1
|
Balez R, Stevens CH, Lenk K, Maksour S, Sidhu K, Sutherland G, Ooi L. Increased Neuronal Nitric Oxide Synthase in Alzheimer's Disease Mediates Spontaneous Calcium Signaling and Divergent Glutamatergic Calcium Responses. Antioxid Redox Signal 2024; 41:255-277. [PMID: 38299492 DOI: 10.1089/ars.2023.0395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Affiliation(s)
- Rachelle Balez
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Claire H Stevens
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Kerstin Lenk
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
- BioTechMed, Graz, Austria
| | - Simon Maksour
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Kuldip Sidhu
- Centre for Healthy Brain Ageing (CheBA), University of New South Wales, Sydney, Australia
| | - Greg Sutherland
- Charles Perkins Centre, University of Sydney, Glebe, Australia
| | - Lezanne Ooi
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| |
Collapse
|
2
|
Hainsworth AH, Arancio O, Elahi FM, Isaacs JD, Cheng F. PDE5 inhibitor drugs for use in dementia. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2023; 9:e12412. [PMID: 37766832 PMCID: PMC10520293 DOI: 10.1002/trc2.12412] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 09/29/2023]
Abstract
Alzheimer's disease and related dementias (ADRD) remain a major health-care challenge with few licensed medications. Repurposing existing drugs may afford prevention and treatment. Phosphodiesterase-5 (PDE5) is widely expressed in vascular myocytes, neurons, and glia. Potent, selective, Food and Drug Administration-approved PDE5 inhibitors are already in clinical use (sildenafil, vardenafil, tadalafil) as vasodilators in erectile dysfunction and pulmonary arterial hypertension. Animal data indicate cognitive benefits of PDE5 inhibitors. In humans, real-world patient data suggest that sildenafil and vardenafil are associated with reduced dementia risk. While a recent clinical trial of acute tadalafil on cerebral blood flow was neutral, there may be chronic actions of PDE5 inhibition on cerebrovascular or synaptic function. We provide a perspective on the potential utility of PDE5 inhibitors for ADRD. We conclude that further prospective clinical trials with PDE5 inhibitors are warranted. The choice of drug will depend on brain penetration, tolerability in older people, half-life, and off-target effects. HIGHLIGHTS Potent phosphodiesterase-5 (PDE5) inhibitors are in clinical use as vasodilators.In animals PDE5 inhibitors enhance synaptic function and cognitive ability.In humans the PDE5 inhibitor sildenafil is associated with reduced risk of Alzheimer's disease.Licensed PDE5 inhibitors have potential for repurposing in dementia.Prospective clinical trials of PDE5 inhibitors are warranted.
Collapse
Affiliation(s)
- Atticus H. Hainsworth
- Molecular & Clinical Sciences Research InstituteSt George's University of LondonLondonUK
- Department of NeurologySt George's University Hospitals NHS Foundation TrustLondonUK
| | - Ottavio Arancio
- Department of Pathology and Cell BiologyTaub Institute for Research on Alzheimer's Disease and the Aging BrainDepartment of MedicineColumbia UniversityNew YorkNew YorkUSA
| | - Fanny M. Elahi
- Departments of Neurology and NeuroscienceRonald M. Loeb Center for Alzheimer's DiseaseFriedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jeremy D. Isaacs
- Molecular & Clinical Sciences Research InstituteSt George's University of LondonLondonUK
- Department of NeurologySt George's University Hospitals NHS Foundation TrustLondonUK
| | - Feixiong Cheng
- Genomic Medicine InstituteLerner Research InstituteCleveland ClinicClevelandOhioUSA
- Department of Molecular MedicineCleveland Clinic Lerner College of MedicineCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
3
|
Wierońska JM, Cieślik P, Burnat G, Kalinowski L. Activation of Metabotropic Glutamate Receptor (mGlu 2) and Muscarinic Receptors (M 1, M 4, and M 5), Alone or in Combination, and Its Impact on the Acquisition and Retention of Learning in the Morris Water Maze, NMDA Expression and cGMP Synthesis. Biomolecules 2023; 13:1064. [PMID: 37509100 PMCID: PMC10377483 DOI: 10.3390/biom13071064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
The Morris water maze (MWM) is regarded as one of the most popular tests for detecting spatial memory in rodents. Long-term potentiation and cGMP synthesis seem to be among the crucial factors involved in this type of learning. Muscarinic (M1, M4, and M5 receptors) and metabotropic glutamate (mGlu) receptors are important targets in the search for antipsychotic drugs with the potency to treat cognitive disabilities associated with the disorder. Here, we show that muscarinic receptor activators (VU0357017, VU0152100, and VU0238429) and an mGlu2 receptor activator, LY487379, dose-dependently prevented the development of cognitive disorders as a result of MK-801 administration in the MWM. The dose-ranges of the compounds were as follows: VU0357017, 0.25, 0.5, and 1 mg/kg; VU0152100, 0.05, 0.25, and 1 mg/kg; VU0238429, 1, 5, and 20 mg/kg; and LY487379, 0.5, 3, and 5 mg/kg. The co-administration of LY487379 with each of the individual muscarinic receptor ligands showed no synergistic effect, which contradicts the results obtained earlier in the novel object recognition (NOR) test. MWM learning resulted in increased cGMP synthesis, both in the cortex and hippocampi, when compared to that in intact animals, which was prevented by MK-801 administration. The investigated compounds at the highest doses reversed this MK-801-induced effect. Neither the procedure nor the treatment resulted in changes in GluN2B-NMDA expression.
Collapse
Affiliation(s)
- Joanna M Wierońska
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Paulina Cieślik
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Grzegorz Burnat
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 7 Debinki Street, 80-211 Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdansk, Poland
| |
Collapse
|
4
|
Azargoonjahromi A. Dual role of nitric oxide in Alzheimer's Disease. Nitric Oxide 2023; 134-135:23-37. [PMID: 37019299 DOI: 10.1016/j.niox.2023.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/02/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
Nitric oxide (NO), an enzymatic product of nitric oxide synthase (NOS), has been associated with a variety of neurological diseases such as Alzheimer's disease (AD). NO has long been thought to contribute to neurotoxic insults caused by neuroinflammation in AD. This perception shifts as more attention is paid to the early stages before cognitive problems manifest. However, it has revealed a compensatory neuroprotective role for NO that protects synapses by increasing neuronal excitability. NO can positively affect neurons by inducing neuroplasticity, neuroprotection, and myelination, as well as having cytolytic activity to reduce inflammation. NO can also induce long-term potentiation (LTP), a process by which synaptic connections among neurons become more potent. Not to mention that such functions give rise to AD protection. Notably, it is unquestionably necessary to conduct more research to clarify NO pathways in neurodegenerative dementias because doing so could help us better understand their pathophysiology and develop more effective treatment options. All these findings bring us to the prevailing notion that NO can be used either as a therapeutic agent in patients afflicted with AD and other memory impairment disorders or as a contributor to the neurotoxic and aggressive factor in AD. In this review, after presenting a general background on AD and NO, various factors that have a pivotal role in both protecting and exacerbating AD and their correlation with NO will be elucidated. Following this, both the neuroprotective and neurotoxic effects of NO on neurons and glial cells among AD cases will be discussed in detail.
Collapse
|
5
|
Zafonte RD, Wang L, Arbelaez CA, Dennison R, Teng YD. Medical Gas Therapy for Tissue, Organ, and CNS Protection: A Systematic Review of Effects, Mechanisms, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104136. [PMID: 35243825 PMCID: PMC9069381 DOI: 10.1002/advs.202104136] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/10/2022] [Indexed: 05/13/2023]
Abstract
Gaseous molecules have been increasingly explored for therapeutic development. Here, following an analytical background introduction, a systematic review of medical gas research is presented, focusing on tissue protections, mechanisms, data tangibility, and translational challenges. The pharmacological efficacies of carbon monoxide (CO) and xenon (Xe) are further examined with emphasis on intracellular messengers associated with cytoprotection and functional improvement for the CNS, heart, retina, liver, kidneys, lungs, etc. Overall, the outcome supports the hypothesis that readily deliverable "biological gas" (CO, H2 , H2 S, NO, O2 , O3 , and N2 O) or "noble gas" (He, Ar, and Xe) treatment may preserve cells against common pathologies by regulating oxidative, inflammatory, apoptotic, survival, and/or repair processes. Specifically, CO, in safe dosages, elicits neurorestoration via igniting sGC/cGMP/MAPK signaling and crosstalk between HO-CO, HIF-1α/VEGF, and NOS pathways. Xe rescues neurons through NMDA antagonism and PI3K/Akt/HIF-1α/ERK activation. Primary findings also reveal that the need to utilize cutting-edge molecular and genetic tactics to validate mechanistic targets and optimize outcome consistency remains urgent; the number of neurotherapeutic investigations is limited, without published results from large in vivo models. Lastly, the broad-spectrum, concurrent multimodal homeostatic actions of medical gases may represent a novel pharmaceutical approach to treating critical organ failure and neurotrauma.
Collapse
Affiliation(s)
- Ross D. Zafonte
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Neurotrauma Recovery Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
- Spaulding Research InstituteSpaulding Rehabilitation Hospital NetworkBostonMA02129USA
| | - Lei Wang
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Christian A. Arbelaez
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Rachel Dennison
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Yang D. Teng
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Neurotrauma Recovery Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
- Spaulding Research InstituteSpaulding Rehabilitation Hospital NetworkBostonMA02129USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| |
Collapse
|
6
|
Pombal MA, Megías M, Lozano D, López JM. Neuromeric Distribution of Nicotinamide Adenine Dinucleotide Phosphate-Diaphorase Activity in the Adult Lamprey Brain. Front Neuroanat 2022; 16:826087. [PMID: 35197830 PMCID: PMC8859838 DOI: 10.3389/fnana.2022.826087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
This study reports for the first time the distribution and morphological characterization of nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d; a reliable marker of nitric oxide synthase activity) positive elements in the central nervous system of the adult river lamprey (Lampetra fluviatilis) on the framework of the neuromeric model and compares their cytoarchitectonic organization with that of gnathostomes. Both NADPH-d exhibiting cells and fibers were observed in all major divisions of the lamprey brain as well as in the spinal cord. In the secondary prosencephalon, NADPH-d positive cells were observed in the mitral cell layer of the olfactory bulb, evaginated pallium, amygdala, dorsal striatum, septum, lateral preoptic nucleus, caudal paraventricular area, posterior entopeduncular nucleus, nucleus of the stria medullaris, hypothalamic periventricular organ and mamillary region sensu lato. In the lamprey diencephalon, NADPH-d labeled cells were observed in several nuclei of the prethalamus, epithalamus, pretectum, and the basal plate. Especially remarkable was the staining observed in the right habenula and several pretectal nuclei. NADPH-d positive cells were also observed in the following mesencephalic areas: optic tectum (two populations), torus semicircularis, nucleus M5 of Schöber, and a ventral tegmental periventricular nucleus. Five different cell populations were observed in the isthmic region, whereas the large sensory dorsal cells, some cells located in the interpeduncular nucleus, the motor nuclei of most cranial nerves, the solitary tract nucleus, some cells of the reticular nuclei, and small cerebrospinal fluid-contacting (CSF-c) cells were the most evident stained cells of the rhombencephalon proper. Finally, several NADPH-d positive cells were observed in the rostral part of the spinal cord, including the large sensory dorsal cells, numerous CSF-c cells, and some dorsal and lateral interneurons. NADPH-d positive fibers were observed in the olfactory pathways (primary olfactory fibers and stria medullaris), the fasciculus retroflexus, and the dorsal column tract. Our results on the distribution of NADPH-d positive elements in the brain of the adult lamprey L. fluviatilis are significantly different from those previously reported in larval lampreys and demonstrated that these animals possess a complex nitrergic system readily comparable to those of other vertebrates, although important specific differences also exist.
Collapse
Affiliation(s)
- Manuel A. Pombal
- Neurolam Group, Facultade de Bioloxía-IBIV, Departamento de Bioloxía Funcional e Ciencias da Saúde, Universidade de Vigo, Vigo, Spain
- *Correspondence: Manuel A. Pombal,
| | - Manuel Megías
- Neurolam Group, Facultade de Bioloxía-IBIV, Departamento de Bioloxía Funcional e Ciencias da Saúde, Universidade de Vigo, Vigo, Spain
| | - Daniel Lozano
- Department of Cellular Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Jesús M. López
- Department of Cellular Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
7
|
Wan T, Fu M, Jiang Y, Jiang W, Li P, Zhou S. Research Progress on Mechanism of Neuroprotective Roles of Apelin-13 in Prevention and Treatment of Alzheimer's Disease. Neurochem Res 2022; 47:205-217. [PMID: 34518975 PMCID: PMC8436866 DOI: 10.1007/s11064-021-03448-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia. Currently, more than 50 million people live with dementia worldwide, and this number is expected to increase. Some of the typical pathological changes of AD include amyloid plaque, hyperphosphorylation of tau protein, secretion of inflammatory mediators, and neuronal apoptosis. Apelin is a neuroprotective peptide that is widely expressed in the body. Among members of apelin family, apelin-13 is the most abundant with a high neuroprotective function. Apelin-13/angiotensin domain type 1 receptor-associated proteins (APJ) system regulates several physiological and pathophysiological cell activities, such as apoptosis, autophagy, synaptic plasticity, and neuroinflammation. It has also been shown to prevent AD development. This article reviews the research progress on the relationship between apelin-13 and AD to provide new ideas for prevention and treatment of AD.
Collapse
Affiliation(s)
- Teng Wan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, Guangxi, China
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Mingyuan Fu
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Yan Jiang
- Department of Epidemiology and Health Statistics, School of Public Health, Xiangnan University, Chenzhou, 423043, China
| | - Weiwei Jiang
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Peiling Li
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Shouhong Zhou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, Guangxi, China.
- Department of Physiology, Basic Medical College, Guilin, 541199, Guangxi, China.
| |
Collapse
|
8
|
Alam Q, Krishnamurthy S. Dihydroquercetin ameliorates LPS-induced neuroinflammation and memory deficit. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100091. [PMID: 35243333 PMCID: PMC8857648 DOI: 10.1016/j.crphar.2022.100091] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/23/2022] Open
Abstract
Dihydroquercetin (DHQ) is a pentahydroxyflavanone that has been used as an important suppliment against oxidative stress related inflammation and neuroinflammation. Neuroinflammation, which is the activation of the defense mechanism of the central nervous system, upon exposure to stimuli like amyloid β, Lewy bodies, lipopolysaccharide (LPS) and reactive oxygen species. It is an important pathophysiological mediator of a number of neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, multiple sclerosis and others. The objective of the present study is to evaluate the neuroprotective effect of DHQ, a potent antioxidant molecule, against LPS induced neuroinflammation. On the first day of the experiment (day-1), neuroinflammation was induced through intracerebroventricular injection of LPS (5 μg/5 μl) into each lateral ventricle in the rats. DHQ-0.5, 1 and 2 μg/kg was injected into the tail vein in respective groups from day-2 to day-10. Behavioral studies showed that DHQ attenuated the LPS-induced loss in long-term memory and working memory as evaluated by elevated plus maze and Y-maze test, respectively. Further, the biochemical estimations revealed that DHQ dose-dependently attenuated the LPS-induced decrease in acetylcholine level and increased in the acetylcholine-esterase activity in the hippocampal region. DHQ also increased the catalase activity and decreased nitric oxide and lipid peroxidation altered by LPS injection. DHQ also attenuated interleukin-6 in the brain, which has elevated upon LPS induction. The decrease in IL-6 is attributed to its antioxidant activity. Hence, DHQ could be a potential therapeutic candidate in the management of neuroinflammation and related neurodegenerative disorders. Dihydroquercetin (DHQ) improves LPS induced loss in working memory and long-term memory. DHQ attenuates LPS –induced decrease in cholinergic activity. DHQ shows anti-oxidant properties. DHQ shows anti-neuroinflammatory effect.
Collapse
|
9
|
Al-Amin MM, Sullivan RKP, Alexander S, Carter DA, Bradford D, Burne THJ, Burne THJ. Impaired spatial memory in adult vitamin D deficient BALB/c mice is associated with reductions in spine density, nitric oxide, and neural nitric oxide synthase in the hippocampus. AIMS Neurosci 2022; 9:31-56. [PMID: 35434279 PMCID: PMC8941191 DOI: 10.3934/neuroscience.2022004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
Vitamin D deficiency is prevalent in adults and is associated with cognitive impairment. However, the mechanism by which adult vitamin D (AVD) deficiency affects cognitive function remains unclear. We examined spatial memory impairment in AVD-deficient BALB/c mice and its underlying mechanism by measuring spine density, long term potentiation (LTP), nitric oxide (NO), neuronal nitric oxide synthase (nNOS), and endothelial NOS (eNOS) in the hippocampus. Adult male BALB/c mice were fed a control or vitamin D deficient diet for 20 weeks. Spatial memory performance was measured using an active place avoidance (APA) task, where AVD-deficient mice had reduced latency entering the shock zone compared to controls. We characterised hippocampal spine morphology in the CA1 and dentate gyrus (DG) and made electrophysiological recordings in the hippocampus of behaviourally naïve mice to measure LTP. We next measured NO, as well as glutathione, lipid peroxidation and oxidation of protein products and quantified hippocampal immunoreactivity for nNOS and eNOS. Spine morphology analysis revealed a significant reduction in the number of mushroom spines in the CA1 dendrites but not in the DG. There was no effect of diet on LTP. However, hippocampal NO levels were depleted whereas other oxidation markers were unaltered by AVD deficiency. We also showed a reduced nNOS, but not eNOS, immunoreactivity. Finally, vitamin D supplementation for 10 weeks to AVD-deficient mice restored nNOS immunoreactivity to that seen in in control mice. Our results suggest that lower levels of NO and reduced nNOS immunostaining contribute to hippocampal-dependent spatial learning deficits in AVD-deficient mice.
Collapse
Affiliation(s)
- Md. Mamun Al-Amin
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
| | | | - Suzy Alexander
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia,Queensland Centre for Mental Health Research, Wacol 4076, Australia
| | - David A. Carter
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
| | - DanaKai Bradford
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia,Australian E-Health Research Centre, CSIRO, Pullenvale 4069, Australia
| | - Thomas H. J. Burne
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia,Queensland Centre for Mental Health Research, Wacol 4076, Australia,* Correspondence: ; Tel: +61 733466371; Fax: +61 733466301
| | | | | | | |
Collapse
|
10
|
Levi D, Vignati S, Guida E, Oliva A, Cecconi P, Sironi A, Corso A, Broggi G. Tailored repetitive transcranial magnetic stimulation for depression and addictions. PROGRESS IN BRAIN RESEARCH 2022; 270:105-121. [DOI: 10.1016/bs.pbr.2022.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Kourosh-Arami M, Hosseini N, Mohsenzadegan M, Komaki A, Joghataei MT. Neurophysiologic implications of neuronal nitric oxide synthase. Rev Neurosci 2021; 31:617-636. [PMID: 32739909 DOI: 10.1515/revneuro-2019-0111] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/21/2020] [Indexed: 12/12/2022]
Abstract
The molecular and chemical properties of neuronal nitric oxide synthase (nNOS) have made it a key mediator in many physiological functions and signaling transduction. The NOS monomer is inactive, but the dimer form is active. There are three forms of NOS, which are neuronal (nNOS), inducible (iNOS), and endothelial (eNOS) nitric oxide synthase. nNOS regulates nitric oxide (NO) synthesis which is the mechanism used mostly by neurons to produce NO. nNOS expression and activation is regulated by some important signaling proteins, such as cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB), calmodulin (CaM), heat shock protein 90 (HSP90)/HSP70. nNOS-derived NO has been implicated in modulating many physiological functions, such as synaptic plasticity, learning, memory, neurogenesis, etc. In this review, we have summarized recent studies that have characterized structural features, subcellular localization, and factors that regulate nNOS function. Finally, we have discussed the role of nNOS in the developing brain under a wide range of physiological conditions, especially long-term potentiation and depression.
Collapse
Affiliation(s)
- Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Nasrin Hosseini
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Monireh Mohsenzadegan
- Department of Laboratory Sciences, Allied Medical College, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Alireza Komaki
- Department of Physiology, Medical College, Hamedan University of Medical Sciences, Hamedan, Islamic Republic of Iran
| | - Mohammad Taghi Joghataei
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|
12
|
Almannai M, El-Hattab AW. Nitric Oxide Deficiency in Mitochondrial Disorders: The Utility of Arginine and Citrulline. Front Mol Neurosci 2021; 14:682780. [PMID: 34421535 PMCID: PMC8374159 DOI: 10.3389/fnmol.2021.682780] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/21/2021] [Indexed: 11/21/2022] Open
Abstract
Mitochondrial diseases represent a growing list of clinically heterogeneous disorders that are associated with dysfunctional mitochondria and multisystemic manifestations. In spite of a better understanding of the underlying pathophysiological basis of mitochondrial disorders, treatment options remain limited. Over the past two decades, there is growing evidence that patients with mitochondrial disorders have nitric oxide (NO) deficiency due to the limited availability of NO substrates, arginine and citrulline; decreased activity of nitric oxide synthase (NOS); and NO sequestration. Studies evaluating the use of arginine in patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) presenting with stroke-like episodes showed symptomatic improvement after acute administration as well as a reduction in the frequency and severity of stroke-like episodes following chronic use. Citrulline, another NO precursor, was shown through stable isotope studies to result in a greater increase in NO synthesis. Recent studies showed a positive response of arginine and citrulline in other mitochondrial disorders besides MELAS. Randomized-controlled studies with a larger number of patients are warranted to better understand the role of NO deficiency in mitochondrial disorders and the efficacy of NO precursors as treatment modalities in these disorders.
Collapse
Affiliation(s)
- Mohammed Almannai
- Section of Medical Genetics, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia.,College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ayman W El-Hattab
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Clinical Genetics, University Hospital Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
13
|
Wierońska JM, Cieślik P, Kalinowski L. Nitric Oxide-Dependent Pathways as Critical Factors in the Consequences and Recovery after Brain Ischemic Hypoxia. Biomolecules 2021; 11:biom11081097. [PMID: 34439764 PMCID: PMC8392725 DOI: 10.3390/biom11081097] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Brain ischemia is one of the leading causes of disability and mortality worldwide. Nitric oxide (NO•), a molecule that is involved in the regulation of proper blood flow, vasodilation, neuronal and glial activity constitutes the crucial factor that contributes to the development of pathological changes after stroke. One of the early consequences of a sudden interruption in the cerebral blood flow is the massive production of reactive oxygen and nitrogen species (ROS/RNS) in neurons due to NO• synthase uncoupling, which leads to neurotoxicity. Progression of apoptotic or necrotic neuronal damage activates reactive astrocytes and attracts microglia or lymphocytes to migrate to place of inflammation. Those inflammatory cells start to produce large amounts of inflammatory proteins, including pathological, inducible form of NOS (iNOS), which generates nitrosative stress that further contributes to brain tissue damage, forming vicious circle of detrimental processes in the late stage of ischemia. S-nitrosylation, hypoxia-inducible factor 1α (HIF-1α) and HIF-1α-dependent genes activated in reactive astrocytes play essential roles in this process. The review summarizes the roles of NO•-dependent pathways in the early and late aftermath of stroke and treatments based on the stimulation or inhibition of particular NO• synthases and the stabilization of HIF-1α activity.
Collapse
Affiliation(s)
- Joanna M Wierońska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (J.M.W.); (P.C.)
| | - Paulina Cieślik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (J.M.W.); (P.C.)
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Biobank Fahrenheit BBMRI.pl, Medical University of Gdansk, Debinki Street 7, 80-211 Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Debinki Street 7, 80-211 Gdansk, Poland
- BioTechMed Center/Department of Mechanics of Materials and Structures, Gdansk University of Technology, Narutowicza 11/12, 80-223 Gdansk, Poland
- Correspondence: ; Tel.: +48-58-349-1182
| |
Collapse
|
14
|
Ledo A, Lourenço CF, Cadenas E, Barbosa RM, Laranjinha J. The bioactivity of neuronal-derived nitric oxide in aging and neurodegeneration: Switching signaling to degeneration. Free Radic Biol Med 2021; 162:500-513. [PMID: 33186742 DOI: 10.1016/j.freeradbiomed.2020.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 12/22/2022]
Abstract
The small and diffusible free radical nitric oxide (•NO) has fascinated biological and medical scientists since it was promoted from atmospheric air pollutant to biological ubiquitous signaling molecule. Its unique physical chemical properties expand beyond its radical nature to include fast diffusion in aqueous and lipid environments and selective reactivity in a biological setting determined by bioavailability and reaction rate constants with biomolecules. In the brain, •NO is recognized as a key player in numerous physiological processes ranging from neurotransmission/neuromodulation to neurovascular coupling and immune response. Furthermore, changes in its bioactivity are central to the molecular pathways associated with brain aging and neurodegeneration. The understanding of •NO bioactivity in the brain, however, requires the knowledge of its concentration dynamics with high spatial and temporal resolution upon stimulation of its synthesis. Here we revise our current understanding of the role of neuronal-derived •NO in brain physiology, aging and degeneration, focused on changes in the extracellular concentration dynamics of this free radical and the regulation of bioenergetic metabolism and neurovascular coupling.
Collapse
Affiliation(s)
- A Ledo
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
| | - C F Lourenço
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - E Cadenas
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, 90089, CA, USA
| | - R M Barbosa
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - J Laranjinha
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| |
Collapse
|
15
|
Tewari D, Sah AN, Bawari S, Nabavi SF, Dehpour AR, Shirooie S, Braidy N, Fiebich BL, Vacca RA, Nabavi SM. Role of Nitric Oxide in Neurodegeneration: Function, Regulation, and Inhibition. Curr Neuropharmacol 2020; 19:114-126. [PMID: 32348225 PMCID: PMC8033982 DOI: 10.2174/1570159x18666200429001549] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/17/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
Reactive nitrogen species (RNS) and reactive oxygen species (ROS), collectively known as reactive oxygen and nitrogen species (RONS), are the products of normal cellular metabolism and interact with several vital biomolecules including nucleic acid, proteins, and membrane lipids and alter their function in an irreversible manner which can lead to cell death. There is an imperative role for oxidative stress in the pathogenesis of cognitive impairments and the development and progression of neural injury. Elevated production of higher amounts of nitric oxide (NO) takes place in numerous pathological conditions, such as neurodegenerative diseases, inflammation, and ischemia, which occur concurrently with elevated nitrosative/oxidative stress. The enzyme nitric oxide synthase (NOS) is responsible for the generation of NO in different cells by conversion of L-arginine (Arg) to L-citrulline. Therefore, the NO signaling pathway represents a viable therapeutic target. Naturally occurring polyphenols targeting the NO signaling pathway can be of major importance in the field of neurodegeneration and related complications. Here, we comprehensively review the importance of NO and its production in the human body and afterwards highlight the importance of various natural products along with their mechanisms against various neurodegenerative diseases involving their effect on NO production.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Archana N Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Bhimtal Campus, Kumaun University, Nainital, Uttarakhand 263136, India
| | - Sweta Bawari
- School of Pharmacy, Sharda University, Knowledge Park-III, Greater Noida, Uttar Pradesh, 201310, India
| | - Seyed F Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran
| | - Ahmad R Dehpour
- Department of Pharmacology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Australia
| | - Bernd L Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rosa A Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy
| | - Seyed M Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran
| |
Collapse
|
16
|
Ding X, Peng D. Transient Global Amnesia: An Electrophysiological Disorder Based on Cortical Spreading Depression-Transient Global Amnesia Model. Front Hum Neurosci 2020; 14:602496. [PMID: 33363460 PMCID: PMC7753037 DOI: 10.3389/fnhum.2020.602496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/17/2020] [Indexed: 01/09/2023] Open
Abstract
Transient global amnesia (TGA) is a benign memory disorder with etiologies that have been debated for a long time. The prevalence of stressful events before a TGA attack makes it hard to overlook these precipitating factors, given that stress has the potential to organically effect the brain. Cortical spreading depression (CSD) was proposed as a possible cause decades ago. Being a regional phenomenon, CSD seems to affect every aspect of the micro-mechanism in maintaining the homeostasis of the central nervous system (CNS). Corresponding evidence regarding hemodynamic and morphological changes from TGA and CSD have been accumulated separately, but the resemblance between the two has not been systematically explored so far, which is surprising especially considering that CSD had been confirmed to cause secondary damage in the human brain. Thus, by deeply delving into the anatomic and electrophysiological properties of the CNS, the CSD-TGA model may render insights into the basic pathophysiology behind the façade of the enigmatic clinical presentation.
Collapse
Affiliation(s)
- Xuejiao Ding
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Dantao Peng
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
17
|
Kaur N, Chugh H, Sakharkar MK, Dhawan U, Chidambaram SB, Chandra R. Neuroinflammation Mechanisms and Phytotherapeutic Intervention: A Systematic Review. ACS Chem Neurosci 2020; 11:3707-3731. [PMID: 33146995 DOI: 10.1021/acschemneuro.0c00427] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation is indicated in the pathogenesis of several acute and chronic neurological disorders. Acute lesions in the brain parenchyma induce intense and highly complex neuroinflammatory reactions with similar mechanisms among various disease prototypes. Microglial cells in the CNS sense tissue damage and initiate inflammatory responses. The cellular and humoral constituents of the neuroinflammatory reaction to brain injury contribute significantly to secondary brain damage and neurodegeneration. Inflammatory cascades such as proinflammatory cytokines from invading leukocytes and direct cell-mediated cytotoxicity between lymphocytes and neurons are known to cause "collateral damage" in models of acute brain injury. In addition to degeneration and neuronal cell loss, there are secondary inflammatory mechanisms that modulate neuronal activity and affect neuroinflammation which can even be detected at the behavioral level. Hence, several of health conditions result from these pathogenetic conditions which are underlined by progressive neuronal function loss due to chronic inflammation and oxidative stress. In the first part of this Review, we discuss critical neuroinflammatory mediators and their pathways in detail. In the second part, we review the phytochemicals which are considered as potential therapeutic molecules for treating neurodegenerative diseases with an inflammatory component.
Collapse
Affiliation(s)
- Navrinder Kaur
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, New Delhi-110007, India
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi-110007, India
| | - Heerak Chugh
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, New Delhi-110007, India
| | - Meena K. Sakharkar
- College of Pharmacy and Nutrition, University of Sasketchwan, Saskatoon S7N 5E5, Canada
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), S.S. Nagar, Mysuru-570015, India
- Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research JSS AHER, Mysuru-570015, India
| | - Ramesh Chandra
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, New Delhi-110007, India
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi-110007, India
| |
Collapse
|
18
|
Ghotbeddin Z, Basir Z, Jamshidian J, Delfi F. Modulation of behavioral responses and CA1 neuronal death by nitric oxide in the neonatal rat's hypoxia model. Brain Behav 2020; 10:e01841. [PMID: 32940009 PMCID: PMC7667332 DOI: 10.1002/brb3.1841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/22/2020] [Accepted: 08/29/2020] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION Neonatal hypoxia leads to cognitive and movement impairments that might persist throughout life. Hypoxia impairs hippocampal blood circulation and metabolism. The exact mechanisms underlying hypoxia-induced memory impairment are not fully understood. Nitric oxide (NO) is a key neuromodulator that regulates cerebral blood flow. In this study, we aimed to evaluate the possible role of NO on behavioral and histomorphometric changes in the hippocampus following hypoxia in neonate rats. MATERIAL AND METHODS Neonate male rats (n = 28) were randomly divided into 4 groups: control, hypoxia, hypoxia plus L-NAME (20 mg/kg), and hypoxia plus L-arginine (200 mg/kg). Drugs were injected intraperitoneally for seven consecutive days. Hypoxia was induced by keeping rats in a hypoxic chamber (7% oxygen and 93% nitrogen intensity). Ten to 14 days after hypoxia, behavioral changes were measured using a shuttle box, a rotarod, and an open field test. The histological changes in the hippocampus were measured using H&E and Nissl staining methods. RESULTS Findings showed that hypoxia caused significant atrophy in the hippocampus. Furthermore, the administration of L-NAME decreased the atrophy of the hippocampus in comparison with the hypoxic group. Behavioral results showed that hypoxia impaired memory performance and motor activity responses. Additionally, the administration of L-NAME improved behavioral performance in a significant manner compared with the hypoxic group. CONCLUSIONS Hypoxia damaged the neurons of hippocampal CA1 region and induced memory impairment. The NOS inhibitor, L-NAME, significantly attenuated the negative effects of hypoxia on behavior and observed changes in the hippocampus.
Collapse
Affiliation(s)
- Zohreh Ghotbeddin
- Department of PhysiologyFaculty of Veterinary MedicineShahid Chamran University of AhvazAhvazIran
- Stem Cell and Transgenic Technology Research CenterShahid Chamran University of AhvazAhvazIran
| | - Zahra Basir
- Department of HistologyFaculty of Veterinary MedicineShahid Chamran University of AhvazAhvazIran
| | - Javad Jamshidian
- Department of PharmacologyFaculty of Veterinary MedicineShahid Chamran University of AhvazAhvazIran
| | - Farideh Delfi
- Department of PhysiologyFaculty of Veterinary MedicineShahid Chamran University of AhvazAhvazIran
| |
Collapse
|
19
|
Guerra DD, Hurt KJ. Gasotransmitters in pregnancy: from conception to uterine involution. Biol Reprod 2020; 101:4-25. [PMID: 30848786 DOI: 10.1093/biolre/ioz038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/14/2019] [Accepted: 03/06/2019] [Indexed: 12/13/2022] Open
Abstract
Gasotransmitters are endogenous small gaseous messengers exemplified by nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S or sulfide). Gasotransmitters are implicated in myriad physiologic functions including many aspects of reproduction. Our objective was to comprehensively review basic mechanisms and functions of gasotransmitters during pregnancy from conception to uterine involution and highlight future research opportunities. We searched PubMed and Web of Science databases using combinations of keywords nitric oxide, carbon monoxide, sulfide, placenta, uterus, labor, and pregnancy. We included English language publications on human and animal studies from any date through August 2018 and retained basic and translational articles with relevant original findings. All gasotransmitters activate cGMP signaling. NO and sulfide also covalently modify target protein cysteines. Protein kinases and ion channels transduce gasotransmitter signals, and co-expressed gasotransmitters can be synergistic or antagonistic depending on cell type. Gasotransmitters influence tubal transit, placentation, cervical remodeling, and myometrial contractility. NO, CO, and sulfide dilate resistance vessels, suppress inflammation, and relax myometrium to promote uterine quiescence and normal placentation. Cervical remodeling and rupture of fetal membranes coincide with enhanced oxidation and altered gasotransmitter metabolism. Mechanisms mediating cellular and organismal changes in pregnancy due to gasotransmitters are largely unknown. Altered gasotransmitter signaling has been reported for preeclampsia, intrauterine growth restriction, premature rupture of membranes, and preterm labor. However, in most cases specific molecular changes are not yet characterized. Nonclassical signaling pathways and the crosstalk among gasotransmitters are emerging investigation topics.
Collapse
Affiliation(s)
- Damian D Guerra
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| | - K Joseph Hurt
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA.,Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
20
|
Coimbra DF, Cintra CH, Lourenço LCL, Parreira RLT, Orenha RP, Caramori GF. Are DFT Methods Able to Predict Reduction Potentials of Ruthenium Nitrosyl Complexes Accurately? J Phys Chem A 2020; 124:6186-6192. [DOI: 10.1021/acs.jpca.0c03718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel F. Coimbra
- Departamento de Química, Universidade Federal de Santa Catarina, Campus Universitário Trindade, CP 476, Florianópolis, SC 88040−900, Brazil
| | - Claudia H. Cintra
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, 14404-600 Brazil
| | - Luiz C. L. Lourenço
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, 14404-600 Brazil
| | - Renato L. T. Parreira
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, 14404-600 Brazil
| | - Renato P. Orenha
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, 14404-600 Brazil
| | - Giovanni F. Caramori
- Departamento de Química, Universidade Federal de Santa Catarina, Campus Universitário Trindade, CP 476, Florianópolis, SC 88040−900, Brazil
| |
Collapse
|
21
|
Chong PS, Poon CH, Fung ML, Guan L, Steinbusch HWM, Chan YS, Lim WL, Lim LW. Distribution of neuronal nitric oxide synthase immunoreactivity in adult male Sprague-Dawley rat brain. Acta Histochem 2019; 121:151437. [PMID: 31492421 DOI: 10.1016/j.acthis.2019.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/22/2019] [Accepted: 08/20/2019] [Indexed: 12/23/2022]
Abstract
Neuronal NOS (nNOS) accounts for most of the NO production in the nervous system that modulates synaptic transmission and neuroplasticity. Although previous studies have selectively described the localisation of nNOS in specific brain regions, a comprehensive distribution profile of nNOS in the brain is lacking. Here we provided a detailed morphological characterization on the rostro-caudal distribution of neurons and fibres exhibiting positive nNOS-immunoreactivity in adult Sprague-Dawley rat brain. Our results demonstrated that neurons and fibres in the brain regions that exhibited high nNOS immunoreactivity include the olfactory-related areas, intermediate endopiriform nucleus, Islands of Calleja, subfornical organ, ventral lateral geniculate nucleus, parafascicular thalamic nucleus, superior colliculus, lateral terminal nucleus, pedunculopontine tegmental nucleus, periaqueductal gray, dorsal raphe nucleus, supragenual nucleus, nucleus of the trapezoid body, and the cerebellum. Moderate nNOS immunoreactivity was detected in the cerebral cortex, caudate putamen, hippocampus, thalamus, hypothalamus, amygdala, and the spinal cord. Finally, low NOS immunoreactivity were found in the corpus callosum, fornix, globus pallidus, anterior commissure, and the dorsal hippocampal commissure. In conclusion, this study provides a comprehensive view of the morphology and localisation of nNOS immunoreactivity in the brain that would contribute to a better understanding of the role played by nNOS in the brain.
Collapse
Affiliation(s)
- Pit Shan Chong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Chi Him Poon
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Man Lung Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Li Guan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Harry W M Steinbusch
- Department of Neuroscience and European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Wei Ling Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China; Department of Biological Sciences, Sunway University, Selangor, Malaysia.
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China; Department of Biological Sciences, Sunway University, Selangor, Malaysia.
| |
Collapse
|
22
|
Artur de la Villarmois E, Pérez MF. Cognitive interference as a possible therapeutic strategy to prevent expression of benzodiazepine withdrawal. Eur J Neurosci 2019; 50:3843-3854. [PMID: 31299121 DOI: 10.1111/ejn.14515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/01/2019] [Accepted: 07/05/2019] [Indexed: 01/04/2023]
Abstract
Benzodiazepines are usually prescribed for anxiety and sleep disorders in long-term schedules that may cause drug dependence. Discontinuation after prolonged administration may lead to withdrawal expression, being anxiety the most predominant sign. The context-dependent associative learning process that underlies diazepam dependence can be interfered by pre-exposure to the drug administration context, an effect known as latent inhibition. Considering this background, the primary aim of the present investigation is to develop a therapeutic strategy to prevent diazepam withdrawal in male Wistar rats by interfering with this learning process. Nitric oxide is a crucial player in learning and memory, hippocampal synaptic transmission and in diazepam withdrawal. Then, a secondary goal is to determine how latent inhibition could alter functional plasticity and neuronal nitric oxide synthase enzyme (NOS-1) expression within the hippocampus, by using multi-unitary cell recordings and Western blot, respectively. Our results indicate that chronic diazepam treated animals under latent inhibition did not show anxiety, or changes in hippocampal synaptic transmission, but a significant reduction in NOS-1 expression was observed. Accordingly, pharmacological NOS-1 inhibition resembles behavioral and electrophysiological changes induced by latent inhibition. Contrary, diazepam treated animals under Control protocol expressed anxiety and evidenced an increased hippocampal-plasticity, without alterations in NOS-1 expression. In conclusion, manipulation of the contextual cues presented during diazepam administration may be considered as an effective non-pharmacological tool to prevent the withdrawal syndrome. This behavioral strategy may influence hippocampal synaptic transmission, probably by alterations in nitric oxide signaling pathways in this structure.
Collapse
Affiliation(s)
- Emilce Artur de la Villarmois
- Departamento de Farmacología, Facultad de Ciencias Químicas, IFEC-CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Mariela Fernanda Pérez
- Departamento de Farmacología, Facultad de Ciencias Químicas, IFEC-CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| |
Collapse
|
23
|
Acquarone E, Argyrousi EK, van den Berg M, Gulisano W, Fà M, Staniszewski A, Calcagno E, Zuccarello E, D’Adamio L, Deng SX, Puzzo D, Arancio O, Fiorito J. Synaptic and memory dysfunction induced by tau oligomers is rescued by up-regulation of the nitric oxide cascade. Mol Neurodegener 2019; 14:26. [PMID: 31248451 PMCID: PMC6598340 DOI: 10.1186/s13024-019-0326-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/05/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Soluble aggregates of oligomeric forms of tau protein (oTau) have been associated with impairment of synaptic plasticity and memory in Alzheimer's disease. However, the molecular mechanisms underlying the synaptic and memory dysfunction induced by elevation of oTau are still unknown. METHODS This work used a combination of biochemical, electrophysiological and behavioral techniques. Biochemical methods included analysis of phosphorylation of the cAMP-responsive element binding (CREB) protein, a transcriptional factor involved in memory, histone acetylation, and expression immediate early genes c-Fos and Arc. Electrophysiological methods included assessment of long-term potentiation (LTP), a type of synaptic plasticity thought to underlie memory formation. Behavioral studies investigated both short-term spatial memory and associative memory. These phenomena were examined following oTau elevation. RESULTS Levels of phospho-CREB, histone 3 acetylation at lysine 27, and immediate early genes c-Fos and Arc, were found to be reduced after oTau elevation during memory formation. These findings led us to explore whether up-regulation of various components of the nitric oxide (NO) signaling pathway impinging onto CREB is capable of rescuing oTau-induced impairment of plasticity, memory, and CREB phosphorylation. The increase of NO levels protected against oTau-induced impairment of LTP through activation of soluble guanylyl cyclase. Similarly, the elevation of cGMP levels and stimulation of the cGMP-dependent protein kinases (PKG) re-established normal LTP after exposure to oTau. Pharmacological inhibition of cGMP degradation through inhibition of phosphodiesterase 5 (PDE5), rescued oTau-induced LTP reduction. These findings could be extrapolated to memory because PKG activation and PDE5 inhibition rescued oTau-induced memory impairment. Finally, PDE5 inhibition re-established normal elevation of CREB phosphorylation and cGMP levels after memory induction in the presence of oTau. CONCLUSIONS Up-regulation of CREB activation through agents acting on the NO cascade might be beneficial against tau-induced synaptic and memory dysfunctions.
Collapse
Affiliation(s)
- Erica Acquarone
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
- DiMi Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
| | - Elentina K. Argyrousi
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
- Faculty of Psychology and Neuroscience, Maastricht University, 6229 Maastricht, Netherlands
| | - Manon van den Berg
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
- Faculty of Psychology and Neuroscience, Maastricht University, 6229 Maastricht, Netherlands
| | - Walter Gulisano
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95125 Catania, Italy
| | - Mauro Fà
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
| | - Agnieszka Staniszewski
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
| | - Elisa Calcagno
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
- Department of Experimental Medicine, Section of General Pathology, School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy
| | - Elisa Zuccarello
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
| | - Luciano D’Adamio
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University, Newark, NJ USA
| | - Shi-Xian Deng
- Department of Medicine, Columbia University, New York, NY 10032 USA
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95125 Catania, Italy
- Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
- Department of Medicine, Columbia University, New York, NY 10032 USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032 USA
| | - Jole Fiorito
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
- Department of Life Sciences, New York Institute of Technology, Northern Boulevard P.O. Box 8000, Theobald Science Center, room 425, Old Westbury, NY 11568 USA
| |
Collapse
|
24
|
González-Sánchez H, Tovar-Díaz J, Morin JP, Roldán-Roldán G. NMDA receptor and nitric oxide synthase activity in the central amygdala is involved in the acquisition and consolidation of conditioned odor aversion. Neurosci Lett 2019; 707:134327. [PMID: 31200091 DOI: 10.1016/j.neulet.2019.134327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/22/2019] [Accepted: 06/09/2019] [Indexed: 01/15/2023]
Abstract
Rats readily learn to avoid a tasteless odorized solution if they experience visceral malaise after consuming it. This phenomenon is referred to as conditioned odor aversion (COA). Several studies have shown that COA depends on the functional integrity of the amygdala, with most studies focusing on the basolateral nucleus. On the other hand, the role of the central amygdala (CeA) which is known to be involved in the consolidation of conditioned taste aversion (CTA) remains to be established. To address this issue, we evaluated the effect of inhibiting NMDA receptor activity in this structure on COA memory formation. Intra-CeA infusions of non-competitive NMDA receptor inhibitor MK-801 prevented memory formation both when administered before and up to 15 min after COA conditioning, while no effect of this drug was observed when given before long-term memory test. We next evaluated the role of one of the main downstream effectors of brain NMDA receptor signaling, nitric oxide synthase (NOS), known to play a key role in a wide variety learning tasks including some types of olfactory conditioning. Similar results were obtained with inhibition of either NOS or neuron-specific NOS; which proved to be required both during and after COA training, though for a shorter time span than NMDA receptors. Also, neither isoform showed to be required to memory retrieval. These results suggest that the US signaling during acquisition and the initial consolidation step of COA depends on glutamate-NO system activation in the CeA.
Collapse
Affiliation(s)
- Héctor González-Sánchez
- Department of Physiology, Faculty of Medicine, National Autonomous University Mexico, Mexico City, Mexico
| | - Jorge Tovar-Díaz
- Department of Physiology, Faculty of Medicine, National Autonomous University Mexico, Mexico City, Mexico; Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana, BC, Mexico
| | - Jean-Pascal Morin
- Department of Physiology, Faculty of Medicine, National Autonomous University Mexico, Mexico City, Mexico
| | - Gabriel Roldán-Roldán
- Department of Physiology, Faculty of Medicine, National Autonomous University Mexico, Mexico City, Mexico.
| |
Collapse
|
25
|
Horton A, Schiefer IT. Pharmacokinetics and pharmacodynamics of nitric oxide mimetic agents. Nitric Oxide 2019; 84:69-78. [PMID: 30641123 DOI: 10.1016/j.niox.2019.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 10/27/2022]
Abstract
Drug discovery focusing on NO mimetics has been hamstrung due to its unconventional nature. Central to these challenges is the fact that direct measurement of molecular NO in biological systems is exceedingly difficulty. Hence, drug development of NO mimetics must rely upon measurement of the NO donating specie (i.e., a prodrug) and a downstream marker of efficacy without directly measuring the molecule, NO, that is responsible for biological effect. The focus of this review is to catalog in vivo attempts to monitor the pharmacokinetics (PK) of the NO donating specie and the pharmacodynamic (PD) readout of NO bioactivity.
Collapse
Affiliation(s)
- Austin Horton
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, USA
| | - Isaac T Schiefer
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, USA.
| |
Collapse
|
26
|
Nitric oxide and l-arginine regulate feeding in satiated rats. Appetite 2019; 132:44-54. [DOI: 10.1016/j.appet.2018.09.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/14/2018] [Accepted: 09/27/2018] [Indexed: 12/27/2022]
|
27
|
Hollas MA, Ben Aissa M, Lee SH, Gordon-Blake JM, Thatcher GRJ. Pharmacological manipulation of cGMP and NO/cGMP in CNS drug discovery. Nitric Oxide 2019; 82:59-74. [PMID: 30394348 PMCID: PMC7645969 DOI: 10.1016/j.niox.2018.10.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/14/2018] [Accepted: 10/25/2018] [Indexed: 12/21/2022]
Abstract
The development of small molecule modulators of NO/cGMP signaling for use in the CNS has lagged far behind the use of such clinical agents in the periphery, despite the central role played by NO/cGMP in learning and memory, and the substantial evidence that this signaling pathway is perturbed in neurodegenerative disorders, including Alzheimer's disease. The NO-chimeras, NMZ and Nitrosynapsin, have yielded beneficial and disease-modifying responses in multiple preclinical animal models, acting on GABAA and NMDA receptors, respectively, providing additional mechanisms of action relevant to synaptic and neuronal dysfunction. Several inhibitors of cGMP-specific phosphodiesterases (PDE) have replicated some of the actions of these NO-chimeras in the CNS. There is no evidence that nitrate tolerance is a phenomenon relevant to the CNS actions of NO-chimeras, and studies on nitroglycerin in the periphery continue to challenge the dogma of nitrate tolerance mechanisms. Hybrid nitrates have shown much promise in the periphery and CNS, but to date only one treatment has received FDA approval, for glaucoma. The potential for allosteric modulation of soluble guanylate cyclase (sGC) in brain disorders has not yet been fully explored nor exploited; whereas multiple applications of PDE inhibitors have been explored and many have stalled in clinical trials.
Collapse
Affiliation(s)
- Michael A Hollas
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Manel Ben Aissa
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Sue H Lee
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Jesse M Gordon-Blake
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Gregory R J Thatcher
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA.
| |
Collapse
|
28
|
Tarasova EO, Gaydukov AE, Balezina OP. Calcineurin and Its Role in Synaptic Transmission. BIOCHEMISTRY (MOSCOW) 2018; 83:674-689. [PMID: 30195324 DOI: 10.1134/s0006297918060056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Calcineurin (CaN) is a serine/threonine phosphatase widely expressed in different cell types and structures including neurons and synapses. The most studied role of CaN is its involvement in the functioning of postsynaptic structures of central synapses. The role of CaN in the presynaptic structures of central and peripheral synapses is less understood, although it has generated a considerable interest and is a subject of a growing number of studies. The regulatory role of CaN in synaptic vesicle endocytosis in the synapse terminals is actively studied. In recent years, new targets of CaN have been identified and its role in the regulation of enzymes and neurotransmitter secretion in peripheral neuromuscular junctions has been revealed. CaN is the only phosphatase that requires calcium and calmodulin for activation. In this review, we present details of CaN molecular structure and give a detailed description of possible mechanisms of CaN activation involving calcium, enzymes, and endogenous and exogenous inhibitors. Known and newly discovered CaN targets at pre- and postsynaptic levels are described. CaN activity in synaptic structures is discussed in terms of functional involvement of this phosphatase in synaptic transmission and neurotransmitter release.
Collapse
Affiliation(s)
- E O Tarasova
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - A E Gaydukov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia. .,Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - O P Balezina
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| |
Collapse
|
29
|
Masoumi J, Abbasloui M, Parvan R, Mohammadnejad D, Pavon-Djavid G, Barzegari A, Abdolalizadeh J. Apelin, a promising target for Alzheimer disease prevention and treatment. Neuropeptides 2018; 70:76-86. [PMID: 29807653 DOI: 10.1016/j.npep.2018.05.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/19/2018] [Accepted: 05/20/2018] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with high outbreak rates. It is estimated that about 35 million individuals around the world suffered from dementia in 2010. AD is expected to increase twofold every 20 years and, by 2030, approximately 65 million people could suffer from this illness. AD is determined clinically by a cognitive impairment and pathologically by the production of amyloid beta (Aβ), neurofibrillary tangles, toxic free radicals and inflammatory mediators in the brain. There is still no treatment to cure or even alter the progressive course of this disease; however, many new therapies are being investigated and are at various stages of clinical trials. Neuropeptides are signaling molecules used by neurons to communicate with each other. One of the important neuropeptides is apelin, which can be isolated from bovine stomach. Apelin and its receptor APJ have been shown to broadly disseminate in the neurons and oligodendrocytes of the central nervous system. Apelin-13 is known to be the predominant neuropeptide in neuroprotection. It is involved in the processes of memory and learning as well as the prevention of neuronal damage. Studies have shown that apelin can directly or indirectly prevent the production of Aβ and reduce its amounts by increasing its degradation. Phosphorylation and accumulation of tau protein may also be inhibited by apelin. Apelin is considered as an anti-inflammatory agent by preventing the production of inflammatory mediators such as interleukin-1β and tumor necrosis factor alpha. It has been shown that in vivo and in vitro anti-apoptotic effects of apelin have prevented the death of neurons. In this review, we describe the various functions of apelin associated with AD and present an integrated overview of recent findings that, in general, recommend apelin as a promising therapeutic agent in the treatment of this ailment.
Collapse
Affiliation(s)
- Javad Masoumi
- Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Abbasloui
- Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Parvan
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Abolfazl Barzegari
- Research Centre for Pharmaceotical Nanotechnology, Tabriz University (Medical Sciences), Tabriz, Iran
| | - Jalal Abdolalizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
30
|
Abstract
SIGNIFICANCE Numerous studies have demonstrated the actions of reactive oxygen species (ROS) as regulators of several physiological processes. In this study, we discuss how redox signaling mechanisms operate to control different processes such as neuronal differentiation, oligodendrocyte differentiation, dendritic growth, and axonal growth. Recent Advances: Redox homeostasis regulates the physiology of neural stem cells (NSCs). Notably, the neuronal differentiation process of NSCs is determined by a change toward oxidative metabolism, increased levels of mitochondrial ROS, increased activity of NADPH oxidase (NOX) enzymes, decreased levels of Nrf2, and differential regulation of different redoxins. Furthermore, during the neuronal maturation processes, NOX and MICAL produce ROS to regulate cytoskeletal dynamics, which control the dendritic and axonal growth, as well as the axonal guidance. CRITICAL ISSUES The redox homeostasis changes are, in part, attributed to cell metabolism and compartmentalized production of ROS, which is regulated, sensed, and transduced by different molecules such as thioredoxins, glutaredoxins, peroxiredoxins, and nucleoredoxin to control different signaling pathways in different subcellular regions. The study of how these elements cooperatively act is essential for the understanding of nervous system development, as well as the application of regenerative therapies that recapitulate these processes. FUTURE DIRECTIONS The information about these topics in the last two decades leads us to the conclusion that the role of ROS signaling in development of the nervous system is more important than it was previously believed and makes clear the importance of exploring in more detail the mechanisms of redox signaling. Antioxid. Redox Signal. 28, 1603-1625.
Collapse
Affiliation(s)
- Mauricio Olguín-Albuerne
- División de Neurociencias, Instituto de Fisiología Celular , Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Julio Morán
- División de Neurociencias, Instituto de Fisiología Celular , Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
31
|
Shefa U, Kim D, Kim MS, Jeong NY, Jung J. Roles of Gasotransmitters in Synaptic Plasticity and Neuropsychiatric Conditions. Neural Plast 2018; 2018:1824713. [PMID: 29853837 PMCID: PMC5960547 DOI: 10.1155/2018/1824713] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/25/2018] [Accepted: 03/11/2018] [Indexed: 12/22/2022] Open
Abstract
Synaptic plasticity is important for maintaining normal neuronal activity and proper neuronal functioning in the nervous system. It is crucial for regulating synaptic transmission or electrical signal transduction to neuronal networks, for sharing essential information among neurons, and for maintaining homeostasis in the body. Moreover, changes in synaptic or neural plasticity are associated with many neuropsychiatric conditions, such as schizophrenia (SCZ), bipolar disorder (BP), major depressive disorder (MDD), and Alzheimer's disease (AD). The improper maintenance of neural plasticity causes incorrect neurotransmitter transmission, which can also cause neuropsychiatric conditions. Gas neurotransmitters (gasotransmitters), such as hydrogen sulfide (H2S), nitric oxide (NO), and carbon monoxide (CO), play roles in maintaining synaptic plasticity and in helping to restore such plasticity in the neuronal architecture in the central nervous system (CNS). Indeed, the upregulation or downregulation of these gasotransmitters may cause neuropsychiatric conditions, and their amelioration may restore synaptic plasticity and proper neuronal functioning and thereby improve such conditions. Understanding the specific molecular mechanisms underpinning these effects can help identify ways to treat these neuropsychiatric conditions.
Collapse
Affiliation(s)
- Ulfuara Shefa
- Department of Biomedical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Min-Sik Kim
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Na Young Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, 32 Daesingongwon-ro, Seo-gu, Busan 49201, Republic of Korea
| | - Junyang Jung
- Department of Biomedical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- East-West Medical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, 13 Seoul 02447, Republic of Korea
| |
Collapse
|
32
|
Feng J, Dong L, Zhang J, Han X, Tang S, Song L, Cong L, Wang X, Wang Y, Du Y. Unique expression pattern of KIBRA in the enteric nervous system of APP/PS1 mice. Neurosci Lett 2018. [DOI: 10.1016/j.neulet.2018.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
33
|
Reis MEMD, Araújo LTFD, de Andrade WMG, Resende NDS, Lima RRMD, Nascimento ESD, Costa MSMDO, Cavalcante JC. Distribution of nitric oxide synthase in the rock cavy (Kerodon rupestris) brain I: The diencephalon. Brain Res 2018; 1685:60-78. [DOI: 10.1016/j.brainres.2018.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 12/27/2022]
|
34
|
|
35
|
Chen J, Li X, Li X, Chen D. The environmental pollutant BDE-209 regulates NO/cGMP signaling through activation of NMDA receptors in neurons. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:3397-3407. [PMID: 29151189 DOI: 10.1007/s11356-017-0651-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
The common flame retardant decabrominated diphenyl ether (BDE-209) is a persistent organic pollutant. Epidemiological studies have revealed that prenatal or postnatal exposure to BDE-209 can result in delayed cognitive development, and BDE-209 has been shown to be toxic to cultured neurons with maturation interference effects. However, its neurotoxic mechanism remains unclear. Nitric oxide/cyclic guanosine monophosphate (NO/cGMP) signaling plays an important role in regulating neuronal maturation. We examined the influence of BDE-209 (100, 200, and 400 nM) on NO production and cGMP levels signaling in rodent neurons in vitro, with or without pretreatment N-methyl-D-aspartate (NMDA) receptor antagonism. We found that nanomolar concentrations of BDE-209 affected levels of the second messengers NO and cGMP, and that these effects could be blocked by NMDA receptor antagonism. Moreover, BDE-209 activation of NMDA receptors inhibited the expression of phosphodiesterases (PDEs), which modulate intracellular cGMP levels, and increased the Bcl-2/Bax ratio, favoring apoptosis induction. Our studies implicate the NMDA-NO/cGMP pathway in the pathogenic mechanism through which BDE-209 induces neurotoxicity.
Collapse
Affiliation(s)
- Jingsi Chen
- Department of Fetal Medicine and Prenatal Diagnosis, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Obstetrics & Gynecology Institute of Guangzhou, Guangzhou, 510150, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, People's Republic of China, Guangzhou, 510150, China
- Key Laboratories for Major Obstetric Diseases of Guangdong Province, Guangzhou, 510150, China
| | - Xiuying Li
- Obstetrics & Gynecology Institute of Guangzhou, Guangzhou, 510150, China
| | - Xiaomei Li
- Obstetrics & Gynecology Institute of Guangzhou, Guangzhou, 510150, China
| | - Dunjin Chen
- Obstetrics & Gynecology Institute of Guangzhou, Guangzhou, 510150, China.
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, People's Republic of China, Guangzhou, 510150, China.
- Key Laboratories for Major Obstetric Diseases of Guangdong Province, Guangzhou, 510150, China.
- , No.63, Duobao Road, Guangzhou, 510150, China.
| |
Collapse
|
36
|
Nitric oxide pathway presumably does not contribute to antianxiety and memory retrieval effects of losartan. Behav Pharmacol 2017; 28:420-427. [PMID: 28541956 DOI: 10.1097/fbp.0000000000000311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nitric oxide (NO) and angiotensin (AT) receptors have demonstrated well-established interactions in various physiological phenomena. AT1 receptors can play a part in stress-induced activation of the hypothalamic-pituitary-adrenal axis; also, angiotensinergic neurotransmission plays a pivotal role in stress-evoked physiological responses. On the basis of the stress-modulating characteristics of NO, AT1, and AT2 receptors, the present study evaluated the roles of NO and AT1 receptors in the attenuation of stress-induced anxiety-like behaviors after administration of losartan, an AT1 antagonist. Male Wistar rats were exposed to the communication stress box, using a novel method to induce physical or emotional stress, and losartan (10 mg/kg), losartan+L-NG-nitroargininemethyl ester (L-NAME), L-NAME (1, 10, and 100 mg/kg), and normal saline-treated groups were compared. Losartan had reduced behavioral changes induced by both types of stressor and enhanced memory retrieval. Anxiety-like behaviors were significantly attenuated by administration of losartan, to a greater extent in the emotional rather than physical stress group. None of the injected dosages of L-NAME reversed the antianxiety and memory retrieval effects of losartan. Our results indicate that losartan probably improves memory retrieval and lessens anxiety-like behaviors through mechanisms other than the NO pathway.
Collapse
|
37
|
de Matos AM, de Macedo MP, Rauter AP. Bridging Type 2 Diabetes and Alzheimer's Disease: Assembling the Puzzle Pieces in the Quest for the Molecules With Therapeutic and Preventive Potential. Med Res Rev 2017; 38:261-324. [PMID: 28422298 DOI: 10.1002/med.21440] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/18/2017] [Accepted: 02/14/2017] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes (T2D) and Alzheimer's disease (AD) are two age-related amyloid diseases that affect millions of people worldwide. Broadly supported by epidemiological data, the higher incidence of AD among type 2 diabetic patients led to the recognition of T2D as a tangible risk factor for the development of AD. Indeed, there is now growing evidence on brain structural and functional abnormalities arising from brain insulin resistance and deficiency, ultimately highlighting the need for new approaches capable of preventing the development of AD in type 2 diabetic patients. This review provides an update on overlapping pathophysiological mechanisms and pathways in T2D and AD, such as amyloidogenic events, oxidative stress, endothelial dysfunction, aberrant enzymatic activity, and even shared genetic background. These events will be presented as puzzle pieces put together, thus establishing potential therapeutic targets for drug discovery and development against T2D and diabetes-induced cognitive decline-a heavyweight contributor to the increasing incidence of dementia in developed countries. Hoping to pave the way in this direction, we will present some of the most promising and well-studied drug leads with potential against both pathologies, including their respective bioactivity reports, mechanisms of action, and structure-activity relationships.
Collapse
Affiliation(s)
- Ana Marta de Matos
- Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016, Lisbon, Portugal.,CEDOC Chronic Diseases, Nova Medical School, Rua Câmara Pestana n 6, 6-A, Ed. CEDOC II, 1150-082, Lisbon, Portugal
| | - Maria Paula de Macedo
- CEDOC Chronic Diseases, Nova Medical School, Rua Câmara Pestana n 6, 6-A, Ed. CEDOC II, 1150-082, Lisbon, Portugal
| | - Amélia Pilar Rauter
- Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016, Lisbon, Portugal
| |
Collapse
|
38
|
Roles of Nitric Oxide Synthase Isoforms in Neurogenesis. Mol Neurobiol 2017; 55:2645-2652. [PMID: 28421538 DOI: 10.1007/s12035-017-0513-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/04/2017] [Indexed: 10/19/2022]
Abstract
Nitric oxide (NO), a free radical gas, acts as a neurotransmitter or neuromodulator in the central nervous system (CNS). It has been widely explored as a mediator of neuroinflammation, neuronal damages, and neurodegeneration at its pathological levels. Recently, increasing evidence suggests that NO plays key roles in mediating adult neurogenesis, the process of neural stem cells (NSCs) to generate newborn neurons for replacing damaged neurons or maintaining the function of the brain. NO synthase (NOS) is a major enzyme catalyzing the generation of NO in the brain. Recent studies indicate that three homologous NOS isoforms are involved in the proliferation of NSCs and neurogenesis. Therefore, the impact of NOS isoforms on NSC functions needs to be elucidated. Here, we summarize the studies on the role of NO and NOS with different isoforms in NSC proliferation and neurogenesis with the focus on introducing action mechanisms involved in the regulation of NSC function. This growing research area provides the new insight into controlling NSC function via regulating NO microenvironment in the brain. It also provides the evidence on targeting NOS for the treatment of brain diseases.
Collapse
|
39
|
Kolesár D, Kolesárová M, Kyselovič J. Distribution pattern of dorsal root ganglion neurons synthesizing nitric oxide synthase in different animal species. Can J Physiol Pharmacol 2017; 95:328-332. [DOI: 10.1139/cjpp-2016-0294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The main aim of the present review is to provide at first a short survey of the basic anatomical description of sensory ganglion neurons in relation to cell size, conduction velocity, thickness of myelin sheath, and functional classification of their processes. In addition, we have focused on discussing current knowledge about the distribution pattern of neuronal nitric oxide synthase containing sensory neurons especially in the dorsal root ganglia in different animal species; hence, there is a large controversy in relation to interpretation of the results dealing with this interesting field of research.
Collapse
Affiliation(s)
- Dalibor Kolesár
- Department of Anatomy, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Slovak Republic
| | - Mária Kolesárová
- Institute of Human and clinical Pharmacology, University of Veterinary Medicine and Pharmacology in Košice, Slovak Republic
| | - Ján Kyselovič
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovak Republic
| |
Collapse
|
40
|
Pigott BM, Garthwaite J. Nitric Oxide Is Required for L-Type Ca(2+) Channel-Dependent Long-Term Potentiation in the Hippocampus. Front Synaptic Neurosci 2016; 8:17. [PMID: 27445786 PMCID: PMC4925670 DOI: 10.3389/fnsyn.2016.00017] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/13/2016] [Indexed: 12/11/2022] Open
Abstract
Nitric oxide (NO) has long been implicated in the generation of long-term potentiation (LTP) and other types of synaptic plasticity, a role for which the intimate coupling between NMDA receptors (NMDARs) and the neuronal isoform of NO synthase (nNOS) is likely to be instrumental in many instances. While several types of synaptic plasticity depend on NMDARs, others do not, an example of which is LTP triggered by opening of L-type voltage-gated Ca2+ channels (L-VGCCs) in postsynaptic neurons. In CA3-CA1 synapses in the hippocampus, NMDAR-dependent LTP (LTPNMDAR) appears to be primarily expressed postsynaptically whereas L-VGCC-dependent LTP (LTPL−VGCC), which often coexists with LTPNMDAR, appears mainly to reflect enhanced presynaptic transmitter release. Since NO is an excellent candidate as a retrograde messenger mediating post-to-presynaptic signaling, we sought to determine if NO functions in LTPL−VGCC in mouse CA3-CA1 synapses. When elicited by a burst type of stimulation with NMDARs and the associated NO release blocked, LTPL−VGCC was curtailed by inhibition of NO synthase or of the NO-receptor guanylyl cyclase to the same extent as occurred with inhibition of L-VGCCs. Unlike LTPNMDAR at these synapses, LTPL−VGCC was unaffected in mice lacking endothelial NO synthase, implying that the major source of the NO is neuronal. Transient delivery of exogenous NO paired with tetanic synaptic stimulation under conditions of NMDAR blockade resulted in a long-lasting potentiation that was sensitive to inhibition of NO-receptor guanylyl cyclase but was unaffected by inhibition of L-VGCCs. The results indicate that NO, acting through its second messenger cGMP, plays an unexpectedly important role in L-VGCC-dependent, NMDAR-independent LTP, possibly as a retrograde messenger generated in response to opening of postsynaptic L-VGCCs and/or as a signal acting postsynaptically, perhaps to facilitate changes in gene expression.
Collapse
Affiliation(s)
- Beatrice M Pigott
- The Wolfson Institute for Biomedical Research, University College London London, UK
| | - John Garthwaite
- The Wolfson Institute for Biomedical Research, University College London London, UK
| |
Collapse
|
41
|
Kumar P, Lee YM, Hu L, Chen J, Park YJ, Yao J, Chen H, Karlin KD, Nam W. Factors That Control the Reactivity of Cobalt(III)-Nitrosyl Complexes in Nitric Oxide Transfer and Dioxygenation Reactions: A Combined Experimental and Theoretical Investigation. J Am Chem Soc 2016; 138:7753-7762. [PMID: 27221953 PMCID: PMC4950881 DOI: 10.1021/jacs.6b04040] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Metal-nitrosyl complexes are key intermediates involved in many biological and physiological processes of nitric oxide (NO) activation by metalloproteins. In this study, we report the reactivities of mononuclear cobalt(III)-nitrosyl complexes bearing N-tetramethylated cyclam (TMC) ligands, [(14-TMC)Co(III)(NO)](2+) and [(12-TMC)Co(III)(NO)](2+), in NO-transfer and dioxygenation reactions. The Co(III)-nitrosyl complex bearing 14-TMC ligand, [(14-TMC)Co(III)(NO)](2+), transfers the bound nitrosyl ligand to [(12-TMC)Co(II)](2+) via a dissociative pathway, {[(14-TMC)Co(III)(NO)](2+) → {(14-TMC)Co···NO}(2+)}, thus affording [(12-TMC)Co(III)(NO)](2+) and [(14-TMC)Co(II)](2+) as products. The dissociation of NO from the [(14-TMC)Co(III)(NO)](2+) complex prior to NO-transfer is supported experimentally and theoretically. In contrast, the reverse reaction, which is the NO-transfer from [(12-TMC)Co(III)(NO)](2+) to [(14-TMC)Co(II)](2+), does not occur. In addition to the NO-transfer reaction, dioxygenation of [(14-TMC)Co(III)(NO)](2+) by O2 produces [(14-TMC)Co(II)(NO3)](+), which possesses an O,O-chelated nitrato ligand and where, based on an experiment using (18)O-labeled O2, two of the three O-atoms in the [(14-TMC)Co(II)(NO3)](+) product derive from O2. The dioxygenation reaction is proposed to occur via a dissociative pathway, as proposed in the NO-transfer reaction, and via the formation of a Co(II)-peroxynitrite intermediate, based on the observation of phenol ring nitration. In contrast, [(12-TMC)Co(III)(NO)](2+) does not react with O2. Thus, the present results demonstrate unambiguously that the NO-transfer/dioxygenation reactivity of the cobalt(III)-nitrosyl complexes bearing TMC ligands is significantly influenced by the ring size of the TMC ligands and/or the spin state of the cobalt ion.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| | - Lianrui Hu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianwei Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Young Jun Park
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hui Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Kenneth D. Karlin
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
42
|
Guerra GP, Rubin MA, Mello CF. Modulation of learning and memory by natural polyamines. Pharmacol Res 2016; 112:99-118. [PMID: 27015893 DOI: 10.1016/j.phrs.2016.03.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 01/08/2023]
Abstract
Spermine and spermidine are natural polyamines that are produced mainly via decarboxylation of l-ornithine and the sequential transfer of aminopropyl groups from S-adenosylmethionine to putrescine by spermidine synthase and spermine synthase. Spermine and spermidine interact with intracellular and extracellular acidic residues of different nature, including nucleic acids, phospholipids, acidic proteins, carboxyl- and sulfate-containing polysaccharides. Therefore, multiple actions have been suggested for these polycations, including modulation of the activity of ionic channels, protein synthesis, protein kinases, and cell proliferation/death, within others. In this review we summarize these neurochemical/neurophysiological/morphological findings, particularly those that have been implicated in the improving and deleterious effects of spermine and spermidine on learning and memory of naïve animals in shock-motivated and nonshock-motivated tasks, from a historical perspective. The interaction with the opioid system, the facilitation and disruption of morphine-induced reward and the effect of polyamines and putative polyamine antagonists on animal models of cognitive diseases, such as Alzheimer's, Huntington, acute neuroinflammation and brain trauma are also reviewed and discussed. The increased production of polyamines in Alzheimer's disease and the biphasic nature of the effects of polyamines on memory and on the NMDA receptor are also considered. In light of the current literature on polyamines, which include the description of an inborn error of the metabolism characterized by mild-to moderate mental retardation and polyamine metabolism alterations in suicide completers, we can anticipate that polyamine targets may be important for the development of novel strategies and approaches for understanding the etiopathogenesis of important central disorders and their pharmacological treatment.
Collapse
Affiliation(s)
- Gustavo Petri Guerra
- Department of Food Technology, Federal Technological University of Paraná, Campus Medianeira, Medianeira, PR 85884-000, Brazil
| | - Maribel Antonello Rubin
- Department of Biochemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil.
| | - Carlos Fernando Mello
- Department of Physiology and Pharmacology, Center of Health Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
43
|
Zhu X, Dong J, Shen K, Bai Y, Chao J, Yao H. Neuronal nitric oxide synthase contributes to pentylenetetrazole-kindling-induced hippocampal neurogenesis. Brain Res Bull 2016; 121:138-47. [DOI: 10.1016/j.brainresbull.2016.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/14/2016] [Accepted: 01/21/2016] [Indexed: 02/07/2023]
|
44
|
López JM, Lozano D, Morona R, González A. Organization of the nitrergic neuronal system in the primitive bony fishes Polypterus senegalus and Erpetoichthys calabaricus (Actinopterygii: Cladistia). J Comp Neurol 2015; 524:1770-804. [PMID: 26517971 DOI: 10.1002/cne.23922] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 01/22/2023]
Abstract
Cladistians are a group of basal actinopterygian fishes that constitute a good model for studying primitive brain features, most likely present in the ancestral bony fishes. The analysis of the nitrergic neurons (with the enzyme nitric oxide synthase; NOS) has helped in understanding important aspects of brain organization in all vertebrates studied. We investigated the nitrergic system of two cladistian species by means of specific antibodies against NOS and NADPH-diaphorase (NADPH-d) histochemistry, which, with the exception of the primary olfactory and terminal nerve fibers, labeled only for NADPH-d, yielded identical results. Double immunohistochemistry was conducted for simultaneous detection of NOS with tyrosine hydroxylase, choline acetyltransferase, calbindin, calretinin, and serotonin, to establish accurately the localization of the nitrergic neurons and fibers and to assess possible interactions between these neuroactive substances. The pattern of distribution in both species showed only subtle differences in the density of labeled cells. Distinct groups of NOS-immunoreactive cells were observed in pallial and subpallial areas, paraventricular region, tuberal and retromammillary hypothalamic areas, posterior tubercle, prethalamic and thalamic areas, optic tectum, torus semicircularis, mesencephalic tegmentum, interpeduncular nucleus, superior and middle reticular nuclei, magnocellular vestibular nucleus, solitary tract nucleus, nucleus medianus magnocellularis, the spinal cord and amacrine cells in the retina. Large neurons in cranial nerve sensory ganglia were also labeled. The comparison of these results with those from other vertebrates, using a neuromeric analysis, reveals a conserved pattern of organization of the nitrergic system from this primitive fish group to amniotes, including mammals.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Daniel Lozano
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| |
Collapse
|
45
|
Chen J, Calhoun VD, Arias‐Vasquez A, Zwiers MP, van Hulzen K, Fernández G, Fisher SE, Franke B, Turner JA, Liu J. G-protein genomic association with normal variation in gray matter density. Hum Brain Mapp 2015; 36:4272-86. [PMID: 26248772 PMCID: PMC5667539 DOI: 10.1002/hbm.22916] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 07/08/2015] [Accepted: 07/14/2015] [Indexed: 12/25/2022] Open
Abstract
While detecting genetic variations underlying brain structures helps reveal mechanisms of neural disorders, high data dimensionality poses a major challenge for imaging genomic association studies. In this work, we present the application of a recently proposed approach, parallel independent component analysis with reference (pICA-R), to investigate genomic factors potentially regulating gray matter variation in a healthy population. This approach simultaneously assesses many variables for an aggregate effect and helps to elicit particular features in the data. We applied pICA-R to analyze gray matter density (GMD) images (274,131 voxels) in conjunction with single nucleotide polymorphism (SNP) data (666,019 markers) collected from 1,256 healthy individuals of the Brain Imaging Genetics (BIG) study. Guided by a genetic reference derived from the gene GNA14, pICA-R identified a significant SNP-GMD association (r=-0.16, P=2.34×10(-8)), implying that subjects with specific genotypes have lower localized GMD. The identified components were then projected to an independent dataset from the Mind Clinical Imaging Consortium (MCIC) including 89 healthy individuals, and the obtained loadings again yielded a significant SNP-GMD association (r=-0.25, P=0.02). The imaging component reflected GMD variations in frontal, precuneus, and cingulate regions. The SNP component was enriched in genes with neuronal functions, including synaptic plasticity, axon guidance, molecular signal transduction via PKA and CREB, highlighting the GRM1, PRKCH, GNA12, and CAMK2B genes. Collectively, our findings suggest that GNA12 and GNA14 play a key role in the genetic architecture underlying normal GMD variation in frontal and parietal regions.
Collapse
Affiliation(s)
- Jiayu Chen
- The Mind Research NetworkAlbuquerqueNew Mexico
| | - Vince D. Calhoun
- The Mind Research NetworkAlbuquerqueNew Mexico
- Department of Electrical and Computer EngineeringUniversity of New MexicoAlbuquerqueNew Mexico
| | - Alejandro Arias‐Vasquez
- Department of Human GeneticsRadboud University Medical Centre, Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
- Department of Cognitive NeuroscienceRadboud University Medical Centre, Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
- Department of PsychiatryRadboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
| | - Marcel P. Zwiers
- Centre for Cognitive NeuroimagingRadboud University Nijmegen, Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
| | - Kimm van Hulzen
- Department of Human GeneticsRadboud University Medical Centre, Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
| | - Guillén Fernández
- Department of Cognitive NeuroscienceRadboud University Medical Centre, Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
| | - Simon E. Fisher
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Centre for Neuroscience, Radboud University Nijmegen, Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
| | - Barbara Franke
- Department of Human GeneticsRadboud University Medical Centre, Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
- Department of PsychiatryRadboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
| | - Jessica A. Turner
- The Mind Research NetworkAlbuquerqueNew Mexico
- Psychology DepartmentGeorgia State UniversityAtlantaGeorgia
- Neuroscience InstituteGeorgia State UniversityAtlantaGeorgia
| | - Jingyu Liu
- The Mind Research NetworkAlbuquerqueNew Mexico
- Department of Electrical and Computer EngineeringUniversity of New MexicoAlbuquerqueNew Mexico
| |
Collapse
|
46
|
Fershtat LL, Ashirbaev SS, Kulikov AS, Kachala VV, Makhova NN. Ionic liquid-mediated synthesis of (1H-1,2,3-triazol-1-yl)furoxans by [3 + 2] cycloaddition of azidofuroxans to acetylenes. MENDELEEV COMMUNICATIONS 2015. [DOI: 10.1016/j.mencom.2015.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Iwanami J, Mogi M, Tsukuda K, Wang XL, Nakaoka H, Kan-no H, Chisaka T, Bai HY, Shan BS, Kukida M, Horiuchi M. Direct angiotensin II type 2 receptor stimulation by compound 21 prevents vascular dementia. ACTA ACUST UNITED AC 2015; 9:250-6. [PMID: 25753301 DOI: 10.1016/j.jash.2015.01.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 01/16/2015] [Accepted: 01/16/2015] [Indexed: 01/22/2023]
Abstract
Angiotensin II type 2 (AT(2)) receptor activation has been reported to play a role in cognitive function, although its detailed mechanisms and pathologic significance are not fully understood. We examined the possibility that direct AT(2) receptor stimulation by compound 21 (C21) could prevent cognitive decline associated with hypoperfusion in the brain.We employed a bilateral common carotid artery stenosis (BCAS) model in mice as a model of vascular dementia. The Morris water maze task was performed 6 weeks after BCAS operation. Azilsartan (0.1 mg/kg/day) or C21 (10 μg/kg/day) was administered from 1 week before BCAS. Cerebral blood flow (CBF) and inflammatory cytokine levels were also determined. Wild-type (WT) mice showed significant prolongation of escape latency after BCAS, and this cognitive impairment was attenuated by pretreatment with azilsartan. Cognitive impairment was more marked in AT(2) receptor knockout (AT(2)KO) mice, and the preventive effect of azilsartan on cognitive decline was weaker in AT(2)KO mice than in WT mice, suggesting that the improvement of cognitive decline by azilsartan may involve stimulation of the AT(2) receptor. The significant impairment of spatial learning after BCAS in WT mice was attenuated by C21 treatment. The decrease in CBF in the BCAS-treated group was blunted by C21 treatment, and the increase in TNF-α and MCP-1 mRNA expression after BCAS was attenuated by C21 treatment. These findings indicate that direct AT(2) receptor stimulation attenuates ischemic vascular dementia induced by hypoperfusion at least in part through an increase in CBF, and a reduction of inflammation.
Collapse
Affiliation(s)
- Jun Iwanami
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Masaki Mogi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Kana Tsukuda
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Xiao-Li Wang
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Hirotomo Nakaoka
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Harumi Kan-no
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Toshiyuki Chisaka
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Hui-Yu Bai
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Bao-Shuai Shan
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Masayoshi Kukida
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Masatsugu Horiuchi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan.
| |
Collapse
|
48
|
Lee KY, Royston SE, Vest MO, Ley DJ, Lee S, Bolton EC, Chung HJ. N-methyl-D-aspartate receptors mediate activity-dependent down-regulation of potassium channel genes during the expression of homeostatic intrinsic plasticity. Mol Brain 2015; 8:4. [PMID: 25599691 PMCID: PMC4333247 DOI: 10.1186/s13041-015-0094-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/07/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Homeostatic intrinsic plasticity encompasses the mechanisms by which neurons stabilize their excitability in response to prolonged and destabilizing changes in global activity. However, the milieu of molecular players responsible for these regulatory mechanisms is largely unknown. RESULTS Using whole-cell patch clamp recording and unbiased gene expression profiling in rat dissociated hippocampal neurons cultured at high density, we demonstrate here that chronic activity blockade induced by the sodium channel blocker tetrodotoxin leads to a homeostatic increase in action potential firing and down-regulation of potassium channel genes. In addition, chronic activity blockade reduces total potassium current, as well as protein expression and current of voltage-gated Kv1 and Kv7 potassium channels, which are critical regulators of action potential firing. Importantly, inhibition of N-Methyl-D-Aspartate receptors alone mimics the effects of tetrodotoxin, including the elevation in firing frequency and reduction of potassium channel gene expression and current driven by activity blockade, whereas inhibition of L-type voltage-gated calcium channels has no effect. CONCLUSIONS Collectively, our data suggest that homeostatic intrinsic plasticity induced by chronic activity blockade is accomplished in part by decreased calcium influx through N-Methyl-D-Aspartate receptors and subsequent transcriptional down-regulation of potassium channel genes.
Collapse
Affiliation(s)
- Kwan Young Lee
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 407 South Goodwin Avenue, 524 Burrill Hall, Urbana, IL, 61801, USA.
| | - Sara E Royston
- Program in Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA. .,Medical Scholars Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.
| | - Max O Vest
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 407 South Goodwin Avenue, 524 Burrill Hall, Urbana, IL, 61801, USA.
| | - Daniel J Ley
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 407 South Goodwin Avenue, 524 Burrill Hall, Urbana, IL, 61801, USA.
| | - Seungbae Lee
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 407 South Goodwin Avenue, 524 Burrill Hall, Urbana, IL, 61801, USA.
| | - Eric C Bolton
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 407 South Goodwin Avenue, 524 Burrill Hall, Urbana, IL, 61801, USA.
| | - Hee Jung Chung
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 407 South Goodwin Avenue, 524 Burrill Hall, Urbana, IL, 61801, USA. .,Program in Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.
| |
Collapse
|
49
|
Ledo A, Lourenço CF, Caetano M, Barbosa RM, Laranjinha J. Age-associated changes of nitric oxide concentration dynamics in the central nervous system of Fisher 344 rats. Cell Mol Neurobiol 2015; 35:33-44. [PMID: 25274046 DOI: 10.1007/s10571-014-0115-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/17/2014] [Indexed: 01/25/2023]
Abstract
The increase in life expectancy is accompanied by an increased risk of developing neurodegenerative disorders and age is the most relevant risk factor for the appearance of cognitive decline. While decreased neuronal count has been proposed to be a major contributing factor to the appearance of age-associated cognitive decline, it appears to be insufficient to fully account for the decay in mental function in aged individuals. Nitric oxide ((•)NO) is a ubiquitous signaling molecule in the mammalian central nervous system. Closely linked to the activation of glutamatergic transmission in several structures of the brain, neuron-derived (•)NO can act as a neuromodulator in synaptic plasticity but has also been linked to neuronal toxicity and degenerative processes. Many studies have proposed that changes in the glutamate-(•)NO signaling pathway may be implicated in age-dependent cognitive decline and that the exact effect of such changes may be region specific. Due to its peculiar physical-chemical properties, namely hydrophobicity, small size, and rapid diffusion properties, the rate and pattern of (•)NO concentration changes are critical determinants for the understanding of its bioactivity in the brain. Here we show a detailed study of how (•)NO concentration dynamics change in the different regions of the brain of Fisher 344 rats (F344) during aging. Using microelectrodes inserted into the living brain of anesthetized F344 rats, we show here that glutamate-induced (•)NO concentration dynamics decrease in the hippocampus, striatum, and cerebral cortex as animals age. performance in behavior testing of short-term and spatial memory, suggesting that the impairment in the glutamate:nNOS pathway represents a functional critical event in cognitive decline during aging.
Collapse
Affiliation(s)
- Ana Ledo
- Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | | | | | | | | |
Collapse
|
50
|
Mfuh AM, Larionov OV. Heterocyclic N-Oxides - An Emerging Class of Therapeutic Agents. Curr Med Chem 2015; 22:2819-57. [PMID: 26087764 PMCID: PMC4711945 DOI: 10.2174/0929867322666150619104007] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/22/2015] [Accepted: 06/18/2015] [Indexed: 11/22/2022]
Abstract
Heterocyclic N-oxides have emerged as potent compounds with anticancer, antibacterial, antihypertensive, antiparasitic, anti-HIV, anti-inflammatory, herbicidal, neuroprotective, and procognitive activities. The N-oxide motif has been successfully employed in a number of recent drug development projects. This review surveys the emergence of this scaffold in the mainstream medicinal chemistry with a focus on the discovery of the heterocyclic N-oxide drugs, N-oxide-specific mechanisms of action, drug-receptor interactions and synthetic avenues to these compounds. As the first review on this subject that covers the developments since 1950s to date, it is expected that it will inspire wider implementation of the heterocyclic N-oxide motif in the rational design of new medicinal agents.
Collapse
Affiliation(s)
| | - O V Larionov
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas, United States.
| |
Collapse
|