1
|
Díaz-García L, Reid A, Windmill JFC. Explaining the monoaural directional hearing of the moth Achroia grisella. J R Soc Interface 2025; 22:20240752. [PMID: 39809331 PMCID: PMC11732397 DOI: 10.1098/rsif.2024.0752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
Achroia grisella (Fabricius, 1794) (Lepidoptera: Pyralidae) is a pyralid moth with two ears in its abdomen that it uses for detecting mates and predators. Despite no connection between the two ears having been found and no other elements having been observed through X-ray scans of the moth, it seems to be capable of directional hearing with just one ear when one of them is damaged. It is therefore suspected that the morphology of the eardrum can provide directional cues for sound localization. Here, we use finite element modelling software COMSOL to model a simplified version of the eardrum, an elliptical plate with two sections of different thicknesses and a mass load at the centre of the thin section, to try to determine if the morphology of the ear is responsible for the moth's monoaural directional hearing. Results indicate that the resonance mode and directionality response of the elliptical plate with two thicknesses and a mass load match that of the moth closely and provide an enhanced response to sounds coming from the front of the moth. Damping is also considered in the resonant mode, and it is observed to improve the resemblance of the simulation to real moth ear measurements.
Collapse
Affiliation(s)
- Lara Díaz-García
- Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow, UK
| | - Andrew Reid
- Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow, UK
| | | |
Collapse
|
2
|
Mikel-Stites MR, Marek PE, Hellier ME, Staples AE. Left-right tympanal size asymmetry in the parasitoid fly Ormia ochracea. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001243. [PMID: 39157807 PMCID: PMC11327869 DOI: 10.17912/micropub.biology.001243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/26/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024]
Abstract
Ormia ochracea is a parasitoid fly notable for its impressive hearing abilities relative to its small size. Here, we use it as a model organism to investigate if minor size differences in paired sensory organs may be beneficial or neutral to an organism's perception abilities. We took high-resolution images of tympanal organs from 21 O. ochracea specimens and found a statistically significant surface area asymmetry (up to 6.88%) between the left and right membranes. Numerical experiments indicated that peak values of key sound localization variables increased with increasing tympanal asymmetry, which may explain features of the limited available physiological data.
Collapse
Affiliation(s)
- Max R. Mikel-Stites
- Engineering Mechanics Program, Virginia Tech, Blacksburg, Virginia, United States
- Department of Mathematics, Virginia Tech, Blacksburg, Virginia, United States
| | - Paul E. Marek
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States
| | - Madeleine E. Hellier
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States
| | - Anne E. Staples
- Engineering Mechanics Program, Virginia Tech, Blacksburg, Virginia, United States
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, United States
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia, United States
| |
Collapse
|
3
|
Mikel-Stites MR, Salcedo MK, Socha JJ, Marek PE, Staples AE. Reconsidering tympanal-acoustic interactions leads to an improved model of auditory acuity in a parasitoid fly. BIOINSPIRATION & BIOMIMETICS 2023; 18:035007. [PMID: 36854192 DOI: 10.1088/1748-3190/acbffa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Although most binaural organisms locate sound sources using neurological structures to amplify the sounds they hear, some animals use mechanically coupled hearing organs instead. One of these animals, the parasitoid flyOrmia ochracea(O. ochracea), has astoundingly accurate sound localization abilities. It can locate objects in the azimuthal plane with a precision of 2°, equal to that of humans, despite an intertympanal distance of only 0.5 mm, which is less than1/100th of the wavelength of the sound emitted by the crickets that it parasitizes.O. ochraceaaccomplishes this feat via mechanically coupled tympana that interact with incoming acoustic pressure waves to amplify differences in the signals received at the two ears. In 1995, Mileset aldeveloped a model of hearing mechanics inO. ochraceathat represents the tympana as flat, front-facing prosternal membranes, though they lie on a convex surface at an angle from the flies' frontal and transverse planes. The model works well for incoming sound angles less than±30∘but suffers from reduced accuracy (up to 60% error) at higher angles compared to response data acquired fromO. ochraceaspecimens. Despite this limitation, it has been the basis for bio-inspired microphone designs for decades. Here, we present critical improvements to this classic hearing model based on information from three-dimensional reconstructions ofO. ochracea's tympanal organ. We identified the orientation of the tympana with respect to a frontal plane and the azimuthal angle segment between the tympana as morphological features essential to the flies' auditory acuity, and hypothesized a differentiated mechanical response to incoming sound on the ipsi- and contralateral sides that depend on these features. We incorporated spatially-varying model coefficients representing this asymmetric response, making a new quasi-two-dimensional (q2D) model. The q2D model has high accuracy (average errors of under 10%) for all incoming sound angles. This improved biomechanical model may inform the design of new microscale directional microphones and other small-scale acoustic sensor systems.
Collapse
Affiliation(s)
- Max R Mikel-Stites
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, United States of America
- Engineering Mechanics program, Virginia Tech, Blacksburg, VA 24061, United States of America
- Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - Mary K Salcedo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - John J Socha
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - Paul E Marek
- Department of Entomology, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - Anne E Staples
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, United States of America
- Engineering Mechanics program, Virginia Tech, Blacksburg, VA 24061, United States of America
| |
Collapse
|
4
|
Broder ED, Gallagher JH, Wikle AW, Venable CP, Zonana DM, Ingley SJ, Smith TC, Tinghitella RM. Behavioral responses of a parasitoid fly to rapidly evolving host signals. Ecol Evol 2022; 12:e9193. [PMID: 35979522 PMCID: PMC9366563 DOI: 10.1002/ece3.9193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022] Open
Abstract
Animals eavesdrop on signals and cues generated by prey, predators, hosts, parasites, competing species, and conspecifics, and the conspicuousness of sexual signals makes them particularly susceptible. Yet, when sexual signals evolve, most attention is paid to impacts on intended receivers (potential mates) rather than fitness consequences for eavesdroppers. Using the rapidly evolving interaction between the Pacific field cricket, Teleogryllus oceanicus, and the parasitoid fly, Ormia ochracea, we asked how parasitoids initially respond to novel changes in host signals. We recently discovered a novel sexual signal, purring song, in Hawaiian populations of T. oceanicus that appears to have evolved because it protects the cricket from the parasitoid while still allowing males to attract female crickets for mating. In Hawaii, there are no known alternative hosts for the parasitoid, so we would expect flies to be under selection to detect and attend to the new purring song. We used complementary field and laboratory phonotaxis experiments to test fly responses to purring songs that varied in many dimensions, as well as to ancestral song. We found that flies strongly prefer ancestral song over purring songs in both the field and the lab, but we caught more flies to purring songs in the field than reported in previous work, indicating that flies may be exerting some selective pressure on the novel song. When played at realistic amplitudes, we found no preferences-flies responded equally to all purrs that varied in frequency, broadbandedness, and temporal measures. However, our lab experiment did reveal the first evidence of preference for purring song amplitude, as flies were more attracted to purrs played at amplitudes greater than naturally occurring purring songs. As purring becomes more common throughout Hawaii, flies that can use purring song to locate hosts should be favored by selection and increase in frequency.
Collapse
Affiliation(s)
- E. Dale Broder
- Department of BiologyUniversity of DenverDenverColoradoUSA
| | | | - Aaron W. Wikle
- Department of BiologyUniversity of DenverDenverColoradoUSA
| | | | | | | | - Tanner C. Smith
- Brigham Young University–HawaiiLaieHawaiiUSA
- Brigham Young UniversityProvoUtahUSA
| | | |
Collapse
|
5
|
Mason AC. Cues for Directional Hearing in the Fly Ormia ochracea. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.679064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Insects are often small relative to the wavelengths of sounds they need to localize, which presents a fundamental biophysical problem. Understanding novel solutions to this limitation can provide insights for biomimetic technologies. Such an approach has been successful using the fly Ormia ochracea (Diptera: Tachinidae) as a model. O. ochracea is a parasitoid species whose larvae develop as internal parasites within crickets (Gryllidae). In nature, female flies find singing male crickets by phonotaxis, despite severe constraints on directional hearing due to their small size. A physical coupling between the two tympanal membranes allows the flies to obtain information about sound source direction with high accuracy because it generates interaural time-differences (ITD) and interaural level differences (ILD) in tympanal vibrations that are exaggerated relative to the small arrival-time difference at the two ears, that is the only cue available in the sound stimulus. In this study, I demonstrate that pure time-differences in the neural responses to sound stimuli are sufficient for auditory directionality in O. ochracea.
Collapse
|
6
|
Tinghitella RM, Broder ED, Gallagher JH, Wikle AW, Zonana DM. Responses of intended and unintended receivers to a novel sexual signal suggest clandestine communication. Nat Commun 2021; 12:797. [PMID: 33542210 PMCID: PMC7862365 DOI: 10.1038/s41467-021-20971-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023] Open
Abstract
Inadvertent cues can be refined into signals through coevolution between signalers and receivers, yet the earliest steps in this process remain elusive. In Hawaiian populations of the Pacific field cricket, a new morph producing a novel and incredibly variable song (purring) has spread across islands. Here we characterize the current sexual and natural selection landscape acting on the novel signal by (1) determining fitness advantages of purring through attraction to mates and protection from a prominent deadly natural enemy, and (2) testing alternative hypotheses about the strength and form of selection acting on the novel signal. In field studies, female crickets respond positively to purrs, but eavesdropping parasitoid flies do not, suggesting purring may allow private communication among crickets. Contrary to the sensory bias and preference for novelty hypotheses, preference functions (selective pressure) are nearly flat, driven by extreme inter-individual variation in function shape. Our study offers a rare empirical test of the roles of natural and sexual selection in the earliest stages of signal evolution.
Collapse
Affiliation(s)
| | - E Dale Broder
- Department of Biology, St Ambrose University, Davenport, IA, USA
| | - James H Gallagher
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Aaron W Wikle
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - David M Zonana
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| |
Collapse
|
7
|
Dobbs OL, Talavera JB, Rossi SM, Menjivar S, Gray DA. Signaler-receiver-eavesdropper: Risks and rewards of variation in the dominant frequency of male cricket calls. Ecol Evol 2020; 10:12364-12371. [PMID: 33209294 PMCID: PMC7663976 DOI: 10.1002/ece3.6866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 11/09/2022] Open
Abstract
Signals are important for communication and mating, and while they can benefit an individual, they can also be costly and dangerous. Male field crickets call in order to attract female crickets, but gravid females of a parasitoid fly species, Ormia ochracea, are also attracted to the call and use it to pinpoint male cricket hosts. Conspicuousness of the call can vary with frequency, amplitude, and temporal features. Previous work with this system has only considered temporal variation in cricket calls, both large scale, that is, amount of calling and at what time of evening, and small scale, that is, aspects of chirp rate, pulse rate, and numbers of pulses per chirp. Because auditory perception in both crickets and flies relies on the matching of the peak frequency of the call with the peripheral sensory system, peak frequency may be subject to selection both from female crickets and from female flies. Here, we used field playbacks of four different versions of the same male Gryllus lineaticeps calling song that only differed in peak frequency (3.3, 4.3, 5.3, and 6.3 kHz) to test the relative attractiveness of the calls to female crickets and female flies. Our results clearly show that lower frequency calls enhance male safety from fly parasitism, but that the enhanced safety would come at a cost of reduced attraction of female crickets as potential mates. The results imply that eavesdropper pressure can disrupt the matched coevolution of signalers and receivers such that the common concept of matched male-female signaler-receiver coevolution may actually be better described as male-female-predator signaler-receiver-eavesdropper coevolution.
Collapse
Affiliation(s)
- Olivia L. Dobbs
- Department of BiologyCalifornia State University NorthridgeNorthridgeCAUSA
| | | | - Sarina M. Rossi
- Department of BiologyCalifornia State University NorthridgeNorthridgeCAUSA
| | - Stephanie Menjivar
- Department of BiologyCalifornia State University NorthridgeNorthridgeCAUSA
| | - David A. Gray
- Department of BiologyCalifornia State University NorthridgeNorthridgeCAUSA
| |
Collapse
|
8
|
Court R, Namiki S, Armstrong JD, Börner J, Card G, Costa M, Dickinson M, Duch C, Korff W, Mann R, Merritt D, Murphey RK, Seeds AM, Shirangi T, Simpson JH, Truman JW, Tuthill JC, Williams DW, Shepherd D. A Systematic Nomenclature for the Drosophila Ventral Nerve Cord. Neuron 2020; 107:1071-1079.e2. [PMID: 32931755 PMCID: PMC7611823 DOI: 10.1016/j.neuron.2020.08.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/30/2020] [Accepted: 08/05/2020] [Indexed: 11/30/2022]
Abstract
Drosophila melanogaster is an established model for neuroscience research with relevance in biology and medicine. Until recently, research on the Drosophila brain was hindered by the lack of a complete and uniform nomenclature. Recognizing this, Ito et al. (2014) produced an authoritative nomenclature for the adult insect brain, using Drosophila as the reference. Here, we extend this nomenclature to the adult thoracic and abdominal neuromeres, the ventral nerve cord (VNC), to provide an anatomical description of this major component of the Drosophila nervous system. The VNC is the locus for the reception and integration of sensory information and involved in generating most of the locomotor actions that underlie fly behaviors. The aim is to create a nomenclature, definitions, and spatial boundaries for the Drosophila VNC that are consistent with other insects. The work establishes an anatomical framework that provides a powerful tool for analyzing the functional organization of the VNC.
Collapse
Affiliation(s)
- Robert Court
- School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, UK
| | - Shigehiro Namiki
- HHMI-Janelia Research Campus, Ashburn, VA 20147, USA; RCAST, University of Tokyo, Tokyo 153-8904, Japan
| | | | - Jana Börner
- Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Gwyneth Card
- HHMI-Janelia Research Campus, Ashburn, VA 20147, USA
| | - Marta Costa
- Virtual Fly Brain, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Michael Dickinson
- Division of Biology and Biological Engineering, The California Institute of Technology, Pasadena, CA 91125, USA
| | - Carsten Duch
- iDN, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Wyatt Korff
- HHMI-Janelia Research Campus, Ashburn, VA 20147, USA
| | - Richard Mann
- Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10027, USA
| | - David Merritt
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rod K Murphey
- Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Andrew M Seeds
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Troy Shirangi
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | - Julie H Simpson
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - James W Truman
- HHMI-Janelia Research Campus, Ashburn, VA 20147, USA; Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| | - John C Tuthill
- Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Darren W Williams
- Centre for Developmental Neurobiology, King's College London, London WC2R 2LS, UK
| | - David Shepherd
- School of Natural Sciences, Bangor University, Bangor LL57 2UW, Bangor, UK.
| |
Collapse
|
9
|
Römer H. Directional hearing in insects: biophysical, physiological and ecological challenges. ACTA ACUST UNITED AC 2020; 223:223/14/jeb203224. [PMID: 32737067 DOI: 10.1242/jeb.203224] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sound localisation is a fundamental attribute of the way that animals perceive their external world. It enables them to locate mates or prey, determine the direction from which a predator is approaching and initiate adaptive behaviours. Evidence from different biological disciplines that has accumulated over the last two decades indicates how small insects with body sizes much smaller than the wavelength of the sound of interest achieve a localisation performance that is similar to that of mammals. This Review starts by describing the distinction between tympanal ears (as in grasshoppers, crickets, cicadas, moths or mantids) and flagellar ears (specifically antennae in mosquitoes and fruit flies). The challenges faced by insects when receiving directional cues differ depending on whether they have tympanal or flagellar years, because the latter respond to the particle velocity component (a vector quantity) of the sound field, whereas the former respond to the pressure component (a scalar quantity). Insects have evolved sophisticated biophysical solutions to meet these challenges, which provide binaural cues for directional hearing. The physiological challenge is to reliably encode these cues in the neuronal activity of the afferent auditory system, a non-trivial problem in particular for those insect systems composed of only few nerve cells which exhibit a considerable amount of intrinsic and extrinsic response variability. To provide an integrative view of directional hearing, I complement the description of these biophysical and physiological solutions by presenting findings on localisation in real-world situations, including evidence for localisation in the vertical plane.
Collapse
Affiliation(s)
- Heiner Römer
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| |
Collapse
|
10
|
Phillips JN, Ruef SK, Garvin CM, Le MLT, Francis CD. Background noise disrupts host-parasitoid interactions. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190867. [PMID: 31598311 PMCID: PMC6774985 DOI: 10.1098/rsos.190867] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
The soundscape serves as a backdrop for acoustic signals dispatched within and among species, spanning mate attraction to parasite host detection. Elevated background sound levels from human-made and natural sources may interfere with the reception of acoustic signals and alter species interactions and whole ecological communities. We investigated whether background noise influences the ability of the obligate parasitoid Ormia ochracea to locate its host, the variable field cricket (Gryllus lineaticeps). As O. ochracea use auditory cues to locate their hosts, we hypothesized that higher background noise levels would mask or distract flies from cricket calls and result in a decreased ability to detect and navigate to hosts. We used a field manipulation where fly traps baited with playback of male cricket advertisement calls were exposed to a gradient of experimental traffic and ocean surf noise. We found that increases in noise amplitude caused a significant decline in O. ochracea caught, suggesting that background noise can influence parasitoid-host interactions and potentially benefit hosts. As human-caused sensory pollution increases globally, soundscapes may influence the evolution of tightly co-evolved host-parasitoid relationships. Future work should investigate whether female cricket phonotaxis towards males is similarly affected by noise levels.
Collapse
|
11
|
Lee N, Mason AC. How spatial release from masking may fail to function in a highly directional auditory system. eLife 2017; 6. [PMID: 28425912 PMCID: PMC5443663 DOI: 10.7554/elife.20731] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 04/19/2017] [Indexed: 11/13/2022] Open
Abstract
Spatial release from masking (SRM) occurs when spatial separation between a signal and masker decreases masked thresholds. The mechanically-coupled ears of Ormia ochracea are specialized for hyperacute directional hearing, but the possible role of SRM, or whether such specializations exhibit limitations for sound source segregation, is unknown. We recorded phonotaxis to a cricket song masked by band-limited noise. With a masker, response thresholds increased and localization was diverted away from the signal and masker. Increased separation from 6° to 90° did not decrease response thresholds or improve localization accuracy, thus SRM does not operate in this range of spatial separations. Tympanal vibrations and auditory nerve responses reveal that localization errors were consistent with changes in peripheral coding of signal location and flies localized towards the ear with better signal detection. Our results demonstrate that, in a mechanically coupled auditory system, specialization for directional hearing does not contribute to source segregation.
Collapse
Affiliation(s)
- Norman Lee
- Department of Biological Sciences, Integrative Behaviour and Neuroscience Group, University of Toronto Scarborough, Toronto, Canada
| | - Andrew C Mason
- Department of Biological Sciences, Integrative Behaviour and Neuroscience Group, University of Toronto Scarborough, Toronto, Canada
| |
Collapse
|
12
|
Tron N, Stölting H, Kampschulte M, Martels G, Stumpner A, Lakes-Harlan R. The Auditory System of the Dipteran Parasitoid Emblemasoma auditrix (Sarcophagidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2016; 16:90. [PMID: 27538415 PMCID: PMC4989904 DOI: 10.1093/jisesa/iew062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/23/2016] [Indexed: 06/06/2023]
Abstract
Several taxa of insects evolved a tympanate ear at different body positions, whereby the ear is composed of common parts: a scolopidial sense organ, a tracheal air space, and a tympanal membrane. Here, we analyzed the anatomy and physiology of the ear at the ventral prothorax of the sarcophagid fly, Emblemasoma auditrix (Soper). We used micro-computed tomography to analyze the ear and its tracheal air space in relation to the body morphology. Both tympana are separated by a small cuticular bridge, face in the same frontal direction, and are backed by a single tracheal enlargement. This enlargement is connected to the anterior spiracles at the dorsofrontal thorax and is continuous with the tracheal network in the thorax and in the abdomen. Analyses of responses of auditory afferents and interneurons show that the ear is broadly tuned, with a sensitivity peak at 5 kHz. Single-cell recordings of auditory interneurons indicate a frequency- and intensity-dependent tuning, whereby some neurons react best to 9 kHz, the peak frequency of the host's calling song. The results are compared to the convergently evolved ear in Tachinidae (Diptera).
Collapse
Affiliation(s)
- Nanina Tron
- Ag Integrative Sensory Physiology, Institute of Animal Physiology, Justus-Liebig-University, Heinrich-Buff Ring 26, Gießen 35392, Germany (; )
| | - Heiko Stölting
- Cellular Neurobiology, Georg-August University, Schwann-Schleiden-Forschungszentrum, Julia-Lermontowa-Weg 3, Göttingen 37077, Germany (, )
| | - Marian Kampschulte
- Department of Diagnostic and Interventional Radiology, University Hospital Gießen, Klinkstraße 33, Gießen 35392, Germany (; )
| | - Gunhild Martels
- Department of Diagnostic and Interventional Radiology, University Hospital Gießen, Klinkstraße 33, Gießen 35392, Germany (; )
| | - Andreas Stumpner
- Cellular Neurobiology, Georg-August University, Schwann-Schleiden-Forschungszentrum, Julia-Lermontowa-Weg 3, Göttingen 37077, Germany (, )
| | - Reinhard Lakes-Harlan
- Ag Integrative Sensory Physiology, Institute of Animal Physiology, Justus-Liebig-University, Heinrich-Buff Ring 26, Gießen 35392, Germany (; )
| |
Collapse
|
13
|
Hedwig BG. Sequential Filtering Processes Shape Feature Detection in Crickets: A Framework for Song Pattern Recognition. Front Physiol 2016; 7:46. [PMID: 26941647 PMCID: PMC4766296 DOI: 10.3389/fphys.2016.00046] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/01/2016] [Indexed: 11/13/2022] Open
Abstract
Intraspecific acoustic communication requires filtering processes and feature detectors in the auditory pathway of the receiver for the recognition of species-specific signals. Insects like acoustically communicating crickets allow describing and analysing the mechanisms underlying auditory processing at the behavioral and neural level. Female crickets approach male calling song, their phonotactic behavior is tuned to the characteristic features of the song, such as the carrier frequency and the temporal pattern of sound pulses. Data from behavioral experiments and from neural recordings at different stages of processing in the auditory pathway lead to a concept of serially arranged filtering mechanisms. These encompass a filter for the carrier frequency at the level of the hearing organ, and the pulse duration through phasic onset responses of afferents and reciprocal inhibition of thoracic interneurons. Further, processing by a delay line and coincidence detector circuit in the brain leads to feature detecting neurons that specifically respond to the species-specific pulse rate, and match the characteristics of the phonotactic response. This same circuit may also control the response to the species-specific chirp pattern. Based on these serial filters and the feature detecting mechanism, female phonotactic behavior is shaped and tuned to the characteristic properties of male calling song.
Collapse
|
14
|
|
15
|
Lakes-Harlan R, Lehmann GUC. Parasitoid flies exploiting acoustic communication of insects-comparative aspects of independent functional adaptations. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 201:123-32. [PMID: 25369901 DOI: 10.1007/s00359-014-0958-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 10/20/2014] [Accepted: 10/25/2014] [Indexed: 11/26/2022]
Abstract
Two taxa of parasitoid Diptera have independently evolved tympanal hearing organs to locate sound producing host insects. Here we review and compare functional adaptations in both groups of parasitoids, Ormiini and Emblemasomatini. Tympanal organs in both groups originate from a common precursor organ and are somewhat similar in morphology and physiology. In terms of functional adaptations, the hearing thresholds are largely adapted to the frequency spectra of the calling song of the hosts. The large host ranges of some parasitoids indicate that their neuronal filter for the temporal patterns of the calling songs are broader than those found in intraspecific communication. For host localization the night active Ormia ochracea and the day active E. auditrix are able to locate a sound source precisely in space. For phonotaxis flight and walking phases are used, whereby O. ochracea approaches hosts during flight while E. auditrix employs intermediate landings and re-orientation, apparently separating azimuthal and vertical angles. The consequences of the parasitoid pressure are discussed for signal evolution and intraspecific communication of the host species. This natural selection pressure might have led to different avoidance strategies in the hosts: silent males in crickets, shorter signals in tettigoniids and fluctuating population abundances in cicadas.
Collapse
Affiliation(s)
- Reinhard Lakes-Harlan
- Institute for Animal Physiology, AG Integrative Sensory Physiology, Justus-Liebig-Universität Gießen, IFZ, Heinrich-Buff-Ring 26, 35392, Giessen, Germany,
| | | |
Collapse
|
16
|
Römer H. Directional hearing: from biophysical binaural cues to directional hearing outdoors. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 201:87-97. [PMID: 25231204 PMCID: PMC4282874 DOI: 10.1007/s00359-014-0939-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 11/22/2022]
Abstract
When insects communicate by sound, or use acoustic cues to escape predators or detect prey or hosts they have to localize the sound in most cases, to perform adaptive behavioral responses. In the case of particle velocity receivers such as the antennae of mosquitoes, directionality is no problem because such receivers are inherently directional. Insects equipped with bilateral pairs of tympanate ears could principally make use of binaural cues for sound localization, like all other animals with two ears. However, their small size is a major problem to create sufficiently large binaural cues, with respect to both interaural time differences (ITDs, because interaural distances are so small), but also with respect to interaural intensity differences (IIDs), since the ratio of body size to the wavelength of sound is rather unfavorable for diffractive effects. In my review, I will only shortly cover these biophysical aspects of directional hearing. Instead, I will focus on aspects of directional hearing which received relatively little attention previously, the evolution of a pressure difference receiver, 3D-hearing, directional hearing outdoors, and directional hearing for auditory scene analysis.
Collapse
Affiliation(s)
- Heiner Römer
- Institute of Zoology, Karl-Franzens University Graz, Universitätsplatz 2, 8010, Graz, Austria,
| |
Collapse
|
17
|
Hartbauer M, Römer H. From microseconds to seconds and minutes-time computation in insect hearing. Front Physiol 2014; 5:138. [PMID: 24782783 PMCID: PMC3990047 DOI: 10.3389/fphys.2014.00138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/20/2014] [Indexed: 11/30/2022] Open
Abstract
The computation of time in the auditory system of insects is of relevance at rather different time scales, covering a large range from microseconds to several minutes. At the one end of this range, only a few microseconds of interaural time differences are available for directional hearing, due to the small distance between the ears, usually considered too small to be processed reliably by simple nervous systems. Synapses of interneurons in the afferent auditory pathway are, however, very sensitive to a time difference of only 1–2 ms provided by the latency shift of afferent activity with changing sound direction. At a much larger time scale of several tens of milliseconds to seconds, time processing is important in the context species recognition, but also for those insects where males produce acoustic signals within choruses, and the temporal relationship between song elements strongly deviates from a random distribution. In these situations, some species exhibit a more or less strict phase relationship of song elements, based on phase response properties of their song oscillator. Here we review evidence on how this may influence mate choice decisions. In the same dimension of some tens of milliseconds we find species of katydids with a duetting communication scheme, where one sex only performs phonotaxis to the other sex if the acoustic response falls within a very short time window after its own call. Such time windows show some features unique to insects, and although its neuronal implementation is unknown so far, the similarity with time processing for target range detection in bat echolocation will be discussed. Finally, the time scale being processed must be extended into the range of many minutes, since some acoustic insects produce singing bouts lasting quite long, and female preferences may be based on total signaling time.
Collapse
Affiliation(s)
| | - Heiner Römer
- Institute of Zoology, Karl-Franzens University Graz Graz, Austria
| |
Collapse
|
18
|
Auditory Parasitoid Flies Exploiting Acoustic Communication of Insects. ANIMAL SIGNALS AND COMMUNICATION 2014. [DOI: 10.1007/978-3-642-40462-7_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
19
|
Rosen MJ, Levin EC, Hoy RR. The cost of assuming the life history of a host: acoustic startle in the parasitoid fly Ormia ochracea. ACTA ACUST UNITED AC 2010; 212:4056-64. [PMID: 19946084 DOI: 10.1242/jeb.033183] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the obligatory reproductive dependence of a parasite on its host, the parasite must trade the benefit of 'outsourcing' functions like reproduction for the risk of assuming hazards associated with the host. In the present study, we report behavioral adaptations of a parasitic fly, Ormia ochracea, that resemble those of its cricket hosts. Ormia females home in on the male cricket's songs and deposit larvae, which burrow into the cricket, feed and emerge to pupate. Because male crickets call at night, gravid female Ormia in search of hosts are subject to bat predation, in much the same way as female crickets are when responding to male song. We show that Ormia has evolved the same evasive behavior as have crickets: an acoustic startle response to bat-like ultrasound that manifests clearly only during flight. Furthermore, like crickets, Ormia has a sharp response boundary between the frequencies of song and bat cries, resembling categorical perception first described in the context of human speech.
Collapse
Affiliation(s)
- M J Rosen
- Center for Neural Science, New York University, New York, NY 10003, USA.
| | | | | |
Collapse
|
20
|
A precedence effect resolves phantom sound source illusions in the parasitoid fly Ormia ochracea. Proc Natl Acad Sci U S A 2009; 106:6357-62. [PMID: 19332794 DOI: 10.1073/pnas.0809886106] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Localizing individual sound sources under reverberant environmental conditions can be a challenge when the original source and its acoustic reflections arrive at the ears simultaneously from different paths that convey ambiguous directional information. The acoustic parasitoid fly Ormia ochracea (Diptera: Tachinidae) relies on a pair of ears exquisitely sensitive to sound direction to localize the 5-kHz tone pulsatile calling song of their host crickets. In nature, flies are expected to encounter a complex sound field with multiple sources and their reflections from acoustic clutter potentially masking temporal information relevant to source recognition and localization. In field experiments, O. ochracea were lured onto a test arena and subjected to small random acoustic asymmetries between 2 simultaneous sources. Most flies successfully localize a single source but some localize a 'phantom' source that is a summed effect of both source locations. Such misdirected phonotaxis can be elicited reliably in laboratory experiments that present symmetric acoustic stimulation. By varying onset delay between 2 sources, we test whether hyperacute directional hearing in O. ochracea can function to exploit small time differences to determine source location. Selective localization depends on both the relative timing and location of competing sources. Flies preferred phonotaxis to a forward source. With small onset disparities within a 10-ms temporal window of attention, flies selectively localize the leading source while the lagging source has minimal influence on orientation. These results demonstrate the precedence effect as a mechanism to overcome phantom source illusions that arise from acoustic reflections or competing sources.
Collapse
|
21
|
Lakes-Harlan R, Jacobs K, Allen GR. Comparison of auditory sense organs in parasitoid Tachinidae (Diptera) hosted by Tettigoniidae (Orthoptera) and homologous structures in a non-hearing Phoridae (Diptera). ZOOMORPHOLOGY 2007. [DOI: 10.1007/s00435-007-0043-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Kostarakos K, Rheinlaender J, Römer H. Spatial orientation in the bushcricket Leptophyes punctatissima (Phaneropterinae; Orthoptera): III. Peripheral directionality and central nervous processing of spatial cues. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2007; 193:1115-23. [PMID: 17713767 DOI: 10.1007/s00359-007-0262-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 08/03/2007] [Accepted: 08/04/2007] [Indexed: 11/26/2022]
Abstract
We examined peripheral and central nervous cues underlying the ability of the bushcricket Leptophyes punctatissima to orient to elevated and depressed sound sources broadcasting the female acoustic reply. The peripheral spatial directionality of the ear was measured physiologically using monaural preparations of an auditory interneuron (T-fibre). In the azimuth, maximal interaural intensity differences of 18 dB occur between ipsi- and contralateral stimulation. With increasing elevation or depression of the sound sources, IIDs decrease systematically and reach zero with the source exactly above or below the preparation. Bilateral, simultaneous recordings of the activity of the pair of interneurons allowed determining the binaural discharge differences which occur in response to the extremely short (1 ms) female reply. These discharge differences are large (four action potentials/stimulus) and reliable in the azimuth with lateral stimulation, and decrease gradually with more frontal stimulation. With elevation and depression of sound sources these differences again decrease to one action potential/stimulus at 60 degrees or 75 degrees elevation, and lateral stimulus angles of about 60 degrees . We also calculated the reliability with which a receiver could correctly determine the location of the sound source. We discuss these quantitative measures in relation to the spatial phonotactic behaviour of male L. punctatissima.
Collapse
|
23
|
Stölting H, Stumpner A, Lakes-Harlan R. Morphology and physiology of the prosternal chordotonal organ of the sarcophagid fly Sarcophaga bullata (Parker). JOURNAL OF INSECT PHYSIOLOGY 2007; 53:444-54. [PMID: 17362981 DOI: 10.1016/j.jinsphys.2007.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 01/18/2007] [Accepted: 01/18/2007] [Indexed: 05/14/2023]
Abstract
The anatomy and the physiology of the prosternal chordotonal organ (pCO) within the prothorax of Sarcophaga bullata is analysed. Neuroanatomical studies illustrate that the approximately 35 sensory axons terminate within the median ventral association centre of the different neuromeres of the thoracico-abdominal ganglion. At the single-cell level two classes of receptor cells can be discriminated physiologically and morphologically: receptor cells with dorso-lateral branches in the mesothoracic neuromere are insensitive to frequencies below approximately 1 kHz. Receptor cells without such branches respond most sensitive at lower frequencies. Absolute thresholds vary between 0.2 and 8m/s(2) for different frequencies. The sensory information is transmitted to the brain via ascending interneurons. Functional analyses reveal a mechanical transmission of forced head rotations and of foreleg vibrations to the attachment site of the pCO. In summed action potential recordings a physiological correlate was found to stimuli with parameters of leg vibrations, rather than to those of head rotation. The data represent a first physiological study of a putative predecessor organ of an insect ear.
Collapse
Affiliation(s)
- Heiko Stölting
- Universität Göttingen, Institut für Zoologie und Anthropologie, Berliner Strasse 28, D-37073 Göttingen, Germany
| | | | | |
Collapse
|
24
|
Stumpner A, Allen GR, Lakes-Harlan R. Hearing and frequency dependence of auditory interneurons in the parasitoid fly Homotrixa alleni (Tachinidae: Ormiini). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006; 193:113-25. [PMID: 17024499 DOI: 10.1007/s00359-006-0174-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 07/20/2006] [Accepted: 09/03/2006] [Indexed: 10/24/2022]
Abstract
The parasitoid tachinid fly Homotrixa alleni detects its hosts by their acoustic signals. The tympanal organ of the fly is located at the prothorax and contains scolopidial sensory units of different size and orientation. The tympanal membrane vibrates in the frequency range of approximately 4-35 kHz, which is also reflected in the hearing threshold measured at the neck connective. The auditory organ is not tuned to the peak frequency (5 kHz) of the main host, the bush cricket Sciarasaga quadrata. Auditory afferents project in the three thoracic neuromeres. Most of the ascending interneurons branch in all thoracic neuromeres and terminate in the deutocerebrum of the brain. The interneurons do not differ considerably in frequency tuning, but in their sensitivity with lowest thresholds around 30 dB SPL. Suprathreshold responses of most neurons depend on frequency and intensity, indicating inhibitory influence at higher intensities. Some neurons respond particularly well at low frequency sounds (around 5 kHz) and high intensities (80-90 dB SPL), and thus may be involved in detection of the primary host, S. quadrata. The auditory system of H. alleni contains auditory interneurons reacting in a wide range of temporal patterns from strictly phasic to tonic and with clear differences in frequency responses.
Collapse
Affiliation(s)
- Andreas Stumpner
- Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abt. Neurobiologie, Georg-August Universität Göttingen, Berliner Str. 28, 37073, Göttingen, Germany
| | | | | |
Collapse
|
25
|
Mason AC, Lee N, Oshinsky ML. The start of phonotactic walking in the flyOrmia ochracea: a kinematic study. J Exp Biol 2005; 208:4699-708. [PMID: 16326951 DOI: 10.1242/jeb.01926] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYOrmia ochracea (Diptera, Tachinidae) are acoustic parasitoids of crickets that have one of the most directionally sensitive auditory systems known. We studied dynamic characteristics of walking phonotaxis in these flies in response to variations in sound source azimuth, and compared phonotaxis of flies in freely walking conditions to tethered flies walking on a treadmill. Motor patterns at the initiation of phonotaxis are not stereotyped even for similar stimulus conditions. Flies respond to directional sound sources by walking in a tight curve that combines rotation and forward translation until they are oriented towards the source direction, then continue on a straight path. Translational velocity accelerates throughout the duration of the stimulus then decelerates following stimulus offset. In contrast, rotational velocity accelerates and then decelerates within the duration of the stimulus such that flies have completed the rotational component of the response and reached their final heading before the end of the stimulus. Rotational velocity is the only response parameter that varies systematically with sound source direction (azimuth). Differences in the amplitude of rotational velocity as a function of source azimuth determine the directional orientation of phonotactic responses. The relationship between rotational velocity and source azimuth is similar to a neural measure of auditory directionality(interaural latency). There were some differences between freely walking and tethered conditions, although both showed qualitatively similar responses. Flies accelerated more slowly and attained lower maximum velocities on the treadmill, consistent with the greater inertia of the treadmill sphere relative to the flies. Also, flies tended to continue walking longer on the treadmill following cessation of the stimulus.
Collapse
Affiliation(s)
- Andrew C Mason
- Integrative Behaviour and Neuroscience Group, Department of Life Sciences, University of Toronto at Scarborough, 1265 Military Trail, Scarborough, Ontario, Canada M1C 1A4.
| | | | | |
Collapse
|
26
|
Abstract
This review presents an overview of the physiology of primary receptors serving tympanal hearing in insects. Auditory receptor responses vary with frequency, intensity, and temporal characteristics of sound stimuli. Various insect species exploit each of these parameters to differing degrees in the neural coding of auditory information, depending on the nature of the relevant stimuli. Frequency analysis depends on selective tuning in individual auditory receptors. In those insect groups that have individually tuned receptors, differences in physiology are correlated with structural differences among receptors and with the anatomical arrangement of receptors within the ear. Intensity coding is through the rate-level characteristics of tonically active auditory receptors and through variation in the absolute sensitivities of individual receptors (range fractionation). Temporal features of acoustic stimuli may be copied directly in the timing of afferent responses. Salient signal characteristics may also be represented by variation in the timing of afferent responses on a finer temporal scale, or by the synchrony of responses across a population of receptors.
Collapse
Affiliation(s)
- Andrew C Mason
- Department of Life Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada.
| | | |
Collapse
|
27
|
Andermann ML, Ritt J, Neimark MA, Moore CI. Neural Correlates of Vibrissa Resonance. Neuron 2004; 42:451-63. [PMID: 15134641 DOI: 10.1016/s0896-6273(04)00198-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2003] [Revised: 02/24/2004] [Accepted: 03/18/2004] [Indexed: 11/28/2022]
Abstract
The array of vibrissae on a rat's face is the first stage of a high-resolution tactile sensing system. Recently, it was discovered that vibrissae (whiskers) resonate when stimulated at specific frequencies, generating several-fold increases in motion amplitude. We investigated the neural correlates of vibrissa resonance in trigeminal ganglion and primary somatosensory cortex (SI) neurons (regular and fast spiking units) by presenting low-amplitude, high-frequency vibrissa stimulation. We found that somatosensory neurons showed band-pass tuning and enhanced sensitivity to small amplitude stimuli, reflecting the resonance amplification of vibrissa motion. Further, a putative somatotopic map of frequency selectivity was observed in SI, with isofrequency columns extending along the representations of arcs of vibrissae, in agreement with the gradient in vibrissa resonance across the vibrissa pad. These findings suggest several parallels between frequency processing in the vibrissa system and the auditory system and have important implications for detection and discrimination of tactile information.
Collapse
Affiliation(s)
- Mark L Andermann
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | | | | | | |
Collapse
|
28
|
Abstract
Fish detect and localize a sound source with inner ear receptors and with the mechanosensory lateral line. The inner ear of fish is sensitive to the water displacements caused by sound waves through a direct, inertial response by hair cell epithelia of the ear. Hearing specialists, such as goldfish and herring, have accessory peripheral structures that provide additional sensitivity to the pressure component of a sound wave. While the inner ear of fish responds to the whole body motions caused by sound waves and--in case of hearing specialists--to sound pressure, the lateral line is only sensitive to water motions relative to the surface of the fish and to local pressure gradients. Using lateral line and/or acoustic input, some fish can determine the direction and the distance to a sound source. Most likely they do so by exploiting some of the mechanisms described in this paper. Piscivorous fish may use lateral line input to detect the wakes caused by swimming fish. Even in the absence of light catfish, for instance, can follow a 10 s old, three-dimensional wake left by a prey fish over distances up to 55 prey-body length.
Collapse
Affiliation(s)
- Horst Bleckmann
- Institut für Zoologie der Rheinischen Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, D-53115 Bonn, Germany.
| |
Collapse
|
29
|
Lehmann GU. Review of Biogeography, Host Range and Evolution of Acoustic Hunting in Ormiini (Insecta, Diptera, Tachinidae), Parasitoids of Night-calling Bushcrickets and Crickets (Insecta, Orthoptera, Ensifera). ZOOL ANZ 2003. [DOI: 10.1078/0044-5231-00091] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|