1
|
Leung HW, Foo G, VanDongen A. Arc Regulates Transcription of Genes for Plasticity, Excitability and Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10081946. [PMID: 36009494 PMCID: PMC9405677 DOI: 10.3390/biomedicines10081946] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
The immediate early gene Arc is a master regulator of synaptic function and a critical determinant of memory consolidation. Here, we show that Arc interacts with dynamic chromatin and closely associates with histone markers for active enhancers and transcription in cultured rat hippocampal neurons. Both these histone modifications, H3K27Ac and H3K9Ac, have recently been shown to be upregulated in late-onset Alzheimer’s disease (AD). When Arc induction by pharmacological network activation was prevented using a short hairpin RNA, the expression profile was altered for over 1900 genes, which included genes associated with synaptic function, neuronal plasticity, intrinsic excitability, and signalling pathways. Interestingly, about 100 Arc-dependent genes are associated with the pathophysiology of AD. When endogenous Arc expression was induced in HEK293T cells, the transcription of many neuronal genes was increased, suggesting that Arc can control expression in the absence of activated signalling pathways. Taken together, these data establish Arc as a master regulator of neuronal activity-dependent gene expression and suggest that it plays a significant role in the pathophysiology of AD.
Collapse
Affiliation(s)
| | - Gabriel Foo
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Antonius VanDongen
- Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
- Correspondence:
| |
Collapse
|
2
|
Piniella D, Martínez-Blanco E, Bartolomé-Martín D, Sanz-Martos AB, Zafra F. Identification by proximity labeling of novel lipidic and proteinaceous potential partners of the dopamine transporter. Cell Mol Life Sci 2021; 78:7733-7756. [PMID: 34709416 PMCID: PMC8629785 DOI: 10.1007/s00018-021-03998-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/07/2021] [Accepted: 10/17/2021] [Indexed: 12/05/2022]
Abstract
Dopamine (DA) transporters (DATs) are regulated by trafficking and modulatory processes that probably rely on stable and transient interactions with neighboring proteins and lipids. Using proximity-dependent biotin identification (BioID), we found novel potential partners for DAT, including several membrane proteins, such as the transmembrane chaperone 4F2hc, the proteolipid M6a and a potential membrane receptor for progesterone (PGRMC2). We also detected two cytoplasmic proteins: a component of the Cullin1-dependent ubiquitination machinery termed F-box/LRR-repeat protein 2 (FBXL2), and the enzyme inositol 5-phosphatase 2 (SHIP2). Immunoprecipitation (IP) and immunofluorescence studies confirmed either a physical association or a close spatial proximity between these proteins and DAT. M6a, SHIP2 and the Cullin1 system were shown to increase DAT activity in coexpression experiments, suggesting a functional role for their association. Deeper analysis revealed that M6a, which is enriched in neuronal protrusions (filopodia or dendritic spines), colocalized with DAT in these structures. In addition, the product of SHIP2 enzymatic activity (phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2]) was tightly associated with DAT, as shown by co-IP and by colocalization of mCherry-DAT with a specific biosensor for this phospholipid. PI(3,4)P2 strongly stimulated transport activity in electrophysiological recordings, and conversely, inhibition of SHIP2 reduced DA uptake in several experimental systems including striatal synaptosomes and the dopaminergic cell line SH-SY5Y. In summary, here we report several potential new partners for DAT and a novel regulatory lipid, which may represent new pharmacological targets for DAT, a pivotal protein in dopaminergic function of the brain.
Collapse
Affiliation(s)
- Dolores Piniella
- Centro de Biología Molecular Severo Ochoa and Departamento de Biología Molecular, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, C / Nicolás Cabrera 1, 28049, Madrid, Spain
- IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Martínez-Blanco
- Centro de Biología Molecular Severo Ochoa and Departamento de Biología Molecular, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, C / Nicolás Cabrera 1, 28049, Madrid, Spain
- IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - David Bartolomé-Martín
- Centro de Biología Molecular Severo Ochoa and Departamento de Biología Molecular, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, C / Nicolás Cabrera 1, 28049, Madrid, Spain
- IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, Tenerife, Spain
| | - Ana B Sanz-Martos
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, 28925, Madrid, Spain
| | - Francisco Zafra
- Centro de Biología Molecular Severo Ochoa and Departamento de Biología Molecular, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, C / Nicolás Cabrera 1, 28049, Madrid, Spain.
- IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Ryan RM, Ingram SL, Scimemi A. Regulation of Glutamate, GABA and Dopamine Transporter Uptake, Surface Mobility and Expression. Front Cell Neurosci 2021; 15:670346. [PMID: 33927596 PMCID: PMC8076567 DOI: 10.3389/fncel.2021.670346] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 01/31/2023] Open
Abstract
Neurotransmitter transporters limit spillover between synapses and maintain the extracellular neurotransmitter concentration at low yet physiologically meaningful levels. They also exert a key role in providing precursors for neurotransmitter biosynthesis. In many cases, neurons and astrocytes contain a large intracellular pool of transporters that can be redistributed and stabilized in the plasma membrane following activation of different signaling pathways. This means that the uptake capacity of the brain neuropil for different neurotransmitters can be dynamically regulated over the course of minutes, as an indirect consequence of changes in neuronal activity, blood flow, cell-to-cell interactions, etc. Here we discuss recent advances in the mechanisms that control the cell membrane trafficking and biophysical properties of transporters for the excitatory, inhibitory and modulatory neurotransmitters glutamate, GABA, and dopamine.
Collapse
Affiliation(s)
- Renae M. Ryan
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Susan L. Ingram
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States
| | | |
Collapse
|
4
|
Juarez-Navarro K, Ayala-Garcia VM, Ruiz-Baca E, Meneses-Morales I, Rios-Banuelos JL, Lopez-Rodriguez A. Assistance for Folding of Disease-Causing Plasma Membrane Proteins. Biomolecules 2020; 10:biom10050728. [PMID: 32392767 PMCID: PMC7277483 DOI: 10.3390/biom10050728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
An extensive catalog of plasma membrane (PM) protein mutations related to phenotypic diseases is associated with incorrect protein folding and/or localization. These impairments, in addition to dysfunction, frequently promote protein aggregation, which can be detrimental to cells. Here, we review PM protein processing, from protein synthesis in the endoplasmic reticulum to delivery to the PM, stressing the main repercussions of processing failures and their physiological consequences in pathologies, and we summarize the recent proposed therapeutic strategies to rescue misassembled proteins through different types of chaperones and/or small molecule drugs that safeguard protein quality control and regulate proteostasis.
Collapse
|
5
|
Joseph D, Pidathala S, Mallela AK, Penmatsa A. Structure and Gating Dynamics of Na +/Cl - Coupled Neurotransmitter Transporters. Front Mol Biosci 2019; 6:80. [PMID: 31555663 PMCID: PMC6742698 DOI: 10.3389/fmolb.2019.00080] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/21/2019] [Indexed: 12/24/2022] Open
Abstract
Neurotransmitters released at the neural synapse through vesicle exocytosis are spatiotemporally controlled by the action of neurotransmitter transporters. Integral membrane proteins of the solute carrier 6 (SLC6) family are involved in the sodium and chloride coupled uptake of biogenic amine neurotransmitters including dopamine, serotonin, noradrenaline and inhibitory neurotransmitters including glycine and γ-amino butyric acid. This ion-coupled symport works through a well-orchestrated gating of substrate through alternating-access, which is mediated through movements of helices that resemble a rocking-bundle. A large array of commercially prescribed drugs and psychostimulants selectively target neurotransmitter transporters thereby modulating their levels in the synaptic space. Drug-induced changes in the synaptic neurotransmitter levels can be used to treat depression or neuropathic pain whereas in some instances prolonged usage can lead to habituation. Earlier structural studies of bacterial neurotransmitter transporter homolog LeuT and recent structure elucidation of the Drosophila dopamine transporter (dDAT) and human serotonin transporter (hSERT) have yielded a wealth of information in understanding the transport and inhibition mechanism of neurotransmitter transporters. Computational studies based on the structures of dDAT and hSERT have shed light on the dynamics of varied components of these molecular gates in affecting the uphill transport of neurotransmitters. This review seeks to address structural dynamics of neurotransmitter transporters at the extracellular and intracellular gates and the effect of inhibitors on the ligand-binding pocket. We also delve into the effect of additional factors including lipids and cytosolic domains that influence the translocation of neurotransmitters across the membrane.
Collapse
Affiliation(s)
- Deepthi Joseph
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | | | - Aravind Penmatsa
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
6
|
Structural and Functional Characterization of the Interaction of Snapin with the Dopamine Transporter: Differential Modulation of Psychostimulant Actions. Neuropsychopharmacology 2018; 43:1041-1051. [PMID: 28905875 PMCID: PMC5854797 DOI: 10.1038/npp.2017.217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 12/12/2022]
Abstract
The importance of dopamine (DA) neurotransmission is emphasized by its direct implication in several neurological and psychiatric disorders. The DA transporter (DAT), target of psychostimulant drugs, is the key protein that regulates spatial and temporal activity of DA in the synaptic cleft via the rapid reuptake of DA into the presynaptic terminal. There is strong evidence suggesting that DAT-interacting proteins may have a role in its function and regulation. Performing a two-hybrid screening, we identified snapin, a SNARE-associated protein implicated in synaptic transmission, as a new binding partner of the carboxyl terminal of DAT. Our data show that snapin is a direct partner and regulator of DAT. First, we determined the domains required for this interaction in both proteins and characterized the DAT-snapin interface by generating a 3D model. Using different approaches, we demonstrated that (i) snapin is expressed in vivo in dopaminergic neurons along with DAT; (ii) both proteins colocalize in cultured cells and brain and, (iii) DAT and snapin are present in the same protein complex. Moreover, by functional studies we showed that snapin produces a significant decrease in DAT uptake activity. Finally, snapin downregulation in mice produces an increase in DAT levels and transport activity, hence increasing DA concentration and locomotor response to amphetamine. In conclusion, snapin/DAT interaction represents a direct link between exocytotic and reuptake mechanisms and is a potential target for DA transmission modulation.
Collapse
|
7
|
Bermingham DP, Blakely RD. Kinase-dependent Regulation of Monoamine Neurotransmitter Transporters. Pharmacol Rev 2016; 68:888-953. [PMID: 27591044 PMCID: PMC5050440 DOI: 10.1124/pr.115.012260] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Modulation of neurotransmission by the monoamines dopamine (DA), norepinephrine (NE), and serotonin (5-HT) is critical for normal nervous system function. Precise temporal and spatial control of this signaling in mediated in large part by the actions of monoamine transporters (DAT, NET, and SERT, respectively). These transporters act to recapture their respective neurotransmitters after release, and disruption of clearance and reuptake has significant effects on physiology and behavior and has been linked to a number of neuropsychiatric disorders. To ensure adequate and dynamic control of these transporters, multiple modes of control have evolved to regulate their activity and trafficking. Central to many of these modes of control are the actions of protein kinases, whose actions can be direct or indirectly mediated by kinase-modulated protein interactions. Here, we summarize the current state of our understanding of how protein kinases regulate monoamine transporters through changes in activity, trafficking, phosphorylation state, and interacting partners. We highlight genetic, biochemical, and pharmacological evidence for kinase-linked control of DAT, NET, and SERT and, where applicable, provide evidence for endogenous activators of these pathways. We hope our discussion can lead to a more nuanced and integrated understanding of how neurotransmitter transporters are controlled and may contribute to disorders that feature perturbed monoamine signaling, with an ultimate goal of developing better therapeutic strategies.
Collapse
Affiliation(s)
- Daniel P Bermingham
- Department of Pharmacology (D.P.B., R.D.B.) and Psychiatry (R.D.B.), Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Biomedical Sciences, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, Florida (R.D.B.)
| | - Randy D Blakely
- Department of Pharmacology (D.P.B., R.D.B.) and Psychiatry (R.D.B.), Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Biomedical Sciences, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, Florida (R.D.B.)
| |
Collapse
|
8
|
Perez JD, Rubinstein ND, Dulac C. New Perspectives on Genomic Imprinting, an Essential and Multifaceted Mode of Epigenetic Control in the Developing and Adult Brain. Annu Rev Neurosci 2016; 39:347-84. [PMID: 27145912 DOI: 10.1146/annurev-neuro-061010-113708] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mammalian evolution entailed multiple innovations in gene regulation, including the emergence of genomic imprinting, an epigenetic regulation leading to the preferential expression of a gene from its maternal or paternal allele. Genomic imprinting is highly prevalent in the brain, yet, until recently, its central roles in neural processes have not been fully appreciated. Here, we provide a comprehensive survey of adult and developmental brain functions influenced by imprinted genes, from neural development and wiring to synaptic function and plasticity, energy balance, social behaviors, emotions, and cognition. We further review the widespread identification of parental biases alongside monoallelic expression in brain tissues, discuss their potential roles in dosage regulation of key neural pathways, and suggest possible mechanisms underlying the dynamic regulation of imprinting in the brain. This review should help provide a better understanding of the significance of genomic imprinting in the normal and pathological brain of mammals including humans.
Collapse
Affiliation(s)
- Julio D Perez
- Department of Molecular and Cellular Biology, Harvard University, Howard Hughes Medical Institute, Cambridge, Massachusetts 02138;
| | - Nimrod D Rubinstein
- Department of Molecular and Cellular Biology, Harvard University, Howard Hughes Medical Institute, Cambridge, Massachusetts 02138;
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Harvard University, Howard Hughes Medical Institute, Cambridge, Massachusetts 02138;
| |
Collapse
|
9
|
Verma V. Classic Studies on the Interaction of Cocaine and the Dopamine Transporter. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2015; 13:227-38. [PMID: 26598579 PMCID: PMC4662164 DOI: 10.9758/cpn.2015.13.3.227] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 05/29/2015] [Accepted: 06/05/2015] [Indexed: 11/18/2022]
Abstract
The dopamine transporter is responsible for recycling dopamine after release. Inhibitors of the dopamine transporter, such as cocaine, will stop the reuptake of dopamine and allow it to stay extracellularly, causing prominent changes at the molecular, cellular, and behavioral levels. There is much left to be known about the mechanism and site(s) of binding, as well as the effect that cocaine administration does to dopamine transporter-cocaine binding sites and gene expression which also plays a strong role in cocaine abusers and their behavioral characteristics. Thus, if more light is shed on the dopamine transporter-cocaine interaction, treatments for addiction and even other diseases of the dopaminergic system may not be too far ahead. As today's ongoing research expands on the shoulders of classic research done in the 1990s and 2000s, the foundation of core research done in that time period will be reviewed, which forms the basis of today's work and tomorrow's therapies.
Collapse
Affiliation(s)
- Vivek Verma
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Rooney KE, Wallace LJ. Computational modeling of extracellular dopamine kinetics suggests low probability of neurotransmitter release. Synapse 2015; 69:515-25. [PMID: 26248886 DOI: 10.1002/syn.21845] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/25/2015] [Accepted: 07/11/2015] [Indexed: 02/03/2023]
Abstract
Dopamine in the striatum signals the saliency of current environmental input and is involved in learned formation of appropriate responses. The regular baseline-firing rate of dopaminergic neurons suggests that baseline dopamine is essential for proper brain function. The first goal of the study was to estimate the likelihood of full exocytotic dopamine release associated with each firing event under baseline conditions. A computer model of extracellular space associated with a single varicosity was developed using the program MCell to estimate kinetics of extracellular dopamine. Because the literature provides multiple kinetic values for dopamine uptake depending on the system tested, simulations were run using different kinetic parameters. With all sets of kinetic parameters evaluated, at most, 25% of a single vesicle per varicosity would need to be released per firing event to maintain a 5-10 nM extracellular dopamine concentration, the level reported by multiple microdialysis experiments. The second goal was to estimate the fraction of total amount of stored dopamine released during a highly stimulated condition. This was done using the same model system to simulate published measurements of extracellular dopamine following electrical stimulation of striatal slices in vitro. The results suggest the amount of dopamine release induced by a single electrical stimulation may be as large as the contents of two vesicles per varicosity. We conclude that dopamine release probability at any particular varicosity is low. This suggests that factors capable of increasing release probability could have a powerful effect on sculpting dopamine signals.
Collapse
Affiliation(s)
- Katherine E Rooney
- Division of Pharmacology, College of Pharmacy, the Ohio State University, 500 W. 12th Avenue Columbus, Ohio, 43210
| | - Lane J Wallace
- Division of Pharmacology, College of Pharmacy, the Ohio State University, 500 W. 12th Avenue Columbus, Ohio, 43210.,500 West 12th Avenue Columbus, Ohio, 43210
| |
Collapse
|
11
|
Luk B, Mohammed M, Liu F, Lee FJS. A Physical Interaction between the Dopamine Transporter and DJ-1 Facilitates Increased Dopamine Reuptake. PLoS One 2015; 10:e0136641. [PMID: 26305376 PMCID: PMC4549284 DOI: 10.1371/journal.pone.0136641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 08/06/2015] [Indexed: 11/18/2022] Open
Abstract
The regulation of the dopamine transporter (DAT) impacts extracellular dopamine levels after release from dopaminergic neurons. Furthermore, a variety of protein partners have been identified that can interact with and modulate DAT function. In this study we show that DJ-1 can potentially modulate DAT function. Co-expression of DAT and DJ-1 in HEK-293T cells leads to an increase in [3H] dopamine uptake that does not appear to be mediated by increased total DAT expression but rather through an increase in DAT cell surface localization. In addition, through a series of GST affinity purifications and co-immunoprecipitations, we provide evidence that the DAT can be found in a complex with DJ-1, which involve distinct regions within both DAT and DJ-1. Using in vitro binding experiments we also show that this complex can be formed in part by a direct interaction between DAT and DJ-1. Co-expression of a mini-gene that can disrupt the DAT/DJ-1 complex appears to block the increase in [3H] dopamine uptake by DJ-1. Mutations in DJ-1 have been linked to familial forms of Parkinson’s disease, yet the normal physiological function of DJ-1 remains unclear. Our study suggests that DJ-1 may also play a role in regulating dopamine levels by modifying DAT activity.
Collapse
Affiliation(s)
- Beryl Luk
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Mohinuddin Mohammed
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Fang Liu
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Frank J. S. Lee
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail:
| |
Collapse
|
12
|
Bonthuis PJ, Huang WC, Stacher Hörndli CN, Ferris E, Cheng T, Gregg C. Noncanonical Genomic Imprinting Effects in Offspring. Cell Rep 2015; 12:979-91. [PMID: 26235621 DOI: 10.1016/j.celrep.2015.07.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 06/19/2015] [Accepted: 07/08/2015] [Indexed: 12/13/2022] Open
Abstract
Here, we describe an RNA-sequencing (RNA-seq)-based approach that accurately detects even modest maternal or paternal allele expression biases at the tissue level, which we call noncanonical genomic imprinting effects. We profile imprinting in the arcuate nucleus (ARN) and dorsal raphe nucleus of the female mouse brain as well as skeletal muscle (mesodermal) and liver (endodermal). Our study uncovers hundreds of noncanonical autosomal and X-linked imprinting effects. Noncanonical imprinting is highly tissue-specific and enriched in the ARN, but rare in the liver. These effects are reproducible across different genetic backgrounds and associated with allele-specific chromatin. Using in situ hybridization for nascent RNAs, we discover that autosomal noncanonical imprinted genes with a tissue-level allele bias exhibit allele-specific expression effects in subpopulations of neurons in the brain in vivo. We define noncanonical imprinted genes that regulate monoamine signaling and determine that these effects influence the impact of inherited mutations on offspring behavior.
Collapse
Affiliation(s)
- Paul J Bonthuis
- Department of Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132-3401, USA
| | - Wei-Chao Huang
- Department of Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132-3401, USA
| | - Cornelia N Stacher Hörndli
- Department of Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132-3401, USA
| | - Elliott Ferris
- Department of Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132-3401, USA
| | - Tong Cheng
- Department of Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132-3401, USA
| | - Christopher Gregg
- Department of Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132-3401, USA; Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84132-3401, USA.
| |
Collapse
|
13
|
Identification of a Vav2-dependent mechanism for GDNF/Ret control of mesolimbic DAT trafficking. Nat Neurosci 2015; 18:1084-93. [PMID: 26147533 DOI: 10.1038/nn.4060] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 06/11/2015] [Indexed: 11/08/2022]
Abstract
Dopamine (DA) homeostasis is essential for a variety of brain activities. Dopamine transporter (DAT)-mediated DA reuptake is one of the most critical mechanisms for normal DA homeostasis. However, the molecular mechanisms underlying the regulation of DAT activity in the brain remain poorly understood. Here we show that the Rho-family guanine nucleotide exchange factor protein Vav2 is required for DAT cell surface expression and transporter activity modulated by glial cell line-derived neurotrophic factor (GDNF) and its cognate receptor Ret. Mice deficient in either Vav2 or Ret displayed elevated DAT activity, which was accompanied by an increase in intracellular DA selectively in the nucleus accumbens. Vav2(-/-) mice exposed to cocaine showed reduced DAT activity and diminished behavioral cocaine response. Our data demonstrate that Vav2 is a determinant of DAT trafficking in vivo and contributes to the maintenance of DA homeostasis in limbic DA neuron terminals.
Collapse
|
14
|
De Gois S, Slama P, Pietrancosta N, Erdozain AM, Louis F, Bouvrais-Veret C, Daviet L, Giros B. Ctr9, a Protein in the Transcription Complex Paf1, Regulates Dopamine Transporter Activity at the Plasma Membrane. J Biol Chem 2015; 290:17848-17862. [PMID: 26048990 DOI: 10.1074/jbc.m115.646315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Indexed: 01/01/2023] Open
Abstract
Dopamine (DA) is a major regulator of sensorimotor and cognitive functions. The DA transporter (DAT) is the key protein that regulates the spatial and temporal activity of DA release into the synaptic cleft via the rapid reuptake of DA into presynaptic termini. Several lines of evidence have suggested that transporter-interacting proteins may play a role in DAT function and regulation. Here, we identified the tetratricopeptide repeat domain-containing protein Ctr9 as a novel DAT binding partner using a yeast two-hybrid system. We showed that Ctr9 is expressed in dopaminergic neurons and forms a stable complex with DAT in vivo via GST pulldown and co-immunoprecipitation assays. In mammalian cells co-expressing both proteins, Ctr9 partially colocalizes with DAT at the plasma membrane. This interaction between DAT and Ctr9 results in a dramatic enhancement of DAT-mediated DA uptake due to an increased number of DAT transporters at the plasma membrane. We determined that the binding of Ctr9 to DAT requires residues YKF in the first half of the DAT C terminus. In addition, we characterized Ctr9, providing new insight into this protein. Using three-dimensional modeling, we identified three novel tetratricopeptide repeat domains in the Ctr9 sequence, and based on deletion mutation experiments, we demonstrated the role of the SH2 domain of Ctr9 in nuclear localization. Our results demonstrate that Ctr9 localization is not restricted to the nucleus, as previously described for the transcription complex Paf1. Taken together, our data provide evidence that Ctr9 modulates DAT function by regulating its trafficking.
Collapse
Affiliation(s)
- Stéphanie De Gois
- INSERM U952, 75005 Paris, France; CNRS UMR 7224, 75005 Paris, France; Université Pierre et Marie Curie, Neuroscience Paris Seine, 75005 Paris, France; Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montreal H4H 1R3 Quebec, Canada
| | - Patrick Slama
- INSERM U952, 75005 Paris, France; CNRS UMR 7224, 75005 Paris, France; Université Pierre et Marie Curie, Neuroscience Paris Seine, 75005 Paris, France
| | - Nicolas Pietrancosta
- Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France; CNRS, UMR 8601, 75006 Paris, France
| | - Amaia M Erdozain
- INSERM U952, 75005 Paris, France; CNRS UMR 7224, 75005 Paris, France; Université Pierre et Marie Curie, Neuroscience Paris Seine, 75005 Paris, France
| | - Franck Louis
- INSERM U952, 75005 Paris, France; CNRS UMR 7224, 75005 Paris, France; Université Pierre et Marie Curie, Neuroscience Paris Seine, 75005 Paris, France
| | - Caroline Bouvrais-Veret
- INSERM U952, 75005 Paris, France; CNRS UMR 7224, 75005 Paris, France; Université Pierre et Marie Curie, Neuroscience Paris Seine, 75005 Paris, France
| | | | - Bruno Giros
- INSERM U952, 75005 Paris, France; CNRS UMR 7224, 75005 Paris, France; Université Pierre et Marie Curie, Neuroscience Paris Seine, 75005 Paris, France; Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montreal H4H 1R3 Quebec, Canada.
| |
Collapse
|
15
|
Vecchio LM, Bermejo MK, Beerepoot P, Ramsey AJ, Salahpour A. N-terminal tagging of the dopamine transporter impairs protein expression and trafficking in vivo. Mol Cell Neurosci 2014; 61:123-32. [PMID: 24886986 DOI: 10.1016/j.mcn.2014.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 05/22/2014] [Accepted: 05/29/2014] [Indexed: 01/26/2023] Open
Abstract
The dopamine transporter (DAT) is the primary protein responsible for the uptake of dopamine from the extracellular space back into presynaptic neurons. As such, it plays an important role in the cessation of dopaminergic neurotransmission and in the maintenance of extracellular dopamine homeostasis. Here, we report the development of a new BAC transgenic mouse line that expresses DAT with an N-terminal HA-epitope (HAD-Tg). In this line, two copies of the HA-DAT BAC are incorporated into the genome, increasing DAT mRNA levels by 47%. Despite the increase in mRNA levels, HAD-Tg mice show no significant increase in the level of DAT protein in the striatum, indicating a defect in protein trafficking or stability. By crossing HAD-Tg mice with DAT knockout mice (DAT-KO), we engineered mice that exclusively express HA-tagged DAT in the absence of endogenous DAT (DAT-KO/HAD-Tg). We show that DAT-KO/HAD-Tg mice express only 8.5% of WT DAT levels in the striatum. Importantly, the HA-tagged DAT that is present in DAT-KO/HAD-Tg mice is functional, as it is able to partially rescue the DAT-KO hyperactive phenotype. Finally, we provide evidence that the HA-tagged DAT is retained in the cell body based on a reduction in the striatum:midbrain protein ratio. These results demonstrate that the presence of the N-terminal tag leads to impaired DAT protein expression in vivo due in part to improper trafficking of the tagged transporter, and highlight the importance of the N-terminus in the transport of DAT to striatal terminals.
Collapse
Affiliation(s)
- Laura M Vecchio
- Department of Pharmacology, University of Toronto: Medical Sciences Building, Room 4302, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - M Kristel Bermejo
- Department of Pharmacology, University of Toronto: Medical Sciences Building, Room 4302, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Pieter Beerepoot
- Department of Pharmacology, University of Toronto: Medical Sciences Building, Room 4302, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Amy J Ramsey
- Department of Pharmacology, University of Toronto: Medical Sciences Building, Room 4302, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Ali Salahpour
- Department of Pharmacology, University of Toronto: Medical Sciences Building, Room 4302, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
16
|
Iwata K, Matsuzaki H, Tachibana T, Ohno K, Yoshimura S, Takamura H, Yamada K, Matsuzaki S, Nakamura K, Tsuchiya KJ, Matsumoto K, Tsujii M, Sugiyama T, Katayama T, Mori N. N-ethylmaleimide-sensitive factor interacts with the serotonin transporter and modulates its trafficking: implications for pathophysiology in autism. Mol Autism 2014; 5:33. [PMID: 24834316 PMCID: PMC4022412 DOI: 10.1186/2040-2392-5-33] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/24/2014] [Indexed: 01/23/2023] Open
Abstract
Background Changes in serotonin transporter (SERT) function have been implicated in autism. SERT function is influenced by the number of transporter molecules present at the cell surface, which is regulated by various cellular mechanisms including interactions with other proteins. Thus, we searched for novel SERT-binding proteins and investigated whether the expression of one such protein was affected in subjects with autism. Methods Novel SERT-binding proteins were examined by a pull-down system. Alterations of SERT function and membrane expression upon knockdown of the novel SERT-binding protein were studied in HEK293-hSERT cells. Endogenous interaction of SERT with the protein was evaluated in mouse brains. Alterations in the mRNA expression of SERT (SLC6A4) and the SERT-binding protein in the post-mortem brains and the lymphocytes of autism patients were compared to nonclinical controls. Results N-ethylmaleimide-sensitive factor (NSF) was identified as a novel SERT-binding protein. NSF was co-localized with SERT at the plasma membrane, and NSF knockdown resulted in decreased SERT expression at the cell membranes and decreased SERT uptake function. NSF was endogenously co-localized with SERT and interacted with SERT. While SLC6A4 expression was not significantly changed, NSF expression tended to be reduced in post-mortem brains, and was significantly reduced in lymphocytes of autistic subjects, which correlated with the severity of the clinical symptoms. Conclusions These data clearly show that NSF interacts with SERT under physiological conditions and is required for SERT membrane trafficking and uptake function. A possible role for NSF in the pathophysiology of autism through modulation of SERT trafficking, is suggested.
Collapse
Affiliation(s)
- Keiko Iwata
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan ; Department of Development of Functional Brain Activities, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Fukui, Japan
| | - Hideo Matsuzaki
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan ; Department of Development of Functional Brain Activities, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Fukui, Japan ; Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Taro Tachibana
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Koji Ohno
- Department of Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Saori Yoshimura
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Hironori Takamura
- Department of Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan ; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Kohei Yamada
- Department of Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan ; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Shinsuke Matsuzaki
- Department of Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan
| | - Kazuhiko Nakamura
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kenji J Tsuchiya
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kaori Matsumoto
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masatsugu Tsujii
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan ; Faculty of Contemporary Sociology, Chukyo University, Toyota, Japan
| | - Toshirou Sugiyama
- Department of Child and Adolescent Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Taiichi Katayama
- Department of Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan
| | - Norio Mori
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan ; Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
17
|
Pramod AB, Foster J, Carvelli L, Henry LK. SLC6 transporters: structure, function, regulation, disease association and therapeutics. Mol Aspects Med 2013; 34:197-219. [PMID: 23506866 DOI: 10.1016/j.mam.2012.07.002] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/03/2012] [Indexed: 02/08/2023]
Abstract
The SLC6 family of secondary active transporters are integral membrane solute carrier proteins characterized by the Na(+)-dependent translocation of small amino acid or amino acid-like substrates. SLC6 transporters, which include the serotonin, dopamine, norepinephrine, GABA, taurine, creatine, as well as amino acid transporters, are associated with a number of human diseases and disorders making this family a critical target for therapeutic development. In addition, several members of this family are directly involved in the action of drugs of abuse such as cocaine, amphetamines, and ecstasy. Recent advances providing structural insight into this family have vastly accelerated our ability to study these proteins and their involvement in complex biological processes.
Collapse
Affiliation(s)
- Akula Bala Pramod
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, United States
| | | | | | | |
Collapse
|
18
|
Offringa R, Huang F. Phosphorylation-dependent trafficking of plasma membrane proteins in animal and plant cells. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:789-808. [PMID: 23945267 DOI: 10.1111/jipb.12096] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/02/2013] [Indexed: 05/27/2023]
Abstract
In both unicellular and multicellular organisms, transmembrane (TM) proteins are sorted to and retained at specific membrane domains by endomembrane trafficking mechanisms that recognize sorting signals in the these proteins. The trafficking and distribution of plasma membrane (PM)-localized TM proteins (PM proteins), especially of those PM proteins that show an asymmetric distribution over the PM, has received much attention, as their proper PM localization is crucial for elementary signaling and transport processes, and defects in their localization often lead to severe disease symptoms or developmental defects. The subcellular localization of PM proteins is dynamically regulated by post-translational modifications, such as phosphorylation and ubiquitination. These modificaitons mostly occur on sorting signals that are located in the larger cytosolic domains of the cargo proteins. Here we review the effects of phosphorylation of PM proteins on their trafficking, and present the key examples from the animal field that have been subject to studies for already several decades, such as that of aquaporin 2 and the epidermal growth factor receptor. Our knowledge on cargo trafficking in plants is largely based on studies of the family of PIN FORMED (PIN) carriers that mediate the efflux of the plant hormone auxin. We will review what is known on the subcellular distribution and trafficking of PIN proteins, with a focus on how this is modulated by phosphorylation, and identify and discuss analogies and differences in trafficking with the well-studied animal examples.
Collapse
Affiliation(s)
- Remko Offringa
- Molecular and Developmental Genetics, Institute Biology Leiden, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, Leiden University, The Netherlands
| | | |
Collapse
|
19
|
Shirey-Rice JK, Klar R, Fentress HM, Redmon SN, Sabb TR, Krueger JJ, Wallace NM, Appalsamy M, Finney C, Lonce S, Diedrich A, Hahn MK. Norepinephrine transporter variant A457P knock-in mice display key features of human postural orthostatic tachycardia syndrome. Dis Model Mech 2013; 6:1001-11. [PMID: 23580201 PMCID: PMC3701219 DOI: 10.1242/dmm.012203] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Postural orthostatic tachycardia syndrome (POTS) is a common autonomic disorder of largely unknown etiology that presents with sustained tachycardia on standing, syncope and elevated norepinephrine spillover. Some individuals with POTS experience anxiety, depression and cognitive dysfunction. Previously, we identified a mutation, A457P, in the norepinephrine (NE; also known as noradrenaline) transporter (NET; encoded by SLC6A2) in POTS patients. NET is expressed at presynaptic sites in NE neurons and plays a crucial role in regulating NE signaling and homeostasis through NE reuptake into noradrenergic nerve terminals. Our in vitro studies demonstrate that A457P reduces both NET surface trafficking and NE transport and exerts a dominant-negative impact on wild-type NET proteins. Here we report the generation and characterization of NET A457P mice, demonstrating the ability of A457P to drive the POTS phenotype and behaviors that are consistent with reported comorbidities. Mice carrying one A457P allele (NET(+/P)) exhibited reduced brain and sympathetic NE transport levels compared with wild-type (NET(+/+)) mice, whereas transport activity in mice carrying two A457P alleles (NET(P/P)) was nearly abolished. NET(+/P) and NET(P/P) mice exhibited elevations in plasma and urine NE levels, reduced 3,4-dihydroxyphenylglycol (DHPG), and reduced DHPG:NE ratios, consistent with a decrease in sympathetic nerve terminal NE reuptake. Radiotelemetry in unanesthetized mice revealed tachycardia in NET(+/P) mice without a change in blood pressure or baroreceptor sensitivity, consistent with studies of human NET A457P carriers. NET(+/P) mice also demonstrated behavioral changes consistent with CNS NET dysfunction. Our findings support that NET dysfunction is sufficient to produce a POTS phenotype and introduces the first genetic model suitable for more detailed mechanistic studies of the disorder and its comorbidities.
Collapse
Affiliation(s)
- Jana K Shirey-Rice
- Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Garcia-Olivares J, Torres-Salazar D, Owens WA, Baust T, Siderovski DP, Amara SG, Zhu J, Daws LC, Torres GE. Inhibition of dopamine transporter activity by G protein βγ subunits. PLoS One 2013; 8:e59788. [PMID: 23555781 PMCID: PMC3608556 DOI: 10.1371/journal.pone.0059788] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 02/18/2013] [Indexed: 12/15/2022] Open
Abstract
Uptake through the Dopamine Transporter (DAT) is the primary mechanism of terminating dopamine signaling within the brain, thus playing an essential role in neuronal homeostasis. Deregulation of DAT function has been linked to several neurological and psychiatric disorders including ADHD, schizophrenia, Parkinson’s disease, and drug addiction. Over the last 15 years, several studies have revealed a plethora of mechanisms influencing the activity and cellular distribution of DAT; suggesting that fine-tuning of dopamine homeostasis occurs via an elaborate interplay of multiple pathways. Here, we show for the first time that the βγ subunits of G proteins regulate DAT activity. In heterologous cells and brain tissue, a physical association between Gβγ subunits and DAT was demonstrated by co-immunoprecipitation. Furthermore, in vitro pull-down assays using purified proteins established that this association occurs via a direct interaction between the intracellular carboxy-terminus of DAT and Gβγ. Functional assays performed in the presence of the non-hydrolyzable GTP analog GTP-γ-S, Gβγ subunit overexpression, or the Gβγ activator mSIRK all resulted in rapid inhibition of DAT activity in heterologous systems. Gβγ activation by mSIRK also inhibited dopamine uptake in brain synaptosomes and dopamine clearance from mouse striatum as measured by high-speed chronoamperometry in vivo. Gβγ subunits are intracellular signaling molecules that regulate a multitude of physiological processes through interactions with enzymes and ion channels. Our findings add neurotransmitter transporters to the growing list of molecules regulated by G-proteins and suggest a novel role for Gβγ signaling in the control of dopamine homeostasis.
Collapse
Affiliation(s)
- Jennie Garcia-Olivares
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Delany Torres-Salazar
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - William A. Owens
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Tracy Baust
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - David P. Siderovski
- Department of Pharmacology and UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Susan G. Amara
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jun Zhu
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States of America
| | - Lynette C. Daws
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Gonzalo E. Torres
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
21
|
Forward genetic analysis to identify determinants of dopamine signaling in Caenorhabditis elegans using swimming-induced paralysis. G3-GENES GENOMES GENETICS 2012; 2:961-75. [PMID: 22908044 PMCID: PMC3411251 DOI: 10.1534/g3.112.003533] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 06/23/2012] [Indexed: 11/20/2022]
Abstract
Disrupted dopamine (DA) signaling is believed to contribute to the core features of multiple neuropsychiatric and neurodegenerative disorders. Essential features of DA neurotransmission are conserved in the nematode Caenorhabditis elegans, providing us with an opportunity to implement forward genetic approaches that may reveal novel, in vivo regulators of DA signaling. Previously, we identified a robust phenotype, termed Swimming-induced paralysis (Swip), that emerges in animals deficient in the plasma membrane DA transporter. Here, we report the use and quantitative analysis of Swip in the identification of mutant genes that control DA signaling. Two lines captured in our screen (vt21 and vt22) bear novel dat-1 alleles that disrupt expression and surface trafficking of transporter proteins in vitro and in vivo. Two additional lines, vt25 and vt29, lack transporter mutations but exhibit genetic, biochemical, and behavioral phenotypes consistent with distinct perturbations of DA signaling. Our studies validate the utility of the Swip screen, demonstrate the functional relevance of DA transporter structural elements, and reveal novel genomic loci that encode regulators of DA signaling.
Collapse
|
22
|
Abstract
AbstractThe development of effective therapeutic interventions for neurodegeneration requires a better understanding of the early events that precede neuronal loss. Recent work in various disease models has begun to emphasize the significance of presynaptic dysfunction as an early event that occurs before manifestation of neurological disorders. Dysregulation of dopamine (DA) homeostasis is implicated in neurodegenerative diseases, drug addiction, and neuropsychiatric disorders. The neuronal plasma membrane dopamine transporter (DAT) is essential for the maintenance of DA homeostasis in the brain. α-synuclein is a 140-amino acid protein that forms a stable complex with DAT and is linked to the pathogenesis of neurodegenerative disease. In this review we will examine the prevailing hypotheses for α-synuclein-regulation of DAT biology.
Collapse
|
23
|
Swant J, Goodwin JS, North A, Ali AA, Gamble-George J, Chirwa S, Khoshbouei H. α-Synuclein stimulates a dopamine transporter-dependent chloride current and modulates the activity of the transporter. J Biol Chem 2011; 286:43933-43943. [PMID: 21990355 DOI: 10.1074/jbc.m111.241232] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Dysregulation of dopamine (DA) homeostasis is implicated in neurodegenerative diseases, drug addiction, and neuropsychiatric disorders. The neuronal plasma membrane dopamine transporter (DAT) is essential for the maintenance of DA homeostasis in the brain. α-Synuclein is a 140-amino acid protein that forms a stable complex with DAT and is linked to the pathogenesis of neurodegenerative disease. To elucidate the potential functional consequences of DAT/α-synuclein interaction, we explored α-synuclein modulation of DAT activity in midbrain dopaminergic neurons obtained from TH::RFP mice, immortalized DA neurons, and a heterologous system expressing DAT. We used dual pipette whole cell patch clamp recording to measure the DAT-mediated current before and after dialysis of recombinant α-synuclein into immortalized DA neurons. Our data suggest that intracellular α-synuclein induces a Na+ independent but Cl--sensitive inward current in DAT-expressing cells. This current is blocked by DAT blocker GBR12935 and is absent when heat-inactivated α-synuclein is dialyzed into these cells. The functional consequence of this interaction on DAT activity was further examined with real-time monitoring of transport function using a fluorescent substrate of DAT, 4-(4-(dimethylamino)styryl)-N-methylpyridinium (ASP+). Overexpression of α-synuclein in DAT-positive immortalized DA neurons and CHO cells expressing DAT decreased the magnitude and rate of DAT-mediated substrate uptake without a decrease in the initial binding of the substrate at the plasma membrane. Taken together our findings are consistent with the interpretation that DAT/α-synuclein interaction at the cell surface results in a DAT-dependent, Na+-insensitive, Cl-sensitive inward current with a decrease in substrate uptake, suggesting that DAT/α-synuclein interaction can modulate dopamine transmission and thus neuronal function.
Collapse
Affiliation(s)
- Jarod Swant
- Department of Biomedical Sciences, Meharry Medical College, Nashville, Tennessee 37208
| | - J Shawn Goodwin
- Department of Biomedical Sciences, Meharry Medical College, Nashville, Tennessee 37208
| | - Ashley North
- Department of Biomedical Sciences, Meharry Medical College, Nashville, Tennessee 37208
| | | | - Joyonna Gamble-George
- Department of Biomedical Sciences, Meharry Medical College, Nashville, Tennessee 37208
| | - Sanika Chirwa
- Department of Biomedical Sciences, Meharry Medical College, Nashville, Tennessee 37208
| | - Habibeh Khoshbouei
- Department of Biomedical Sciences, Meharry Medical College, Nashville, Tennessee 37208.
| |
Collapse
|
24
|
Zhong H, Sánchez C, Caron MG. Consideration of allosterism and interacting proteins in the physiological functions of the serotonin transporter. Biochem Pharmacol 2011; 83:435-42. [PMID: 21983034 DOI: 10.1016/j.bcp.2011.09.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 09/19/2011] [Indexed: 11/25/2022]
Abstract
The serotonin transporter (SERT) functions to transport serotonin (5-HT) from the extracellular space into neurons to maintain homeostatic control of 5-HT. It is the molecular target for selective serotonin reuptake inhibitor (SSRI) antidepressants. Preclinical research has shown that some SERT inhibitors can bind to two distinct binding sites on the SERT, a primary high affinity binding site and a low affinity allosteric binding site. Mutational studies of the SERT and computational modeling methods with escitalopram resulted in the identification of key amino acid residues important for the function of the allosteric binding site. While this allosteric binding site appears to influence the clinical efficacy of escitalopram under physiological conditions, the molecular mechanism of this effect is still poorly understood and may involve a large network of protein-protein interactions with the SERT. Dynamic interfaces between the SERT and the SERT interacting proteins (SIPs) potentially influence not only the SERT on its uptake function, its regulation, and trafficking, but also on known as well as yet to be identified non-canonical signaling pathways through SIPs. In this commentary, we outline approaches in the areas of selective small-molecule allosteric compound discovery, biochemistry, in vivo genetic knock-in mouse models, as well as computational and structural biology. These studies of the intra-molecular allosteric modulation of the SERT in the context of the myriad of potential inter-molecular signaling interactions with SIPs may help uncover unknown physiological functions of the SERT.
Collapse
Affiliation(s)
- Huailing Zhong
- U-Pharm Laboratories LLC, 239 New Road, Suite A-107, Parsippany, NJ 07054, USA.
| | | | | |
Collapse
|
25
|
Sager JJ, Torres GE. Proteins interacting with monoamine transporters: current state and future challenges. Biochemistry 2011; 50:7295-310. [PMID: 21797260 DOI: 10.1021/bi200405c] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Plasma membrane and vesicular transporters for the biogenic amines, dopamine, norepinephrine, and serotonin, represent a group of proteins that play a crucial role in the regulation of neurotransmission. Clinically, mono amine transporters are the primary targets for the actions of many therapeutic agents used to treat mood disorders, as well as the site of action for highly addictive psychostimulants such as cocaine, amphetamine, methamphetamine, and 3,4-methylenedioxymethamphetamine. Over the past decade, the use of approaches such as yeast two-hybrid and proteomics has identified a multitude of transporter interacting proteins, suggesting that the function and regulation of these transporters are more complex than previously anticipated. With the increasing number of interacting proteins, the rules dictating transporter synthesis, assembly, targeting, trafficking, and function are beginning to be deciphered. Although many of these protein interactions have yet to be fully characterized, current knowledge is beginning to shed light on novel transporter mechanisms involved in monoamine homeostasis, the molecular actions of psychostimulants, and potential disease mechanisms. While future studies resolving the spatial and temporal resolution of these, and yet unknown, interactions will be needed, the realization that monoamine transporters do not work alone opens the path to a plethora of possible pharmacological interventions.
Collapse
Affiliation(s)
- Jonathan J Sager
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | | |
Collapse
|
26
|
Kristensen AS, Andersen J, Jørgensen TN, Sørensen L, Eriksen J, Loland CJ, Strømgaard K, Gether U. SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev 2011; 63:585-640. [PMID: 21752877 DOI: 10.1124/pr.108.000869] [Citation(s) in RCA: 608] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The neurotransmitter transporters (NTTs) belonging to the solute carrier 6 (SLC6) gene family (also referred to as the neurotransmitter-sodium-symporter family or Na(+)/Cl(-)-dependent transporters) comprise a group of nine sodium- and chloride-dependent plasma membrane transporters for the monoamine neurotransmitters serotonin (5-hydroxytryptamine), dopamine, and norepinephrine, and the amino acid neurotransmitters GABA and glycine. The SLC6 NTTs are widely expressed in the mammalian brain and play an essential role in regulating neurotransmitter signaling and homeostasis by mediating uptake of released neurotransmitters from the extracellular space into neurons and glial cells. The transporters are targets for a wide range of therapeutic drugs used in treatment of psychiatric diseases, including major depression, anxiety disorders, attention deficit hyperactivity disorder and epilepsy. Furthermore, psychostimulants such as cocaine and amphetamines have the SLC6 NTTs as primary targets. Beginning with the determination of a high-resolution structure of a prokaryotic homolog of the mammalian SLC6 transporters in 2005, the understanding of the molecular structure, function, and pharmacology of these proteins has advanced rapidly. Furthermore, intensive efforts have been directed toward understanding the molecular and cellular mechanisms involved in regulation of the activity of this important class of transporters, leading to new methodological developments and important insights. This review provides an update of these advances and their implications for the current understanding of the SLC6 NTTs.
Collapse
Affiliation(s)
- Anders S Kristensen
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Fjorback AW, Müller HK, Haase J, Raarup MK, Wiborg O. Modulation of the dopamine transporter by interaction with Secretory Carrier Membrane Protein 2. Biochem Biophys Res Commun 2011; 406:165-70. [DOI: 10.1016/j.bbrc.2011.01.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 01/19/2011] [Indexed: 10/18/2022]
|
28
|
Ex vivo identification of protein-protein interactions involving the dopamine transporter. J Neurosci Methods 2011; 196:303-7. [PMID: 21291912 DOI: 10.1016/j.jneumeth.2011.01.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 11/29/2010] [Accepted: 01/20/2011] [Indexed: 11/20/2022]
Abstract
The dopamine (DA) transporter (DAT) is a key regulator of dopaminergic signaling as it mediates the reuptake of extrasynaptic DA and thereby terminates dopaminergic signaling. Emerging evidence indicates that DAT function is influenced through interactions with other proteins. The current report describes a method to identify such interactions following DAT immunoprecipitation from a rat striatal synaptosomal preparation. This subcellular fraction was selected since DAT function is often determined ex vivo by measuring DA uptake in this preparation and few reports investigating DAT-protein interactions have utilized this preparation. Following SDS-PAGE and colloidal Coomassie staining, selected protein bands from a DAT-immunoprecipitate were excised, digested with trypsin, extracted, and analyzed by liquid chromatography tandem mass spectrometry (LC/MS/MS). From the analysis of the tryptic peptides, several proteins were identified including DAT, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) β, CaMKII δ, protein kinase C (PKC) β, and PKC γ. Co-immunoprecipitation of PKC, CaMKII, and protein interacting with C kinase-1 with DAT was confirmed by Western blotting. Thus, the present study highlights a method to immunoprecipitate DAT and to identify co-immunoprecipitating proteins using LC/MS/MS and Western blotting. This method can be utilized to evaluate DAT protein-protein interactions but also to assess interactions involving other synaptic proteins. Ex vivo identification of protein-protein interactions will provide new insight into the function and regulation of a variety of synaptic, membrane-associated proteins, including DAT.
Collapse
|
29
|
Lin Z, Canales JJ, Björgvinsson T, Thomsen MM, Qu H, Liu QR, Torres GE, Caine SB. Monoamine transporters: vulnerable and vital doorkeepers. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 98:1-46. [PMID: 21199769 PMCID: PMC3321928 DOI: 10.1016/b978-0-12-385506-0.00001-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transporters of dopamine, serotonin, and norepinephrine have been empirically used as medication targets for several mental illnesses in the last decades. These protein-targeted medications are effective only for subpopulations of patients with transporter-related brain disorders. Since the cDNA clonings in early 1990s, molecular studies of these transporters have revealed a wealth of information about the transporters' structure-activity relationship (SAR), neuropharmacology, cell biology, biochemistry, pharmacogenetics, and the diseases related to the human genes encoding these transporters among related regulators. Such new information creates a unique opportunity to develop transporter-specific medications based on SAR, mRNA, DNA, and perhaps transporter trafficking regulation for a number of highly relevant diseases including substance abuse, depression, schizophrenia, and Parkinson's disease.
Collapse
Affiliation(s)
- Zhicheng Lin
- Department of Psychiatry, Harvard Medical School and Division of Alcohol and Drug Abuse, McLean Hospital, Belmont, MA 02478, USA
| | - Juan J. Canales
- Department of Psychology, Behavioural Neuroscience, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Thröstur Björgvinsson
- Behavioral Health Partial Hospital and Psychology Internship Programs, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA
| | - Morgane M. Thomsen
- Department of Psychiatry, Harvard Medical School and Division of Alcohol and Drug Abuse, McLean Hospital, Belmont, MA 02478, USA
| | - Hong Qu
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University. Beijing, 100871 China
| | - Qing-Rong Liu
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Gonzalo E. Torres
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - S. Barak Caine
- Department of Psychiatry, Harvard Medical School and Division of Alcohol and Drug Abuse, McLean Hospital, Belmont, MA 02478, USA
| |
Collapse
|
30
|
Foster JD, Vaughan RA. Palmitoylation controls dopamine transporter kinetics, degradation, and protein kinase C-dependent regulation. J Biol Chem 2010; 286:5175-86. [PMID: 21118819 DOI: 10.1074/jbc.m110.187872] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Palmitoylation is a lipid modification that confers diverse functions to target proteins and is a contributing factor for many neuronal diseases. In this study, we demonstrate using [(3)H]palmitic acid labeling and acyl-biotinyl exchange that native and expressed dopamine transporters (DATs) are palmitoylated, and using the palmitoyl acyltransferase inhibitor 2-bromopalmitate (2BP), we identify several associated functions. Treatment of rat striatal synaptosomes with 2BP using lower doses or shorter times caused robust inhibition of transport V(max) that occurred with no losses of DAT protein or changes in DAT surface levels, indicating that acute loss of palmitoylation leads to reduction of transport kinetics. Treatment of synaptosomes or cells with 2BP using higher doses or longer times resulted in DAT protein losses and production of transporter fragments, implicating palmitoylation in regulation of transporter degradation. Site-directed mutagenesis indicated that palmitoylation of rat DAT occurs at Cys-580 at the intracellular end of transmembrane domain 12 and at one or more additional unidentified site(s). Cys-580 mutation also led to production of transporter degradation fragments and to increased phorbol ester-induced down-regulation, further supporting palmitoylation in opposing DAT turnover and in opposing protein kinase C-mediated regulation. These results identify S-palmitoylation as a major regulator of DAT properties that could significantly impact acute and long term dopamine transport capacity.
Collapse
Affiliation(s)
- James D Foster
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037, USA
| | | |
Collapse
|
31
|
Eriksen J, Jørgensen TN, Gether U. Regulation of dopamine transporter function by protein-protein interactions: new discoveries and methodological challenges. J Neurochem 2010; 113:27-41. [PMID: 20085610 DOI: 10.1111/j.1471-4159.2010.06599.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The dopamine transporter (DAT) plays a key role in regulating dopaminergic signalling in the brain by mediating rapid clearance of dopamine from the synaptic clefts. The psychostimulatory actions of cocaine and amphetamine are primarily the result of a direct interaction of these compounds with DAT leading to attenuated dopamine clearance and for amphetamine even increased dopamine release. In the last decade, intensive efforts have been directed towards understanding the molecular and cellular mechanisms governing the activity and availability of DAT in the plasma membrane of the pre-synaptic neurons. This has led to the identification of a plethora of different kinases, receptors and scaffolding proteins that interact with DAT and hereby either modulate the catalytic activity of the transporter or regulate its trafficking and degradation. Several new tools for studying DAT regulation in live cells have also recently become available such as fluorescently tagged cocaine analogues and fluorescent substrates. Here we review the current knowledge about the role of protein-protein interactions in DAT regulation as well as we describe the most recent methodological developments that have been established to overcome the challenges associated with the study of DAT in endogenous systems.
Collapse
Affiliation(s)
- Jacob Eriksen
- Molecular Neuropharmacology Group and Center for Pharmacogenomics, Department of Neuroscience and Pharmacology, The Panum Institute, University of Copenhagen, Copenhagen N, Denmark
| | | | | |
Collapse
|
32
|
Higuchi K, Iizasa H, Sai Y, Horieya S, Lee KE, Wada M, Deguchi M, Nishimura T, Wakayama T, Tamura A, Tsukita S, Kose N, Kang YS, Nakashima E. Differential Expression of Ezrin and CLP36 in the Two Layers of Syncytiotrophoblast in Rats. Biol Pharm Bull 2010; 33:1400-6. [DOI: 10.1248/bpb.33.1400] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kei Higuchi
- Division of Pharmaceutics, Faculty of Pharmacy, Keio University
| | - Hisashi Iizasa
- Division of Pharmaceutics, Faculty of Pharmacy, Keio University
- Division of Cancer-Related Genes, Institute for Genetic Medicine, Hokkaido University
| | - Yoshimichi Sai
- Division of Pharmaceutics, Faculty of Pharmacy, Keio University
- Department of Pharmacy, Kanazawa University Hospital
| | - Satomi Horieya
- Division of Pharmaceutics, Faculty of Pharmacy, Keio University
| | - Kyeong-Eun Lee
- Division of Pharmaceutics, Faculty of Pharmacy, Keio University
- College of Pharmacy, Sookmyung Women's University
| | - Masami Wada
- Division of Pharmaceutics, Faculty of Pharmacy, Keio University
- Laboratory of Biological Science, Graduate School of Frontier Biosciences, Osaka University
- Graduate School of Medicine, Osaka University
| | | | | | - Tomohiko Wakayama
- Department of Histology and Embryology, Graduate School of Medical Sciences, Kanazawa University
| | - Atsushi Tamura
- Laboratory of Biological Science, Graduate School of Frontier Biosciences, Osaka University
- Graduate School of Medicine, Osaka University
| | - Sachiko Tsukita
- Laboratory of Biological Science, Graduate School of Frontier Biosciences, Osaka University
- Graduate School of Medicine, Osaka University
| | - Noriko Kose
- Division of Pharmaceutics, Faculty of Pharmacy, Keio University
| | | | - Emi Nakashima
- Division of Pharmaceutics, Faculty of Pharmacy, Keio University
| |
Collapse
|
33
|
Cartier EA, Parra LA, Baust TB, Quiroz M, Salazar G, Faundez V, Egaña L, Torres GE. A biochemical and functional protein complex involving dopamine synthesis and transport into synaptic vesicles. J Biol Chem 2009; 285:1957-66. [PMID: 19903816 DOI: 10.1074/jbc.m109.054510] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synaptic transmission depends on neurotransmitter pools stored within vesicles that undergo regulated exocytosis. In the brain, the vesicular monoamine transporter-2 (VMAT(2)) is responsible for the loading of dopamine (DA) and other monoamines into synaptic vesicles. Prior to storage within vesicles, DA synthesis occurs at the synaptic terminal in a two-step enzymatic process. First, the rate-limiting enzyme tyrosine hydroxylase (TH) converts tyrosine to di-OH-phenylalanine. Aromatic amino acid decarboxylase (AADC) then converts di-OH-phenylalanine into DA. Here, we provide evidence that VMAT(2) physically and functionally interacts with the enzymes responsible for DA synthesis. In rat striata, TH and AADC co-immunoprecipitate with VMAT(2), whereas in PC 12 cells, TH co-immunoprecipitates with the closely related VMAT(1) and with overexpressed VMAT(2). GST pull-down assays further identified three cytosolic domains of VMAT(2) involved in the interaction with TH and AADC. Furthermore, in vitro binding assays demonstrated that TH directly interacts with VMAT(2). Additionally, using fractionation and immunoisolation approaches, we demonstrate that TH and AADC associate with VMAT(2)-containing synaptic vesicles from rat brain. These vesicles exhibited specific TH activity. Finally, the coupling between synthesis and transport of DA into vesicles was impaired in the presence of fragments involved in the VMAT(2)/TH/AADC interaction. Taken together, our results indicate that DA synthesis can occur at the synaptic vesicle membrane, where it is physically and functionally coupled to VMAT(2)-mediated transport into vesicles.
Collapse
Affiliation(s)
- Etienne A Cartier
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Matthies HJG, Han Q, Shields A, Wright J, Moore JL, Winder DG, Galli A, Blakely RD. Subcellular localization of the antidepressant-sensitive norepinephrine transporter. BMC Neurosci 2009; 10:65. [PMID: 19545450 PMCID: PMC2716352 DOI: 10.1186/1471-2202-10-65] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 06/23/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reuptake of synaptic norepinephrine (NE) via the antidepressant-sensitive NE transporter (NET) supports efficient noradrenergic signaling and presynaptic NE homeostasis. Limited, and somewhat contradictory, information currently describes the axonal transport and localization of NET in neurons. RESULTS We elucidate NET localization in brain and superior cervical ganglion (SCG) neurons, aided by a new NET monoclonal antibody, subcellular immunoisolation techniques and quantitative immunofluorescence approaches. We present evidence that axonal NET extensively colocalizes with syntaxin 1A, and to a limited degree with SCAMP2 and synaptophysin. Intracellular NET in SCG axons and boutons also quantitatively segregates from the vesicular monoamine transporter 2 (VMAT2), findings corroborated by organelle isolation studies. At the surface of SCG boutons, NET resides in both lipid raft and non-lipid raft subdomains and colocalizes with syntaxin 1A. CONCLUSION Our findings support the hypothesis that SCG NET is segregated prior to transport from the cell body from proteins comprising large dense core vesicles. Once localized to presynaptic boutons, NET does not recycle via VMAT2-positive, small dense core vesicles. Finally, once NET reaches presynaptic plasma membranes, the transporter localizes to syntaxin 1A-rich plasma membrane domains, with a portion found in cholera toxin-demarcated lipid rafts. Our findings indicate that activity-dependent insertion of NET into the SCG plasma membrane derives from vesicles distinct from those that deliver NE. Moreover, NET is localized in presynaptic membranes in a manner that can take advantage of regulatory processes targeting lipid raft subdomains.
Collapse
Affiliation(s)
- Heinrich J G Matthies
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Veenstra-VanderWeele J, Jessen TN, Thompson BJ, Carter M, Prasad HC, Steiner JA, Sutcliffe JS, Blakely RD. Modeling rare gene variation to gain insight into the oldest biomarker in autism: construction of the serotonin transporter Gly56Ala knock-in mouse. J Neurodev Disord 2009; 1:158-71. [PMID: 19960097 PMCID: PMC2786076 DOI: 10.1007/s11689-009-9020-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 05/25/2009] [Indexed: 12/16/2022] Open
Abstract
Alterations in peripheral and central indices of serotonin (5-hydroxytryptamine, 5-HT) production, storage and signaling have long been associated with autism. The 5-HT transporter gene (HTT, SERT, SLC6A4) has received considerable attention as a potential risk locus for autism-spectrum disorders, as well as disorders with overlapping symptoms, including obsessive-compulsive disorder (OCD). Here, we review our efforts to characterize rare, nonsynonymous polymorphisms in SERT derived from multiplex pedigrees carrying diagnoses of autism and OCD and present the initial stages of our effort to model one of these variants, Gly56Ala, in vivo. We generated a targeting vector to produce the Gly56Ala substitution in the Slc6a4 locus by homologous recombination. Following removal of a neomycin resistance selection cassette, animals exhibiting germline transmission of the Ala56 variant were bred to establish a breeding colony on a 129S6 background, suitable for initial evaluation of biochemical, physiological and behavioral alterations relative to SERT Gly56 (wild-type) animals. SERT Ala56 mice were achieved and exhibit a normal pattern of transmission. The initial growth and gross morphology of these animals is comparable to wildtype littermate controls. The SERT Ala56 variant can be propagated in 129S6 mice without apparent disruption of fertility and growth. We discuss both the opportunities and challenges that await the physiological/behavioral analysis of Gly56Ala transgenic mice, with particular reference to modeling autism-associated traits.
Collapse
Affiliation(s)
- Jeremy Veenstra-VanderWeele
- Departments of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37232-8548 USA
- Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, TN 37232-8548 USA
| | - Tammy N. Jessen
- Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-8548 USA
| | - Brent J. Thompson
- Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-8548 USA
| | - Michelle Carter
- Departments of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37232-8548 USA
| | - Harish C. Prasad
- Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-8548 USA
| | - Jennifer A. Steiner
- Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-8548 USA
| | - James. S. Sutcliffe
- Departments of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-8548 USA
- Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, TN 37232-8548 USA
| | - Randy D. Blakely
- Departments of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37232-8548 USA
- Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-8548 USA
- Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, TN 37232-8548 USA
| |
Collapse
|
36
|
Zhang H, Li S, Wang M, Vukusic B, Pristupa ZB, Liu F. Regulation of dopamine transporter activity by carboxypeptidase E. Mol Brain 2009; 2:10. [PMID: 19419578 PMCID: PMC2687442 DOI: 10.1186/1756-6606-2-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 05/06/2009] [Indexed: 12/16/2022] Open
Abstract
Background The dopamine transporter (DAT) plays a critical role in terminating the action of dopamine by rapid reuptake into the presynaptic neuron. Previous studies have revealed that the DAT carboxyl terminus (DAT-CT) can directly interact with other cellular proteins and regulate DAT function and trafficking. Results Here, we have identified that carboxypeptidase E (CPE), a prohormone processing exopeptidase and sorting receptor for the regulated secretory pathway, interacts with the DAT-CT and affects DAT function. Mammalian cell lines coexpressing CPE and DAT exhibited increased DAT-mediated dopamine uptake activity compared to cells expressing DAT alone. Moreover, coexpression of an interfering DAT-CT minigene inhibited the effects of CPE on DAT. Functional changes caused by CPE could be attributed to enhanced DAT expression and subsequent increase in DAT cell surface localization, due to decreased DAT degradation. In addition, CPE association could reduce the phosphorylation state of DAT on serine residues, potentially leading to reduced internalization, thus stabilizing plasmalemmal DAT localization. Conclusion Taken together, our results reveal a novel role for CPE in the regulation of DAT trafficking and DAT-mediated DA uptake, which may provide a novel target in the treatment of dopamine-governed diseases such as drug addiction and obesity.
Collapse
Affiliation(s)
- Heping Zhang
- Department of Neuroscience, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
37
|
Zahniser NR, Sorkin A. Trafficking of dopamine transporters in psychostimulant actions. Semin Cell Dev Biol 2009; 20:411-7. [PMID: 19560046 DOI: 10.1016/j.semcdb.2009.01.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 01/10/2009] [Accepted: 01/13/2009] [Indexed: 10/21/2022]
Abstract
Brain dopamine (DA) plays a pivotal role in drug addiction. Since the plasma membrane DA transporter (DAT) is critical for terminating DA neurotransmission, it is important to understand how DATs are regulated and this regulation impacts drug addiction. The number of cell surface DATs is controlled by constitutive and regulated endocytic trafficking. Psychostimulants impact this trafficking. Amphetamines, DAT substrates, cause rapid up-regulation and slower down-regulation of DAT whereas cocaine, a DAT inhibitor, increases surface DATs. Recent reports have begun to elucidate the molecular mechanisms of these psychostimulant effects and link changes in DAT trafficking to psychostimulant-induced reward/reinforcement in animal models.
Collapse
Affiliation(s)
- Nancy R Zahniser
- Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045, USA.
| | | |
Collapse
|
38
|
Dopamine transporter endocytic determinants: carboxy terminal residues critical for basal and PKC-stimulated internalization. Mol Cell Neurosci 2008; 39:211-7. [PMID: 18638559 DOI: 10.1016/j.mcn.2008.06.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2007] [Revised: 05/05/2008] [Accepted: 06/17/2008] [Indexed: 11/22/2022] Open
Abstract
Dopamine (DA) reuptake terminates dopaminergic neurotransmission and is mediated by DA transporters (DATs). Acute protein kinase C (PKC) activation accelerates DAT internalization rates, thereby reducing DAT surface expression. Basal DAT endocytosis and PKC-stimulated DAT functional downregulation rely on residues within the 587-596 region, although whether PKC-induced DAT downregulation reflects transporter endocytosis mechanisms linked to those controlling basal endocytosis rates is unknown. Here, we define residues governing basal and PKC-stimulated DAT endocytosis. Alanine substituting DAT residues 587-590 1) abolished PKC stimulation of DAT endocytosis, and 2) markedly accelerated basal DAT internalization, comparable to that of wildtype DAT during PKC activation. Accelerated basal DAT internalization relied specifically on residues 588-590, which are highly conserved among SLC6 neurotransmitter transporters. Our results support a model whereby residues within the 587-590 stretch may serve as a locus for a PKC-sensitive braking mechanism that tempers basal DAT internalization rates.
Collapse
|
39
|
Steiner JA, Carneiro AMD, Blakely RD. Going with the flow: trafficking-dependent and -independent regulation of serotonin transport. Traffic 2008; 9:1393-402. [PMID: 18445122 DOI: 10.1111/j.1600-0854.2008.00757.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Antidepressant-, cocaine- and 3,4-methylenedioxymethamphetamine-sensitive serotonin (5-hydroxytryptamine, 5-HT) transporters (SERTs) are expressed on presynaptic membranes of 5-HT-secreting neurons to provide efficient uptake of the biogenic amine after release. SERTs also support 5-HT transport across platelet, placental, gastrointestinal and pulmonary membranes and thus play a critical role in central nervous system and peripheral nervous system 5-HT signaling. SERTs are subject to multiple levels of posttranslational regulation that can rapidly alter 5-HT uptake and clearance rates. Specific cell surface receptors are now known to regulate SERT trafficking and/or catalytic function, with pathways activating protein kinase C, protein kinase G and p38 mitogen-activated protein kinase receiving the greatest attention. Remarkably, disease-associated mutations in SERT not only impact basal SERT activity but also selectively impact one or more SERT regulatory pathway(s). In this review, we describe both trafficking-dependent and trafficking-independent modes of SERT regulation and also the suspected roles played in regulation by SERT-associated proteins. Elucidation of the SERT 'regulome' provides important depth to our understanding of the likely origins of 5-HT-associated disorders and may help orient research to develop novel therapeutics.
Collapse
Affiliation(s)
- Jennifer A Steiner
- Graduate Training Program in Neuroscience, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, USA
| | | | | |
Collapse
|
40
|
Jeannotte AM, Sidhu A. Regulated interactions of the norepineprhine transporter by the actin and microtubule cytoskeletons. J Neurochem 2008; 105:1668-82. [PMID: 18331289 DOI: 10.1111/j.1471-4159.2008.05258.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
One role of the actin cytoskeleton is to maintain the structural morphology and activity of the pre-synaptic terminal. We sought to determine if the actin cytoskeleton plays a role in regulating interactions between the norepinephrine transporter (NET) and alpha-Synuclein (alpha-Syn), two proteins expressed in the pre-synaptic terminal. In cells transfected with either 0.5 microg/mL or 3 microg/mL of alpha-Syn and 1 microg/mL of NET DNA, treatment with cytochalasin D, an actin depolymerizing agent, caused a dose-dependent decrease and increase, respectively, in [3H]-NE uptake. Protein interactions between NET, beta-actin, and alpha-Syn were modified, along with levels of surface transporters. Treatment of primary brainstem neurons and frontal cortex synaptosomes with cytochalasin D caused a 115% and 28% increase, respectively, in NET activity. Depolymerization of both actin and microtubules did not alter NET activity in cells with 0.5 microg/mL alpha-Syn, but caused an increase in [3H]-NE uptake in cells transfected with 3 microg/mL of alpha-Syn and primary neurons. This is the first direct demonstration of NET activity being regulated via actin and modulated by interactions with alpha-Syn.
Collapse
Affiliation(s)
- Alexis M Jeannotte
- Interdisciplinary Program in Neuroscience, Department of Biochemistry and Molecular and Cell Biology, Georgetown University, Washington, DC 20007, USA
| | | |
Collapse
|
41
|
Adkins EM, Samuvel DJ, Fog JU, Eriksen J, Jayanthi LD, Vaegter CB, Ramamoorthy S, Gether U. Membrane Mobility and Microdomain Association of the Dopamine Transporter Studied with Fluorescence Correlation Spectroscopy and Fluorescence Recovery after Photobleaching. Biochemistry 2007; 46:10484-97. [PMID: 17711354 DOI: 10.1021/bi700429z] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
To investigate microdomain association of the dopamine transporter (DAT), we employed FCS (fluorescence correlation spectroscopy) and FRAP (fluorescence recovery after photobleaching). In non-neuronal cells (HEK293), FCS measurements revealed for the YFP-DAT (DAT tagged with yellow fluorescent protein) a diffusion coefficient (D) of approximately 3.6 x 10(-9) cm2/s, consistent with a relatively freely diffusible protein. In neuronally derived cells (N2a), we were unable to perform FCS measurements on plasma membrane-associated protein due to photobleaching, suggesting partial immobilization. This was supported by FRAP measurements that revealed a lower D and a mobile fraction of the YFP-DAT in N2a cells compared to HEK293 cells. Comparison with the EGFP-EGFR (epidermal growth factor receptor) and the EGFP-beta2AR (beta2 adrenergic receptor) demonstrated that this observation was DAT specific. Both the cytoskeleton-disrupting agent cytochalasin D and the cholesterol-depleting agent methyl-beta-cyclodextrin (mbetaCD) increased the lateral mobility of the YFP-DAT but not that of the EGFP-EGFR. The DAT associated in part with membrane raft markers both in the N2a cells and in rat striatal synaptosomes as assessed by sucrose density gradient centrifugation. Raft association was further confirmed in the N2a cells by cholera toxin B patching. It was, moreover, observed that cholesterol depletion, and thereby membrane raft disruption, decreased both the Vmax and KM values for [3H]dopamine uptake without altering DAT surface expression. In summary, we propose that association of the DAT with lipid microdomains in the plasma membrane and/or the cytoskeleton serves to regulate both the lateral mobility of the transporter and its transport capacity.
Collapse
Affiliation(s)
- Erika M Adkins
- Molecular Neuropharmacology Group, Department of Neuroscience and Pharmacology and Center for Pharmacogenomics, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Jeannotte AM, Sidhu A. Regulation of the norepinephrine transporter by alpha-synuclein-mediated interactions with microtubules. Eur J Neurosci 2007; 26:1509-20. [PMID: 17714497 DOI: 10.1111/j.1460-9568.2007.05757.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
alpha-Synuclein (alpha-Syn) regulates catecholaminergic neurotransmission. We demonstrate that alpha-Syn regulates the activity and surface expression of the norepinephrine transporter (NET), depending on its expression levels. In cells co-transfected with NET and low amounts of alpha-Syn, NET activity and cell surface expression were increased and protein interactions with alpha-Syn decreased, compared with cells transfected with NET alone. Converse effects were observed at higher levels of alpha-Syn expression. Treatment with nocodazole and other microtubule (MT) destabilizers abolished the expression-dependent bimodal regulation of NET by alpha-Syn. At low alpha-Syn levels, nocodazole had no effect on NET surface expression or protein interactions, while inducing increases in these measures at higher levels. Cells that were transfected with NET alone displayed no sensitivity to nocodazole, indicating that alpha-Syn expression was necessary for the MT-dependent changes in NET activity. MT destabilizers also caused a significant increase in [(3)H]-NE uptake in brainstem primary neurons and synaptosomes from the frontal cortex, but not striatal synaptosomes. These findings suggest that the surface localization and activity of NET is modulated by alpha-Syn in a manner that is both dependent on interactions with the MT cytoskeleton and varies across brain regions.
Collapse
Affiliation(s)
- Alexis M Jeannotte
- Department of Biochemistry and Molecular and Cell Biology, Georgetown University, Washington, DC 20007, USA
| | | |
Collapse
|
43
|
Differential roles of HIC-5 isoforms in the regulation of cell death and myotube formation during myogenesis. Exp Cell Res 2007; 313:4000-14. [PMID: 17935713 DOI: 10.1016/j.yexcr.2007.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 05/16/2007] [Accepted: 05/16/2007] [Indexed: 11/21/2022]
Abstract
Hic-5 is a LIM-Only member of the paxillin superfamily of focal adhesion proteins. It has been shown to regulate a range of biological processes including: senescence, tumorigenesis, steroid hormone action, integrin signaling, differentiation, and apoptosis. To better understand the roles of Hic-5 during development, we initiated a detailed analysis of Hic-5 expression and function in C(2)C(12) myoblasts, a well-established model for myogenesis. We have found that: (1) myoblasts express at least 6 distinct Hic-5 isoforms; (2) the two predominant isoforms, Hic-5alpha and Hic-5beta, are differentially expressed during myogenesis; (3) any experimentally induced change in Hic-5 expression results in a substantial increase in apoptosis during differentiation; (4) ectopic expression of Hic-5alpha is permissive to differentiation while expression of either Hic-5beta or antisense Hic-5 blocks myoblast fusion but not chemodifferentiation; (5) Hic-5 localizes to focal adhesions in C(2)C(12) myoblasts and perturbation of Hic-5 leads to defects in cell spreading; (6) alterations in Hic-5 expression interfere with the normal dynamics of laminin expression; and (7) ectopic laminin, but not fibronectin, can rescue the Hic-5-induced blockade of myoblast survival and differentiation. Our data demonstrate differential roles for individual Hic-5 isoforms during myogenesis and support the hypothesis that Hic-5 mediates these effects via integrin signaling.
Collapse
|
44
|
Lee FJS, Pei L, Moszczynska A, Vukusic B, Fletcher PJ, Liu F. Dopamine transporter cell surface localization facilitated by a direct interaction with the dopamine D2 receptor. EMBO J 2007; 26:2127-36. [PMID: 17380124 PMCID: PMC1852782 DOI: 10.1038/sj.emboj.7601656] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 02/27/2007] [Indexed: 11/09/2022] Open
Abstract
Altered synaptic dopamine levels have been implicated in several neurological/neuropsychiatric disorders, including drug addiction and schizophrenia. However, it is unclear what precipitates these changes in synaptic dopamine levels. One of the key presynaptic components involved in regulating dopaminergic tone is the dopamine transporter (DAT). Here, we report that the DAT is also regulated by the dopamine D2 receptor through a direct protein-protein interaction involving the DAT amino-terminus and the third intracellular loop of the D2 receptor. This physical coupling facilitates the recruitment of intracellular DAT to the plasma membrane and leads to enhanced dopamine reuptake. Moreover, mice injected with peptides that disrupt D2-DAT interaction exhibit decreased synaptosomal dopamine uptake and significantly increased locomotor activity, reminiscent of DAT knockout mice. Our data highlight a novel mechanism through which neurotransmitter receptors can functionally modulate neurotransmitter transporters, an interaction that can affect the synaptic neurotransmitter levels in the brain.
Collapse
Affiliation(s)
- Frank J S Lee
- Department of Neuroscience, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Lin Pei
- Department of Neuroscience, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Anna Moszczynska
- Department of Neuroscience, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Brian Vukusic
- Department of Neuroscience, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Paul J Fletcher
- Department of Neuroscience, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Fang Liu
- Department of Neuroscience, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Neuroscience, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8. Tel.: +1 416 979 4659; Fax: +1 416 979 4663; E-mail:
| |
Collapse
|
45
|
Maiya R, Ponomarev I, Linse KD, Harris RA, Mayfield RD. Defining the dopamine transporter proteome by convergent biochemical and in silico analyses. GENES BRAIN AND BEHAVIOR 2007; 6:97-106. [PMID: 16643512 DOI: 10.1111/j.1601-183x.2006.00236.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Monoamine transporters play a key role in neuronal signaling by mediating reuptake of neurotransmitters from the synapse. The function of the dopamine transporter (DAT), an important member of this family of transporters, is regulated by multiple signaling mechanisms, which result in altered cell surface trafficking of DAT. Protein-protein interactions are likely critical for this mode of transporter regulation. In this study, we identified proteins associated with DAT by immunoprecipitation (IP) followed by mass spectrometry. We identified 20 proteins with diverse cellular functions that can be classified as trafficking proteins, cytoskeletal proteins, ion channels and extracellular matrix-associated proteins. DAT was found to associate with the voltage-gated potassium channel Kv2.1 and synapsin Ib, a protein involved in regulating neurotransmitter release. An in silico analysis provided evidence for common transcriptional regulation of the DAT proteome genes. In summary, this study identified a network of proteins that are primary candidates for functional regulation of the DAT, an important player in mechanisms of mental disorders and drug addiction.
Collapse
Affiliation(s)
- R Maiya
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
46
|
Wersinger C, Jeannotte A, Sidhu A. Attenuation of the norepinephrine transporter activity and trafficking via interactions with α-synuclein. Eur J Neurosci 2006; 24:3141-52. [PMID: 17156375 DOI: 10.1111/j.1460-9568.2006.05181.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Alpha-synuclein (alpha-Syn) has been studied in the context of Parkinson's disease, but its normative role remains elusive. We have shown that alpha-Syn regulates the homeostasis of dopaminergic and serotonergic synapses, through trafficking of the dopamine and serotonin transporter, respectively. In the present study we sought to determine if alpha-Syn could also modulate noradrenergic signaling, by studying its interactions with the norepinephrine transporter (NET). We co-transfected Ltk- cells with increasing amounts of alpha-Syn DNA and a constant amount of NET DNA, and observed a progressive decrease (68%) in [3H]-NE uptake in cells co-transfected with a ratio of 3:1 alpha-Syn:NET DNA. The Kd of transport did not change, but increasing alpha-Syn caused a decrease in the Vmax of the transporter, from 2.27+/-0.14 to 0.89+/-0.15 pmol/min/10(5) cells, with NET expression alone or 4:1 ratio of alpha-Syn:NET transfection, respectively. Decreases in surface biotinylation and [3H]-nisoxetine binding kinetics in intact cells revealed that NET cell surface expression was attenuated in correlation to the amount of alpha-Syn co-transfected into cells. The interaction between NET and alpha-Syn occurred via the NAC domain of alpha-Syn, the region directly responsible for self-aggregation. These findings are the first to show that alpha-Syn has a central role in the homeostasis of noradrenergic neurons. Together with our previous studies on dopamine and serotonin transporters, we propose that a primary physiological role of alpha-Syn may be to regulate the homeostasis of monoamines in synapses, through modulatory interactions of the protein with monoaminergic transporters.
Collapse
Affiliation(s)
- Christophe Wersinger
- Department of Biochemistry, Molecular and Cell Biology, Georgetown University, Washington, DC 20007, USA
| | | | | |
Collapse
|
47
|
Foster JD, Cervinski MA, Gorentla BK, Vaughan RA. Regulation of the dopamine transporter by phosphorylation. Handb Exp Pharmacol 2006:197-214. [PMID: 16722237 DOI: 10.1007/3-540-29784-7_10] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The dopamine transporter (DAT) is a neuronal phosphoprotein and target for psychoactive drugs that plays a critical role in terminating dopaminergic transmission by reuptake of dopamine from the synaptic space. Control of DAT activity and plasma membrane expression are therefore central to drug actions and the spatial and temporal regulation of synaptic dopamine levels. DATs rapidly traffic between the plasma membrane and endosomal compartments in both constitutive and protein kinase C-dependent manners. Kinase activators, phosphatase inhibitors, and transported substrates modulate DAT phosphorylation and activity, but the underlying mechanisms and role of phosphorylation in these processes are poorly understood. Complex adaptive changes in DAT function potentially related to these processes are also induced by psychostimulant and therapeutic transport blockers such as cocaine and methylphenidate. This chapter provides an overview of the current state of knowledge regarding DAT phosphorylation and its relationship to transporter activity and trafficking. A better understanding of how dopaminergic neurons regulate DAT function and the role of phosphorylation may lead to the identification of novel therapeutic targets for the treatment and prevention of dopaminergic disorders.
Collapse
Affiliation(s)
- J D Foster
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, 501 North Columbia Road, Grand Forks, ND 58203, USA
| | | | | | | |
Collapse
|
48
|
Kahlig KM, Lute BJ, Wei Y, Loland CJ, Gether U, Javitch JA, Galli A. Regulation of dopamine transporter trafficking by intracellular amphetamine. Mol Pharmacol 2006; 70:542-8. [PMID: 16684900 DOI: 10.1124/mol.106.023952] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The dopamine (DA) transporter (DAT) mediates the removal of released DA. DAT is the major molecular target responsible for the rewarding properties and abuse potential of the psychostimulant amphetamine (AMPH). AMPH has been shown to reduce the number of DATs at the cell surface, and this AMPH-induced cell surface DAT redistribution may result in long-lasting changes in DA homeostasis. The molecular mechanism by which AMPH induces trafficking is not clear. Because AMPH is a substrate, we do not know whether extracellular AMPH stimulates trafficking through its interaction with DAT and subsequent alteration in DAT function, thereby triggering intracellular signaling or whether AMPH must be transported and then act intracellularly. In agreement with our previous studies, extracellular AMPH caused cytosolic redistribution of the wild-type human DAT (WT-hDAT). However, AMPH did not induce cytosolic redistribution in an uptake-impaired hDAT (Y335A-hDAT) that still binds AMPH. The divalent cation zinc (Zn(2+)) inhibits WT-hDAT activity, but it restores Y335A-hDAT uptake. Coadministration of Zn(2+) and AMPH consistently reduced WT-hDAT trafficking but stimulated cytosolic redistribution of Y335A-hDAT. Furthermore, direct intracellular application of AMPH, via a whole-cell patch pipette, stimulated the trafficking of Y335A-hDAT. Taken together, these data suggest that the DAT transport cycle is not required for AMPH-induced down-regulation and that an increase of intracellular AMPH is an essential component of DAT redistribution.
Collapse
Affiliation(s)
- Kristopher M Kahlig
- Department of Molecular Physiology and Biophysics, Center for Molecular Neuroscience, Vanderbilt University, 465 21st Ave. South, Nashville, TN 37232-8548, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Carneiro AMD, Blakely RD. Serotonin-, protein kinase C-, and Hic-5-associated redistribution of the platelet serotonin transporter. J Biol Chem 2006; 281:24769-80. [PMID: 16803896 PMCID: PMC3875312 DOI: 10.1074/jbc.m603877200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Emerging data indicate the existence of multiple regulatory processes supporting serotonin (5HT) transporter (SERT) capacity including regulated trafficking and catalytic activation, influenced by post-translational modifications and transporter-associated proteins. In the present study, using differential extraction and sedimentation procedures optimized for the purification of cytoskeletal and membrane-skeletal associated proteins, we analyze SERT localization in platelets. We find that most of the plasma membrane SERT is associated with the membrane skeleton. This association can be enhanced by both transporter activation and 5HT2A receptor activation. Inactivation of transport activity by phorbol ester treatment of intact platelets relocates SERT to the cytoskeleton fraction, consequently leading to transporter internalization. The translocation of SERT between these compartments is correlated with changes in the interaction with the LIM domain adaptor protein Hic-5. Co-immunoprecipitation and uptake activity studies suggest that Hic-5 is a determinant of transporter inactivation and relocation to a compartment subserving endocytic regulation. Associations of SERT with Hic-5 are evident in brain synaptosomes, suggesting the existence of parallel mechanisms operating to regulate SERT at serotonergic synapses.
Collapse
Affiliation(s)
- Ana Marin D. Carneiro
- Department of Pharmacology, Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548
| | - Randy D. Blakely
- Department of Pharmacology, Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548
- Department of Psychiatry, Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548
- To whom correspondence should be addressed: 7140 MRBIII, Vanderbilt School of Medicine, Nashville, TN 37232-8548. Tel.: 615-936-3705; Fax: 615-936-3040;
| |
Collapse
|
50
|
Abstract
Dopamine (DA) uptake through the neuronal plasma membrane DA transporter (DAT) is essential for the maintenance of normal DA homeostasis in the brain. The DAT-mediated re-uptake system limits not only the intensity but also the duration of DA actions at presynaptic and postsynaptic receptors. This protein is the primary target for cocaine and amphetamine, both highly addictive and major substances of abuse worldwide. DAT is also the molecular target for therapeutic agents used in the treatment of mental disorders, such as attention deficit hyperactivity disorder and depression. Given the role played by the DAT in regulation of DA neurotransmission and its contribution to the abuse potential of psychostimulants, it becomes not only important but also necessary to understand the functional regulation of this protein. To investigate the cellular and molecular mechanisms associated with DAT function and regulation, our laboratory and others have embarked on a systematic search for DAT protein-protein interactions. Recently, a growing number of proteins have been shown to interact with DAT. These novel interactions might be important in the assembly, targeting, trafficking and/or regulation of transporter function. In this review, I summarize the main findings obtained from the characterization of DAT-interacting proteins and discuss the functional implications of these novel interactions. Based on these new data, I propose to use the term DAT proteome to explain how interacting proteins regulate DAT function. These novel interactions might help define new mechanisms associated with the function of the transporter.
Collapse
Affiliation(s)
- Gonzalo E Torres
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|