1
|
Taguchi T, Kitazono J, Sasai S, Oizumi M. Association of bidirectional network cores in the brain with perceptual awareness and cognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591001. [PMID: 38746271 PMCID: PMC11092575 DOI: 10.1101/2024.04.30.591001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The brain comprises a complex network of interacting regions. To understand the roles and mechanisms of this intricate network, it is crucial to elucidate its structural features related to cognitive functions. Recent empirical evidence suggests that both feedforward and feedback signals are necessary for conscious perception, emphasizing the importance of subnetworks with bidirectional interactions. However, the link between such subnetworks and conscious perception remains unclear due to the complexity of brain networks. In this study, we propose a framework for extracting subnetworks with strong bidirectional interactions-termed the "cores" of a network-from brain activity. We applied this framework to resting-state and task-based human fMRI data from participants of both sexes to identify regions forming strongly bidirectional cores. We then explored the association of these cores with conscious perception and cognitive functions. We found that the extracted central cores predominantly included cerebral cortical regions rather than subcortical regions. Additionally, regarding their relation to conscious perception, we demonstrated that the cores were composed of regions previously reported to be affected by electrical stimulation that altered conscious perception. Furthermore, in relation to cognitive functions, based on a meta-analysis and comparison of the core structure with a cortical functional connectivity gradient, we found that the central cores were related to unimodal sensorimotor functions. The proposed framework provides novel insights into the roles of network cores with strong bidirectional interactions in conscious perception and unimodal sensorimotor functions.
Collapse
Affiliation(s)
- Tomoya Taguchi
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Jun Kitazono
- Graduate School of Data Science, Yokohama City University, Kanagawa, Japan
| | | | - Masafumi Oizumi
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Ghafari T, Mazzetti C, Garner K, Gutteling T, Jensen O. Modulation of alpha oscillations by attention is predicted by hemispheric asymmetry of subcortical regions. eLife 2024; 12:RP91650. [PMID: 39017666 PMCID: PMC11254381 DOI: 10.7554/elife.91650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
Evidence suggests that subcortical structures play a role in high-level cognitive functions such as the allocation of spatial attention. While there is abundant evidence in humans for posterior alpha band oscillations being modulated by spatial attention, little is known about how subcortical regions contribute to these oscillatory modulations, particularly under varying conditions of cognitive challenge. In this study, we combined MEG and structural MRI data to investigate the role of subcortical structures in controlling the allocation of attentional resources by employing a cued spatial attention paradigm with varying levels of perceptual load. We asked whether hemispheric lateralization of volumetric measures of the thalamus and basal ganglia predicted the hemispheric modulation of alpha-band power. Lateral asymmetry of the globus pallidus, caudate nucleus, and thalamus predicted attention-related modulations of posterior alpha oscillations. When the perceptual load was applied to the target and the distractor was salient caudate nucleus asymmetry predicted alpha-band modulations. Globus pallidus was predictive of alpha-band modulations when either the target had a high load, or the distractor was salient, but not both. Finally, the asymmetry of the thalamus predicted alpha band modulation when neither component of the task was perceptually demanding. In addition to delivering new insight into the subcortical circuity controlling alpha oscillations with spatial attention, our finding might also have clinical applications. We provide a framework that could be followed for detecting how structural changes in subcortical regions that are associated with neurological disorders can be reflected in the modulation of oscillatory brain activity.
Collapse
Affiliation(s)
- Tara Ghafari
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
| | - Cecilia Mazzetti
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
| | - Kelly Garner
- School of Psychology, University of New South WalesKensingtonAustralia
| | - Tjerk Gutteling
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
- CERMEP-Imagerie du Vivant, MEG DepartmentLyonFrance
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
| |
Collapse
|
3
|
Redinbaugh MJ, Saalmann YB. Contributions of Basal Ganglia Circuits to Perception, Attention, and Consciousness. J Cogn Neurosci 2024; 36:1620-1642. [PMID: 38695762 PMCID: PMC11223727 DOI: 10.1162/jocn_a_02177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Research into ascending sensory pathways and cortical networks has generated detailed models of perception. These same cortical regions are strongly connected to subcortical structures, such as the basal ganglia (BG), which have been conceptualized as playing key roles in reinforcement learning and action selection. However, because the BG amasses experiential evidence from higher and lower levels of cortical hierarchies, as well as higher-order thalamus, it is well positioned to dynamically influence perception. Here, we review anatomical, functional, and clinical evidence to demonstrate how the BG can influence perceptual processing and conscious states. This depends on the integrative relationship between cortex, BG, and thalamus, which allows contributions to sensory gating, predictive processing, selective attention, and representation of the temporal structure of events.
Collapse
Affiliation(s)
| | - Yuri B Saalmann
- University of Wisconsin-Madison
- Wisconsin National Primate Research Center
| |
Collapse
|
4
|
Kitazono J, Aoki Y, Oizumi M. Bidirectionally connected cores in a mouse connectome: towards extracting the brain subnetworks essential for consciousness. Cereb Cortex 2022; 33:1383-1402. [PMID: 35860874 PMCID: PMC9930638 DOI: 10.1093/cercor/bhac143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/15/2022] Open
Abstract
Where in the brain consciousness resides remains unclear. It has been suggested that the subnetworks supporting consciousness should be bidirectionally (recurrently) connected because both feed-forward and feedback processing are necessary for conscious experience. Accordingly, evaluating which subnetworks are bidirectionally connected and the strength of these connections would likely aid the identification of regions essential to consciousness. Here, we propose a method for hierarchically decomposing a network into cores with different strengths of bidirectional connection, as a means of revealing the structure of the complex brain network. We applied the method to a whole-brain mouse connectome. We found that cores with strong bidirectional connections consisted of regions presumably essential to consciousness (e.g. the isocortical and thalamic regions, and claustrum) and did not include regions presumably irrelevant to consciousness (e.g. cerebellum). Contrarily, we could not find such correspondence between cores and consciousness when we applied other simple methods that ignored bidirectionality. These findings suggest that our method provides a novel insight into the relation between bidirectional brain network structures and consciousness.
Collapse
Affiliation(s)
- Jun Kitazono
- Corresponding authors: Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan. ,
| | - Yuma Aoki
- Graduate School of Information Science and Technology, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masafumi Oizumi
- Corresponding authors: Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan. ,
| |
Collapse
|
5
|
Brain Metabolic Connectivity Patterns in Patients with Prolonged Disorder of Consciousness after Hypoxic-Ischemic Injury: A Preliminary Study. Brain Sci 2022; 12:brainsci12070892. [PMID: 35884699 PMCID: PMC9313214 DOI: 10.3390/brainsci12070892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/07/2022] Open
Abstract
Understanding the patterns of brain glucose metabolism and connectivity in hypoxic-ischemic encephalopathy (HIE) patients with prolonged disorders of consciousness (DOC) may be of positive significance to the accurate assessment of consciousness and the optimization of neuromodulation strategy. We retrospectively analyzed the brain glucose metabolism pattern and its correlation with clinical Coma Recovery Scale-Revised (CRS-R) score in six HIE patients with prolonged DOC who had undergone 18F-deoxyglucose brain positron emission tomography scanning (FDG-PET). We also compared the differences in global metabolic connectivity patterns and the characteristics of several brain networks between HIE patients and healthy controls (HC). The metabolism of multiple brain regions decreased significantly in HIE patients, and the degree of local metabolic preservation was correlated with CRS-R score. The internal metabolic connectivity of occipital lobe and limbic system in HIE patients decreased, and their metabolic connectivity with frontal lobe, parietal lobe and temporal lobe also decreased. The metabolic connectivity patterns of default mode network, dorsal attention network, salience network, executive control network and subcortex network of HIE also changed compared with HC. The present study suggested that pattern of cerebral glucose metabolism and network connectivity of HIE patients with prolonged DOC were significantly different from those of healthy people.
Collapse
|
6
|
Dehaghani NS, Maess B, Khosrowabadi R, Lashgari R, Braeutigam S, Zarei M. Pre-stimulus Alpha Activity Modulates Face and Object Processing in the Intra-Parietal Sulcus, a MEG Study. Front Hum Neurosci 2022; 16:831781. [PMID: 35585993 PMCID: PMC9108229 DOI: 10.3389/fnhum.2022.831781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Face perception is crucial in all social animals. Recent studies have shown that pre-stimulus oscillations of brain activity modulate the perceptual performance of face vs. non-face stimuli, specifically under challenging conditions. However, it is unclear if this effect also occurs during simple tasks, and if so in which brain regions. Here we used magnetoencephalography (MEG) and a 1-back task in which participants decided if the two sequentially presented stimuli were the same or not in each trial. The aim of the study was to explore the effect of pre-stimulus alpha oscillation on the perception of face (human and monkey) and non-face stimuli. Our results showed that pre-stimulus activity in the left occipital face area (OFA) modulated responses in the intra-parietal sulcus (IPS) at around 170 ms after the presentation of human face stimuli. This effect was also found after participants were shown images of motorcycles. In this case, the IPS was modulated by pre-stimulus activity in the right OFA and the right fusiform face area (FFA). We conclude that pre-stimulus modulation of post-stimulus response also occurs during simple tasks and is therefore independent of behavioral responses.
Collapse
Affiliation(s)
- Narjes Soltani Dehaghani
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Burkhard Maess
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Reza Lashgari
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Sven Braeutigam
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Mojtaba Zarei
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
- Department of Neurology, Odense University Hospital, and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- *Correspondence: Mojtaba Zarei
| |
Collapse
|
7
|
Chen L, Rao B, Li S, Gao L, Xie Y, Dai X, Fu K, Peng XZ, Xu H. Altered Effective Connectivity Measured by Resting-State Functional Magnetic Resonance Imaging in Posterior Parietal-Frontal-Striatum Circuit in Patients With Disorder of Consciousness. Front Neurosci 2022; 15:766633. [PMID: 35153656 PMCID: PMC8830329 DOI: 10.3389/fnins.2021.766633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/13/2021] [Indexed: 11/30/2022] Open
Abstract
Objective Disorder of consciousness (DoC) resulting from severe brain injury is characterized by cortical and subcortical dysconnectivity. However, research on seed-based effective connectivity (EC) of DoC might be questioned as to the heterogeneity of prior assumptions. Methods Functional MRI data of 16 DoC patients and 16 demographically matched healthy individuals were analyzed. Revised coma recovery scale (CRS-R) scores of patients were acquired. Seed-based d mapping permutation of subject images (SDM-PSI) of meta-analysis was performed to quantitatively synthesize results from neuroimaging studies that evaluated resting-state functional activity in DoC patients. Spectral dynamic causal modeling (spDCM) was used to assess how EC altered between brain regions in DoC patients compared to healthy individuals. Results We found increased effective connectivity in left striatum and decreased effective connectivity in bilateral precuneus (preCUN)/posterior cingulate cortex (PCC), bilateral midcingulate cortex and left middle frontal gyrus in DoC compared with the healthy controls. The resulting pattern of interaction in DoC indicated disrupted connection and disturbance of posterior parietal-frontal-striatum, and reduced self-inhibition of preCUN/PCC. The strength of self-inhibition of preCUN/PCC was negatively correlated with the total score of CRS-R. Conclusion This impaired EC in DoC may underlie disruption in the posterior parietal-frontal-striatum circuit, particularly damage to the cortico-striatal connection and possible loss of preCUN/PCC function as the main regulatory hub.
Collapse
Affiliation(s)
- Linglong Chen
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bo Rao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Sirui Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Xie
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuan Dai
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kai Fu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xu Zhi Peng
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Haibo Xu,
| |
Collapse
|
8
|
Tyler CW. The Interstitial Pathways as the Substrate of Consciousness: A New Synthesis. ENTROPY 2021; 23:e23111443. [PMID: 34828141 PMCID: PMC8623371 DOI: 10.3390/e23111443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/22/2021] [Accepted: 10/15/2021] [Indexed: 01/10/2023]
Abstract
This paper considers three classes of analyses of the nature of consciousness: abstract theories of the functional organization of consciousness, and concrete proposals as to the neural substrate of consciousness, while providing a rationale for contesting non-neural and transcendental conceptualizations of consciousness. It indicates that abstract theories of the dynamic core of consciousness have no force unless they are grounded in the physiology of the brain, since the organization of dynamic systems, such as the Sun, could equally well qualify as conscious under such theories. In reviewing the wealth of studies of human consciousness since the mid-20th century, it concludes that many proposals for the particular neural substrate of consciousness are insufficient in various respects, but that the results can be integrated into a novel scheme that consciousness extends through a subcortical network of interlaminar structures from the brainstem to the claustrum. This interstitial structure has both the specificity and the extended connectivity to account for the array of reportable conscious experiences.
Collapse
Affiliation(s)
- Christopher W. Tyler
- Smith-Kettlewell Eye Research Institute, San Francisco, CA 94115, USA;
- Division of Optometry and Vision Sciences, School of Health Sciences, City University of London, London EC1V 0HB, UK
| |
Collapse
|
9
|
Lavazza A. 'Consciousnessoids': clues and insights from human cerebral organoids for the study of consciousness. Neurosci Conscious 2021; 7:niab029. [PMID: 34729213 PMCID: PMC8557395 DOI: 10.1093/nc/niab029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 08/02/2021] [Accepted: 08/17/2021] [Indexed: 12/21/2022] Open
Abstract
Human cerebral organoids (HCOs) are an in vitro three-dimensional model of early neural development, aimed at modelling and understanding brain development and neurological disorders. In just a few years, there has been a rapid and considerable progress in the attempt to create a brain model capable of showcasing the structure and functions of the human brain. There are still strong limitations to address, including the absence of vascularization that makes it difficult to feed the central layers of organoids. Nevertheless, some important features of the nervous system have recently been observed: HCOs manifest electrical activity, are sensitive to light stimulation and are able to connect to a spinal cord by sending impulses that make a muscle contract. Recent data show that cortical organoid network development at 10 months resembles some preterm babies' electroencephalography (EEG) patterns. In the light of the fast pace of research in this field, one might consider the hypothesis that HCOs might become a living laboratory for studying the emergence of consciousness and investigating its mechanisms and neural correlates. HCOs could be also a benchmark for different neuroscientific theories of consciousness. In this paper, I propose some potential lines of research and offer some clues and insights so as to use HCOs in trying to unveil some puzzles concerning our conscious states. Finally, I consider some relevant ethical issues regarding this specific experimentation on HCOs and conclude that some of them could require strict regulation in this field.
Collapse
Affiliation(s)
- Andrea Lavazza
- Centro Universitario Internazionale, Via Garbasso, 42, Arezzo 52100, Italy
- University of Pavia, Department of Brain and Behavioural Sciences, Piazza Botta, 11, Pavia 27100, Italy
| |
Collapse
|
10
|
Frigato G. The Neural Correlates of Access Consciousness and Phenomenal Consciousness Seem to Coincide and Would Correspond to a Memory Center, an Activation Center and Eight Parallel Convergence Centers. Front Psychol 2021; 12:749610. [PMID: 34659068 PMCID: PMC8511498 DOI: 10.3389/fpsyg.2021.749610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/01/2021] [Indexed: 11/23/2022] Open
Abstract
An increasing number of authors suggest that the neural correlates of consciousness (NCC) have no selective, executive, or metacognitive function. It is believed that attention unconsciously selects the contents that will become conscious. Consciousness would have only the fundamental function of transforming the selected contents into a format easily used by high-level processors, such as working memory, language, or autobiographical memory. According to Dehaene, the neural correlates (NC) of access consciousness (AC; cognitive consciousness) constitute a widespread network in the frontal, parietal, and temporal cortices. While Tononi localized the correlates of phenomenal consciousness (PC; subjective consciousness) to a posterior “hot zone” in the temporo-parietal cortex. A careful examination of the works of these two groups leads to the conclusion that the correlates of access and PC coincide. The two consciousnesses are therefore two faces of the same single consciousness with both its cognitive and subjective contents. A review of the literature of the pathology called “neglect” confirms that the common correlates include 10: a memory center, an activation center, and eight parallel centers. From study of the “imagery” it can be deduced that these eight parallel centers would operate as points of convergence in the third person linking the respective eight sensory-motor-emotional areas activated by external perceptions and the corresponding memories of these perceptions deposited in the memory center. The first four centers of convergence appear in the most evolved fish and gradually reach eight in humans.
Collapse
|
11
|
Afrasiabi M, Redinbaugh MJ, Phillips JM, Kambi NA, Mohanta S, Raz A, Haun AM, Saalmann YB. Consciousness depends on integration between parietal cortex, striatum, and thalamus. Cell Syst 2021; 12:363-373.e11. [PMID: 33730543 PMCID: PMC8084606 DOI: 10.1016/j.cels.2021.02.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/10/2020] [Accepted: 02/18/2021] [Indexed: 11/19/2022]
Abstract
The neural substrates of consciousness remain elusive. Competing theories that attempt to explain consciousness disagree on the contribution of frontal versus posterior cortex and omit subcortical influences. This lack of understanding impedes the ability to monitor consciousness, which can lead to adverse clinical consequences. To test substrates and measures of consciousness, we recorded simultaneously from frontal cortex, parietal cortex, and subcortical structures, the striatum and thalamus, in awake, sleeping, and anesthetized macaques. We manipulated consciousness on a finer scale using thalamic stimulation, rousing macaques from continuously administered anesthesia. Our results show that, unlike measures targeting complexity, a measure additionally capturing neural integration (Φ∗) robustly correlated with changes in consciousness. Machine learning approaches show parietal cortex, striatum, and thalamus contributed more than frontal cortex to decoding differences in consciousness. These findings highlight the importance of integration between parietal and subcortical structures and challenge a key role for frontal cortex in consciousness.
Collapse
Affiliation(s)
- Mohsen Afrasiabi
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | | | - Jessica M Phillips
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Niranjan A Kambi
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sounak Mohanta
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Aeyal Raz
- Department of Anesthesiology, Rambam Health Care Campus, Haifa 3109601, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Andrew M Haun
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yuri B Saalmann
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53705, USA; Wisconsin National Primate Research Center, Madison, WI 53705, USA.
| |
Collapse
|
12
|
Representational dynamics preceding conscious access. Neuroimage 2021; 230:117789. [PMID: 33497774 DOI: 10.1016/j.neuroimage.2021.117789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/08/2020] [Accepted: 01/12/2021] [Indexed: 11/20/2022] Open
Abstract
Our senses are continuously bombarded with more information than our brain can process up to the level of awareness. The present study aimed to enhance understanding on how attentional selection shapes conscious access under conditions of rapidly changing input. Using an attention task, EEG, and multivariate decoding of individual target- and distractor-defining features, we specifically examined dynamic changes in the representation of targets and distractors as a function of conscious access and the task-relevance (target or distractor) of the preceding item in the RSVP stream. At the behavioral level, replicating previous work and suggestive of a flexible gating mechanism, we found a significant impairment in conscious access to targets (T2) that were preceded by a target (T1) followed by one or two distractors (i.e., the attentional blink), but striking facilitation of conscious access to targets shown directly after another target (i.e., lag-1 sparing and blink reversal). At the neural level, conscious access to T2 was associated with enhanced early- and late-stage T1 representations and enhanced late-stage D1 representations, and interestingly, could be predicted based on the pattern of EEG activation well before T1 was presented. Yet, across task conditions, we did not find convincing evidence for the notion that conscious access is affected by rapid top-down selection-related modulations of the strength of early sensory representations induced by the preceding visual event. These results cannot easily be explained by existing accounts of how attentional selection shapes conscious access under rapidly changing input conditions, and have important implications for theories of the attentional blink and consciousness more generally.
Collapse
|
13
|
Boonstra EA, van Schouwenburg MR, Seth AK, Bauer M, Zantvoord JB, Kemper EM, Lansink CS, Slagter HA. Conscious perception and the modulatory role of dopamine: no effect of the dopamine D2 agonist cabergoline on visual masking, the attentional blink, and probabilistic discrimination. Psychopharmacology (Berl) 2020; 237:2855-2872. [PMID: 32621073 PMCID: PMC7501106 DOI: 10.1007/s00213-020-05579-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/03/2020] [Indexed: 11/02/2022]
Abstract
RATIONALE Conscious perception is thought to depend on global amplification of sensory input. In recent years, striatal dopamine has been proposed to be involved in gating information and conscious access, due to its modulatory influence on thalamocortical connectivity. OBJECTIVES Since much of the evidence that implicates striatal dopamine is correlational, we conducted a double-blind crossover pharmacological study in which we administered cabergoline-a dopamine D2 agonist-and placebo to 30 healthy participants. Under both conditions, we subjected participants to several well-established experimental conscious-perception paradigms, such as backward masking and the attentional blink task. RESULTS We found no evidence in support of an effect of cabergoline on conscious perception: key behavioral and event-related potential (ERP) findings associated with each of these tasks were unaffected by cabergoline. CONCLUSIONS Our results cast doubt on a causal role for dopamine in visual perception. It remains an open possibility that dopamine has causal effects in other tasks, perhaps where perceptual uncertainty is more prominent.
Collapse
Affiliation(s)
- E A Boonstra
- Department of Experimental and Applied Psychology, Institute for Brain and Behavior Amsterdam (iBBA) Vrije Universiteit, Amsterdam, Netherlands.
- Department of Psychology, University of Amsterdam, Amsterdam Brain and Cognition (ABC), Amsterdam, Netherlands.
| | - M R van Schouwenburg
- Department of Psychology, University of Amsterdam, Amsterdam Brain and Cognition (ABC), Amsterdam, Netherlands
| | - A K Seth
- Department of Informatics Sackler Centre for Consciousness Science, University of Sussex, Brighton, BN1 9QJ, UK
- Canadian Institute for Advanced Research, Azrieli Programme on Brain, Mind, and Consciousness, Toronto, Canada
| | - M Bauer
- School of Psychology, University of Nottingham, Nottingham, UK
| | - J B Zantvoord
- Department of Child and Adolescent Psychiatry, The Bascule, Academic Centre for Child and Adolescent Psychiatry Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - E M Kemper
- Department of Pharmacy, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - C S Lansink
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam Brain and Cognition (ABC), Amsterdam, Netherlands
| | - H A Slagter
- Department of Experimental and Applied Psychology, Institute for Brain and Behavior Amsterdam (iBBA) Vrije Universiteit, Amsterdam, Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam Brain and Cognition (ABC), Amsterdam, Netherlands
| |
Collapse
|
14
|
Cognitive Capacity Limits Are Remediated by Practice-Induced Plasticity between the Putamen and Pre-Supplementary Motor Area. eNeuro 2020; 7:ENEURO.0139-20.2020. [PMID: 32817195 PMCID: PMC7458802 DOI: 10.1523/eneuro.0139-20.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 01/10/2023] Open
Abstract
Humans show striking limitations in information processing when multitasking yet can modify these limits with practice. Such limitations have been linked to a frontal-parietal network, but recent models of decision-making implicate a striatal-cortical network. We adjudicated these accounts by investigating the circuitry underpinning multitasking in 100 human individuals and the plasticity caused by practice. We observed that multitasking costs, and their practice-induced remediation, are best explained by modulations in information transfer between the striatum and the cortical areas that represent stimulus-response mappings. Specifically, our results support the view that multitasking stems at least in part from taxation in information sharing between the putamen and pre-supplementary motor area (pre-SMA). Moreover, we propose that modulations to information transfer between these two regions leads to practice-induced improvements in multitasking.
Collapse
|
15
|
Lou HC, Rømer Thomsen K, Changeux JP. The Molecular Organization of Self-awareness: Paralimbic Dopamine-GABA Interaction. Front Syst Neurosci 2020; 14:3. [PMID: 32047425 PMCID: PMC6997345 DOI: 10.3389/fnsys.2020.00003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/10/2020] [Indexed: 11/13/2022] Open
Abstract
The electrophysiology of the paralimbic network ("default mode") for self-awareness has drawn much attention in the past couple of decades. In contrast, knowledge of the molecular organization of conscious experience has only lately come into focus. We here review newer data on dopaminergic control of awareness in humans, particularly in self-awareness. These results implicate mainly dopaminergic neurotransmission and the control of GABAergic function directly in the paralimbic network. The findings are important for understanding addiction, developmental disorders, and dysfunctional consciousness.
Collapse
Affiliation(s)
- Hans C Lou
- Center of Functionally Integrative Neuroscience, Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Kristine Rømer Thomsen
- Department of Psychology and Behavioral Sciences, Center for Alcohol and Drug Research, School of Business and Social Sciences, Aarhus, Denmark
| | | |
Collapse
|
16
|
Hemispheric Asymmetry of Globus Pallidus Relates to Alpha Modulation in Reward-Related Attentional Tasks. J Neurosci 2019; 39:9221-9236. [PMID: 31578234 DOI: 10.1523/jneurosci.0610-19.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/27/2022] Open
Abstract
Whereas subcortical structures such as the basal ganglia have been widely explored in relation to motor control, recent evidence suggests that their mechanisms extend to the domain of attentional switching. We here investigated the subcortical involvement in reward related top-down control of visual alpha-band oscillations (8-13 Hz), which have been consistently linked to mechanisms supporting the allocation of visuospatial attention. Given that items associated with contextual saliency (e.g., monetary reward or loss) attract attention, it is not surprising that the acquired salience of visual items further modulates. The executive networks controlling such reward-dependent modulations of oscillatory brain activity have yet to be fully elucidated. Although such networks have been explored in terms of corticocortical interactions, subcortical regions are likely to be involved. To uncover this, we combined MRI and MEG data from 17 male and 11 female participants, investigating whether derived measures of subcortical structural asymmetries predict interhemispheric modulation of alpha power during a spatial attention task. We show that volumetric hemispheric lateralization of globus pallidus (GP) and thalamus (Th) explains individual hemispheric biases in the ability to modulate posterior alpha power. Importantly, for the GP, this effect became stronger when the value saliency parings in the task increased. Our findings suggest that the GP and Th in humans are part of a subcortical executive control network, differentially involved in modulating posterior alpha activity in the presence of saliency. Further investigation aimed at uncovering the interaction between subcortical and neocortical attentional networks would provide useful insight in future studies.SIGNIFICANCE STATEMENT Whereas the involvement of subcortical regions into higher level cognitive processing, such as attention and reward attribution, has been already indicated in previous studies, little is known about its relationship with the functional oscillatory underpinnings of said processes. In particular, interhemispheric modulation of alpha band (8-13 Hz) oscillations, as recorded with magnetoencephalography, has been previously shown to vary as a function of salience (i.e., monetary reward/loss) in a spatial attention task. We here provide novel insights into the link between subcortical and cortical control of visual attention. Using the same reward-related spatial attention paradigm, we show that the volumetric lateralization of subcortical structures (specifically globus pallidus and thalamus) explains individual biases in the modulation of visual alpha activity.
Collapse
|
17
|
Meijs EL, Mostert P, Slagter HA, de Lange FP, van Gaal S. Exploring the role of expectations and stimulus relevance on stimulus-specific neural representations and conscious report. Neurosci Conscious 2019; 2019:niz011. [PMID: 31456886 PMCID: PMC6704346 DOI: 10.1093/nc/niz011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022] Open
Abstract
Subjective experience can be influenced by top-down factors, such as expectations and stimulus relevance. Recently, it has been shown that expectations can enhance the likelihood that a stimulus is consciously reported, but the neural mechanisms supporting this enhancement are still unclear. We manipulated stimulus expectations within the attentional blink (AB) paradigm using letters and combined visual psychophysics with magnetoencephalographic (MEG) recordings to investigate whether prior expectations may enhance conscious access by sharpening stimulus-specific neural representations. We further explored how stimulus-specific neural activity patterns are affected by the factors expectation, stimulus relevance and conscious report. First, we show that valid expectations about the identity of an upcoming stimulus increase the likelihood that it is consciously reported. Second, using a series of multivariate decoding analyses, we show that the identity of letters presented in and out of the AB can be reliably decoded from MEG data. Third, we show that early sensory stimulus-specific neural representations are similar for reported and missed target letters in the AB task (active report required) and an oddball task in which the letter was clearly presented but its identity was task-irrelevant. However, later sustained and stable stimulus-specific representations were uniquely observed when target letters were consciously reported (decision-dependent signal). Fourth, we show that global pre-stimulus neural activity biased perceptual decisions for a ‘seen’ response. Fifth and last, no evidence was obtained for the sharpening of sensory representations by top-down expectations. We discuss these findings in light of emerging models of perception and conscious report highlighting the role of expectations and stimulus relevance.
Collapse
Affiliation(s)
- Erik L Meijs
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen 6500 HB, the Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6500 HB, the Netherlands
| | - Pim Mostert
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6500 HB, the Netherlands
| | - Heleen A Slagter
- Department of Psychology, University of Amsterdam, Amsterdam 1001 NK, the Netherlands.,Amsterdam Brain and Cognition (ABC), University of Amsterdam, Amsterdam 1001 NK, the Netherlands
| | - Floris P de Lange
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6500 HB, the Netherlands
| | - Simon van Gaal
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6500 HB, the Netherlands.,Department of Psychology, University of Amsterdam, Amsterdam 1001 NK, the Netherlands.,Amsterdam Brain and Cognition (ABC), University of Amsterdam, Amsterdam 1001 NK, the Netherlands
| |
Collapse
|
18
|
Lee S, Liu A, Wang ZJ, McKeown MJ. Abnormal Phase Coupling in Parkinson's Disease and Normalization Effects of Subthreshold Vestibular Stimulation. Front Hum Neurosci 2019; 13:118. [PMID: 31001099 PMCID: PMC6456700 DOI: 10.3389/fnhum.2019.00118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/19/2019] [Indexed: 12/14/2022] Open
Abstract
The human brain is a highly dynamic structure requiring dynamic coordination between different neural systems to perform numerous cognitive and behavioral tasks. Emerging perspectives on basal ganglia (BG) and thalamic functions have highlighted their role in facilitating and mediating information transmission among cortical regions. Thus, changes in BG and thalamic structures can induce aberrant modulation of cortico-cortical interactions. Recent work in deep brain stimulation (DBS) has demonstrated that externally applied electrical current to BG structures can have multiple downstream effects in large-scale brain networks. In this work, we identified EEG-based altered resting-state cortical functional connectivity in Parkinson's disease (PD) and examined effects of dopaminergic medication and electrical vestibular stimulation (EVS), a non-invasive brain stimulation (NIBS) technique capable of stimulating the BG and thalamus through vestibular pathways. Resting EEG was collected from 16 PD subjects and 18 age-matched, healthy controls (HC) in four conditions: sham (no stimulation), EVS1 (4-8 Hz multisine), EVS2 (50-100 Hz multisine) and EVS3 (100-150 Hz multisine). The mean, variability, and entropy were extracted from time-varying phase locking value (PLV), a non-linear measure of pairwise functional connectivity, to probe abnormal cortical couplings in the PD subjects. We found the mean PLV of Cz and C3 electrodes were important for discrimination between PD and HC subjects. In addition, the PD subjects exhibited lower variability and entropy of PLV (mostly in theta and alpha bands) compared to the controls, which were correlated with their clinical characteristics. While levodopa medication was effective in normalizing the mean PLV only, all EVS stimuli normalized the mean, variability and entropy of PLV in the PD subject, with the exact extent and duration of improvement a function of stimulus type. These findings provide evidence demonstrating both low- and high-frequency EVS exert widespread influences on cortico-cortical connectivity, likely via subcortical activation. The improvement observed in PD in a stimulus-dependent manner suggests that EVS with optimized parameters may provide a new non-invasive means for neuromodulation of functional brain networks.
Collapse
Affiliation(s)
- Soojin Lee
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.,Pacific Parkinson's Research Centre, Vancouver, BC, Canada
| | - Aiping Liu
- Pacific Parkinson's Research Centre, Vancouver, BC, Canada.,Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
| | - Z Jane Wang
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.,Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Martin J McKeown
- Pacific Parkinson's Research Centre, Vancouver, BC, Canada.,Department of Medicine (Neurology), University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Principe A, Calabria M, Campo AT, Cruzat J, Conesa G, Costa A, Rocamora R. Whole network, temporal and parietal lobe contributions to the earliest phases of language production. Cortex 2017; 95:238-247. [PMID: 28918128 DOI: 10.1016/j.cortex.2017.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 05/06/2017] [Accepted: 08/15/2017] [Indexed: 10/19/2022]
Abstract
We investigated whether it is possible to study the network dynamics and the anatomical regions involved in the earliest moments of picture naming by using invasive electroencephalogram (EEG) traces to predict naming errors. Four right-handed participants with focal epilepsy explored with extensive stereotactic implant montages that recorded temporal, parietal and occipital regions -in two patients of both hemispheres-named a total of 228 black and white pictures in three different sessions recorded in different days. The subjects made errors that involved anomia and semantic dysphasia, which related to word frequency and not to visual complexity. Using different modalities of spectrum analysis and classification with a support vector machine (SVM) we could predict errors with rates that ranged from slightly above chance level to 100%, even in the preconscious phase, i.e., 100 msec after stimulus presentation. The highest rates were obtained using the gamma bands of all contact spectra without averaging, which implies a fine modulation of the neuronal activity at a network level. Despite no subset of nodes could match the whole set, rates close to the best prediction scores were obtained through the spectra of the temporal-parietal and temporal-occipital junction along with the temporal pole and hippocampus. When both hemispheres were explored nodes from the left side dominated in the best subsets. We argue that posterior temporal regions, especially of the dominant side, are involved very early, even in the preconscious phase (100 msec), in language production.
Collapse
Affiliation(s)
- Alessandro Principe
- Epilepsy Unit, Neurology Dept., Hospital Del Mar, Parc de Salut Mar, Barcelona, Spain.
| | - Marco Calabria
- Center for Brain and Cognition, Pompeu Fabra University, Barcelona, Spain
| | - Adrià Tauste Campo
- Center for Brain and Cognition, Pompeu Fabra University, Barcelona, Spain; IMIM, Parc de Salut Mar, Barcelona, Spain
| | - Josephine Cruzat
- Center for Brain and Cognition, Pompeu Fabra University, Barcelona, Spain
| | - Gerardo Conesa
- Neurosurgery Unit, Hospital Del Mar, Parc de Salut Mar, Barcelona, Spain
| | - Albert Costa
- Center for Brain and Cognition, Pompeu Fabra University, Barcelona, Spain; Institució Catalana de La Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Rodrigo Rocamora
- Epilepsy Unit, Neurology Dept., Hospital Del Mar, Parc de Salut Mar, Barcelona, Spain
| |
Collapse
|