1
|
Chaudhary R, Rehman M, Agarwal V, Kumar A, Kaushik AS, Srivastava S, Srivastava S, Verma R, Rajinikanth PS, Mishra V. Terra incognita of glial cell dynamics in the etiology of leukodystrophies: Broadening disease and therapeutic perspectives. Life Sci 2024; 354:122953. [PMID: 39122110 DOI: 10.1016/j.lfs.2024.122953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Neuroglial cells, also known as glia, are primarily characterized as auxiliary cells within the central nervous system (CNS). The recent findings have shed light on their significance in numerous physiological processes and their involvement in various neurological disorders. Leukodystrophies encompass an array of rare and hereditary neurodegenerative conditions that were initially characterized by the deficiency, aberration, or degradation of myelin sheath within CNS. The primary cellular populations that experience significant alterations are astrocytes, oligodendrocytes and microglia. These glial cells are either structurally or metabolically impaired due to inherent cellular dysfunction. Alternatively, they may fall victim to the accumulation of harmful by-products resulting from metabolic disturbances. In either situation, the possible replacement of glial cells through the utilization of implanted tissue or stem cell-derived human neural or glial progenitor cells hold great promise as a therapeutic strategy for both the restoration of structural integrity through remyelination and the amelioration of metabolic deficiencies. Various emerging treatment strategies like stem cell therapy, ex-vivo gene therapy, infusion of adeno-associated virus vectors, emerging RNA-based therapies as well as long-term therapies have demonstrated success in pre-clinical studies and show promise for rapid clinical translation. Here, we addressed various leukodystrophies in a comprehensive and detailed manner as well as provide prospective therapeutic interventions that are being considered for clinical trials. Further, we aim to emphasize the crucial role of different glial cells in the pathogenesis of leukodystrophies. By doing so, we hope to advance our understanding of the disease, elucidate underlying mechanisms, and facilitate the development of potential treatment interventions.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Mujeeba Rehman
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Vipul Agarwal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Anand Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Siddhi Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Sukriti Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Rajkumar Verma
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India.
| |
Collapse
|
2
|
Khalaf G, Mattern C, Begou M, Boespflug-Tanguy O, Massaad C, Massaad-Massade L. Mutation of Proteolipid Protein 1 Gene: From Severe Hypomyelinating Leukodystrophy to Inherited Spastic Paraplegia. Biomedicines 2022; 10:1709. [PMID: 35885014 PMCID: PMC9313024 DOI: 10.3390/biomedicines10071709] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 01/17/2023] Open
Abstract
Pelizaeus-Merzbacher Disease (PMD) is an inherited leukodystrophy affecting the central nervous system (CNS)-a rare disorder that especially concerns males. Its estimated prevalence is 1.45-1.9 per 100,000 individuals in the general population. Patients affected by PMD exhibit a drastic reduction or absence of myelin sheaths in the white matter areas of the CNS. The Proteolipid Protein 1 (PLP1) gene encodes a transmembrane proteolipid protein. PLP1 is the major protein of myelin, and it plays a key role in the compaction, stabilization, and maintenance of myelin sheaths. Its function is predominant in oligodendrocyte development and axonal survival. Mutations in the PLP1 gene cause the development of a wide continuum spectrum of leukopathies from the most severe form of PMD for whom patients exhibit severe CNS hypomyelination to the relatively mild late-onset type 2 spastic paraplegia, leading to the concept of PLP1-related disorders. The genetic diversity and the biochemical complexity, along with other aspects of PMD, are discussed to reveal the obstacles that hinder the development of treatments. This review aims to provide a clinical and mechanistic overview of this spectrum of rare diseases.
Collapse
Affiliation(s)
- Guy Khalaf
- U1195 Diseases and Hormones of the Nervous System, INSERM and Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France;
| | | | - Mélina Begou
- Neuro-Dol, CNRS, Inserm, Université Clermont Auvergne, 63000 Clermont-Ferrand, France;
| | - Odile Boespflug-Tanguy
- UMR 1141, INSERM, NeuroDiderot Université Paris Cité and APH-P, Neuropédiatrie, French Reference Center for Leukodystrophies, LEUKOFRANCE, Hôpital Robert Debré, 75019 Paris, France;
| | - Charbel Massaad
- UMRS 1124, INSERM, Université Paris Cité, 75006 Paris, France
| | - Liliane Massaad-Massade
- U1195 Diseases and Hormones of the Nervous System, INSERM and Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France;
| |
Collapse
|
3
|
Suppression of proteolipid protein rescues Pelizaeus-Merzbacher disease. Nature 2020; 585:397-403. [PMID: 32610343 PMCID: PMC7810164 DOI: 10.1038/s41586-020-2494-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 06/24/2020] [Indexed: 12/16/2022]
Abstract
Mutations in PLP1, the gene that encodes proteolipid protein (PLP), result in failure of myelination and neurological dysfunction in the X-chromosome-linked leukodystrophy Pelizaeus-Merzbacher disease (PMD)1,2. Most PLP1 mutations, including point mutations and supernumerary copy variants, lead to severe and fatal disease. Patients who lack PLP1 expression, and Plp1-null mice, can display comparatively mild phenotypes, suggesting that PLP1 suppression might provide a general therapeutic strategy for PMD1,3-5. Here we show, using CRISPR-Cas9 to suppress Plp1 expression in the jimpy (Plp1jp) point-mutation mouse model of severe PMD, increased myelination and restored nerve conduction velocity, motor function and lifespan of the mice to wild-type levels. To evaluate the translational potential of this strategy, we identified antisense oligonucleotides that stably decrease the levels of Plp1 mRNA and PLP protein throughout the neuraxis in vivo. Administration of a single dose of Plp1-targeting antisense oligonucleotides in postnatal jimpy mice fully restored oligodendrocyte numbers, increased myelination, improved motor performance, normalized respiratory function and extended lifespan up to an eight-month end point. These results suggest that PLP1 suppression could be developed as a treatment for PMD in humans. More broadly, we demonstrate that oligonucleotide-based therapeutic agents can be delivered to oligodendrocytes in vivo to modulate neurological function and lifespan, establishing a new pharmaceutical modality for myelin disorders.
Collapse
|
4
|
Sobel RA, Eaton MJ, Jaju PD, Lowry E, Hinojoza JR. Anti-Myelin Proteolipid Protein Peptide Monoclonal Antibodies Recognize Cell Surface Proteins on Developing Neurons and Inhibit Their Differentiation. J Neuropathol Exp Neurol 2020; 78:819-843. [PMID: 31400116 PMCID: PMC6703999 DOI: 10.1093/jnen/nlz058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/30/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022] Open
Abstract
Using a panel of monoclonal antibodies (mAbs) to myelin proteolipid protein (PLP) peptides, we found that in addition to CNS myelin, mAbs to external face but not cytoplasmic face epitopes immunostained neurons in immature human CNS tissues and in adult hippocampal dentate gyrus and olfactory bulbs, that is neural stem cell niches (NSCN). To explore the pathobiological significance of these observations, we assessed the mAb effects on neurodifferentiation in vitro. The mAbs to PLP 50-69 (IgG1κ and IgG2aκ), and 178-191 and 200-219 (both IgG1κ) immunostained live cell surfaces and inhibited neurite outgrowth of E18 rat hippocampal precursor cells and of PC12 cells, which do not express PLP. Proteins immunoprecipitated from PC12 cell extracts and captured by mAb-coated magnetic beads were identified by GeLC-MS/MS. Each neurite outgrowth-inhibiting mAb captured a distinct set of neurodifferentiation molecules including sequence-similar M6 proteins and other unrelated membrane and extracellular matrix proteins, for example integrins, Eph receptors, NCAM-1, and protocadherins. These molecules are expressed in adult human NSCN and are implicated in the pathogenesis of many chronic CNS disease processes. Thus, diverse anti-PLP epitope autoantibodies may inhibit neuronal precursor cell differentiation via multispecific recognition of cell surface molecules thereby potentially impeding endogenous neuroregeneration in NSCN and in vivo differentiation of exogenous neural stem cells.
Collapse
Affiliation(s)
- Raymond A Sobel
- Laboratory Service, Veterans Affairs Health Care System, Palo Alto, California.,Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Mary Jane Eaton
- Laboratory Service, Veterans Affairs Health Care System, Palo Alto, California.,Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Prajakta Dilip Jaju
- Laboratory Service, Veterans Affairs Health Care System, Palo Alto, California.,Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Eugene Lowry
- Laboratory Service, Veterans Affairs Health Care System, Palo Alto, California.,Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Julian R Hinojoza
- Laboratory Service, Veterans Affairs Health Care System, Palo Alto, California.,Department of Pathology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
5
|
Lüders KA, Nessler S, Kusch K, Patzig J, Jung RB, Möbius W, Nave KA, Werner HB. Maintenance of high proteolipid protein level in adult central nervous system myelin is required to preserve the integrity of myelin and axons. Glia 2019; 67:634-649. [PMID: 30637801 DOI: 10.1002/glia.23549] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/24/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022]
Abstract
Proteolipid protein (PLP) is the most abundant integral membrane protein in central nervous system (CNS) myelin. Expression of the Plp-gene in oligodendrocytes is not essential for the biosynthesis of myelin membranes but required to prevent axonal pathology. This raises the question whether the exceptionally high level of PLP in myelin is required later in life, or whether high-level PLP expression becomes dispensable once myelin has been assembled. Both models require a better understanding of the turnover of PLP in myelin in vivo. Thus, we generated and characterized a novel line of tamoxifen-inducible Plp-mutant mice that allowed us to determine the rate of PLP turnover after developmental myelination has been completed, and to assess the possible impact of gradually decreasing amounts of PLP for myelin and axonal integrity. We found that 6 months after targeting the Plp-gene the abundance of PLP in CNS myelin was about halved, probably reflecting that myelin is slowly turned over in the adult brain. Importantly, this reduction by 50% was sufficient to cause the entire spectrum of neuropathological changes previously associated with the developmental lack of PLP, including myelin outfoldings, lamellae splittings, and axonal spheroids. In comparison to axonopathy and gliosis, the infiltration of cytotoxic T-cells was temporally delayed, suggesting a corresponding chronology also in the genetic disorders of PLP-deficiency. High-level abundance of PLP in myelin throughout adult life emerges as a requirement for the preservation of white matter integrity.
Collapse
Affiliation(s)
- Katja A Lüders
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, Göttingen, Germany
| | - Stefan Nessler
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Julia Patzig
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Ramona B Jung
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
6
|
Inoue K. Pelizaeus-Merzbacher Disease: Molecular and Cellular Pathologies and Associated Phenotypes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:201-216. [PMID: 31760646 DOI: 10.1007/978-981-32-9636-7_13] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pelizaeus-Merzbacher disease (PMD) represents a group of disorders known as hypomyelinating leukodystrophies, which are characterized by abnormal development and maintenance of myelin in the central nervous system. PMD is caused by different types of mutations in the proteolipid protein 1 (PLP1) gene, which encodes a major myelin membrane lipoprotein. These mutations in the PLP1 gene result in distinct cellular and molecular pathologies and a spectrum of clinical phenotypes. In this chapter, I discuss the historical aspects and current understanding of the mechanisms underlying how different PLP1 mutations disrupt the normal process of myelination and result in PMD and other disorders.
Collapse
Affiliation(s)
- Ken Inoue
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
| |
Collapse
|
7
|
Lüders KA, Patzig J, Simons M, Nave KA, Werner HB. Genetic dissection of oligodendroglial and neuronalPlp1function in a novel mouse model of spastic paraplegia type 2. Glia 2017; 65:1762-1776. [DOI: 10.1002/glia.23193] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Katja A. Lüders
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen 37075 Germany
| | - Julia Patzig
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen 37075 Germany
| | - Mikael Simons
- Cellular Neuroscience; Max Planck Institute of Experimental Medicine; Göttingen 37075 Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen 37075 Germany
| | - Hauke B. Werner
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen 37075 Germany
| |
Collapse
|
8
|
Ozgen H, Baron W, Hoekstra D, Kahya N. Oligodendroglial membrane dynamics in relation to myelin biogenesis. Cell Mol Life Sci 2016; 73:3291-310. [PMID: 27141942 PMCID: PMC4967101 DOI: 10.1007/s00018-016-2228-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/14/2016] [Indexed: 12/12/2022]
Abstract
In the central nervous system, oligodendrocytes synthesize a specialized membrane, the myelin membrane, which enwraps the axons in a multilamellar fashion to provide fast action potential conduction and to ensure axonal integrity. When compared to other membranes, the composition of myelin membranes is unique with its relatively high lipid to protein ratio. Their biogenesis is quite complex and requires a tight regulation of sequential events, which are deregulated in demyelinating diseases such as multiple sclerosis. To devise strategies for remedying such defects, it is crucial to understand molecular mechanisms that underlie myelin assembly and dynamics, including the ability of specific lipids to organize proteins and/or mediate protein-protein interactions in healthy versus diseased myelin membranes. The tight regulation of myelin membrane formation has been widely investigated with classical biochemical and cell biological techniques, both in vitro and in vivo. However, our knowledge about myelin membrane dynamics, such as membrane fluidity in conjunction with the movement/diffusion of proteins and lipids in the membrane and the specificity and role of distinct lipid-protein and protein-protein interactions, is limited. Here, we provide an overview of recent findings about the myelin structure in terms of myelin lipids, proteins and membrane microdomains. To give insight into myelin membrane dynamics, we will particularly highlight the application of model membranes and advanced biophysical techniques, i.e., approaches which clearly provide an added value to insight obtained by classical biochemical techniques.
Collapse
Affiliation(s)
- Hande Ozgen
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Wia Baron
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| | - Dick Hoekstra
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Nicoletta Kahya
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
9
|
Sarret C, Lemaire JJ, Tonduti D, Sontheimer A, Coste J, Pereira B, Feschet F, Roche B, Boespflug-Tanguy O. Time-course of myelination and atrophy on cerebral imaging in 35 patients with PLP1-related disorders. Dev Med Child Neurol 2016; 58:706-13. [PMID: 26786043 DOI: 10.1111/dmcn.13025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2015] [Indexed: 11/27/2022]
Abstract
AIM Brain magnetic resonance imaging (MRI) motor development score (MDS) correlations were used to analyze the natural time-course of hypomyelinating PLP1-related disorders (Pelizaeus-Merzbacher disease [PMD] and spastic paraplegia type 2). METHOD Thirty-five male patients (ranging from 0.7-43.5y at the first MRI) with PLP1-related disorder were prospectively followed over 7 years. Patients were classified according to best motor function acquired before 5 years (MDS) into five categories (from PMD0 without motor acquisition to PMD4 with autonomous walking). We determined myelination and atrophy scores and measured corpus callosum area, volume of cerebellum, white matter and grey matter on 63 MRI. RESULTS Age-adjusted multivariate analysis revealed that patients with PMD0-1 had higher-severity atrophy scores and smaller corpus callosum area than did patients with PMD2 and PMD3-4. Myelination score increased until 12 years. There was evidence that the mean myelination differed in frontal white matter, arcuate fibres, and internal capsules among the groups. Most patients showed worsening atrophy (brain, cerebellum, corpus callosum), whereas grey matter and white matter proportions did not change. INTERPRETATION Brain atrophy and myelination of anterior cerebral regions appear to be pertinent biomarkers of motor development. The time-course of inter- and intra-individual cerebral white matter and grey matter atrophy suggests that both oligodendrocytes and neurons are involved in the physiopathology of PLP1-related disorders.
Collapse
Affiliation(s)
- Catherine Sarret
- Image-Guided Clinical Neuroscience and Connectomics (IGCNC), Clermont University, University of Auvergne, Clermont-Ferrand, France.,Department of Paediatrics, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Jean-Jacques Lemaire
- Image-Guided Clinical Neuroscience and Connectomics (IGCNC), Clermont University, University of Auvergne, Clermont-Ferrand, France.,Department of Neurosurgery, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Davide Tonduti
- Inserm U1141 Paris Diderot Sorbonne University-Paris Cité, DHU PROTECT, Robert Debré Hospital, Paris, France.,Department of Child Neurology, Neurological Institute C. Besta Foundation IRCCS, Milan, Italy
| | - Anna Sontheimer
- Image-Guided Clinical Neuroscience and Connectomics (IGCNC), Clermont University, University of Auvergne, Clermont-Ferrand, France
| | - Jerome Coste
- Image-Guided Clinical Neuroscience and Connectomics (IGCNC), Clermont University, University of Auvergne, Clermont-Ferrand, France
| | - Bruno Pereira
- Image-Guided Clinical Neuroscience and Connectomics (IGCNC), Clermont University, University of Auvergne, Clermont-Ferrand, France.,Biostatistics Unit (DRCI), Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Fabien Feschet
- Image-Guided Clinical Neuroscience and Connectomics (IGCNC), Clermont University, University of Auvergne, Clermont-Ferrand, France
| | - Basile Roche
- Image-Guided Clinical Neuroscience and Connectomics (IGCNC), Clermont University, University of Auvergne, Clermont-Ferrand, France
| | - Odile Boespflug-Tanguy
- Inserm U1141 Paris Diderot Sorbonne University-Paris Cité, DHU PROTECT, Robert Debré Hospital, Paris, France.,Department of Child Neurology and Metabolic Diseases, Leukodystrophies Reference Centre, Robert Debré Hospital, Paris, France
| |
Collapse
|
10
|
Zhuang J, Zhao L, Zang N, Xu F. Prenatal nicotinic exposure augments cardiorespiratory responses to activation of bronchopulmonary C-fibers. Am J Physiol Lung Cell Mol Physiol 2015; 308:L922-30. [PMID: 25747962 PMCID: PMC4421788 DOI: 10.1152/ajplung.00241.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 03/01/2015] [Indexed: 12/26/2022] Open
Abstract
Rat pups prenatally exposed to nicotine (PNE) present apneic (lethal ventilatory arrest) responses during severe hypoxia. To clarify whether these responses are of central origin, we tested PNE effects on ventilation and diaphragm electromyography (EMGdi) during hypoxia in conscious rat pups. PNE produced apnea (lethal ventilatory arrest) identical to EMGdi silencing during hypoxia, indicating a central origin of this apneic response. We further asked whether PNE would sensitize bronchopulmonary C-fibers (PCFs), a key player in generating central apnea, with increase of the density and transient receptor potential cation channel subfamily V member 1 (TRPV1) expression of C-fibers/neurons in the nodose/jugular (N/J) ganglia and neurotrophic factors in the airways and lungs. We compared 1) ventilatory and pulmonary C-neural responses to right atrial bolus injection of capsaicin (CAP, 0.5 μg/kg), 2) bronchial substance P-immunoreactive (SP-IR) fiber density, 3) gene and protein expressions of TRPV1 in the ganglia, and 4) nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) protein in bronchoalveolar lavage fluid (BALF) and TrkA and TrkB genes in the ganglia between control and PNE pups. PNE markedly strengthened the PCF-mediated apneic response to CAP via increasing pulmonary C-neural sensitivity. PNE also enhanced bronchial SP-IR fiber density and N/J ganglia neural TRPV1 expression associated with increased gene expression of TrkA in the N/G ganglia and decreased NGF and BDNF in BALF. Our results suggest that PNE enhances PCF sensitivity likely through increasing PCF density and TRPV1 expression via upregulation of neural TrkA and downregulation of pulmonary BDNF, which may contribute to the PNE-promoted central apnea (lethal ventilatory arrest) during hypoxia.
Collapse
Affiliation(s)
- Jianguo Zhuang
- Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Lei Zhao
- Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Na Zang
- Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Fadi Xu
- Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| |
Collapse
|
11
|
Rodriguez E, Sakowski L, Hobson GM, Armani MH, Kreiger PA, Zhu Y, Waldman SA, Shaffer TH. Plp1 gene duplication inhibits airway responsiveness and induces lung inflammation. Pulm Pharmacol Ther 2015; 30:22-31. [PMID: 25445931 PMCID: PMC6874309 DOI: 10.1016/j.pupt.2014.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/26/2014] [Accepted: 10/25/2014] [Indexed: 11/25/2022]
Abstract
Mice with Plp1 gene duplication model the most common form of Pelizaeus-Merzbacher disease (PMD), a CNS disease in which patients may suffer respiratory complications. We hypothesized that affected mice would lack airway responsiveness compared to wild-type and carrier mice during methacholine challenge. Wild-type (n = 10), carrier female (n = 6) and affected male (n = 8) mice were anesthetized-paralyzed, tracheostomized and ventilated. Respiratory mechanics were recorded at baseline and during escalating doses of nebulized methacholine followed by albuterol. Lung resistance (RL) was the primary endpoint. Lung tissues were assayed for inflammatory and histological differences. At baseline, phase angles were higher in carrier and affected mice than wild-type. Dose-response RL curves in affected and carrier mice indicated a lack of methacholine response. Albuterol reduced RL in wild-type and carrier, but not affected mice. Affected mice exhibited lower interleukin (IL)-6 tissue levels and alveolar inflammatory infiltrates. Affected and carrier mice, compared to wild-type, lacked airway reactivity during methacholine challenge, but only affected mice exhibited decreased lung tissue levels of IL-6 and inflammation.
Collapse
Affiliation(s)
- Elena Rodriguez
- Alfred I. duPont Hospital for Children, Nemours Lung Center, Wilmington, DE 19803, USA; Alfred I. duPont Hospital for Children, Nemours Biomedical Research, Wilmington, DE 19803, USA; Thomas Jefferson University, Division of Clinical Pharmacology, Dept. of Pharmacology and Experimental Therapeutics, Philadelphia, PA 19107, USA.
| | - Lauren Sakowski
- Center for Applied Clinical Genomics, Nemours Biomedical Research, Wilmington, DE 19803, USA; University of Delaware, Department of Biological Sciences, Newark, DE 19716, USA
| | - Grace M Hobson
- Alfred I. duPont Hospital for Children, Nemours Biomedical Research, Wilmington, DE 19803, USA; Center for Applied Clinical Genomics, Nemours Biomedical Research, Wilmington, DE 19803, USA; University of Delaware, Department of Biological Sciences, Newark, DE 19716, USA; Thomas Jefferson University, Department of Pediatrics, Philadelphia, PA 19107, USA
| | - Milena Hirata Armani
- Alfred I. duPont Hospital for Children, Nemours Lung Center, Wilmington, DE 19803, USA
| | - Portia A Kreiger
- Nemours Alfred I. duPont Hospital for Children, Department of Pathology, Wilmington, DE 19803, USA
| | - Yan Zhu
- Alfred I. duPont Hospital for Children, Nemours Lung Center, Wilmington, DE 19803, USA; Alfred I. duPont Hospital for Children, Nemours Biomedical Research, Wilmington, DE 19803, USA
| | - Scott A Waldman
- Thomas Jefferson University, Division of Clinical Pharmacology, Dept. of Pharmacology and Experimental Therapeutics, Philadelphia, PA 19107, USA
| | - Thomas H Shaffer
- Alfred I. duPont Hospital for Children, Nemours Lung Center, Wilmington, DE 19803, USA; Alfred I. duPont Hospital for Children, Nemours Biomedical Research, Wilmington, DE 19803, USA
| |
Collapse
|
12
|
Mita S, de Monasterio-Schrader P, Fünfschilling U, Kawasaki T, Mizuno H, Iwasato T, Nave KA, Werner HB, Hirata T. Transcallosal Projections Require Glycoprotein M6-Dependent Neurite Growth and Guidance. Cereb Cortex 2014; 25:4111-25. [PMID: 24917275 DOI: 10.1093/cercor/bhu129] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The function of mature neurons critically relies on the developmental outgrowth and projection of their cellular processes. It has long been postulated that the neuronal glycoproteins M6a and M6b are involved in axon growth because these four-transmembrane domain-proteins of the proteolipid protein family are highly enriched on growth cones, but in vivo evidence has been lacking. Here, we report that the function of M6 proteins is required for normal axonal extension and guidance in vivo. In mice lacking both M6a and M6b, a severe hypoplasia of axon tracts was manifested. Most strikingly, the corpus callosum was reduced in thickness despite normal densities of cortical projection neurons. In single neuron tracing, many axons appeared shorter and disorganized in the double-mutant cortex, and some of them were even misdirected laterally toward the subcortex. Probst bundles were not observed. Upon culturing, double-mutant cortical and cerebellar neurons displayed impaired neurite outgrowth, indicating a cell-intrinsic function of M6 proteins. A rescue experiment showed that the intracellular loop of M6a is essential for the support of neurite extension. We propose that M6 proteins are required for proper extension and guidance of callosal axons that follow one of the most complex trajectories in the mammalian nervous system.
Collapse
Affiliation(s)
- Sakura Mita
- Division of Brain Function, National Institute of Genetics, Graduate University for Advanced Studies (Sokendai), Mishima 411-8540, Japan
| | | | - Ursula Fünfschilling
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, D-37075 Goettingen, Germany
| | - Takahiko Kawasaki
- Division of Brain Function, National Institute of Genetics, Graduate University for Advanced Studies (Sokendai), Mishima 411-8540, Japan
| | - Hidenobu Mizuno
- Division of Neurogenetics, National Institute of Genetics, Graduate University for Advanced Studies (Sokendai), Mishima 411-8540, Japan
| | - Takuji Iwasato
- Division of Neurogenetics, National Institute of Genetics, Graduate University for Advanced Studies (Sokendai), Mishima 411-8540, Japan
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, D-37075 Goettingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, D-37075 Goettingen, Germany
| | - Tatsumi Hirata
- Division of Brain Function, National Institute of Genetics, Graduate University for Advanced Studies (Sokendai), Mishima 411-8540, Japan
| |
Collapse
|
13
|
Mori T, Mori K, Ito H, Goji A, Miyazaki M, Harada M, Kurosawa K, Kagami S. Age-related changes in a patient with Pelizaeus-Merzbacher disease determined by repeated 1H-magnetic resonance spectroscopy. J Child Neurol 2014; 29:283-8. [PMID: 24056155 DOI: 10.1177/0883073813499635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A boy with Pelizaeus-Merzbacher disease underwent repeated evaluations by 3-Tesla (1)H-magnetic resonance spectroscopy (MRS). The patient showed overlap of the PLP1. Individuals selected as normal controls for (1)H-magnetic resonance spectroscopy consisted of healthy age-matched children. For (1)H-magnetic resonance spectroscopy, the center of a voxel was positioned in the right parietal lobe. (1)H-magnetic resonance spectroscopy was performed when the patient was 2, 6, 14, and 25 months old. γ-Aminobutyric acid concentration in early childhood was increased compared with that in normal controls. However, the γ-aminobutyric acid concentration in the Pelizaeus-Merzbacher disease patient was normalized at 14 and 25 months. No remarkable changes were observed in choline-containing compounds concentration at any time. These results suggest that the changes in metabolite concentrations during growth can reflect the pathological condition of Pelizaeus-Merzbacher disease. Furthermore, the lack of change in the choline-containing compounds concentration can be useful for differentiating Pelizaeus-Merzbacher disease from other white matter disorders.
Collapse
Affiliation(s)
- Tatsuo Mori
- 1Department of Pediatrics, Institute of Health Bioscience, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Johnson RA, Mitchell GS. Common mechanisms of compensatory respiratory plasticity in spinal neurological disorders. Respir Physiol Neurobiol 2013; 189:419-28. [PMID: 23727226 PMCID: PMC3812344 DOI: 10.1016/j.resp.2013.05.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/18/2013] [Accepted: 05/21/2013] [Indexed: 12/11/2022]
Abstract
In many neurological disorders that disrupt spinal function and compromise breathing (e.g. ALS, cervical spinal injury, MS), patients often maintain ventilatory capacity well after the onset of severe CNS pathology. In progressive neurodegenerative diseases, patients ultimately reach a point where compensation is no longer possible, leading to catastrophic ventilatory failure. In this brief review, we consider evidence that common mechanisms of compensatory respiratory plasticity preserve breathing capacity in diverse clinical disorders, despite the onset of severe pathology (e.g. respiratory motor neuron denervation and/or death). We propose that a suite of mechanisms, operating at distinct sites in the respiratory control system, underlies compensatory respiratory plasticity, including: (1) increased (descending) central respiratory drive, (2) motor neuron plasticity, (3) plasticity at the neuromuscular junction or spared respiratory motor neurons, and (4) shifts in the balance from more to less severely compromised respiratory muscles. To establish this framework, we contrast three rodent models of neural dysfunction, each posing unique problems for the generation of adequate inspiratory motor output: (1) respiratory motor neuron death, (2) de- or dysmyelination of cervical spinal pathways, and (3) cervical spinal cord injury, a neuropathology with components of demyelination and motor neuron death. Through this contrast, we hope to understand the multilayered strategies used to "fight" for adequate breathing in the face of mounting pathology.
Collapse
Affiliation(s)
- Rebecca A Johnson
- Department of Surgical Sciences, University of Wisconsin, 2015 Linden Drive, Madison, WI 53706, United States.
| | | |
Collapse
|
15
|
Werner HB, Krämer-Albers EM, Strenzke N, Saher G, Tenzer S, Ohno-Iwashita Y, De Monasterio-Schrader P, Möbius W, Moser T, Griffiths IR, Nave KA. A critical role for the cholesterol-associated proteolipids PLP and M6B in myelination of the central nervous system. Glia 2013; 61:567-86. [PMID: 23322581 DOI: 10.1002/glia.22456] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 11/30/2012] [Indexed: 12/13/2022]
Abstract
The formation of central nervous system myelin by oligodendrocytes requires sterol synthesis and is associated with a significant enrichment of cholesterol in the myelin membrane. However, it is unknown how oligodendrocytes concentrate cholesterol above the level found in nonmyelin membranes. Here, we demonstrate a critical role for proteolipids in cholesterol accumulation. Mice lacking the most abundant myelin protein, proteolipid protein (PLP), are fully myelinated, but PLP-deficient myelin exhibits a reduced cholesterol content. We therefore hypothesized that "high cholesterol" is not essential in the myelin sheath itself but is required for an earlier step of myelin biogenesis that is fully compensated for in the absence of PLP. We also found that a PLP-homolog, glycoprotein M6B, is a myelin component of low abundance. By targeting the Gpm6b-gene and crossbreeding, we found that single-mutant mice lacking either PLP or M6B are fully myelinated, while double mutants remain severely hypomyelinated, with enhanced neurodegeneration and premature death. As both PLP and M6B bind membrane cholesterol and associate with the same cholesterol-rich oligodendroglial membrane microdomains, we suggest a model in which proteolipids facilitate myelination by sequestering cholesterol. While either proteolipid can maintain a threshold level of cholesterol in the secretory pathway that allows myelin biogenesis, lack of both proteolipids results in a severe molecular imbalance of prospective myelin membrane. However, M6B is not efficiently sorted into mature myelin, in which it is 200-fold less abundant than PLP. Thus, only PLP contributes to the high cholesterol content of myelin by association and co-transport.
Collapse
Affiliation(s)
- Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Goettingen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kwiecien JM, Delaney KH. Endpoints in myelin-deficient (MD) rats. Comp Med 2010; 60:343-347. [PMID: 21262118 PMCID: PMC2958201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/13/2010] [Accepted: 07/27/2010] [Indexed: 05/30/2023]
Abstract
Health problems in some animal models remain unexplained, rendering in vivo studies ethically challenging, especially when experimental animals are prone to sudden death. Over the last 3 decades, the myelin-deficient (md) rat, a strain with severe dysmyelination due to mutant proteolipid protein, has been key to important discoveries in mechanisms of myelination and glial cell biology. The usefulness of this mutant rat, however, has been limited by sudden death during the fourth week of life. Timely euthanasia has been difficult because the cause of these mortalities remains unexplained and the endpoint not determined. In this clinicopathologic study, we determined that sudden onset of hindlimb paralysis inevitably leads to paralysis of the urinary bladder and then breathing difficulties because of severe injury to the spinal cord in the midthoracic region with concurrent narrowing of the vertebral canal due to fracture of a vertebral body. Sudden onset of hindlimb paralysis likely is related to seizures and severe muscle spasms that begin to occur at the end of the third week of life. Once seizure activity begins, we recommend frequent monitoring of md rats for hindlimb paralysis and distention of the urinary bladder as indication of endpoints mandating prompt euthanasia.
Collapse
Affiliation(s)
- Jacek M Kwiecien
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
| | | |
Collapse
|
17
|
Johnson RA, Baker-Herman TL, Duncan ID, Mitchell GS. Ventilatory impairment in the dysmyelinated Long Evans shaker rat. Neuroscience 2010; 169:1105-14. [PMID: 20542092 DOI: 10.1016/j.neuroscience.2010.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 06/04/2010] [Accepted: 06/05/2010] [Indexed: 10/19/2022]
Abstract
Although respiratory complications significantly contribute to morbidity/mortality in advanced myelin disorders, little is known concerning mechanisms whereby dysmyelination impairs ventilation, or how patients compensate (i.e. plasticity). To establish a model for studies concerning mechanisms of ventilatory impairment/compensation, we tested the hypotheses that respiratory function progressively declines in a model of CNS dysmyelination, the Long Evans shaker rat (les). The observed impairment is associated with abnormal inspiratory neural output. Minimal myelin staining was found throughout the CNS of les rats, including the brainstem and cervical bulbospinal tracts. Ventilation (via whole-body plethysmography) and phrenic motor output were assessed in les and wild-type (WT) rats during baseline, hypoxia (11% O(2)) and hypercapnia (7% CO(2)). Hypercapnic ventilatory responses were similar in young adult les and WT rats (2 months old); in hypoxia, rats exhibited seizure-like activity with sustained apneas. However, 5-6 month old les rats exhibited decreased breathing frequencies, mean inspiratory flow (V(T)/T(I)) and ventilation (V (E)) during baseline and hypercapnia. Although phrenic motor output exhibited normal burst frequency and amplitude in 5-6 month old les rats, intra-burst activity was abnormal. In WT rats, phrenic activity was progressive and augmenting; in les rats, phrenic activity was decrementing with asynchronized, multipeaked activity. Thus, although ventilatory capacity is maintained in young, dysmyelinated rats, ventilatory impairment develops with age, possibly through discoordination in respiratory motor output. This study is the first reporting age-related breathing abnormalities in a rodent dysmyelination model, and provides the foundation for mechanistic studies of respiratory insufficiency and therapeutic interventions.
Collapse
Affiliation(s)
- R A Johnson
- Department of Surgical Sciences, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
18
|
The multiple roles of myelin protein genes during the development of the oligodendrocyte. ASN Neuro 2010; 2:e00027. [PMID: 20017732 PMCID: PMC2814326 DOI: 10.1042/an20090051] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 12/14/2009] [Accepted: 12/17/2009] [Indexed: 11/22/2022] Open
Abstract
It has become clear that the products of several of the earliest identified myelin protein genes perform functions that extend beyond the myelin sheath. Interestingly, these myelin proteins, which comprise proteolipid protein, 2′,3′-cyclic nucleotide 3′-phosphodiesterase and the classic and golli MBPs (myelin basic proteins), play important roles during different stages of oligodendroglial development. These non-myelin-related functions are varied and include roles in the regulation of process outgrowth, migration, RNA transport, oligodendrocyte survival and ion channel modulation. However, despite the wide variety of cellular functions performed by the different myelin genes, the route by which they achieve these many functions seems to converge upon a common mechanism involving Ca2+ regulation, cytoskeletal rearrangements and signal transduction. In the present review, the newly emerging functions of these myelin proteins will be described, and these will then be discussed in the context of their contribution to oligodendroglial development.
Collapse
|
19
|
Miller MJ, Kangas CD, Macklin WB. Neuronal expression of the proteolipid protein gene in the medulla of the mouse. J Neurosci Res 2010; 87:2842-53. [PMID: 19479988 DOI: 10.1002/jnr.22121] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The proteolipid protein (PLP) gene (Plp) encodes the major myelin proteins, PLP and DM20. Expression of Plp occurs predominantly in oligodendrocytes, but evidence is accumulating that this gene is also expressed in neurons. In earlier studies, we demonstrated that myelin-deficient (MD) rats, which carry a mutation in the Plp gene, exhibit lethal hypoxic ventilatory depression. Furthermore, we found that, in the MD rat, PLP accumulated in neuronal cell bodies in the medulla oblongata. In the current study, we sought to determine which neurons expressed the Plp gene in the medulla oblongata and whether Plp gene expression changed in neurons with maturation. A transgenic mouse expressing the Plp promoter driving expression of enhanced green fluorescent protein (Plp-EGFP) was used to identify neurons expressing this gene. Plp expression in neurons was confirmed by immunostaining EGFP-positive cells for NeuN and by in situ hybridization for PLP mRNA. The numbers of neurons expressing Plp-EGFP and their distribution increased between P5 and P10 in the medulla. Immunostaining for surface receptors and classes of neurons expressing Plp-EGFP revealed that Plp gene expression in brainstem neurons was restricted to neurons expressing specific ligand-gated channels and biosynthetic enzymes, including glutamatergic NMDA receptors, GABA(A) receptors, and ChAT in defined areas of the medulla. Plp gene expression was rarely found in interneurons expressing GABA and was never found in AMPA receptor- or tyrosine hydroxylase-expressing neurons. Thus, Plp expression in the mouse caudal medulla was found to be developmentally regulated and restricted to specific groups of neurons.
Collapse
Affiliation(s)
- Martha J Miller
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | |
Collapse
|
20
|
Sarret C, Combes P, Micheau P, Gelot A, Boespflug-Tanguy O, Vaurs-Barriere C. Novel neuronal proteolipid protein isoforms encoded by the human myelin proteolipid protein 1 gene. Neuroscience 2009; 166:522-38. [PMID: 20036320 DOI: 10.1016/j.neuroscience.2009.12.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 12/17/2009] [Accepted: 12/17/2009] [Indexed: 01/21/2023]
Abstract
The human myelin proteolipid protein 1 gene (hPLP1), which encodes the major structural myelin proteins of the central nervous system (CNS), is classically described as expressed in the oligodendrocytes, the CNS myelinating cells. We identified two new exons in the intron 1 of the hPLP1 gene that lead to the expression of additional mRNA and protein isoforms mainly expressed in neurons instead of oligodendrocytes. Those novel neuronal PLP isoforms are detected as soon as human fetal development and their concomitant expression is specific of the human species. As classical PLP proteins, the novel protein isoforms seem to be addressed to the plasma membrane. These results suggest for the first time that PLP may have functions in humans not only in oligodendrocytes but also in neurons and could be implicated in axono-glial communication. Moreover, this neuronal expression of the hPLP1 gene might explain the neuronal dysfunctions in patients carrying hPLP1 gene mutations.
Collapse
Affiliation(s)
- C Sarret
- Faculté de Médecine, Institut National de la Santé et de la Recherche Médicale, U931, GReD CNRS 6247, 63000 Clermont-Ferrand, France
| | | | | | | | | | | |
Collapse
|
21
|
Mayer CA, Macklin WB, Avishai N, Balan K, Wilson CG, Miller MJ. Mutation in the myelin proteolipid protein gene alters BK and SK channel function in the caudal medulla. Respir Physiol Neurobiol 2009; 169:303-14. [PMID: 19808102 DOI: 10.1016/j.resp.2009.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 09/24/2009] [Accepted: 09/25/2009] [Indexed: 12/31/2022]
Abstract
Proteolipid protein (Plp) gene mutation in rodents causes severe CNS dysmyelination, early death, and lethal hypoxic ventilatory depression (Miller et al., 2004). To determine if Plp mutation alters neuronal function critical for control of breathing, the nucleus tractus solitarii (nTS) of four rodent strains were studied: myelin deficient rats (MD), myelin synthesis deficient (Plp(msd)), and Plp(null) mice, as well as shiverer (Mbp(shi)) mice, a myelin basic protein mutant. Current-voltage relationships were analyzed using whole-cell patch-clamp in 300 microm brainstem slices. Voltage steps were applied, and inward and outward currents quantified. MD, Plp(msd), and Plp(null), but not Mbp(shi) neurons exhibited reduced outward current in nTS at P21. Apamin blockade of SK calcium-dependent currents and iberiotoxin blockade of BK calcium-dependent currents in the P21 MD rat demonstrated reduced outward current due to dysfunction of these channels. These results provide evidence that Plp mutation specifically alters neuronal excitability through calcium-dependent potassium channels in nTS.
Collapse
Affiliation(s)
- Catherine A Mayer
- Department of Pediatrics, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, United States.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Replacement of myelin-forming cells is an attractive but unproven therapy for inherited and acquired myelin diseases. In this issue of Cell Stem Cell, Windrem et al. (2008) describe the first progenitor cell transplantation paradigm that rescues the neurological phenotypes and increases life spans of mice with inherited myelin disease.
Collapse
Affiliation(s)
- Bruce D Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
23
|
Wight PA, Duchala CS, Shick HE, Gudz TI, Macklin WB. Expression of a myelin proteolipid protein (Plp)-lacZ transgene is reduced in both the CNS and PNS of Plp(jp) mice. Neurochem Res 2006; 32:343-51. [PMID: 17191136 PMCID: PMC1976413 DOI: 10.1007/s11064-006-9202-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 10/11/2006] [Indexed: 12/19/2022]
Abstract
Jimpy (Plp(jp)) is an X-linked recessive mutation in mice that causes CNS dysmyelination and early death in affected males. It results from a point mutation in the acceptor splice site of myelin proteolipid protein (Plp) exon 5, producing transcripts that are missing exon 5, with a concomitant shift in the downstream reading frame. Expression of the mutant PLP product in Plp(jp) males leads to hypomyelination and oligodendrocyte death. Expression of our Plp-lacZ fusion gene, PLP(+)Z, in transgenic mice is an excellent readout for endogenous Plp transcriptional activity. The current studies assess expression of the PLP(+)Z transgene in the Plp(jp) background. These studies demonstrate that expression of the transgene is decreased in both the central and peripheral nervous systems of affected Plp(jp) males. Thus, expression of mutated PLP protein downregulates Plp gene activity both in oligodendrocytes, which eventually die, and in Schwann cells, which are apparently unaffected in Plp(jp) mice.
Collapse
Affiliation(s)
- Patricia A Wight
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | | | | | | | | |
Collapse
|
24
|
Uemura M, Takeichi M. Alpha N-catenin deficiency causes defects in axon migration and nuclear organization in restricted regions of the mouse brain. Dev Dyn 2006; 235:2559-66. [PMID: 16691566 DOI: 10.1002/dvdy.20841] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Alpha N-catenin is a cadherin-binding protein, widely expressed in the nervous system; and it plays a crucial role in cadherin-mediated cell-cell adhesion. Here we report the effects of alpha N-catenin gene deficiency on brain morphogenesis. In addition to the previously reported phenotypes, we found that some of the axon tracts did not normally develop, in particular, axons of the anterior commissure failed to cross the midline, migrating, rather, to ectopic places. In restricted nuclei, a population of neurons was missing or their laminar arrangement was distorted. The ventricular structures were also deformed. These results indicate that alpha N-catenin has diverse roles in the organization of the central nervous system, but only in limited portions of the brain.
Collapse
|
25
|
Greenfield EA, Reddy J, Lees A, Dyer CA, Koul O, Nguyen K, Bell S, Kassam N, Hinojoza J, Eaton MJ, Lees MB, Kuchroo VK, Sobel RA. Monoclonal antibodies to distinct regions of human myelin proteolipid protein simultaneously recognize central nervous system myelin and neurons of many vertebrate species. J Neurosci Res 2006; 83:415-31. [PMID: 16416423 DOI: 10.1002/jnr.20748] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Myelin proteolipid protein (PLP), the major protein of mammalian CNS myelin, is a member of the proteolipid gene family (pgf). It is an evolutionarily conserved polytopic integral membrane protein and a potential autoantigen in multiple sclerosis (MS). To analyze antibody recognition of PLP epitopes in situ, monoclonal antibodies (mAbs) specific for different regions of human PLP (50-69, 100-123, 139-151, 178-191, 200-219, 264-276) were generated and used to immunostain CNS tissues of representative vertebrates. mAbs to each region recognized whole human PLP on Western blots; the anti-100-123 mAb did not recognize DM-20, the PLP isoform that lacks residues 116-150. All of the mAbs stained fixed, permeabilized oligodendrocytes and mammalian and avian CNS tissue myelin. Most of the mAbs also stained amphibian, teleost, and elasmobranch CNS myelin despite greater diversity of their pgf myelin protein sequences. Myelin staining was observed when there was at least 40% identity of the mAb epitope and known pgf myelin proteins of the same or related species. The pgf myelin proteins of teleosts and elasmobranchs lack 116-150; the anti-100-123 mAb did not stain their myelin. In addition to myelin, the anti-178-191 mAb stained many neurons in all species; other mAbs stained distinct neuron subpopulations in different species. Neuronal staining was observed when there was at least approximately 30% identity of the PLP mAb epitope and known pgf neuronal proteins of the same or related species. Thus, anti-human PLP epitope mAbs simultaneously recognize CNS myelin and neurons even without extensive sequence identity. Widespread anti-PLP mAb recognition of neurons suggests a novel potential pathophysiologic mechanism in MS patients, i.e., that anti-PLP antibodies associated with demyelination might simultaneously recognize pgf epitopes in neurons, thereby affecting their functions.
Collapse
Affiliation(s)
- Edward A Greenfield
- Department of Adult Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Fowler JH, Edgar JM, Pringle A, McLaughlin M, McCulloch J, Griffiths IR, Garbern JY, Nave KA, Dewar D. α-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid-mediated excitotoxic axonal damage is attenuated in the absence of myelin proteolipid protein. J Neurosci Res 2006; 84:68-77. [PMID: 16625661 DOI: 10.1002/jnr.20859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In vivo and in vitro studies have shown that alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-receptor-mediated excitotoxicity causes cytoskeletal damage to axons. AMPA/kainate receptors are present on oligodendrocytes and myelin, but currently there is no evidence to suggest that axon cylinders contain AMPA receptors. Proteolipid protein (PLP) and DM20 are integral membrane proteins expressed by CNS oligodendrocytes and located in compact myelin. Humans and mice lacking normal PLP/DM20 develop axonal swellings and degeneration, suggesting that local interactions between axons and the oligodendrocyte/myelin unit are important for the normal functioning of axons and that PLP/DM20 is involved in this process. To determine whether perturbed glial-axonal interaction affects AMPA-receptor-mediated axonal damage, AMPA (1.5 nmol) was injected into the caudate nucleus of anesthetized Plp knockout and wild-type male mice (n = 13). Twenty-four hours later, axonal damage was detected by using neurofilament 200 (NF 200) immunohistochemistry and neuronal damage detected via histology. AMPA-induced axonal damage, assessed with NF 200 immunohistochemistry, was significantly reduced in Plp knockout mice compared with wild-type mice (P = 0.015). There was no significant difference in the levels of neuronal perikaryal damage between the Plp knockout and wild-type mice. In addition, there was no significant difference in the levels of glutamate receptor subunits GluR1-4 or KA2 in Plp knockout compared with wild-type littermates. The present study suggests that PLP-mediated interactions among oligodendrocytes, myelin, and axons may be involved in AMPA-mediated axonal damage.
Collapse
Affiliation(s)
- J H Fowler
- Division of Clinical Neuroscience, University of Glasgow, Wellcome Surgical Institute, Glasgow G61 1QH, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wu M, Haxhiu MA, Johnson SM. Hypercapnic and hypoxic responses require intact neural transmission from the pre-Bötzinger complex. Respir Physiol Neurobiol 2005; 146:33-46. [PMID: 15733777 DOI: 10.1016/j.resp.2004.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2004] [Indexed: 11/15/2022]
Abstract
The central respiratory network that includes the pre-Bötzinger complex (pre-BötC), a region believed to contain rhythmogenic neurons, is capable of responding to fluctuations in CO2 and pH. However, the role of inputs from this site in mediating ventilatory responses to hypercapnia and/or hypoxia in nonsedated animals is not well established. Therefore, in the present study we tested the hypothesis that altered transmission from the pre-BötC to its target sites would decrease chemosensory responsiveness to acute hypercapnia and modulate the ventilatory response to hypoxia. Colchicine was used to block axonal transport. At 48 h after bilateral microinjections of colchicine into the pre-BötC (100 microg/uL, 100 nL/site), but not saline, the baseline frequency of breathing decreased; however, rhythmicity was not altered. In addition, there was a significant fall in the ventilatory response to hypercapnia (5 and 12% CO2) and hypoxia (8% O2). These findings indicate that, inputs from pre-BötC neurons are of critical importance in providing the normal ventilatory response to both hypercapnia and hypoxia.
Collapse
Affiliation(s)
- Mingfei Wu
- Department of Physiology and Biophysics, College of Medicine, Howard University, 520 W Street, Northwest, Washington, DC 20059, USA
| | | | | |
Collapse
|
28
|
Yoshida M, Macklin WB. Oligodendrocyte development and myelination in GFP-transgenic zebrafish. J Neurosci Res 2005; 81:1-8. [PMID: 15920740 DOI: 10.1002/jnr.20516] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Green fluorescent protein (GFP) transgenic zebrafish technology has been employed to directly visualize and analyze dynamic developmental processes, such as cell migration and morphogenesis. Stable transgenic zebrafish that express GFP in oligodendrocytes can be a valuable tool to visualize complex myelination processes in vivo, as well as to conduct rapid mutagenesis screens for defective myelination mutants. We investigated whether two myelin gene promoters, the zebrafish P0 promoter and the mouse proteolipid protein (PLP) promoter, drive GFP expression in zebrafish oligodendrocytes. Transiently, both promoters drive enhanced GFP (EGFP) expression in morphologically identifiable oligodendrocytes, premyelinating oligodendrocytes, and possible oligodendrocyte precursors. We have established a stable transgenic zebrafish line, tg(plp:EGFP) zebrafish, at the F1 generation, which expresses enhanced GFP (EGFP) driven by the mouse PLP promoter. In this transgenic line, EGFP-expressing cells are visually detectable around 24-hr postfertilization (hpf), and later at 54 hpf, these cells start exhibiting the clear morphologic characteristics of oligodendrocytes. Shortly afterward, EGFP-expressing oligodendrocytes establish a ventral dominant distribution pattern throughout the central nervous system. This transgenic zebrafish line is likely to serve as a useful tool, in which normal myelination as well as abnormal myelination can be recorded under time-lapse confocal microscopy. Furthermore, it has the potential to greatly facilitate mutagenesis screening for novel dysmyelinating mutants.
Collapse
Affiliation(s)
- Mika Yoshida
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic Foundation,Cleveland, Ohio 44195, USA
| | | |
Collapse
|
29
|
Inoue K. PLP1-related inherited dysmyelinating disorders: Pelizaeus-Merzbacher disease and spastic paraplegia type 2. Neurogenetics 2004; 6:1-16. [PMID: 15627202 DOI: 10.1007/s10048-004-0207-y] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Accepted: 11/17/2004] [Indexed: 10/26/2022]
Abstract
Pelizaeus-Merzbacher disease (PMD) and its allelic disorder, spastic paraplegia type 2 (SPG2), are among the best-characterized dysmyelinating leukodystrophies of the central nervous system (CNS). Both PMD and SPG2 are caused by mutations in the proteolipid protein 1 (PLP1) gene, which encodes a major component of CNS myelin proteins. Distinct types of mutations, including point mutations and genomic duplications and deletions, have been identified as causes of PMD/SPG2 that act through different molecular mechanisms. Studies of various PLP1 mutants in humans and animal models have shed light on the genomic, molecular, and cellular pathogeneses of PMD/SPG2. Recent discoveries include complex mutational mechanisms and associated disease phenotypes, novel cellular pathways that lead to the degeneration of oligodendrocytes, and genomic architectural features that result in unique chromosomal rearrangements. Here, I review the previous and current knowledge of the molecular pathogenesis of PMD/SPG2 and delineate future directions for PMD/SPG2 studies.
Collapse
Affiliation(s)
- Ken Inoue
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan.
| |
Collapse
|
30
|
Miller MJ, Haxhiu MA, Kangas CD, Georgiadis P, Gudz TI, Macklin WB. Selective alteration of the ventilatory response to hypoxia results from mutation in the myelin proteolipid protein gene. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 551:85-91. [PMID: 15602948 DOI: 10.1007/0-387-27023-x_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- Martha J Miller
- Dept Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|