1
|
Wang XW, Yang SG, Hu MW, Wang RY, Zhang C, Kosanam AR, Ochuba AJ, Jiang JJ, Luo X, Guan Y, Qian J, Liu CM, Zhou FQ. Histone methyltransferase Ezh2 coordinates mammalian axon regeneration via regulation of key regenerative pathways. J Clin Invest 2024; 134:e163145. [PMID: 38015636 PMCID: PMC10849760 DOI: 10.1172/jci163145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
Current treatments for neurodegenerative diseases and neural injuries face major challenges, primarily due to the diminished regenerative capacity of neurons in the mammalian CNS as they mature. Here, we investigated the role of Ezh2, a histone methyltransferase, in regulating mammalian axon regeneration. We found that Ezh2 declined in the mouse nervous system during maturation but was upregulated in adult dorsal root ganglion neurons following peripheral nerve injury to facilitate spontaneous axon regeneration. In addition, overexpression of Ezh2 in retinal ganglion cells in the CNS promoted optic nerve regeneration via both histone methylation-dependent and -independent mechanisms. Further investigation revealed that Ezh2 fostered axon regeneration by orchestrating the transcriptional silencing of genes governing synaptic function and those inhibiting axon regeneration, while concurrently activating various factors that support axon regeneration. Notably, we demonstrated that GABA transporter 2, encoded by Slc6a13, acted downstream of Ezh2 to control axon regeneration. Overall, our study underscores the potential of modulating chromatin accessibility as a promising strategy for promoting CNS axon regeneration.
Collapse
Affiliation(s)
- Xue-Wei Wang
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Shu-Guang Yang
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Rui-Ying Wang
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chi Zhang
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anish R. Kosanam
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Arinze J. Ochuba
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jing-Jing Jiang
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng-Quan Zhou
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Mueller-Buehl C, Wegrzyn D, Bauch J, Faissner A. Regulation of the E/I-balance by the neural matrisome. Front Mol Neurosci 2023; 16:1102334. [PMID: 37143468 PMCID: PMC10151766 DOI: 10.3389/fnmol.2023.1102334] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
In the mammalian cortex a proper excitatory/inhibitory (E/I) balance is fundamental for cognitive functions. Especially γ-aminobutyric acid (GABA)-releasing interneurons regulate the activity of excitatory projection neurons which form the second main class of neurons in the cortex. During development, the maturation of fast-spiking parvalbumin-expressing interneurons goes along with the formation of net-like structures covering their soma and proximal dendrites. These so-called perineuronal nets (PNNs) represent a specialized form of the extracellular matrix (ECM, also designated as matrisome) that stabilize structural synapses but prevent the formation of new connections. Consequently, PNNs are highly involved in the regulation of the synaptic balance. Previous studies revealed that the formation of perineuronal nets is accompanied by an establishment of mature neuronal circuits and by a closure of critical windows of synaptic plasticity. Furthermore, it has been shown that PNNs differentially impinge the integrity of excitatory and inhibitory synapses. In various neurological and neuropsychiatric disorders alterations of PNNs were described and aroused more attention in the last years. The following review gives an update about the role of PNNs for the maturation of parvalbumin-expressing interneurons and summarizes recent findings about the impact of PNNs in different neurological and neuropsychiatric disorders like schizophrenia or epilepsy. A targeted manipulation of PNNs might provide an interesting new possibility to indirectly modulate the synaptic balance and the E/I ratio in pathological conditions.
Collapse
|
3
|
A Monoclonal Anti-HMGB1 Antibody Attenuates Neurodegeneration in an Experimental Animal Model of Glaucoma. Int J Mol Sci 2022; 23:ijms23084107. [PMID: 35456925 PMCID: PMC9028318 DOI: 10.3390/ijms23084107] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation is a crucial process for the loss of retinal ganglion cells (RGC), a major characteristic of glaucoma. High expression of high-mobility group box protein 1 (HMGB1) plays a detrimental role in inflammatory processes and is elevated in the retinas of glaucoma patients. Therefore, this study aimed to investigate the effects of the intravitreal injection of an anti-HMGB1 monoclonal antibody (anti-HMGB1 Ab) in an experimental animal model of glaucoma. Two groups of Spraque Dawley rats received episcleral vein occlusion to chronically elevate intraocular pressure (IOP): (1) the IgG group, intravitreal injection of an unspecific IgG as a control, n = 5, and (2) the HMGB1 group, intravitreal injection of an anti-HMGB1 Ab, n = 6. IOP, retinal nerve fiber layer thickness (RNFLT), and the retinal flash response were monitored longitudinally. Post-mortem examinations included immunohistochemistry, microarray, and mass spectrometric analysis. RNFLT was significantly increased in the HMGB1 group compared with the IgG group (p < 0.001). RGC density showed improved neuronal cell survival in the retina in HMGB1 compared with the IgG group (p < 0.01). Mass spectrometric proteomic analysis of retinal tissue showed an increased abundance of RNA metabolism-associated heterogeneous nuclear ribonucleoproteins (hnRNPs), such as hnRNP U, D, and H2, in animals injected with the anti-HMGB1 Ab, indicating that the application of the antibody may cause increased gene expression. Microarray analysis showed a significantly decreased expression of C-X-C motif chemokine ligand 8 (CXCL8, p < 0.05) and connective tissue growth factor (CTGF, p < 0.01) in the HMGB1 group. Thus, these data suggest that intravitreal injection of anti-HMGB1 Ab reduced HMGB1-dependent inflammatory signaling and mediated RGC neuroprotection.
Collapse
|
4
|
Abstract
The extracellular matrix (ECM) has central roles in tissue integrity and remodeling throughout the life span of animals. While collagens are the most abundant structural components of ECM in most tissues, tissue-specific molecular complexity is contributed by ECM glycoproteins. The matricellular glycoproteins are categorized primarily according to functional criteria and represented predominantly by the thrombospondin, tenascin, SPARC/osteonectin, and CCN families. These proteins do not self-assemble into ECM fibrils; nevertheless, they shape ECM properties through interactions with structural ECM proteins, growth factors, and cells. Matricellular proteins also promote cell migration or morphological changes through adhesion-modulating or counter-adhesive actions on cell-ECM adhesions, intracellular signaling, and the actin cytoskeleton. Typically, matricellular proteins are most highly expressed during embryonic development. In adult tissues, expression is more limited unless activated by cues for dynamic tissue remodeling and cell motility, such as occur during inflammatory response and wound repair. Many insights in the complex roles of matricellular proteins have been obtained from studies of gene knockout mice. However, with the exception of chordate-specific tenascins, these are highly conserved proteins that are encoded in many animal phyla. This review will consider the increasing body of research on matricellular proteins in nonmammalian animal models. These models provide better access to the very earliest stages of embryonic development and opportunities to study biological processes such as limb and organ regeneration. In aggregate, this research is expanding concepts of the functions and mechanisms of action of matricellular proteins.
Collapse
Affiliation(s)
- Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
5
|
Learning to swim, again: Axon regeneration in fish. Exp Neurol 2017; 287:318-330. [DOI: 10.1016/j.expneurol.2016.02.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 01/10/2023]
|
6
|
Stanic K, Saldivia N, Förstera B, Torrejón M, Montecinos H, Caprile T. Expression Patterns of Extracellular Matrix Proteins during Posterior Commissure Development. Front Neuroanat 2016; 10:89. [PMID: 27733818 PMCID: PMC5039192 DOI: 10.3389/fnana.2016.00089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/12/2016] [Indexed: 11/13/2022] Open
Abstract
Extracellular matrix (ECM) molecules are pivotal for central nervous system (CNS) development, facilitating cell migration, axonal growth, myelination, dendritic spine formation, and synaptic plasticity, among other processes. During axon guidance, the ECM not only acts as a permissive or non-permissive substrate for navigating axons, but also modulates the effects of classical guidance cues, such as netrin or Eph/ephrin family members. Despite being highly important, little is known about the expression of ECM molecules during CNS development. Therefore, this study assessed the molecular expression patterns of tenascin, HNK-1, laminin, fibronectin, perlecan, decorin, and osteopontin along chick embryo prosomere 1 during posterior commissure development. The posterior commissure is the first transversal axonal tract of the embryonic vertebrate brain. Located in the dorso-caudal portion of prosomere 1, posterior commissure axons primarily arise from the neurons of basal pretectal nuclei that run dorsally to the roof plate midline, where some turn toward the ipsilateral side. Expressional analysis of ECM molecules in this area these revealed to be highly arranged, and molecule interactions with axon fascicles suggested involvement in processes other than structural support. In particular, tenascin and the HNK-1 epitope extended in ventro-dorsal columns and enclosed axons during navigation to the roof plate. Laminin and osteopontin were expressed in the midline, very close to axons that at this point must decide between extending to the contralateral side or turning to the ipsilateral side. Finally, fibronectin, decorin, and perlecan appeared unrelated to axonal pathfinding in this region and were instead restricted to the external limiting membrane. In summary, the present report provides evidence for an intricate expression of different extracellular molecules that may cooperate in guiding posterior commissure axons.
Collapse
Affiliation(s)
- Karen Stanic
- Axon Guidance Laboratory, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción Concepción, Chile
| | - Natalia Saldivia
- Axon Guidance Laboratory, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción Concepción, Chile
| | - Benjamín Förstera
- Department of Physiology, Faculty of Biological Sciences, University of Concepción Concepción, Chile
| | - Marcela Torrejón
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción Concepción, Chile
| | - Hernán Montecinos
- Axon Guidance Laboratory, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción Concepción, Chile
| | - Teresa Caprile
- Axon Guidance Laboratory, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción Concepción, Chile
| |
Collapse
|
7
|
Astrocyte scar formation aids central nervous system axon regeneration. Nature 2016; 532:195-200. [PMID: 27027288 DOI: 10.1038/nature17623] [Citation(s) in RCA: 1227] [Impact Index Per Article: 153.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/26/2016] [Indexed: 12/20/2022]
Abstract
Transected axons fail to regrow in the mature central nervous system. Astrocytic scars are widely regarded as causal in this failure. Here, using three genetically targeted loss-of-function manipulations in adult mice, we show that preventing astrocyte scar formation, attenuating scar-forming astrocytes, or ablating chronic astrocytic scars all failed to result in spontaneous regrowth of transected corticospinal, sensory or serotonergic axons through severe spinal cord injury (SCI) lesions. By contrast, sustained local delivery via hydrogel depots of required axon-specific growth factors not present in SCI lesions, plus growth-activating priming injuries, stimulated robust, laminin-dependent sensory axon regrowth past scar-forming astrocytes and inhibitory molecules in SCI lesions. Preventing astrocytic scar formation significantly reduced this stimulated axon regrowth. RNA sequencing revealed that astrocytes and non-astrocyte cells in SCI lesions express multiple axon-growth-supporting molecules. Our findings show that contrary to the prevailing dogma, astrocyte scar formation aids rather than prevents central nervous system axon regeneration.
Collapse
|
8
|
Chow RW, Almeida AD, Randlett O, Norden C, Harris WA. Inhibitory neuron migration and IPL formation in the developing zebrafish retina. Development 2015; 142:2665-77. [PMID: 26116662 PMCID: PMC4529032 DOI: 10.1242/dev.122473] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 06/11/2015] [Indexed: 12/22/2022]
Abstract
The mature vertebrate retina is a highly ordered neuronal network of cell bodies and synaptic neuropils arranged in distinct layers. Little, however, is known about the emergence of this spatial arrangement. Here, we investigate how the three main types of retinal inhibitory neuron (RIN) – horizontal cells (HCs), inner nuclear layer amacrine cells (iACs) and displaced amacrine cells (dACs) – reach their specific laminar positions during development. Using in vivo time-lapse imaging of zebrafish retinas, we show that RINs undergo distinct phases of migration. The first phase, common to all RINs, is bipolar migration directed towards the apicobasal centre of the retina. All RINs then transition to a less directionally persistent multipolar phase of migration. Finally, HCs, iACs and dACs each undergo cell type-specific migration. In contrast to current hypotheses, we find that most dACs send processes into the forming inner plexiform layer (IPL) before migrating through it and inverting their polarity. By imaging and quantifying the dynamics of HCs, iACs and dACs from birth to final position, this study thus provides evidence for distinct and new migration patterns during retinal lamination and insights into the initiation of IPL formation. Highlighted article: The quantification of cellular behaviour in real time provides new insights into interneuron migration and inner plexiform layer formation during the lamination of the zebrafish retina.
Collapse
Affiliation(s)
- Renee W Chow
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Alexandra D Almeida
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Owen Randlett
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Caren Norden
- MPI of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany
| | - William A Harris
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| |
Collapse
|
9
|
Abstract
The visual system is beautifully crafted to transmit information of the external world to visual processing and cognitive centers in the brain. For visual information to be relayed to the brain, a series of axon pathfinding events must take place to ensure that the axons of retinal ganglion cells, the only neuronal cell type in the retina that sends axons out of the retina, find their way out of the eye to connect with targets in the brain. In the past few decades, the power of molecular and genetic tools, including the generation of genetically manipulated mouse lines, have multiplied our knowledge about the molecular mechanisms involved in the sculpting of the visual system. Here, we review major advances in our understanding of the mechanisms controlling the differentiation of RGCs, guidance of their axons from the retina to the primary visual centers, and the refinement processes essential for the establishment of topographic maps and eye-specific axon segregation. Human disorders, such as albinism and achiasmia, that impair RGC axon growth and guidance and, thus, the establishment of a fully functioning visual system will also be discussed.
Collapse
Affiliation(s)
- Lynda Erskine
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Scotland, UK
| | - Eloisa Herrera
- Instituto de Neurosciencias de Alicante, CSIC-UMH, San Juan de Alicante, Spain
| |
Collapse
|
10
|
Futyma K, Miotła P, Różyńska K, Zdunek M, Semczuk A, Rechberger T, Wojcierowski J. Expression of genes encoding extracellular matrix proteins: a macroarray study. Oncol Rep 2014; 32:2349-53. [PMID: 25231141 PMCID: PMC4240474 DOI: 10.3892/or.2014.3493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/14/2014] [Indexed: 11/06/2022] Open
Abstract
Endometrial cancer (EC) is one of the most common gynecological malignancies in Poland, with well-established risk factors. Genetic instability and molecular alterations responsible for endometrial carcinogenesis have been systematically investigated. The aim of the present study was to investigate, by means of cDNA macroarrays, the expression profiles of genes encoding extracellular matrix (ECM) proteins in ECs. Tissue specimens were collected during surgical procedures from 40 patients with EC, and control tissue was collected from 9 patients with uterine leiomyomas. RNA was isolated and RT-PCR with radioisotope-labeled cDNA was performed. The levels of ECM protein gene expression in normal endometrial tissues were compared to the expression of these genes in EC specimens. Statistically significant differences in gene expression, stratified by clinical stage of the ECs, were detected for aggrecan, vitronectin, tenascin R, nidogen and two collagen proteins: type VIII chain α1 and type XI chain α2. All of these proteins were overexpressed in stage III endometrial carcinomas compared to levels in stage I and II uterine neoplasms. In conclusion, increased expression of genes encoding ECM proteins may play an important role in facilitating accelerated disease progression of human ECs.
Collapse
Affiliation(s)
- Konrad Futyma
- Second Department of Gynecology, Medical University of Lublin, Lublin, Poland
| | - Paweł Miotła
- Second Department of Gynecology, Medical University of Lublin, Lublin, Poland
| | - Krystyna Różyńska
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Małgorzata Zdunek
- Department of Clinical Pathology, Medical University of Lublin, Lublin, Poland
| | - Andrzej Semczuk
- Second Department of Gynecology, Medical University of Lublin, Lublin, Poland
| | - Tomasz Rechberger
- Second Department of Gynecology, Medical University of Lublin, Lublin, Poland
| | - Jacek Wojcierowski
- Department of Medical Genetics, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
11
|
Burnside ER, Bradbury EJ. Review: Manipulating the extracellular matrix and its role in brain and spinal cord plasticity and repair. Neuropathol Appl Neurobiol 2014; 40:26-59. [DOI: 10.1111/nan.12114] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/20/2013] [Indexed: 12/17/2022]
Affiliation(s)
- E. R. Burnside
- King's College London; Regeneration Group; The Wolfson Centre for Age-Related Diseases; Guy's Campus; London UK
| | - E. J. Bradbury
- King's College London; Regeneration Group; The Wolfson Centre for Age-Related Diseases; Guy's Campus; London UK
| |
Collapse
|
12
|
Baier H. Synaptic laminae in the visual system: molecular mechanisms forming layers of perception. Annu Rev Cell Dev Biol 2013; 29:385-416. [PMID: 24099086 DOI: 10.1146/annurev-cellbio-101011-155748] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Synaptic connections between neurons form the basis for perception and behavior. Synapses are often clustered in space, forming stereotyped layers. In the retina and optic tectum, multiple such synaptic laminae are stacked on top of each other, giving rise to stratified neuropil regions in which each layer combines synapses responsive to a particular sensory feature. Recently, several cellular and molecular mechanisms that underlie the development of multilaminar arrays of synapses have been discovered. These mechanisms include neurite guidance and cell-cell recognition. Molecules of the Slit, Semaphorin, Netrin, and Hedgehog families, binding to their matching receptors, bring axons and dendrites into spatial register. These guidance cues may diffuse over short distances or bind to sheets of extracellular matrix, thus conditioning the local extracellular milieu, or are presented on the surface of cells bordering the future neuropil. In addition, mutual recognition of axons and dendrites through adhesion molecules with immunoglobulin domains ensures cell type-specific connections within a given layer. Thus, an elaborate genetic program assembles the parallel processing channels that underlie visual perception.
Collapse
Affiliation(s)
- Herwig Baier
- Genes - Circuits - Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried near Munich, Germany;
| |
Collapse
|
13
|
Jakovcevski I, Miljkovic D, Schachner M, Andjus PR. Tenascins and inflammation in disorders of the nervous system. Amino Acids 2012; 44:1115-27. [DOI: 10.1007/s00726-012-1446-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/10/2012] [Indexed: 12/20/2022]
|
14
|
You J, Hong SQ, Zhang MY, Zhao HL, Liu TZ, Zhou HL, Cai YQ, Xu ZM, Guo Y, Jiang XD, Xu RX. Passive immunization with tenascin-R (TN-R) polyclonal antibody promotes axonal regeneration and functional recovery after spinal cord injury in rats. Neurosci Lett 2012; 525:129-34. [PMID: 22902990 DOI: 10.1016/j.neulet.2012.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/15/2012] [Accepted: 08/02/2012] [Indexed: 11/24/2022]
Abstract
Tenascin-R (TN-R) is a neural specific protein and an important molecule involved in inhibition of axonal regeneration after spinal cord injury (SCI). Here we report on rabbit-derived TN-R polyclonal antibody, which acts as a TN-R antagonist with high titer and high specificity, promoted neurite outgrowth and sprouting of rat cortical neurons cultured on the inhibitory TN-R substrate in vitro. When locally administered into the lesion sites of rats received spinal cord dorsal hemisection, these TN-R antibodies could significantly decrease RhoA activation and improve functional recovery from corticospinal tract (CST) transection. Thus, passive immunotherapy with specific TN-R antagonist may represent a promising repair strategy following acute SCI.
Collapse
Affiliation(s)
- Jian You
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Myers JP, Santiago-Medina M, Gomez TM. Regulation of axonal outgrowth and pathfinding by integrin-ECM interactions. Dev Neurobiol 2011; 71:901-23. [PMID: 21714101 PMCID: PMC3192254 DOI: 10.1002/dneu.20931] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Developing neurons use a combination of guidance cues to assemble a functional neural network. A variety of proteins immobilized within the extracellular matrix (ECM) provide specific binding sites for integrin receptors on neurons. Integrin receptors on growth cones associate with a number of cytosolic adaptor and signaling proteins that regulate cytoskeletal dynamics and cell adhesion. Recent evidence suggests that soluble growth factors and classic axon guidance cues may direct axon pathfinding by controlling integrin-based adhesion. Moreover, because classic axon guidance cues themselves are immobilized within the ECM and integrins modulate cellular responses to many axon guidance cues, interactions between activated receptors modulate cell signals and adhesion. Ultimately, growth cones control axon outgrowth and pathfinding behaviors by integrating distinct biochemical signals to promote the proper assembly of the nervous system. In this review, we discuss our current understanding how ECM proteins and their associated integrin receptors control neural network formation.
Collapse
Affiliation(s)
- Jonathan P Myers
- Department of Neuroscience, Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
16
|
Banerjee S, Gordon L, Donn TM, Berti C, Moens CB, Burden SJ, Granato M. A novel role for MuSK and non-canonical Wnt signaling during segmental neural crest cell migration. Development 2011; 138:3287-96. [PMID: 21750038 DOI: 10.1242/dev.067306] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Trunk neural crest cells delaminate from the dorsal neural tube as an uninterrupted sheet; however, they convert into segmentally organized streams before migrating through the somitic territory. These neural crest cell streams join the segmental trajectories of pathfinding spinal motor axons, suggesting that interactions between these two cell types might be important for neural crest cell migration. Here, we show that in the zebrafish embryo migration of both neural crest cells and motor axons is temporally synchronized and spatially restricted to the center of the somite, but that motor axons are dispensable for segmental neural crest cell migration. Instead, we find that muscle-specific receptor kinase (MuSK) and its putative ligand Wnt11r are crucial for restricting neural crest cell migration to the center of each somite. Moreover, we find that blocking planar cell polarity (PCP) signaling in somitic muscle cells also results in non-segmental neural crest cell migration. Using an F-actin biosensor we show that in the absence of MuSK neural crest cells fail to retract non-productive leading edges, resulting in non-segmental migration. Finally, we show that MuSK knockout mice display similar neural crest cell migration defects, suggesting a novel, evolutionarily conserved role for MuSK in neural crest migration. We propose that a Wnt11r-MuSK dependent, PCP-like pathway restricts neural crest cells to their segmental path.
Collapse
Affiliation(s)
- Santanu Banerjee
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
El Ayachi I, Fernandez C, Baeza N, De Paula AM, Pesheva P, Figarella-Branger D. Spatiotemporal distribution of tenascin-R in the developing human cerebral cortex parallels neuronal migration. J Comp Neurol 2011; 519:2379-89. [DOI: 10.1002/cne.22632] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
18
|
Perkins EJ, Chipman JK, Edwards S, Habib T, Falciani F, Taylor R, Van Aggelen G, Vulpe C, Antczak P, Loguinov A. Reverse engineering adverse outcome pathways. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:22-38. [PMID: 20963852 DOI: 10.1002/etc.374] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The toxicological effects of many stressors are mediated through unknown, or incompletely characterized, mechanisms of action. The application of reverse engineering complex interaction networks from high dimensional omics data (gene, protein, metabolic, signaling) can be used to overcome these limitations. This approach was used to characterize adverse outcome pathways (AOPs) for chemicals that disrupt the hypothalamus-pituitary-gonadal endocrine axis in fathead minnows (FHM, Pimephales promelas). Gene expression changes in FHM ovaries in response to seven different chemicals, over different times, doses, and in vivo versus in vitro conditions, were captured in a large data set of 868 arrays. Potential AOPs of the antiandrogen flutamide were examined using two mutual information-based methods to infer gene regulatory networks and potential AOPs. Representative networks from these studies were used to predict network paths from stressor to adverse outcome as candidate AOPs. The relationship of individual chemicals to an adverse outcome can be determined by following perturbations through the network in response to chemical treatment, thus leading to the nodes associated with the adverse outcome. Identification of candidate pathways allows for formation of testable hypotheses about key biological processes, biomarkers, or alternative endpoints that can be used to monitor an AOP. Finally, the unique challenges facing the application of this approach in ecotoxicology were identified and a road map for the utilization of these tools presented.
Collapse
Affiliation(s)
- Edward J Perkins
- U.S. Army Engineering Research and Development Center, Vicksburg, Mississippi, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Fleisch VC, Fraser B, Allison WT. Investigating regeneration and functional integration of CNS neurons: lessons from zebrafish genetics and other fish species. Biochim Biophys Acta Mol Basis Dis 2010; 1812:364-80. [PMID: 21044883 DOI: 10.1016/j.bbadis.2010.10.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 10/05/2010] [Accepted: 10/21/2010] [Indexed: 12/21/2022]
Abstract
Zebrafish possess a robust, innate CNS regenerative ability. Combined with their genetic tractability and vertebrate CNS architecture, this ability makes zebrafish an attractive model to gain requisite knowledge for clinical CNS regeneration. In treatment of neurological disorders, one can envisage replacing lost neurons through stem cell therapy or through activation of latent stem cells in the CNS. Here we review the evidence that radial glia are a major source of CNS stem cells in zebrafish and thus activation of radial glia is an attractive therapeutic target. We discuss the regenerative potential and the molecular mechanisms thereof, in the zebrafish spinal cord, retina, optic nerve and higher brain centres. We evaluate various cell ablation paradigms developed to induce regeneration, with particular emphasis on the need for (high throughput) indicators that neuronal regeneration has restored sensory or motor function. We also examine the potential confound that regeneration imposes as the community develops zebrafish models of neurodegeneration. We conclude that zebrafish combine several characters that make them a potent resource for testing hypotheses and discovering therapeutic targets in functional CNS regeneration. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases.
Collapse
Affiliation(s)
- Valerie C Fleisch
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
20
|
The glia-derived extracellular matrix glycoprotein tenascin-C promotes embryonic and postnatal retina axon outgrowth via the alternatively spliced fibronectin type III domain TNfnD. ACTA ACUST UNITED AC 2009; 4:271-83. [DOI: 10.1017/s1740925x09990020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tenascin-C (Tnc) is an astrocytic multifunctional extracellular matrix (ECM) glycoprotein that potentially promotes or inhibits neurite outgrowth. To investigate its possible functions for retinal development, explants from embryonic day 18 (E18) rat retinas were cultivated on culture substrates composed of poly-d-lysine (PDL), or PDL additionally coated with Tnc or laminin (LN)-1, which significantly increased fiber length. When combined with LN, Tnc induced axon fasciculation that reduced the apparent number of outgrowing fibers. In order to circumscribe the stimulatory region, Tnc-derived fibronectin type III (TNfn) domains fused to the human Ig-Fc-fragment TNfnD6-Fc, TNfnBD-Fc, TNFnA1A2-Fc and TNfnA1D-Fc were studied. The fusion proteins TNfnBD-Fc and to a lesser degree TNfnA1D-Fc were stimulatory when compared with the Ig-Fc-fragment protein without insert. In contrast, the combination TNfnA1A2-Fc reduced fiber outgrowth beneath the values obtained for the Ig-Fc domain, indicating potential inhibitory properties. The monoclonal J1/tn2 antibody (clone 578) that is specific for domain TNfnD blocked the stimulatory properties of the TNfn-Fc fusions. When postnatal day 7 retinal ganglion cells were used rather that explants, Tnc and Tnc-derived proteins proved permissive for neurite outgrowth. The present study highlights a strong retinal axon growth-promoting activity of the Tnc domain TNfnD, which is modulated by neighboring domains.
Collapse
|
21
|
Wnt signals organize synaptic prepattern and axon guidance through the zebrafish unplugged/MuSK receptor. Neuron 2009; 61:721-33. [PMID: 19285469 DOI: 10.1016/j.neuron.2008.12.025] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 11/13/2008] [Accepted: 12/24/2008] [Indexed: 11/24/2022]
Abstract
Early during neuromuscular development, acetylcholine receptors (AChRs) accumulate at the center of muscle fibers, precisely where motor growth cones navigate and synapses eventually form. Here, we show that Wnt11r binds to the zebrafish unplugged/MuSK ectodomain to organize this central muscle zone. In the absence of such a zone, prepatterned AChRs fail to aggregate and, as visualized by live-cell imaging, growth cones stray from their central path. Using inducible unplugged/MuSK transgenes, we show that organization of the central muscle zone is dispensable for the formation of neural synapses, but essential for AChR prepattern and motor growth cone guidance. Finally, we show that blocking noncanonical dishevelled signaling in muscle fibers disrupts AChR prepatterning and growth cone guidance. We propose that Wnt ligands activate unplugged/MuSK signaling in muscle fibers to restrict growth cone guidance and AChR prepatterns to the muscle center through a mechanism reminiscent of the planar cell polarity pathway.
Collapse
|
22
|
Hoffmann K, Sivukhina E, Potschka H, Schachner M, Löscher W, Dityatev A. Retarded kindling progression in mice deficient in the extracellular matrix glycoprotein tenascin-R. Epilepsia 2008; 50:859-69. [PMID: 19178559 DOI: 10.1111/j.1528-1167.2008.01774.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE We investigated the role of the extracellular matrix glycoprotein tenascin-R (TNR) in formation of a hyperexcitable network in the kindling model of epilepsy. The idea that TNR may be important for this process was suggested by previous studies showing that deficiency in TNR leads to abnormalities in synaptic plasticity, perisomatic GABAergic inhibition and more astrocytes in the hippocampus of adult mice. METHODS Constitutively TNR deficient (TNR-/-) mice and their wild-type littermates received repeated electrical stimulation in the amygdala over several days until they developed fully kindled generalized seizures at which time their brains were studied immunohistochemically. RESULTS In TNR-/- mice, kindling progression was retarded compared with wild-type littermate controls. Morphological analysis of the mice used for the kindling studies revealed that, independently of genotype, numbers of parvalbumin-positive interneurons in the dentate gyrus correlated positively with afterdischarge threshold alterations in kindled mice. The kindling-induced increase in the number of S100 expressing astrocytes in the dentate gyrus was enhanced by TNR deficiency and correlated negatively with the kindling rate. DISCUSSION Our data support the view that TNR promotes formation of a hyperexcitable network during kindling and suggest that an increase in S100-expressing astrocytes may contribute to retarded epileptogenesis in TNR-/- mice.
Collapse
Affiliation(s)
- Katrin Hoffmann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Becker CG, Becker T. Growth and pathfinding of regenerating axons in the optic projection of adult fish. J Neurosci Res 2008; 85:2793-9. [PMID: 17131420 DOI: 10.1002/jnr.21121] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In contrast to mammals, teleost fish are able to regrow severed long-range projection axons in the central nervous system (CNS), leading to recovery of function. The optic projection in teleost fish is used to study neuron-intrinsic and environmental molecular factors that determine successful axon regrowth and navigation through a complex CNS pathway back to original targets. Here we review evidence for regeneration-specific regulation and robust expression of growth- and pathfinding-associated genes in regenerating retinal ganglion cell (RGC) axons of adult fish. The environment of the CNS in fish appears to contain few inhibitory molecules and at the same time a number of promoting molecules for axon regrowth. Finally, some environmental cues that are used as guidance cues for developing RGC axons are also present in continuously growing adult animals. These molecules may serve as guidance cues for the precise navigation of axons from newly generated RGCs in adult animals as well as of regenerating RGC axons after a lesion. The application of new molecular techniques especially to adult zebrafish, is likely to produce new insights into successful axonal regeneration in the CNS of fish and the absence thereof in mammals.
Collapse
Affiliation(s)
- Catherina G Becker
- Centre for Neuroscience Research, University of Edinburgh, Summerhall, Edinburgh, United Kingdom
| | | |
Collapse
|
24
|
Lang DM, Monzon-Mayor M, del Mar Romero-Aleman M, Yanes C, Santos E, Pesheva P. Tenascin-R and axon growth-promoting molecules are up-regulated in the regenerating visual pathway of the lizard (Gallotia galloti). Dev Neurobiol 2008; 68:899-916. [DOI: 10.1002/dneu.20624] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
25
|
Erskine L, Herrera E. The retinal ganglion cell axon's journey: insights into molecular mechanisms of axon guidance. Dev Biol 2007; 308:1-14. [PMID: 17560562 DOI: 10.1016/j.ydbio.2007.05.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 05/02/2007] [Accepted: 05/10/2007] [Indexed: 02/02/2023]
Abstract
The developing visual system has proven to be one of the most informative models for studying axon guidance decisions. The pathway is composed of the axons of a single neuronal cell type, the retinal ganglion cell (RGC), that navigate through a series of intermediate targets on route to their final destination. The molecular basis of optic pathway development is beginning to be elucidated with cues such as netrins, Slits and ephrins playing a key role. Other factors best characterised for their role as morphogens in patterning developing tissues, such as sonic hedgehog (Shh) and Wnts, also act directly on RGC axons to influence guidance decisions. The transcriptional basis of the spatial-temporal expression of guidance cues and their cognate receptors within the developing optic pathway as well as mechanisms underlying the plasticity of guidance responses also are starting to be understood. This review will focus on our current understanding of the molecular mechanisms directing the early development of functional connections in the developing visual system and the insights these studies have provided into general mechanisms of axon guidance.
Collapse
Affiliation(s)
- Lynda Erskine
- Division of Visual Science, Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | | |
Collapse
|
26
|
Pesheva P, Probstmeier R, Lang DM, McBride R, Hsu NJ, Gennarini G, Spiess E, Peshev Z. Early coevolution of adhesive but not antiadhesive tenascin-R ligand-receptor pairs in vertebrates: A phylogenetic study. Mol Cell Neurosci 2006; 32:366-86. [PMID: 16831557 DOI: 10.1016/j.mcn.2006.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 05/23/2006] [Accepted: 05/25/2006] [Indexed: 01/25/2023] Open
Abstract
Axon growth inhibitory CNS matrix proteins, such as tenascin-R (TN-R), have been supposed to contribute to the poor regenerative capacity of adult mammalian CNS. With regard to TN-R function in low vertebrates capable of CNS regeneration, questions of particular interest concern the (co)evolution of ligand-receptor pairs and cellular response mechanisms associated with axon growth inhibition and oligodendrocyte differentiation. We address here these questions in a series of comparative in vivo and in vitro analyses using TN-R proteins purified from different vertebrates (from fish to human). Our studies provide strong evidence that unlike TN-R of higher vertebrates, fish TN-R proteins are not repellent for fish and less repellent for mammalian neurons and do not interfere with F3/contactin- and fibronectin-mediated mammalian cell adhesion and axon growth. However, axonal repulsion is induced in fish neurons by mammalian TN-R proteins, suggesting that the intracellular inhibitory machinery induced by TN-R-F3 interactions is already present during early vertebrate evolution. In contrast to TN-R-F3, TN-R-sulfatide interactions, mediating oligodendrocyte adhesion and differentiation, are highly conserved during vertebrate evolution. Our findings thus indicate the necessity of being cautious about extrapolations of the function of ligand-receptor pairs beyond a species border and, therefore, about the phylogenetic conservation of a molecular function at the cellular/tissue level.
Collapse
Affiliation(s)
- Penka Pesheva
- Neuro- and Tumor Cell Biology Group, Department of Nuclear Medicine, University of Bonn, Sigmund Freud Str. 25, 53105 Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Xiao T, Roeser T, Staub W, Baier H. A GFP-based genetic screen reveals mutations that disrupt the architecture of the zebrafish retinotectal projection. Development 2005; 132:2955-67. [PMID: 15930106 DOI: 10.1242/dev.01861] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The retinotectal projection is a premier model system for the investigation of molecular mechanisms that underlie axon pathfinding and map formation. Other important features, such as the laminar targeting of retinal axons, the control of axon fasciculation and the intrinsic organization of the tectal neuropil, have been less accessible to investigation. In order to visualize these processes in vivo, we generated a transgenic zebrafish line expressing membrane-targeted GFP under control of the brn3c promoter/enhancer. The GFP reporter labels a distinct subset of retinal ganglion cells (RGCs), which project mainly into one of the four retinorecipient layers of the tectum and into a small subset of the extratectal arborization fields. In this transgenic line, we carried out an ENU-mutagenesis screen by scoring live zebrafish larvae for anatomical phenotypes. Thirteen recessive mutations in 12 genes were discovered. In one mutant, ddl, the majority of RGCs fail to differentiate. Three of the mutations, vrt, late and tard, delay the orderly ingrowth of retinal axons into the tectum. Two alleles of drg disrupt the layer-specific targeting of retinal axons. Three genes, fuzz, beyo and brek, are required for confinement of the tectal neuropil. Fasciculation within the optic tract and adhesion within the tectal neuropil are regulated by vrt, coma, bluk, clew and blin. The mutated genes are predicted to encode molecules essential for building the intricate neural architecture of the visual system.
Collapse
Affiliation(s)
- Tong Xiao
- Department of Physiology, University of California, San Francisco, Programs in Neuroscience, Genetics, Human Genetics, and Developmental Biology, 1550 4th Street, San Francisco, CA 94158-2722, USA
| | | | | | | |
Collapse
|
28
|
Chiquet-Ehrismann R. Tenascins. Int J Biochem Cell Biol 2004; 36:986-90. [PMID: 15094113 DOI: 10.1016/j.biocel.2003.12.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Revised: 12/08/2003] [Accepted: 12/08/2003] [Indexed: 10/26/2022]
Abstract
Tenascins are a family of large multimeric extracellular matrix (ECM) proteins. Vertebrates express four tenascins termed tenascin-C, -R, -X and -W present in their connective tissues. Each tenascin has a specific expression pattern. To the contrary of many other ECM proteins, tenascins promote only weak cell adhesion and do not activate cell spreading. They have been classified as anti-adhesive, adhesion-modulating or even repellent ECM proteins. Tenascin-C and tenascin-R deficient mice show abnormalities in the nervous system and tenascin-C deficient mice, in addition, have defects in several regenerative processes. Mice lacking tenascin-X display hyperelastic skin much like Ehlers Danlos patients with mutations in their tenascin-X gene. Since tenascin-C is highly overexpressed in tumor stroma antibodies against tenascin-C have been used in tumor diagnosis and therapy. Since tenascins are known to influence cell shape, migration and growth they represent good candidate molecules for inclusion in artificial bioengineered tissue implants.
Collapse
Affiliation(s)
- Ruth Chiquet-Ehrismann
- Biomedical Research, Friedrich Miescher Institute, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
| |
Collapse
|
29
|
Becker CG, Schweitzer J, Feldner J, Schachner M, Becker T. Tenascin-R as a repellent guidance molecule for newly growing and regenerating optic axons in adult zebrafish. Mol Cell Neurosci 2004; 26:376-89. [PMID: 15234343 DOI: 10.1016/j.mcn.2004.03.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Revised: 02/23/2004] [Accepted: 03/03/2004] [Indexed: 10/26/2022] Open
Abstract
In adult fish, in contrast to mammals, new optic axons are continuously added to the optic projection, and optic axons regrow after injury. Thus, pathfinding of optic axons during development, adult growth, and adult regeneration may rely on the same guidance cues. We have shown that tenascin-R, a component of the extracellular matrix, borders the optic pathway in developing zebrafish and acts as a repellent guidance molecule for optic axons. Here we analyze tenascin-R expression patterns along the unlesioned and lesioned optic pathway of adult zebrafish and test the influence of tenascin-R on growing optic axons of adult fish in vitro. Within intraretinal fascicles of optic axons and in the optic nerve, newly added optic axons grow in a tenascin-R immunonegative pathway, which is bordered by tenascin-R immunoreactivity. In the brain, tenascin-R expression domains in the ventral diencephalon, in non-retinorecipient pretectal nuclei and in some tectal layers closely border the optic pathway in unlesioned animals and during axon regrowth. We mimicked these boundary situations with a sharp substrate border of tenascin-R in vitro. Optic axons emanating from adult retinal explants were repelled by tenascin-R substrate borders. This is consistent with a function of tenascin-R as a repellent guidance molecule in boundaries for adult optic axons. Thus, tenascin-R may guide newly added and regenerating optic axons by a contact-repellent mechanism in the optic pathway of adult fish.
Collapse
Affiliation(s)
- Catherina G Becker
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, D-20246 Hamburg, Germany.
| | | | | | | | | |
Collapse
|
30
|
|