-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 09/15/2008] [Indexed: 12/21/2022]
Abstract
The effect of the dexamethasone (Dex) on the regulation of the T-type Ca(2+) channel expressions was investigated in primary cultures of neonatal rat ventricular myocytes. We found that Dex (1 microM) increases the T-type Ca(2+) current (I(CaT)) associated with an increase in Ca(v)3.1 mRNA amount. We isolated the upstream region from Ca(v)3.1 encoding gene and tested the activity of the promoter in transfected ventricular myocytes. We found a minimal Dex-responsive region that displayed putative glucocorticoid receptor (GR) and nuclear factor kappa-B (NFkappaB) targets. The GR selective antagonist, RU38486 (10 microM), nearly turned off the transcriptional activity of Ca(v)3.1 encoding gene, and an NFkappaB inhibitor, pyrrolodine dithiocarbonate (10 microM), completely abolished the Dex-induced mRNA increase. However, Dex-induced GR and NFkappaB synthesis and nuclear translocation were not timely related to Ca(v)3.1 mRNA increase. These results indicate that both GR and NFkappaB were necessary, but not sufficient, to trigger the increase in Ca(v)3.1 mRNA amount. This study showed the relationship between glucocorticoid and T-type channels up-regulation that may be involved in cardiac development and pathology.
Collapse
|
43
|
Nie L, Zhu J, Gratton MA, Liao A, Mu KJ, Nonner W, Richardson GP, Yamoah EN. Molecular identity and functional properties of a novel T-type Ca2+ channel cloned from the sensory epithelia of the mouse inner ear. J Neurophysiol 2008; 100:2287-99. [PMID: 18753322 DOI: 10.1152/jn.90707.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The molecular identity of non-Cav1.3 channels in auditory and vestibular hair cells has remained obscure, yet the evidence in support of their roles to promote diverse Ca2+-dependent functions is indisputable. Recently, a transient Cav3.1 current that serves as a functional signature for the development and regeneration of hair cells has been identified in the chicken basilar papilla. The Cav3.1 current promotes spontaneous activity of the developing hair cell, which may be essential for synapse formation. Here, we have isolated and sequenced the full-length complementary DNA of a distinct isoform of Cav3.1 in the mouse inner ear. The channel is derived from alternative splicing of exon14, exon25A, exon34, and exon35. Functional expression of the channel in Xenopus oocytes yielded Ca2+ currents, which have a permeation phenotype consistent with T-type channels. However, unlike most multiion channels, the T-type channel does not exhibit the anomalous mole fraction effect, possibly reflecting comparable permeation properties of divalent cations. The Cav3.1 channel was expressed in sensory and nonsensory epithelia of the inner ear. Moreover, there are profound changes in the expression levels during development. The differential expression of the channel during development and the pharmacology of the inner ear Cav3.1 channel may have contributed to the difficulties associated with identification of the non-Cav1.3 currents.
Collapse
Affiliation(s)
- Liping Nie
- Center for Neuroscience, Program in Communication Science, University of California, Davis, 1544 Newton Ct., Davis, CA 95618, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Pachuau J, Martin-Caraballo M. Expression pattern of T-type Ca(2+) channels in embryonic chick nodose ganglion neurons. Dev Neurobiol 2008; 67:1901-14. [PMID: 17874458 DOI: 10.1002/dneu.20563] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study we have characterized the functional expression of T-type Ca(2+) channels in developing chick nodose neurons, a population of placode-derived sensory neurons innervating the heart and various visceral organs. Voltage-gated Ca(2+) currents were measured using whole cell patch clamp recordings in neurons acutely isolated between embryonic day (E) 7 and E20, prior to hatching. E7 nodose neurons express relatively large high voltage-activated (HVA) Ca(2+) currents. HVA current density progressively increases between E7 and E17. T-type Ca(2+) currents were restricted to a few nodose neurons between E7 and E10 but were present in approximately 60% of nodose neurons by E17. T-type Ca(2+) channels regulate the response of nodose neurons to injection of hyperpolarizing currents, but do not have any effect on the action potential waveform. Nickel ions blocked T-type Ca(2+) currents in a concentration-dependent manner with an IC(50) of 17 microM. The high sensitivity of T-type Ca(2+) channels to nickel blockade combined with sequencing of a partial cDNA suggests that T-type Ca(2+) currents are generated by alpha1H subunits in chick nodose neurons. Steady-state activation and inactivation kinetics were similar to those previously reported for other alpha1H channels in mammalian neurons. Semi-quantitative PCR analysis indicates that alpha1H mRNA was present in chick nodose neurons by E7, suggesting that the functional expression of T-type Ca(2+) channels involves a posttranscriptional mechanism. These findings demonstrate a distinct pattern of T-type Ca(2+) channel functional expression in placode-derived neurons when compared with CNS neurons.
Collapse
Affiliation(s)
- Judith Pachuau
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | | |
Collapse
|
45
|
Pachuau J, Martin-Caraballo M. Extrinsic regulation of T-type Ca(2+) channel expression in chick nodose ganglion neurons. Dev Neurobiol 2008; 67:1915-31. [PMID: 17874459 DOI: 10.1002/dneu.20560] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Functional expression of T-type Ca(2+) channels is developmentally regulated in chick nodose neurons. In this study we have tested the hypothesis that extrinsic factors regulate the expression of T-type Ca(2+) channels in vitro. Voltage-gated Ca(2+) currents were measured using whole-cell patch clamp recordings in E7 nodose neurons cultured under various conditions. Culture of E7 nodose neurons for 48 h with a heart extract induced the expression of T-type Ca(2+) channels without any significant effect on HVA currents. T-type Ca(2+) channel expression was not stimulated by survival promoting factors such as BDNF. The stimulatory effect of heart extract was mediated by a heat-labile, trypsin-sensitive factor. Various hematopoietic cytokines including CNTF and LIF mimic the stimulatory effect of heart extract on T-type Ca(2+) channel expression. The stimulatory effect of heart extract and CNTF requires at least 12 h continuous exposure to reach maximal expression and is not altered by culture of nodose neurons with the protein synthesis inhibitor anisomycin, suggesting that T-type Ca(2+) channel expression is regulated by a posttranslational mechanism. Disruption of the Golgi apparatus with brefeldin-A inhibits the stimulatory effect of heart extract and CNTF suggesting that protein trafficking regulates the functional expression of T-type Ca(2+) channels. Heart extract- or CNTF-evoked stimulation of T-type Ca(2+) channel expression is blocked by the Jak/STAT and MAP kinase blockers, AG490 and U0126, respectively. This study provides new insights into the electrical differentiation of placode-derived sensory neurons and the role of extrinsic factors in regulating the functional expression of Ca(2+) channels.
Collapse
Affiliation(s)
- Judith Pachuau
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | | |
Collapse
|
46
|
Kawaguchi A, Asano H, Matsushima K, Wada T, Yoshida S, Ichida S. Enhancement of sodium current in NG108-15 cells during neural differentiation is mainly due to an increase in NaV1.7 expression. Neurochem Res 2007; 32:1469-75. [PMID: 17404832 DOI: 10.1007/s11064-007-9334-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Accepted: 03/16/2007] [Indexed: 12/19/2022]
Abstract
It is well known that morphological and functional changes during neural differentiation sometimes accompany the expression of various voltage-gated ion channels. In this work, we investigated whether the enhancement of sodium current in differentiated neuroblastoma x glioma NG108-15 cells treated with dibutyryl cAMP is related to the expression of voltage-gated sodium channels. The results were as follows. (1) Sodium current density on peak voltage in differentiated cells was significantly enhanced compared with that in undifferentiated cells, as detected by the whole-cell patch clamp method. The steady-state inactivation curve in differentiated cells was similar to that for undifferentiated cells, but a hyperpolarized shift in the activation curve for differentiated cells was observed. The sodium currents of differentiated and undifferentiated cells were completely inhibited by 10(-7) M tetrodotoxin (TTX). (2) The only Na(V) mRNA with an increased expression level during neuronal differentiation was that for NaV1.7, as observed by real-time PCR analysis. (3) The increase in the level of NaV1.7 alpha subunit expression during neuronal differentiation was also observed by immunocytochemistry; in particular, the localization of NaV1.7 alpha subunits on the soma, varicosities and growth cone was significant. These results suggest that the enhancement of TTX-sensitive sodium current density in differentiated NG108-15 cells is mainly due to the increase in the expression of the TTX-sensitive voltage-gated Na+ channel, NaV1.7.
Collapse
Affiliation(s)
- Akinori Kawaguchi
- Department of Biological Chemistry, School of Pharmacy, Kinki University , Kowakae 3-4-1, Higasiosaka 577-8502, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Kawabata A, Ishiki T, Nagasawa K, Yoshida S, Maeda Y, Takahashi T, Sekiguchi F, Wada T, Ichida S, Nishikawa H. Hydrogen sulfide as a novel nociceptive messenger. Pain 2007; 132:74-81. [PMID: 17346888 DOI: 10.1016/j.pain.2007.01.026] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 11/27/2006] [Accepted: 01/29/2007] [Indexed: 11/20/2022]
Abstract
Hydrogen sulfide (H(2)S), an endogenous gasotransmitter, modulates various biological events such as inflammation in the mammalian body. The present study investigated possible involvement of H(2)S in peripheral nociceptive processing. Intraplantar (i.pl.) administration of NaHS, a H(2)S donor, produced prompt hyperalgesia in rats, accompanied by expression of Fos in the spinal dorsal horn. The H(2)S-evoked hyperalgesia was blocked by 5,5'-dithio-bis-(2-nitrobenzoic acid) (DTNB), an oxidizing agent, or ethosuximide and mibefradil, T-type Ca(2+) channel inhibitors. L-Cysteine, an endogenous source for H(2)S, given i.pl., also elicited hyperalgesia, an effect being abolished by DL-propargylglycine (PPG) and beta-cyanoalanine (BCA), inhibitors of cystathionine-gamma-lyase, a H(2)S synthesizing enzyme. PPG and/or BCA partially inhibited the hyperalgesia induced by i.pl. lipopolysaccharide, an effect being reversed by i.pl. NaHS. In the patch-clamp study using undifferentiated NG108-15 cells that express T-type, but not other types, of Ca(2+) channels, NaHS enhanced the currents through the T-type channels, an effect being blocked by DTNB. Thus, H(2)S appears to function as a novel nociceptive messenger through sensitization of T-type Ca(2+) channels in the peripheral tissues, particularly during inflammation.
Collapse
Affiliation(s)
- Atsufumi Kawabata
- Division of Physiology and Pathophysiology, Department of Pharmacy, School of Pharmacy, Kinki University, Higashi-Osaka 577-8502, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Cagide E, Louzao MC, Ares IR, Vieytes MR, Yotsu-Yamashita M, Paquette LA, Yasumoto T, Botana LM. Effects of a Synthetic Analog of Polycavernoside A on Human Neuroblastoma Cells. Cell Physiol Biochem 2007; 19:185-94. [PMID: 17310112 DOI: 10.1159/000099206] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Polycavernoside A is a glycosidic marine toxin first extracted from the red alga Polycavernosa tsudai in 1991 when 3 people died after the ingestion of this food. Polycavernoside A is an interesting molecule because of its complex macrolide structure and strong bioactivity. However, the target site of this toxin has not been characterized. METHODS We studied the effects of a synthethic analog of polycavernoside A on human neuroblastoma cells by measuring changes in membrane potential with bis-oxonol and variations in intracellular calcium levels with fura-2. Fluorescent phalloidin was utilized for assaying activity on actin cytoskeleton. RESULTS Data showed that this polycavernoside A analog induced a membrane depolarization and an increase in cytosolic calcium levels. CONCLUSION These results provide the first insight into the mode of action of polycavernoside A, suggesting that: i) this toxin triggers an initial extracellular calcium entry neither produced across L-type voltage-gated calcium channels nor activation of muscarinic receptors ii) there is a depolarization induced by the toxin and due to the extracellular calcium entry.
Collapse
Affiliation(s)
- Eva Cagide
- Departamento de Farmacologia. Facultad de Veterinaria. Universidad de Santiago de Compostela. Campus de Lugo. Lugo, Spain
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Voltage-gated calcium channels, calcium signaling, and channelopathies. CALCIUM - A MATTER OF LIFE OR DEATH 2007. [DOI: 10.1016/s0167-7306(06)41005-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
50
|
Thomas D. The mineral depletion of foods available to us as a nation (1940-2002)--a review of the 6th Edition of McCance and Widdowson. Nutr Health 2007; 19:21-55. [PMID: 18309763 DOI: 10.1177/026010600701900205] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Over the past 60 years there have been fundamental changes in the quality and quantity of food available to us as a nation. The character, growing method, preparation, source and ultimate presentation of basic staples have changed significantly to the extent that trace elements and micronutrient contents have been severely depleted. This trend, established in a review of the 5th Edition of McCance & Widdowson's The Composition of Foods, is still apparent in this review of the 6th edition of the same work. Concurrently there has been a precipitous change towards convenience and pre-prepared foods containing saturated fats, highly processed meats and refined carbohydrates, often devoid of vital micronutrients yet packed with a cocktail of chemical additives including colourings, flavourings and preservatives. It is proposed that these changes are significant contributors to rising levels of diet-induced ill health. Ongoing research clearly demonstrates a significant relationship between deficiencies in micronutrients and physical and mental ill health.
Collapse
Affiliation(s)
- David Thomas
- Register of Nutritional Therapists, silverdale, East Sussex, UK.
| |
Collapse
|