1
|
The development of behavioral sensitization induced by a single morphine exposure in adult zebrafish (Danio rerio). Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110456. [PMID: 34662694 DOI: 10.1016/j.pnpbp.2021.110456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Accumulating evidence suggest that behavioral sensitization is involved in the process of drug addiction. Zebrafish are sensitive to a variety of addictive drugs and are thus suitable for the study of behavioral sensitization. However, in contrast to mature rodent models of behavioral sensitization, how this phenomenon manifests in aquatic organisms, especially zebrafish, is largely unknown. In this study, we developed a morphine-induced behavioral sensitization adult zebrafish model and performed a preliminary investigation of the underlying mechanisms. METHODS Behavioral sensitization was established in zebrafish by observing their behavior after treatment and challenge with morphine. The effect of morphine was evaluated by a behavioral locomotor test. Different doses of morphine and withdrawal times were used to evaluate the establishment of the behavioral sensitization model. RESULTS Hyperlocomotion was induced after administration of morphine in adult zebrafish. After withdrawing the drug for a period, challenge with low-dose morphine evoked behavioral sensitization in zebrafish acutely pre-treated with morphine. Low-dose morphine failed to induce behavioral sensitization in zebrafish if the withdrawal time was less than 5 days or more than 7 days. Morphine induced behavioral sensitization in zebrafish may involve dopaminergic, glutamatergic and opioid systems. CONCLUSION A single low-dose of morphine could induce behavioral sensitization in zebrafish acutely pre-treated with morphine, and this phenomenon was highly correlated with drug dose and withdrawal time. These findings suggest that zebrafish is a suitable model for the study of behavioral sensitization.
Collapse
|
2
|
Ram A, Edwards TM, McCarty A, McDermott MV, Bobeck EN. Morphine-induced kinase activation and localization in the periaqueductal gray of male and female mice. J Neurochem 2021; 159:590-602. [PMID: 34499746 DOI: 10.1111/jnc.15506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 12/17/2022]
Abstract
Morphine is a potent opioid analgesic with high propensity for the development of antinociceptive tolerance. Morphine antinociception and tolerance are partially regulated by the midbrain ventrolateral periaqueductal gray (vlPAG). However, the majority of research evaluating mu-opioid receptor signaling has focused on males. Here, we investigate kinase activation and localization patterns in the vlPAG following acute and chronic morphine treatment in both sexes. Male and female mice developed rapid antinociceptive tolerance to morphine (10 mg/kg i.p.) on the hot plate assay, but tolerance did not develop in males on the tail flick assay. Quantitative fluorescence immunohistochemistry was used to map and evaluate the activation of extracellular signal-regulated kinase 1/2 (ERK 1/2), protein kinase-C (PKC), and protein kinase-A (PKA). We observed significantly greater phosphorylated ERK 1/2 in the vlPAG of chronic morphine-treated animals which co-localized with the endosomal marker, Eea1. We note that pPKC is significantly elevated in the vlPAG of both sexes following chronic morphine treatment. We also observed that although PKA activity is elevated following chronic morphine treatment in both sexes, there is a significant reduction in the nuclear translocation of its phosphorylated substrate. Taken together, this study demonstrates increased activation of ERK 1/2, PKC, and PKA in response to repeated morphine treatment. The study opens avenues to explore the impact of chronic morphine treatment on G-protein signaling and kinase nuclear transport.
Collapse
Affiliation(s)
- Akila Ram
- Department of Biology, Utah State University, Logan, Utah, USA
| | | | - Ashley McCarty
- Department of Biology, Utah State University, Logan, Utah, USA
| | - Max V McDermott
- Department of Biology, Utah State University, Logan, Utah, USA
- Interdisciplinary Neuroscience Program, Utah State University, Logan, Utah, USA
| | - Erin N Bobeck
- Department of Biology, Utah State University, Logan, Utah, USA
- Interdisciplinary Neuroscience Program, Utah State University, Logan, Utah, USA
| |
Collapse
|
3
|
Zhang Y, Zhou P, Lu F, Su R, Gong Z. A20-Binding Inhibitor of Nuclear Factor- κB Targets β-Arrestin2 to Attenuate Opioid Tolerance. Mol Pharmacol 2021; 100:170-180. [PMID: 34031190 DOI: 10.1124/molpharm.120.000211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/26/2021] [Indexed: 11/22/2022] Open
Abstract
Opioids play an important role in pain relief, but repeated exposure results in tolerance and dependence. To make opioids more effective and useful, research in the field has focused on reducing the tolerance and dependence for chronic pain relief. Here, we showed the effect of A20-binding inhibitor of nuclear factor-κB (ABIN-1) in modulating morphine function. We used hot-plate tests and conditioned place preference (CPP) tests to show that overexpression of ABIN-1 in the mouse brain attenuated morphine dependence. These effects of ABIN-1 are most likely mediated through the formation of ABIN-1-β-arrestin2 complexes, which accelerate β-arrestin2 degradation by ubiquitination. With the degradation of β-arrestin2, ABIN-1 overexpression also decreased μ opioid receptor (MOR) phosphorylation and internalization after opioid treatment, affecting the β-arrestin2-dependent signaling pathway to regulate morphine tolerance. Importantly, the effect of ABIN-1 on morphine tolerance was abolished in β-arrestin2-knockout mice. Taken together, these results suggest that the interaction between ABIN-1 and β-arrestin2 inhibits MOR internalization to attenuate morphine tolerance, revealing a novel mechanism for MOR regulation. Hence, ABIN-1 may be a therapeutic target to regulate MOR internalization, thus providing a foundation for a novel treatment strategy for alleviating morphine tolerance and dependence. SIGNIFICANCE STATEMENT: A20-binding inhibitor of nuclear factor-κB (ABIN-1) overexpression in the mouse brain attenuated morphine tolerance and dependence. The likely mechanism for this finding is that ABIN-1-β-arrestin2 complex formation facilitated β-arrestin2 degradation by ubiquitination. ABIN-1 targeted β-arrestin2 to regulate morphine tolerance. Therefore, the enhancement of ABIN-1 is an important strategy to prevent morphine tolerance and dependence.
Collapse
Affiliation(s)
- Yixin Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Peilan Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Fengfeng Lu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ruibin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zehui Gong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
4
|
Interruption of continuous opioid exposure exacerbates drug-evoked adaptations in the mesolimbic dopamine system. Neuropsychopharmacology 2020; 45:1781-1792. [PMID: 32079024 PMCID: PMC7608117 DOI: 10.1038/s41386-020-0643-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 12/14/2022]
Abstract
Drug-evoked adaptations in the mesolimbic dopamine system are postulated to drive opioid abuse and addiction. These adaptations vary in magnitude and direction following different patterns of opioid exposure, but few studies have systematically manipulated the pattern of opioid administration while measuring neurobiological and behavioral impact. We exposed male and female mice to morphine for one week, with administration patterns that were either intermittent (daily injections) or continuous (osmotic minipump infusion). We then interrupted continuous morphine exposure with either naloxone-precipitated or spontaneous withdrawal. Continuous morphine exposure caused tolerance to the psychomotor-activating effects of morphine, whereas both intermittent and interrupted morphine exposure caused long-lasting psychomotor sensitization. Given links between locomotor sensitization and mesolimbic dopamine signaling, we used fiber photometry and a genetically encoded dopamine sensor to conduct longitudinal measurements of dopamine dynamics in the nucleus accumbens. Locomotor sensitization caused by interrupted morphine exposure was accompanied by enhanced dopamine signaling in the nucleus accumbens. To further assess downstream consequences on striatal gene expression, we used next-generation RNA sequencing to perform genome-wide transcriptional profiling in the nucleus accumbens and dorsal striatum. The interruption of continuous morphine exposure exacerbated drug-evoked transcriptional changes in both nucleus accumbens and dorsal striatum, dramatically increasing differential gene expression and engaging unique signaling pathways. Our study indicates that opioid-evoked adaptations in brain function and behavior are critically dependent on the pattern of drug administration, and exacerbated by interruption of continuous exposure. Maintaining continuity of chronic opioid administration may, therefore, represent a strategy to minimize iatrogenic effects on brain reward circuits.
Collapse
|
5
|
Bendová Z, Pačesová D, Novotný J. The day-night differences in ERK1/2, GSK3β activity and c-Fos levels in the brain, and the responsiveness of various brain structures to morphine. J Comp Neurol 2020; 528:2471-2495. [PMID: 32170720 DOI: 10.1002/cne.24906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/17/2020] [Accepted: 03/09/2020] [Indexed: 11/12/2022]
Abstract
As with other drugs or pharmaceuticals, opioids differ in their rewarding or analgesic effects depending on when they are applied. In the previous study, we have demonstrated the day/night difference in the sensitivity of the major circadian clock in the suprachiasmatic nucleus to a low dose of morphine, and showed the bidirectional effect of morphine on pERK1/2 and pGSK3β levels in the suprachiasmatic nucleus depending on the time of administration. The main aim of this study was to identify other brain structures that respond differently to morphine depending on the time of its administration. Using immunohistochemistry, we identified 44 structures that show time-of-day specific changes in c-Fos level and activity of ERK1/2 and GSK3β kinases in response to a single dose of 1 mg/kg morphine. Furthermore, comparison among control groups revealed the differences in the spontaneous levels of all markers with a generally higher level during the night, that is, in the active phase of the day. We thus provide further evidence for diurnal variations in the activity of brain regions outside the suprachiasmatic nucleus indicated by the temporal changes in the molecular substrate. We suggest that these changes are responsible for generating diurnal variation in the reward behavior or analgesic effect of opioid administration.
Collapse
Affiliation(s)
- Zdeňka Bendová
- Faculty of Science, Charles University, Prague, Czech Republic.,Department of Sleep Medicine and Chronobiology, National Institute of Mental Health, Klecany, Czech Republic
| | - Dominika Pačesová
- Faculty of Science, Charles University, Prague, Czech Republic.,Department of Sleep Medicine and Chronobiology, National Institute of Mental Health, Klecany, Czech Republic
| | - Jiří Novotný
- Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
6
|
Bates MLS, Hofford RS, Emery MA, Wellman PJ, Eitan S. The role of the vasopressin system and dopamine D1 receptors in the effects of social housing condition on morphine reward. Drug Alcohol Depend 2018; 188:113-118. [PMID: 29772497 DOI: 10.1016/j.drugalcdep.2018.03.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/07/2018] [Accepted: 03/05/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND The association with opioid-abusing individuals or even the perception of opioid abuse by peers are risk factors for the initiation and escalation of abuse. Similarly, we demonstrated that morphine-treated animals housed with only morphine-treated animals (referred to as morphine only) acquire morphine conditioned place-preference (CPP) more readily than morphine-treated animals housed with drug-naïve animals (referred to as morphine cage-mates). However, the molecular mechanisms underlying these effects are still elusive. METHODS Mice received repeated morphine or saline while housed as saline only, morphine only, or cage-mates. Then, they were examined for the expression levels of D1 dopamine receptor (D1DR), D2 dopamine receptor (D2DR), dopamine transporter (DAT), oxytocin, and Arginine-vasopressin (AVP) in the striatum using qPCR. Additionally, we examined the effects of the AVP-V1b receptor antagonist, SSR149415, on the acquisition of morphine conditioned place-preference (CPP). RESULTS Increased striatal expression of D1DR and AVP was observed in morphine only animals, but not morphine cage-mates. No significant effects were observed on the striatal expression of D2DR, DAT, or oxytocin. Antagonizing the AVP-V1b receptors decreased the acquisition of morphine CPP in the morphine only mice, but did not alter the acquisition of morphine CPP in the morphine cage-mate mice. CONCLUSIONS Housing with drug-naïve animals protects against the increase in striatal expression of D1DR and AVP elicited by morphine exposure. Moreover, our studies suggest that the protective effect of housing with drug-naïve animals on the acquisition of morphine reward might be, at least partially, mediated by AVP.
Collapse
Affiliation(s)
- M L Shawn Bates
- Department of Psychological and Brain Sciences, Behavioral and Cellular Neuroscience, Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Rebeca S Hofford
- Department of Psychological and Brain Sciences, Behavioral and Cellular Neuroscience, Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Michael A Emery
- Department of Psychological and Brain Sciences, Behavioral and Cellular Neuroscience, Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Paul J Wellman
- Department of Psychological and Brain Sciences, Behavioral and Cellular Neuroscience, Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Shoshana Eitan
- Department of Psychological and Brain Sciences, Behavioral and Cellular Neuroscience, Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, 4235 TAMU, College Station, TX 77843, USA.
| |
Collapse
|
7
|
Mongi-Bragato B, Avalos MP, Guzmán AS, Bollati FA, Cancela LM. Enkephalin as a Pivotal Player in Neuroadaptations Related to Psychostimulant Addiction. Front Psychiatry 2018; 9:222. [PMID: 29892236 PMCID: PMC5985699 DOI: 10.3389/fpsyt.2018.00222] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/08/2018] [Indexed: 12/21/2022] Open
Abstract
Enkephalin expression is high in mesocorticolimbic areas associated with psychostimulant-induced behavioral and neurobiological effects, and may also modulate local neurotransmission in this circuit network. Psychostimulant drugs, like amphetamine and cocaine, significantly increase the content of enkephalin in these brain structures, but we do not yet understand the specific significance of this drug-induced adaptation. In this review, we summarize the neurochemical and molecular mechanism of psychostimulant-induced enkephalin activation in mesocorticolimbic brain areas, and the contribution of this opioid peptide in the pivotal neuroadaptations and long-term behavioral changes underlying psychostimulant addiction. There is evidence suggesting that adaptive changes in enkephalin content in the mesocorticolimbic circuit, induced by acute and chronic psychostimulant administration, may represent a key initial step in the long-term behavioral and neuronal plasticity induced by these drugs.
Collapse
Affiliation(s)
- Bethania Mongi-Bragato
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María P Avalos
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrea S Guzmán
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Flavia A Bollati
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Liliana M Cancela
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
8
|
Lamberts JT, Rosenthal LD, Jutkiewicz EM, Traynor JR. Role of the guanine nucleotide binding protein, Gα o, in the development of morphine tolerance and dependence. Psychopharmacology (Berl) 2018; 235:71-82. [PMID: 28971229 PMCID: PMC5819733 DOI: 10.1007/s00213-017-4742-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 09/13/2017] [Indexed: 12/15/2022]
Abstract
RATIONALE The use of morphine and other opioids for chronic pain is limited by the development of analgesic tolerance and physical dependence. Morphine produces its effects by activating the μ opioid receptor, which couples to Gαi/o-containing heterotrimeric G proteins. Evidence suggests that the antinociceptive effects of morphine are mediated by Gαo. However, the role of Gαo in the development of morphine tolerance and dependence is unknown. OBJECTIVE The objective of the study is to evaluate the contribution of Gαo to the development of morphine tolerance and dependence in mice. METHODS 129S6 mice lacking one copy of the Gαo gene (Gαo +/-) were administered morphine acutely or chronically. Mice were examined for tolerance to the antinociceptive action of morphine using the 52 °C hot plate as the nociceptive stimulus and for dependence by evaluating the severity of naltrexone-precipitated withdrawal. Wild-type littermates of the Gαo +/- mice were used as controls. Changes in μ receptor number and function were determined in midbrain and hindbrain homogenates using radioligand binding and μ agonist-stimulated [35S]GTPγS binding, respectively. RESULTS Following either acute or chronic morphine treatment, all mice developed antinociceptive tolerance and physical dependence, regardless of genotype. With chronic morphine treatment, Gαo +/- mice developed tolerance faster and displayed more severe naltrexone-precipitated withdrawal in some behaviors than did wild-type littermates. Morphine tolerance was not associated with changes in μ receptor number or function in brain homogenates from either wild-type or Gαo +/- mice. CONCLUSIONS These data suggest that the guanine nucleotide binding protein Gαo offers some protection against the development of morphine tolerance and dependence.
Collapse
Affiliation(s)
- Jennifer T Lamberts
- Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, 1150 W. Medical Center Dr., 1301 MSRB III, Ann Arbor, MI, 48109-5632, USA
- College of Pharmacy, Ferris State University, Big Rapids, MI, 49307, USA
| | - Lisa D Rosenthal
- Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, 1150 W. Medical Center Dr., 1301 MSRB III, Ann Arbor, MI, 48109-5632, USA
| | - Emily M Jutkiewicz
- Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, 1150 W. Medical Center Dr., 1301 MSRB III, Ann Arbor, MI, 48109-5632, USA
| | - John R Traynor
- Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, 1150 W. Medical Center Dr., 1301 MSRB III, Ann Arbor, MI, 48109-5632, USA.
| |
Collapse
|
9
|
Cahill CM, Walwyn W, Taylor AMW, Pradhan AAA, Evans CJ. Allostatic Mechanisms of Opioid Tolerance Beyond Desensitization and Downregulation. Trends Pharmacol Sci 2016; 37:963-976. [PMID: 27670390 DOI: 10.1016/j.tips.2016.08.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 12/20/2022]
Abstract
Mechanisms of opioid tolerance have focused on adaptive modifications within cells containing opioid receptors, defined here as cellular allostasis, emphasizing regulation of the opioid receptor signalosome. We review additional regulatory and opponent processes involved in behavioral tolerance, and include mechanistic differences both between agonists (agonist bias), and between μ- and δ-opioid receptors. In a process we will refer to as pass-forward allostasis, cells modified directly by opioid drugs impute allostatic changes to downstream circuitry. Because of the broad distribution of opioid systems, every brain cell may be touched by pass-forward allostasis in the opioid-dependent/tolerant state. We will implicate neurons and microglia as interactive contributors to the cumulative allostatic processes creating analgesic and hedonic tolerance to opioid drugs.
Collapse
Affiliation(s)
- Catherine M Cahill
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, 837 Health Sciences Road, Irvine, CA 92697, USA
| | - Wendy Walwyn
- Hatos Center for Neuropharmacology, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, 675 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - Anna M W Taylor
- Hatos Center for Neuropharmacology, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, 675 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - Amynah A A Pradhan
- Department of Psychiatry, University of Illinois at Chicago, 1601 West Taylor Street, Chicago, IL 60612, USA
| | - Christopher J Evans
- Hatos Center for Neuropharmacology, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, 675 Charles E. Young Drive South, Los Angeles, CA 90095, USA.
| |
Collapse
|
10
|
Rosas M, Porru S, Fenu S, Ruiu S, Peana AT, Papale A, Brambilla R, Di Chiara G, Acquas E. Role of nucleus accumbens μ opioid receptors in the effects of morphine on ERK1/2 phosphorylation. Psychopharmacology (Berl) 2016; 233:2943-54. [PMID: 27245230 DOI: 10.1007/s00213-016-4340-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
Abstract
RATIONALE Despite the critical role attributed to phosphorylated extracellular signal regulated kinase (pERK1/2) in the nucleus accumbens (Acb) in the actions of addictive drugs, the effects of morphine on ERK1/2 phosphorylation in this area are still controversial. OBJECTIVES In order to investigate further this issue, we studied (1) the ability of morphine to affect ERK1/2 phosphorylation in the shell (AcbSh) and core (AcbC) of Sprague-Dawley and Wistar rats and of CD-1 and C57BL/6J mice and (2) the role of dopamine D1 and μ-opioid receptors in Sprague-Dawley rats and CD-1 mice. METHODS The pERK1/2 expression was assessed by immunohistochemistry. RESULTS In rats, morphine decreased AcbSh and AcbC pERK1/2 expression, whereas in mice, increased it preferentially in the AcbSh compared with the AcbC. Systemic SCH 39166 decreased pERK1/2 expression on its own in the AcbSh and AcbC of Sprague-Dawley rats and CD-1 mice; furthermore, in rats, SCH 39166 disclosed the ability of morphine to stimulate pERK1/2 expression. Systemic (rats and mice) and intra-Acb (rats) naltrexone prevented both decreases, in rats, and increases, in mice. CONCLUSIONS These findings confirm the differential effects of morphine in rats and mice Acb and that D1 receptors exert a facilitatory role on ERK1/2 phosphorylation; furthermore, they indicate that, in rats, removal of the D1-dependent pERK1/2 expression discloses the stimulatory influence of morphine on ERK1/2 phosphorylation and that the morphine's ability to decrease pERK1/2 expression is mediated by Acb μ-opioid receptors. Future experiments may disentangle the psychopharmacological significance of the effects of morphine on pERK1/2 in the Acb.
Collapse
Affiliation(s)
- Michela Rosas
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale, 72, I-09124, Cagliari, Italy
| | - Simona Porru
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale, 72, I-09124, Cagliari, Italy
| | - Sandro Fenu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,Centre of Excellence on Neurobiology of Addiction, University of Cagliari, Cagliari, Italy
| | - Stefania Ruiu
- Institute of Translational Pharmacology, National Research Council, Pula, Cagliari, Italy
| | - Alessandra T Peana
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Alessandro Papale
- Neuroscience and Mental Health Research Institute (NMHRI), Neuroscience Division - School of Biosciences, Cardiff University, Cardiff, UK
| | - Riccardo Brambilla
- Neuroscience and Mental Health Research Institute (NMHRI), Neuroscience Division - School of Biosciences, Cardiff University, Cardiff, UK
| | - Gaetano Di Chiara
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,Centre of Excellence on Neurobiology of Addiction, University of Cagliari, Cagliari, Italy
| | - Elio Acquas
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale, 72, I-09124, Cagliari, Italy. .,Centre of Excellence on Neurobiology of Addiction, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
11
|
Ligand-biased activation of extracellular signal-regulated kinase 1/2 leads to differences in opioid induced antinociception and tolerance. Behav Brain Res 2015; 298:17-24. [PMID: 26497105 DOI: 10.1016/j.bbr.2015.10.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 10/11/2015] [Accepted: 10/15/2015] [Indexed: 12/25/2022]
Abstract
Opioids produce antinociception by activation of G protein signaling linked to the mu-opioid receptor (MOPr). However, opioid binding to the MOPr also activates β-arrestin signaling. Opioids such as DAMGO and fentanyl differ in their relative efficacy for activation of these signaling cascades, but the behavioral consequences of this differential signaling are not known. The purpose of this study was to evaluate the behavioral significance of G protein and internalization dependent signaling within ventrolateral periaqueductal gray (vlPAG). Antinociception induced by microinjecting DAMGO into the vlPAG was attenuated by blocking Gαi/o protein signaling with administration of pertussis toxin (PTX), preventing internalization with administration of dynamin dominant-negative inhibitory peptide (dyn-DN) or direct inhibition of ERK1/2 with administration of the MEK inhibitor, U0126. In contrast, the antinociceptive effect of microinjecting fentanyl into the vlPAG was not altered by administration of PTX or U0126, and was enhanced by administration of dyn-DN. Microinjection of DAMGO, but not fentanyl, into the vlPAG induced phosphorylation of ERK1/2, which was blocked by inhibiting receptor internalization with administration of dyn-DN, but not by inhibition of Gαi/o proteins. ERK1/2 inhibition also prevented the development and expression of tolerance to repeated DAMGO microinjections, but had no effect on fentanyl tolerance. These data reveal that ERK1/2 activation following MOPr internalization contributes to the antinociceptive effect of some (e.g., DAMGO), but not all opioids (e.g., fentanyl) despite the known similarities for these agonists to induce β-arrestin recruitment and internalization.
Collapse
|
12
|
Emery MA, Bates MLS, Wellman PJ, Eitan S. Differential Effects of Oxycodone, Hydrocodone, and Morphine on Activation Levels of Signaling Molecules. PAIN MEDICINE 2015; 17:908-914. [PMID: 26349634 DOI: 10.1111/pme.12918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Opioids alter the responses of D2-like dopamine receptors (D2DRs), known to be involved in the pathology of addiction and other mental illnesses. Importantly, our recent results demonstrated that various opioids differentially modulate the behavioral responses of D2DRs. OBJECTIVE To examine the effect of various opioids on striatal activation levels of Akt and ERK1/2, as well as the signaling responses of D2DRs following opioid exposure. METHODS Mice were pre-treated with 20 mg/kg morphine, hydrocodone, oxycodone, or saline for 6 days. Twenty-four hours later, mice were injected with vehicle or a D2/D3 receptor agonist, quinpirole. Thirty minutes later, dorsal striatum was collected and analyzed using Western blot. RESULTS In morphine-pretreated animals, baseline Akt activation level was unchanged, but was reduced in response to quinpirole. In contrast, baseline Akt activation levels were reduced in mice pretreated with hydrocodone and oxycodone, but were unchanged in response to quinpirole. In mice pretreated with all opioids, baseline ERK2 activation levels were unchanged and increased in response to quinpirole. However, quinpirole-induced ERK2 activation was significantly higher than drug naïve animals only in the morphine-pretreated mice. CONCLUSIONS Various opioids differentially modulate the baseline activation levels of signaling molecules, which in turn results in ligand-selective effects on the responses to a D2/D3 dopamine receptor agonist. This demonstrates a complex interplay between opioid receptors and D2DRs, and supports the notion that various opioids carry differential risks to the dopamine reward system. This information should be considered when prescribing opioid pain medication, to balance effectiveness with minimal risk.
Collapse
Affiliation(s)
- Michael A Emery
- Department of Psychology, Behavioral and Cellular Neuroscience Program, and the Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, 4235 TAMU, College Station, TX, USA
| | - M L Shawn Bates
- Department of Psychology, Behavioral and Cellular Neuroscience Program, and the Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, 4235 TAMU, College Station, TX, USA
| | - Paul J Wellman
- Department of Psychology, Behavioral and Cellular Neuroscience Program, and the Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, 4235 TAMU, College Station, TX, USA
| | - Shoshana Eitan
- Department of Psychology, Behavioral and Cellular Neuroscience Program, and the Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, 4235 TAMU, College Station, TX, USA
| |
Collapse
|
13
|
Bao Y, Gao Y, Yang L, Kong X, Yu J, Hou W, Hua B. The mechanism of μ-opioid receptor (MOR)-TRPV1 crosstalk in TRPV1 activation involves morphine anti-nociception, tolerance and dependence. Channels (Austin) 2015; 9:235-43. [PMID: 26176938 DOI: 10.1080/19336950.2015.1069450] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Initiated by the activation of various nociceptors, pain is a reaction to specific stimulus modalities. The μ-opioid receptor (MOR) agonists, including morphine, remain the most potent analgesics to treat patients with moderate to severe pain. However, the utility of MOR agonists is limited by the adverse effects associated with the use of these drugs, including analgesic tolerance and physical dependence. A strong connection has been suggested between the expression of the transient receptor potential vanilloid type 1 (TRPV1) ion channel and the development of inflammatory hyperalgesia. TRPV1 is important for thermal nociception induction, and is mainly expressed on sensory neurons. Recent reports suggest that opioid or TRPV1 receptor agonist exposure has contrasting consequences for anti-nociception, tolerance and dependence. Chronic morphine exposure modulates TRPV1 activation and induces the anti-nociception effects of morphine. The regulation of many downstream targets of TRPV1 plays a critical role in this process, including calcitonin gene-related peptide (CGRP) and substance P (SP). Additional factors also include capsaicin treatment blocking the anti-nociception effects of morphine in rats, as well as opioid modulation of TRPV1 responses through the cAMP-dependent PKA pathway and MAPK signaling pathways. Here, we review new insights concerning the mechanism underlying MOR-TRPV1 crosstalk and signaling pathways and discuss the potential mechanisms of morphine-induced anti-nociception, tolerance and dependence associated with the TRPV1 signaling pathway and highlight how understanding these mechanisms might help find therapeutic targets for the treatment of morphine induced antinociception, tolerance and dependence.
Collapse
Affiliation(s)
- Yanju Bao
- a Department of Oncology ; Guang'anmen Hospital, China Academy of Chinese Medical Sciences ; Beijing , P. R. China
| | - Yebo Gao
- a Department of Oncology ; Guang'anmen Hospital, China Academy of Chinese Medical Sciences ; Beijing , P. R. China.,b Beijing University of Chinese Medicine ; Beijing , P. R. China
| | - Liping Yang
- c Department of Nephrology ; Guang'anmen Hospital, China Academy of Chinese Medical Sciences ; Beijing , P. R. China
| | - Xiangying Kong
- d Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences ; Beijing , P. R. China
| | - Jing Yu
- e Department of Oncology ; Beijing Friendship Hospital, Capital Medical University ; Beijing , China
| | - Wei Hou
- a Department of Oncology ; Guang'anmen Hospital, China Academy of Chinese Medical Sciences ; Beijing , P. R. China
| | - Baojin Hua
- a Department of Oncology ; Guang'anmen Hospital, China Academy of Chinese Medical Sciences ; Beijing , P. R. China
| |
Collapse
|
14
|
Pačesová D, Volfová B, Červená K, Hejnová L, Novotný J, Bendová Z. Acute morphine affects the rat circadian clock via rhythms of phosphorylated ERK1/2 and GSK3β kinases and Per1 expression in the rat suprachiasmatic nucleus. Br J Pharmacol 2015; 172:3638-49. [PMID: 25828914 DOI: 10.1111/bph.13152] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 03/04/2015] [Accepted: 03/26/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Opioids affect the circadian clock and may change the timing of many physiological processes. This study was undertaken to investigate the daily changes in sensitivity of the circadian pacemaker to an analgesic dose of morphine, and to uncover a possible interplay between circadian and opioid signalling. EXPERIMENTAL APPROACH A time-dependent effect of morphine (1 mg·kg(-1) , i.p.) applied either during the day or during the early night was followed, and the levels of phosphorylated ERK1/2, GSK3β, c-Fos and Per genes were assessed by immunohistochemistry and in situ hybridization. The effect of morphine pretreatment on light-induced pERK and c-Fos was examined, and day/night difference in activity of opioid receptors was evaluated by [(35) S]-GTPγS binding assay. KEY RESULTS Morphine stimulated a rise in pERK1/2 and pGSK3β levels in the suprachiasmatic nucleus (SCN) when applied during the day but significantly reduced both kinases when applied during the night. Morphine at night transiently induced Period1 but not Period2 in the SCN and did not attenuate the light-induced level of pERK1/2 and c-Fos in the SCN. The activity of all three principal opioid receptors was high during the day but decreased significantly at night, except for the δ receptor. Finally, we demonstrated daily profiles of pERK1/2 and pGSK3β levels in the rat ventrolateral and dorsomedial SCN. CONCLUSIONS AND IMPLICATIONS Our data suggest that the phase-shifting effect of opioids may be mediated via post-translational modification of clock proteins by means of activated ERK1/2 and GSK3β.
Collapse
Affiliation(s)
| | - Barbora Volfová
- Faculty of Science, Charles University, Prague, Czech Republic
| | | | - Lucie Hejnová
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiří Novotný
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Zdeňka Bendová
- Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
15
|
Glück L, Loktev A, Moulédous L, Mollereau C, Law PY, Schulz S. Loss of morphine reward and dependence in mice lacking G protein-coupled receptor kinase 5. Biol Psychiatry 2014; 76:767-74. [PMID: 24629717 PMCID: PMC4119866 DOI: 10.1016/j.biopsych.2014.01.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 01/28/2014] [Accepted: 01/28/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND The clinical benefits of opioid drugs are counteracted by the development of tolerance and addiction. We provide in vivo evidence for the involvement of G protein-coupled receptor kinases (GRKs) in opioid dependence in addition to their roles in agonist-selective mu-opioid receptor (MOR) phosphorylation. METHODS In vivo MOR phosphorylation was examined by immunoprecipitation and nanoflow liquid chromatography-tandem mass spectrometry analysis. Using the hot-plate and conditioned place preference test, we investigated opioid-related antinociception and reward effects in mice lacking GRK3 or GRK5. RESULTS Etonitazene and fentanyl stimulated the in vivo phosphorylation of multiple carboxyl-terminal phosphate acceptor sites, including threonine 370, serine 375, and threonine 379, which was predominantly mediated by GRK3. By contrast, morphine promoted a selective phosphorylation of serine 375 that was predominantly mediated by GRK5. In contrast to GRK3 knockout mice, GRK5 knockout mice exhibited reduced antinociceptive responses after morphine administration and developed morphine tolerance similar to wild-type mice but fewer signs of physical dependence. Also, morphine was ineffective in inducing conditioned place preference in GRK5 knockout mice, whereas cocaine conditioned place preference was retained. However, the reward properties of morphine were evident in knock-in mice expressing a phosphorylation-deficient S375A mutation of the MOR. CONCLUSIONS These findings show for the first time that MOR phosphorylation is regulated by agonist-selective recruitment of distinct GRK isoforms that influence different opioid-related behaviors. Modulation of GRK5 function could serve as a new approach for preventing addiction to opioids, while maintaining the analgesic properties of opioid drugs at an effective level.
Collapse
Affiliation(s)
- Laura Glück
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Straße 1, D-07747 Jena, Germany
| | - Anastasia Loktev
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Straße 1, D-07747 Jena, Germany
| | - Lionel Moulédous
- Institut de Pharmacologie et de Biologie Structurale, CNRS/Université de Toulouse, UMR 5089, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | - Catherine Mollereau
- Institut de Pharmacologie et de Biologie Structurale, CNRS/Université de Toulouse, UMR 5089, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | - Ping-Yee Law
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, 55455 USA
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
16
|
Nikulina EM, Johnston CE, Wang J, Hammer RP. Neurotrophins in the ventral tegmental area: Role in social stress, mood disorders and drug abuse. Neuroscience 2014; 282:122-38. [PMID: 24875178 DOI: 10.1016/j.neuroscience.2014.05.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/04/2014] [Accepted: 05/11/2014] [Indexed: 01/19/2023]
Abstract
This review discusses the impact of neurotrophins and other trophic factors, including fibroblast growth factor and glial cell line-derived neurotrophic factor, on mood disorders, weight regulation and drug abuse, with an emphasis on stress- and drug-induced changes in the ventral tegmental area (VTA). Neurotrophins, comprising nerve growth factor, brain-derived neurotrophic factor (BDNF), and neurotrophins 3 and 4/5 play important roles in neuronal plasticity and the development of different psychopathologies. In the VTA, most research has focused on the role of BDNF, because other neurotrophins are not found there in significant quantities. BDNF originating in the VTA provides trophic support to dopamine neurons. The diverse intracellular signaling pathways activated by BDNF may underlie precise physiological functions specific to the VTA. In general, VTA BDNF expression increases after psychostimulant exposures, and enhanced BDNF level in the VTA facilitates psychostimulant effects. The impact of VTA BDNF on the behavioral effects of psychostimulants relies primarily on its action within the mesocorticolimbic circuit. In the case of opiates, VTA BDNF expression and effects seem to be dependent on whether an animal is drug-naïve or has a history of drug use, only the latter of which is related to dopamine mechanisms. Social defeat stress that is continuous in mice or intermittent in rats increases VTA BDNF expression, and is associated with depressive and social avoidance behaviors. Intermittent social defeat stress induces persistent VTA BDNF expression that triggers psychostimulant cross-sensitization. Understanding the cellular and molecular substrates of neurotrophin effects may lead to novel therapeutic approaches for the prevention and treatment of substance use and mood disorders.
Collapse
Affiliation(s)
- E M Nikulina
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA.
| | - C E Johnston
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA; Interdisciplinary Neuroscience Program, Arizona State University, Tempe, AZ, USA
| | - J Wang
- Interdisciplinary Neuroscience Program, Arizona State University, Tempe, AZ, USA
| | - R P Hammer
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA; Interdisciplinary Neuroscience Program, Arizona State University, Tempe, AZ, USA; Department of Pharmacology and Department of Psychiatry, University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
17
|
Zamora-Martinez ER, Edwards S. Neuronal extracellular signal-regulated kinase (ERK) activity as marker and mediator of alcohol and opioid dependence. Front Integr Neurosci 2014; 8:24. [PMID: 24653683 PMCID: PMC3949304 DOI: 10.3389/fnint.2014.00024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/19/2014] [Indexed: 11/13/2022] Open
Abstract
Early pioneering work in the field of biochemistry identified phosphorylation as a crucial post-translational modification of proteins with the ability to both indicate and arbitrate complex physiological processes. More recent investigations have functionally linked phosphorylation of extracellular signal-regulated kinase (ERK) to a variety of neurophysiological mechanisms ranging from acute neurotransmitter action to long-term gene expression. ERK phosphorylation serves as an intracellular bridging mechanism that facilitates neuronal communication and plasticity. Drugs of abuse, including alcohol and opioids, act as artificial yet powerful rewards that impinge upon natural reinforcement processes critical for survival. The graded progression from initial exposure to addiction (or substance dependence) is believed to result from drug- and drug context-induced adaptations in neuronal signaling processes across brain reward and stress circuits following excessive drug use. In this regard, commonly abused drugs as well as drug-associated experiences are capable of modifying the phosphorylation of ERK within central reinforcement systems. In addition, chronic drug and alcohol exposure may drive ERK-regulated epigenetic and structural alterations that underlie a long-term propensity for escalating drug use. Under the influence of such a neurobiological vulnerability, encountering drug-associated cues and contexts can produce subsequent alterations in ERK signaling that drive relapse to drug and alcohol seeking. Current studies are determining precisely which molecular and regional ERK phosphorylation-associated events contribute to the addiction process, as well as which neuroadaptations need to be targeted in order to return dependent individuals to a healthy state.
Collapse
Affiliation(s)
- Eva R Zamora-Martinez
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute La Jolla, CA, USA
| | - Scott Edwards
- Department of Physiology and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center New Orleans, LA, USA
| |
Collapse
|
18
|
Williams JT, Ingram SL, Henderson G, Chavkin C, von Zastrow M, Schulz S, Koch T, Evans CJ, Christie MJ. Regulation of μ-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol Rev 2013; 65:223-54. [PMID: 23321159 DOI: 10.1124/pr.112.005942] [Citation(s) in RCA: 593] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Morphine and related µ-opioid receptor (MOR) agonists remain among the most effective drugs known for acute relief of severe pain. A major problem in treating painful conditions is that tolerance limits the long-term utility of opioid agonists. Considerable effort has been expended on developing an understanding of the molecular and cellular processes that underlie acute MOR signaling, short-term receptor regulation, and the progression of events that lead to tolerance for different MOR agonists. Although great progress has been made in the past decade, many points of contention and controversy cloud the realization of this progress. This review attempts to clarify some confusion by clearly defining terms, such as desensitization and tolerance, and addressing optimal pharmacological analyses for discerning relative importance of these cellular mechanisms. Cellular and molecular mechanisms regulating MOR function by phosphorylation relative to receptor desensitization and endocytosis are comprehensively reviewed, with an emphasis on agonist-biased regulation and areas where knowledge is lacking or controversial. The implications of these mechanisms for understanding the substantial contribution of MOR signaling to opioid tolerance are then considered in detail. While some functional MOR regulatory mechanisms contributing to tolerance are clearly understood, there are large gaps in understanding the molecular processes responsible for loss of MOR function after chronic exposure to opioids. Further elucidation of the cellular mechanisms that are regulated by opioids will be necessary for the successful development of MOR-based approaches to new pain therapeutics that limit the development of tolerance.
Collapse
Affiliation(s)
- John T Williams
- Vollum Institute, Oregon Health Sciences University, Portland, Oregon, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Seip-Cammack KM, Reed B, Zhang Y, Ho A, Kreek MJ. Tolerance and sensitization to chronic escalating dose heroin following extended withdrawal in Fischer rats: possible role of mu-opioid receptors. Psychopharmacology (Berl) 2013; 225:127-40. [PMID: 22829433 PMCID: PMC3494815 DOI: 10.1007/s00213-012-2801-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 07/02/2012] [Indexed: 01/07/2023]
Abstract
RATIONALE/OBJECTIVES Heroin addiction is characterized by recurrent cycles of drug use, abstinence, and relapse. It is likely that neurobiological changes during chronic heroin exposure persist across withdrawal and impact behavioral responses to re-exposure. We hypothesized that, after extended withdrawal, heroin-withdrawn rats would express behavioral tolerance and/or sensitization in response to heroin re-exposure and that these responses might be associated with altered mu-opioid receptor (MOPr) activity. METHODS Male Fischer rats were exposed chronically to escalating doses of heroin (7.5-75 mg/kg/day), experienced acute spontaneous withdrawal and extended (10-day) abstinence, and were re-exposed chronically to heroin. Homecage behaviors and locomotor activity in response to heroin, as well as somatic withdrawal signs, were recorded. Separate groups of rats were sacrificed after extended abstinence and MOPr expression and G-protein coupling were analyzed using [(3)H]DAMGO and [(35)S]GTPγS assays. RESULTS The depth of behavioral stupor was lower during the initial days of heroin re-exposure compared to the initial days of the first exposure period. Behavioral responses (e.g., stereotypy) and locomotion were elevated in response to heroin re-exposure at low doses. Rats conditioned for heroin place preference during the chronic re-exposure period expressed heroin preference during acute withdrawal; this preference was stronger than rats conditioned during chronic heroin exposure that followed chronic saline and injection-free periods. Extended withdrawal was associated with increased MOPr expression in the caudate-putamen and frontal and cingulate cortices. No changes in G-protein coupling were identified. CONCLUSIONS Aspects of tolerance/sensitization to heroin are present even after extended abstinence and may be associated with altered MOPr density.
Collapse
Affiliation(s)
- Katharine M Seip-Cammack
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | | | | | | | | |
Collapse
|
20
|
Hofford RS, Wellman PJ, Eitan S. Morphine alters the locomotor responses to a D2/D3 dopamine receptor agonist differentially in adolescent and adult mice. J Psychopharmacol 2012; 26:1355-65. [PMID: 22522973 DOI: 10.1177/0269881112443741] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The D2-like dopamine receptors mediate the emotional/aversive state during morphine withdrawal. Given age-dependent differences in the affective responses to withdrawal, this study examined whether the response to dopamine receptor agonists is altered differentially across ages following morphine administration. Adolescent and adult mice were injected with morphine (twice daily, 10-40 mg/kg, s.c.) or saline for 6 days. Subsequently, they were examined for their locomotor response to quinpirole, a D2/D3 receptor agonist, and SKF 38393, a D1 receptor agonist. Quinpirole dose-dependently reduced locomotion in drug-naïve animals. Initial suppression was also observed in morphine-treated animals, but was followed by enhanced locomotion. Notably, this enhanced locomotion was markedly greater in adolescents than adults. Quinpirole-induced hypo-locomotion is thought to be mediated by the presynaptic D2Short receptors, whereas its activating effect is mediated by postsynaptic D2Long/D3 receptors. This suggests that following morphine administration, the postsynaptic, but not the presynaptic, dopaminergic signaling is differentially modulated across ages. This locomotor supersensitivity was not observed for SKF 38393, a D1 dopamine receptor agonist. The D2/D3 receptors are involved in the pathophysiology of many mental illnesses. Thus, this study offers a potential explanation for the increased psychiatric disorder co-morbidities when drug use begins during adolescence.
Collapse
Affiliation(s)
- Rebecca S Hofford
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX, USA
| | | | | |
Collapse
|
21
|
Rasakham K, McGillivray KL, Liu-Chen LY. Sex differences in U50,488H-induced phosphorylation of p44/42 mitogen-activated protein kinase in the guinea pig brain. Neuroscience 2012; 223:447-56. [PMID: 22863678 DOI: 10.1016/j.neuroscience.2012.07.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 07/12/2012] [Accepted: 07/23/2012] [Indexed: 11/30/2022]
Abstract
Recently there has been a widespread interest in the development of kappa opioid receptor (KOPR) ligands for treatment of pain, depression and anxiety, and prevention of stress-induced drug relapse. However, most of these preclinical studies have been conducted using male experimental animals. In the present study we examined if sex differences exist in neural activity induced by the KOPR agonist trans-(±)-3,4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl]-cyclohexyl) benzeneacetamide methanesulfonate (U50,488H). Here, we used immunohistochemistry to detect activation (phosphorylation) of p44/42 mitogen-activated protein kinase (MAPK) as an indicator of neural activity. Following habituation to injection for 3 days, adult guinea pigs received a single injection of U50,488H (5mg/kg, s.c.) and perfused 30-45 min later. U50,488H-induced an increase in the number of cells immuno-positive for phosphorylated p44/42 MAPK in subregions of the amygdala, thalamus, paraventricular nucleus of the hypothalamus, periaqueductal gray, and dorsal raphe nuclei. In contrast, U50,488H-induced a decrease in immuno-positive cells in the ventrolateral and lateral orbital cortex. Pretreatment with the KOPR antagonist norbinaltorphimine (10mg/kg, i.p.) 18 h prior to U50,488H significantly reversed the effects of U50,488H in most regions. In addition, we observed a notable sex difference in the basolateral amygdala; in males, U50,488H induced an increase in immuno-positive cell numbers but a decrease in females. However, across other brain regions males were generally more sensitive to U50,488H-induced alterations than females. These results suggest the need to include female subjects in studies examining emotional responses to KOPR ligands.
Collapse
Affiliation(s)
- K Rasakham
- Department of Pharmacology and Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, United States
| | | | | |
Collapse
|
22
|
Dang VC, Christie MJ. Mechanisms of rapid opioid receptor desensitization, resensitization and tolerance in brain neurons. Br J Pharmacol 2012; 165:1704-1716. [PMID: 21564086 DOI: 10.1111/j.1476-5381.2011.01482.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Agonists acting on µ-opioid receptors (MOR) are very effective analgesics but cause tolerance during long-term or repeated exposure. Intensive efforts have been made to find novel opioid agonists that are efficacious analgesics but can elude the signalling events that cause tolerance. µ-Opioid agonists differentially couple to downstream signalling mechanisms. Some agonists, such as enkephalins, D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO), methadone and sufentanyl are efficacious at mediating G-protein and effector coupling, as well as triggering MOR regulatory events that include MOR phosphorylation, β-arrestin binding, receptor endocytosis and recycling. By contrast, morphine and closely related alkaloids can mediate efficacious MOR-effector coupling but poorly trigger receptor regulation. Several models have been proposed to relate differential MOR regulation by different opioids with their propensity to cause tolerance. Most are based on dogma that β-arrestin-2 (βarr-2) binding causes MOR desensitization and/or that MOR endocytosis and recycling are required for receptor resensitization. This review will examine some of these notions in light of recent evidence establishing that MOR dephosphorylation and resensitization do not require endocytosis. Recent evidence from opioid-treated animals also suggests that impaired MOR-effector coupling is driven, at least in part, by enhanced desensitization, as well as impaired resensitization that appears to be βarr-2 dependent. Better understanding of how chronic exposure to opioids alters receptor regulatory mechanisms may facilitate the development of effective analgesics that produce limited tolerance.
Collapse
Affiliation(s)
- Vu C Dang
- Department of Psychiatry, University of California, San Francisco, CA, USABrain & Mind Research Institute, University of Sydney, NSW, Australia
| | - MacDonald J Christie
- Department of Psychiatry, University of California, San Francisco, CA, USABrain & Mind Research Institute, University of Sydney, NSW, Australia
| |
Collapse
|
23
|
Tenayuca JM, Nazarian A. Hydrocodone and morphine possess similar rewarding effects and reduce ERK and CREB phosphorylation in the nucleus accumbens. Synapse 2012; 66:918-22. [PMID: 22715022 DOI: 10.1002/syn.21577] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/06/2012] [Indexed: 02/03/2023]
Abstract
The number of prescriptions for hydrocodone-containing opioid analgesics has greatly increased over the past decade. This increase has led to an associated enhancement in the nonmedical use of hydrocodone products. There is a lack of evidence to determine the extent of the rewarding effects and signal transduction properties of hydrocodone. Therefore, this study aimed to examine the rewarding properties of hydrocodone (1 and 5 mg/kg) and morphine (1 and 5 mg/kg) using the conditioned place preference paradigm (CPP) in rats. Both hydrocodone and morphine produced a CPP at the 5 mg/kg dose, but not the lower 1 mg/kg dose, suggesting that both drugs possess similar rewarding properties in the CPP paradigm. Moreover, hydrocodone and morphine equally reduced phosphorylation levels of ERK and CREB proteins in the nucleus accumbens, suggesting that both drugs exert their effects through signal transduction pathways known to be involved in drug reward and reinforcement. These findings suggest that hydrocodone should be viewed as similarly capable of producing rewarding and euphoric properties as morphine.
Collapse
Affiliation(s)
- John M Tenayuca
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, California 91766, USA
| | | |
Collapse
|
24
|
Crosstalk between cdk5 and MEK-ERK signalling upon opioid receptor stimulation leads to upregulation of activator p25 and MEK1 inhibition in rat brain. Neuroscience 2012; 215:17-30. [PMID: 22537847 DOI: 10.1016/j.neuroscience.2012.04.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/03/2012] [Accepted: 04/16/2012] [Indexed: 11/21/2022]
Abstract
Cyclin-dependent kinase 5 (cdk5) participates in opioid receptor signalling through complex molecular mechanisms. The acute effects of selective μ-(fentanyl) and δ-(SNC-80) opioid receptor agonists, as well as the chronic effects of morphine (the prototypic opiate agonist mainly acting at μ-receptors), modulating cdk5 and activators p35/p25 and their interactions with neurotoxic/apoptotic factors, dopamine- and cAMP-regulated phosphoprotein of 32kDa (DARPP-32) and extracellular signal-regulated kinase (ERK) were quantified (Western Blot analyses) in the rat corpus striatum and/or cerebral cortex. To assess the involved mechanisms, MDL28170 was used to inhibit calpain activity and SL327 to disrupt MEK (ERK kinase)-ERK activation. Acute fentanyl (0.1mg/kg) and SNC-80 (10mg/kg) induced rapid (7-60 min) 2- to 4-fold increases of p25 content, without induction of cdk5/p25 pro-apoptotic c-Jun NH(2)-terminal protein kinase or aberrant cleavage of poly(ADP-ribose)-polymerase-1, a hallmark of apoptosis. In contrast, fentanyl and SNC-80 stimulated cdk5-mediated p-Thr75 DARPP-32 (+116-166%; PKA inhibition) and p-Thr286 MEK1 (+21-82%; MEK inactivation), and this latter effect resulted in uncoupling of MEK to ERK signals. Calpain inhibition with MDL28170 (cleavage of p35 to p25) attenuated fentanyl-induced p25 accumulation (-57%), but not the stimulation of p-Thr286 MEK1 or p-Thr75 DARPP-32. MEK-ERK inhibition with SL327 fully prevented fentanyl-induced p25 upregulation. Notably, chronic morphine treatment (10-100mg/kg for 6 days) also increased p25 content and p25/p35 ratio (and activated/inactivated MEK1) in rat brain cortex, which indicated that p25 upregulation persisted under the sustained stimulation of μ-opioid receptors. The results demonstrate that the acute stimulation of opioid receptors leads to upregulation of p25 activator through a MEK-ERK and calpain-dependent pathway, and to disruption of MEK-ERK signalling by a cdk5/p35-induced MEK1 inhibition. Moreover, the effects induced by the sustained stimulation of μ-receptors with morphine suggest the participation of cdk5/p25 complex in opiate-induced long-term neuroplasticity.
Collapse
|
25
|
Abstract
It has been established that mu opioid receptors activate the ERK1/2 signaling cascade both in vitro and in vivo. The Ser/Thr kinase RSK2 is a direct downstream effector of ERK1/2 and has a role in cellular signaling, cell survival growth, and differentiation; however, its role in biological processes in vivo is less well known. Here we determined whether RSK2 contributes to mu-mediated signaling in vivo. Knockout mice for the rsk2 gene were tested for main morphine effects, including analgesia, tolerance to analgesia, locomotor activation, and sensitization to this effect, as well as morphine withdrawal. The deletion of RSK2 reduced acute morphine analgesia in the tail immersion test, indicating a role for this kinase in mu receptor-mediated nociceptive processing. All other morphine effects and adaptations to chronic morphine were unchanged. Because the mu opioid receptor and RSK2 both show high density in the habenula, we specifically downregulated RSK2 in this brain metastructure using an adeno-associated-virally mediated shRNA approach. Remarkably, morphine analgesia was significantly reduced, as observed in the total knockout animals. Together, these data indicate that RSK2 has a role in nociception, and strongly suggest that a mu opioid receptor-RSK2 signaling mechanism contributes to morphine analgesia at the level of habenula. This study opens novel perspectives for both our understanding of opioid analgesia, and the identification of signaling pathways operating in the habenular complex.
Collapse
|
26
|
Martín F, Mora L, Laorden M, Milanés M. Protein kinase C phosphorylates the cAMP response element binding protein in the hypothalamic paraventricular nucleus during morphine withdrawal. Br J Pharmacol 2011; 163:857-75. [PMID: 21615389 DOI: 10.1111/j.1476-5381.2011.01287.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Exposure to drugs of abuse or stress results in adaptation in the brain involving changes in gene expression and transcription factors. Morphine withdrawal modulates gene expression through various second-messenger signal transduction systems. Here, we investigated changes in activation of the transcription factor, cAMP-response element binding protein (CREB), in the hypothalamic paraventricular nucleus (PVN) and the kinases that may mediate the morphine withdrawal-triggered activation of CREB and the response of the hypothalamic-pituitary-adrenocortical (HPA) axis after naloxone-induced morphine withdrawal. EXPERIMENTAL APPROACH The effects of morphine dependence and withdrawal, phosphorylated CREB (pCREB), corticotrophin-releasing factor (CRF) expression in the PVN and HPA axis activity were measured using immunoblotting, immunohistochemistry and radioimmunoassay in controls and in morphine-dependent rats, withdrawn with naloxone and pretreated with vehicle, calphostin C, chelerythrine (inhibitors of protein kinase C (PKC) or SL-327 [inhibitor of extracellular signal regulated kinase (ERK) kinase]. In addition, changes in PKCα and PKCγ immunoreactivity were measured after 60 min of withdrawal. KEY RESULTS In morphine-withdrawn rats, pCREB immunoreactivity was increased within CRF immunoreactive neurons in the PVN and plasma corticosterone levels were raised. SL-327, at doses that reduced the augmented pERK levels in the PVN, did not attenuate the rise in pCREB immunoreactivity or plasma corticosterone secretion. In contrast, PKC inhibition reduced the withdrawal-triggered rise in pCREB, pERK1/2 and corticosterone secretion. CONCLUSIONS AND IMPLICATIONS PKC mediated, in part, both CREB activation and the HPA response to morphine withdrawal. The ERK kinase/ERK pathway might not be necessary for either activation of CREB or HPA axis hyperactivity.
Collapse
Affiliation(s)
- F Martín
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University School of Medicine, Murcia, Spain
| | | | | | | |
Collapse
|
27
|
Opiate sensitization induces FosB/ΔFosB expression in prefrontal cortical, striatal and amygdala brain regions. PLoS One 2011; 6:e23574. [PMID: 21886798 PMCID: PMC3160315 DOI: 10.1371/journal.pone.0023574] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 07/20/2011] [Indexed: 11/19/2022] Open
Abstract
Sensitization to the effects of drugs of abuse and associated stimuli contributes to drug craving, compulsive drug use, and relapse in addiction. Repeated opiate exposure produces behavioral sensitization that is hypothesized to result from neural plasticity in specific limbic, striatal and cortical systems. ΔFosB and FosB are members of the Fos family of transcription factors that are implicated in neural plasticity in addiction. This study examined the effects of intermittent morphine treatment, associated with motor sensitization, on FosB/ΔFosB levels using quantitative immunohistochemistry. Motor sensitization was tested in C57BL/6 mice that received six intermittent pre-treatments (on days 1, 3, 5, 8, 10, 12) with either subcutaneous morphine (10 mg/kg) or saline followed by a challenge injection of morphine or saline on day 16. Mice receiving repeated morphine injections demonstrated significant increases in locomotor activity on days 8, 10, and 12 of treatment (vs. day 1), consistent with development of locomotor sensitization. A morphine challenge on day 16 significantly increased locomotor activity of saline pre-treated mice and produced even larger increases in motor activity in the morphine pre-treated mice, consistent with the expression of opiate sensitization. Intermittent morphine pre-treatment on these six pre-treatment days produced a significant induction of FosB/ΔFosB, measured on day 16, in multiple brain regions including prelimbic (PL) and infralimbic (IL) cortex, nucleus accumbens (NAc) core, dorsomedial caudate-putamen (CPU), basolateral amygdala (BLA) and central nucleus of the amygdala (CNA) but not in a motor cortex control region. Opiate induced sensitization may develop via Fos/ΔFosB plasticity in motivational pathways (NAc), motor outputs (CPU), and associative learning (PL, IL, BLA) and stress pathways (CNA).
Collapse
|
28
|
Deb I, Das S. Thyroid hormones protect astrocytes from morphine-induced apoptosis by regulating nitric oxide and pERK 1/2 pathways. Neurochem Int 2011; 58:861-71. [DOI: 10.1016/j.neuint.2011.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 12/16/2010] [Accepted: 01/03/2011] [Indexed: 12/22/2022]
|
29
|
Extracellular signal-regulated kinase activation in the amygdala mediates elevated plus maze behavior during opioid withdrawal. Behav Pharmacol 2011; 20:576-83. [PMID: 19738463 DOI: 10.1097/fbp.0b013e32832ec57e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study examined whether activation of extracellular signal-regulated kinase (ERK) contributes to the increased open-arm time observed in the elevated plus maze (EPM) during opioid withdrawal. We applied SL327, a selective ERK kinase (MEK) inhibitor, to specific limbic areas and examined the effect on EPM behaviors of controls and during naloxone-precipitated morphine withdrawal. We next confirmed that ERK activation increased in limbic areas of mice undergoing naloxone-precipitated morphine withdrawal. Direct injection of SL327 into the amygdala blocked the withdrawal-induced increase in open-arm time; however, injecting SL327 into the septum had no effect. Consistent with these results, both 0.2 and 2 mg/kg naloxone increased ERK activation in the central amygdala of morphine-dependent mice. In drug-naive mice, 2 mg/kg naloxone, but not 0.2 mg/kg, increased ERK activation in the central amygdala. During withdrawal, increased ERK activation was also observed in the lateral septum. In the locus coeruleus, a significant increase was observed only in morphine-dependent mice receiving 2 mg/kg, but not 0.2 mg/kg naloxone. In conclusion, ERK activation in limbic areas is likely involved in both the aversive properties of naloxone and in the affective/emotional symptoms of opioid withdrawal, including mediating EPM behaviors.
Collapse
|
30
|
Rothwell PE, Gewirtz JC, Thomas MJ. Episodic withdrawal promotes psychomotor sensitization to morphine. Neuropsychopharmacology 2010; 35:2579-89. [PMID: 20811341 PMCID: PMC3055568 DOI: 10.1038/npp.2010.134] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The relative intermittency or continuity of drug delivery is a major determinant of addictive liability, and also influences the impact of drug exposure on brain function and behavior. Events that occur during the offset of drug action (ie, acute withdrawal) may have an important role in the consequences of intermittent drug exposure. We assessed whether recurrent episodes of acute withdrawal contribute to the development of psychomotor sensitization in rodents during daily morphine exposure. The acoustic startle reflex--a measure of anxiety induced by opiate withdrawal-was used to resolve and quantify discrete withdrawal episodes, and pharmacological interventions were used to manipulate withdrawal severity. Startle potentiation was observed during spontaneous withdrawal from a single morphine exposure, and individual differences in initial withdrawal severity positively predicted the subsequent development of sensitization. Manipulations that reduce or exacerbate withdrawal severity also produced parallel changes in the degree of sensitization. These results demonstrate that the episodic experience of withdrawal during daily drug exposure has a novel role in promoting the development of psychomotor sensitization--a prominent model of drug-induced neurobehavioral plasticity. Episodic withdrawal may have a pervasive role in many effects of intermittent drug exposure and contribute to the development of addiction.
Collapse
Affiliation(s)
- Patrick E Rothwell
- Graduate Program in Neuroscience and Departments of Neuroscience and Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Jonathan C Gewirtz
- Graduate Program in Neuroscience and Departments of Neuroscience and Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Mark J Thomas
- Graduate Program in Neuroscience and Departments of Neuroscience and Psychology, University of Minnesota, Minneapolis, MN, USA,University of Minnesota, 6-145 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA. Tel: 6 12 624 4963, Fax: +6 12 624 7910, E-mail:
| |
Collapse
|
31
|
Hofford RS, Roberts KW, Wellman PJ, Eitan S. Social influences on morphine sensitization in adolescent females. Drug Alcohol Depend 2010; 110:263-6. [PMID: 20456874 PMCID: PMC2946073 DOI: 10.1016/j.drugalcdep.2010.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 03/14/2010] [Accepted: 03/17/2010] [Indexed: 01/15/2023]
Abstract
We recently observed that social interactions influence morphine responsiveness in adolescent males. Given sex-related differences in both social interactions and responses to morphine, the present study examines social influences on morphine sensitization in adolescent female mice. Four experimental groups were examined: (1) morphine-treated mice (twice daily, 10-40 mg/kg, s.c.) housed physically and visually separated from saline-treated mice ('morphine only'), (2) morphine-treated mice housed together with saline-treated mice ('morphine cage-mates (of saline)'), (3) saline-treated mice housed together with morphine-treated mice ('saline cage-mates (of morphine)'), and (4) saline-treated mice housed physically and visually separated from morphine-treated mice ('saline only'). Following the treatment period, mice were tested individually for their locomotor response to 20 mg/kg morphine (s.c.). There were no significant differences in morphine-induced hyper-locomotion between saline only and saline cage-mates (of morphine) female adolescent mice. Notably, morphine only mice exhibited significantly greater morphine sensitization as compared to morphine cage-mates (of saline). Thus, this study demonstrates social influences on morphine sensitization in adolescent females. Drug use during early adolescence is a key predictor of later drug abuse and dependence during adulthood. Thus, understanding the specific vulnerabilities to drug use in this age group may represent a first step in helping develop more effective treatment programs.
Collapse
Affiliation(s)
- Rebecca S. Hofford
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Kris W. Roberts
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Neuropsychiatric Institute, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| | - Paul J. Wellman
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
- Corresponding author: Shoshana Eitan, Ph.D., Texas A&M University, Department of Psychology, 4235 TAMU, College Station, TX 77843, USA Telephone: (979) 845-2508, Fax: (979) 845-4727,
| |
Collapse
|
32
|
Abstract
Given that social influences are among the strongest predictors of adolescents' drug use, this study examined the effect of social interaction on morphine-induced hyperlocomotion in both adolescent and adult mice. Three experimental groups of adolescent and adult male mice were examined (i) morphine-treated mice (twice daily, 10-40 mg/kg, subcutaneous), (ii) saline-injected mice housed together with the morphine-treated mice ('saline cage-mates'), and (iii) saline-injected mice housed physically and visually separated from the morphine-treated mice ('saline alone'). After the treatment period, mice were tested individually for their locomotor response to 10 mg/kg morphine (subcutaneous). Adolescent saline cage-mates, though administered morphine for the very first time, exhibited an enhanced hyperlocomotion response similar to the locomotor sensitization response exhibited by the morphine-treated mice. This was not observed in adults. In adults, there were no significant differences in morphine-induced hyperlocomotion between saline alone and saline cage-mates. As expected, morphine-treated adults and adolescents both exhibited locomotor sensitization. These results show a vulnerability to social influences in adolescent mice, which does not exist in adult mice.
Collapse
|
33
|
Anand KJS, Willson DF, Berger J, Harrison R, Meert KL, Zimmerman J, Carcillo J, Newth CJL, Prodhan P, Dean JM, Nicholson C. Tolerance and withdrawal from prolonged opioid use in critically ill children. Pediatrics 2010; 125:e1208-25. [PMID: 20403936 PMCID: PMC3275643 DOI: 10.1542/peds.2009-0489] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE After prolonged opioid exposure, children develop opioid-induced hyperalgesia, tolerance, and withdrawal. Strategies for prevention and management should be based on the mechanisms of opioid tolerance and withdrawal. PATIENTS AND METHODS Relevant manuscripts published in the English language were searched in Medline by using search terms "opioid," "opiate," "sedation," "analgesia," "child," "infant-newborn," "tolerance," "dependency," "withdrawal," "analgesic," "receptor," and "individual opioid drugs." Clinical and preclinical studies were reviewed for data synthesis. RESULTS Mechanisms of opioid-induced hyperalgesia and tolerance suggest important drug- and patient-related risk factors that lead to tolerance and withdrawal. Opioid tolerance occurs earlier in the younger age groups, develops commonly during critical illness, and results more frequently from prolonged intravenous infusions of short-acting opioids. Treatment options include slowly tapering opioid doses, switching to longer-acting opioids, or specifically treating the symptoms of opioid withdrawal. Novel therapies may also include blocking the mechanisms of opioid tolerance, which would enhance the safety and effectiveness of opioid analgesia. CONCLUSIONS Opioid tolerance and withdrawal occur frequently in critically ill children. Novel insights into opioid receptor physiology and cellular biochemical changes will inform scientific approaches for the use of opioid analgesia and the prevention of opioid tolerance and withdrawal.
Collapse
Affiliation(s)
- Kanwaljeet J. S. Anand
- Department of Pediatrics, Le Bonheur Children’s Hospital and University of Tennessee Health Science Center, Memphis, Tennessee
| | - Douglas F. Willson
- Department of Pediatrics & Anesthesiology, University of Virginia Children’s Hospital, Charlottesville, Virginia
| | - John Berger
- Department of Pediatrics, Children’s National Medical Center, Washington, DC
| | - Rick Harrison
- Department of Pediatrics, University of California at Los Angeles, Los Angeles, California
| | - Kathleen L. Meert
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit, Michigan
| | - Jerry Zimmerman
- Department of Pediatrics, Children’s Hospital and Medical Center, Seattle, Washington
| | - Joseph Carcillo
- Department of Critical Care Medicine, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Parthak Prodhan
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - J. Michael Dean
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Carol Nicholson
- Pediatric Critical Care and Rehabilitation Program, National Center for Medical Rehabilitation Research (NCMRR), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
34
|
Li T, Hou Y, Cao W, Yan CX, Chen T, Li SB. Naloxone-precipitated withdrawal enhances ERK phosphorylation in prefrontal association cortex and accumbens nucleus of morphine-dependent mice. Neurosci Lett 2009; 468:348-52. [PMID: 19922770 DOI: 10.1016/j.neulet.2009.11.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/07/2009] [Accepted: 11/09/2009] [Indexed: 01/23/2023]
Abstract
Mitogen-activated protein kinases (MAPK) can be activated by opioids such as morphine via opioid receptor, and their activations have been observed in synaptic plasticity, learning, memory and addiction. Long-term exposure to morphine may induce physical dependence, manifested as somatic withdrawal symptoms such as diarrhea, body weight loss, jumping and headshaking, when drug is deprived. Though morphine dependence and withdrawal have been extensively studied, their molecular mechanisms have not been fully elucidated. In the present study, the physical dependence on morphine was developed in mice by an intermittent, escalating procedure of morphine injections, and was measured by the body weight loss and the behavioral signs (jumping and headshaking). We found that the mice with chronic morphine administration experienced dramatic body weight loss, compared with the saline-treated controls. Naloxone-precipitated withdrawal led to more body weight loss, compared with spontaneous withdrawal. Naloxone-precipitated withdrawal mice showed significantly aggravated morphine-withdrawal symptoms (including jumping and heading shaking), compared with spontaneous withdrawal mice. MAPK pathway activities in the frontal association cortex (FrA), accumbens nucleus (Acb) and caudate putamen (CPu) were examined to probe into molecular mechanism for morphine dependence and withdrawal. Compared with saline-treated mice, morphine-dependent mice and spontaneous withdrawal mice, naloxone-precipitated withdrawal mice showed a significantly increased ERK phosphorylation in FrA and Acb, but not in CPu. However, the activities of other protein kinases in the MAPK pathway, including p38 and JNK, showed no changes in FrA, Acb and CPu of the mice during the chronic morphine dependence and withdrawal phases. These results suggest that the ERK phosphorylation in FrA and Acb may be associated with naloxone-precipitated withdrawal syndrome.
Collapse
Affiliation(s)
- Tao Li
- Forensic Department, Xi'an Jiaotong University School of Medicine, 76# West Yanta Road, Xi'an 710061, PR China.
| | | | | | | | | | | |
Collapse
|
35
|
Deb I, Chakraborty J, Gangopadhyay PK, Choudhury SR, Das S. Single-nucleotide polymorphism (A118G) in exon 1 of OPRM1 gene causes alteration in downstream signaling by mu-opioid receptor and may contribute to the genetic risk for addiction. J Neurochem 2009; 112:486-96. [PMID: 19891732 DOI: 10.1111/j.1471-4159.2009.06472.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The opioid receptor mu1 (OPRM1) mediates the action of morphine. Although genetic background plays an important role in the susceptibility toward abuse of drugs as evident from familial, adoption and twin studies, association of specific single-nucleotide polymorphisms of OPRM1 gene with narcotic addiction is to be established. Here, we demonstrate the involvement of A118G polymorphism of exon1 of human OPRM1 gene (hOPRM1), with heroin and alcohol addiction, in a population in eastern India. Statistical analysis exhibited a significant association of G allele with both heroin and alcohol addiction with a risk factor of P(trend) < 0.05. The functional significance of G allele in A118G single-nucleotide polymorphisms was evaluated by studying the regulation of protein kinase A (PKA), pCREB, and pERK1/2 by morphine in Neuro 2A cells, stably transfected with either wild type or A118G mutant hOPRM1. Unlike acute morphine treatment, both chronic morphine exposure and withdrawal precipitated by naloxone were differentially regulated by A118 and G118 receptor isoforms when both PKA and pERK1/2 activities were compared. Results suggest that the association of A118G polymorphism to heroin and alcohol addiction may be because of the altered regulation of PKA and pERK1/2 during opioid and alcohol exposures.
Collapse
Affiliation(s)
- Ishani Deb
- Neurobiology Division, Indian Institute of Chemical Biology, Kolkata, India
| | | | | | | | | |
Collapse
|
36
|
Wang JY, Huang J, Chang JY, Woodward DJ, Luo F. Morphine modulation of pain processing in medial and lateral pain pathways. Mol Pain 2009; 5:60. [PMID: 19822022 PMCID: PMC2770513 DOI: 10.1186/1744-8069-5-60] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 10/13/2009] [Indexed: 11/10/2022] Open
Abstract
Background Despite the wide-spread use of morphine and related opioid agonists in clinic and their powerful analgesic effects, our understanding of the neural mechanisms underlying opioid analgesia at supraspinal levels is quite limited. The present study was designed to investigate the modulative effect of morphine on nociceptive processing in the medial and lateral pain pathways using a multiple single-unit recording technique. Pain evoked neuronal activities were simultaneously recorded from the primary somatosensory cortex (SI), ventral posterolateral thalamus (VPL), anterior cingulate cortex (ACC), and medial dorsal thalamus (MD) with eight-wire microelectrode arrays in awake rats. Results The results showed that the noxious heat evoked responses of single neurons in all of the four areas were depressed after systemic injection of 5 mg/kg morphine. The depressive effects of morphine included (i) decreasing the neuronal response magnitude; (ii) reducing the fraction of responding neurons, and (iii) shortening the response duration. In addition, the capability of cortical and thalamic neural ensembles to discriminate noxious from innocuous stimuli was decreased by morphine within both pain pathways. Meanwhile, morphine suppressed the pain-evoked changes in the information flow from medial to lateral pathway and from cortex to thalamus. These effects were completely blocked by pre-treatment with the opiate receptor antagonist naloxone. Conclusion These results suggest that morphine exerts analgesic effects through suppressing both sensory and affective dimensions of pain.
Collapse
Affiliation(s)
- Jin-Yan Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Science, Beijing, China.
| | | | | | | | | |
Collapse
|
37
|
Tarpley JW, Shlifer IG, Birnbaum MS, Halladay LR, Blair HT. Bilateral phosphorylation of ERK in the lateral and centrolateral amygdala during unilateral storage of fear memories. Neuroscience 2009; 164:908-17. [PMID: 19735699 DOI: 10.1016/j.neuroscience.2009.08.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/26/2009] [Accepted: 08/29/2009] [Indexed: 11/25/2022]
Abstract
We previously showed that when rats were trained to fear an auditory conditioned stimulus (CS) by pairing it with a mild unilateral shock to the eyelid (the unconditioned stimulus, or US), conditioned freezing depended upon the amygdala contralateral but not ipsilateral from the US. It was proposed that convergent activation of amygdala neurons by the CS and US occurred mainly in the amygdala contralateral from US delivery, causing memories of the CS-US association to be stored primarily by that hemisphere. In the present study, we further tested this interpretation by administering unilateral infusions of U0126 (in 50% dimethyl sulfoxide (DMSO) vehicle) to block phosphorylation of extracellular signal-responsive kinase (ERK) in the amygdala prior to CS-US pairings. Conditioned freezing was impaired 24 h after training when U0126 was infused contralaterally-but not ipsilaterally-from the US, suggesting that fear memories were consolidated mainly by the contralateral amygdala. However, immunostaining experiments revealed that ERK phosphorylation was elevated in both hemispheres of the amygdale's lateral (LA) and centrolateral (CeL) nuclei after paired (but not unpaired (UNP)) presentations of the CS and US. Thus, fear acquisition induced ERK phosphorylation bilaterally in the amygdala, even though the ipsilateral hemisphere did not appear to participate in conditioned freezing. These findings suggest that associative plasticity may occur in both amygdala hemispheres even when only one hemisphere is involved in freezing behavior. Conditioning-induced ERK phosphorylation was identical in both hemispheres of LA, but was slightly greater in the contralateral than ipsilateral hemisphere of CeL. Hence, asymmetric induction of plasticity in CeL might help to explain why conditioned freezing depends preferentially upon the amygdala contralateral from the US in our fear conditioning paradigm.
Collapse
Affiliation(s)
- J W Tarpley
- Department of Psychology, UCLA, Los Angeles, CA 90024, USA
| | | | | | | | | |
Collapse
|
38
|
The role of mitogen-activated protein kinase (MAPK) in morphine tolerance and dependence. Mol Neurobiol 2009; 40:101-7. [PMID: 19468867 DOI: 10.1007/s12035-009-8074-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 05/12/2009] [Indexed: 01/18/2023]
Abstract
Despite the existence of a large body of information on the subject, the mechanisms of morphine tolerance and dependence are not yet fully understood. There is substantial evidence indicating that mitogen-activated protein kinase (MAPK), a family including extracellular signal-regulated protein kinase, p38 MAPK, and c-Jun N-terminal kinase, can be activated by chronic morphine treatment in the central and peripheral nervous systems and that application of a MAPK inhibitor reduces morphine tolerance and dependence. While the exact mechanism is not completely understood, recent evidence suggests that the activation of MAPK induced by long-term morphine exposure may participate in tolerance and dependence by regulating the downstream targets, such as calcitonin gene-related peptide, substance P, nitric oxide, transient receptor potential vanilloid 1, and proinflammatory cytokines. In this review, we focus on the current understanding of the role of MAPK signaling pathways in morphine tolerance and dependence.
Collapse
|
39
|
Hesperidin, a flavonoid glycoside with sedative effect, decreases brain pERK1/2 levels in mice. Pharmacol Biochem Behav 2009; 92:291-6. [DOI: 10.1016/j.pbb.2008.12.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 12/10/2008] [Accepted: 12/18/2008] [Indexed: 11/20/2022]
|
40
|
Augmentation of morphine-induced sensitization but reduction in morphine tolerance and reward in delta-opioid receptor knockout mice. Neuropsychopharmacology 2009; 34:887-98. [PMID: 18704097 PMCID: PMC2639630 DOI: 10.1038/npp.2008.128] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Studies in experimental animals have shown that individuals exhibiting enhanced sensitivity to the locomotor-activating and rewarding properties of drugs of abuse are at increased risk for the development of compulsive drug-seeking behavior. The purpose of the present study was to assess the effect of constitutive deletion of delta-opioid receptors (DOPr) on the rewarding properties of morphine as well as on the development of sensitization and tolerance to the locomotor-activating effects of morphine. Locomotor activity testing revealed that mice lacking DOPr exhibit an augmentation of context-dependent sensitization following repeated, alternate injections of morphine (20 mg/kg; s.c.; 5 days). In contrast, the development of tolerance to the locomotor-activating effects of morphine following chronic morphine administration (morphine pellet: 25 mg: 3 days) is reduced relative to WT mice. The conditioned rewarding effects of morphine were reduced significantly in DOPrKO mice as compared to WT controls. Similar findings were obtained in response to pharmacological inactivation of DOPr in WT mice, indicating that observed effects are not due to developmental adaptations that occur as a consequence of constitutive deletion of DOPr. Together, these findings indicate that the endogenous DOPr system is recruited in response to both repeated and chronic morphine administration and that this recruitment serves an essential function in the development of tolerance, behavioral sensitization, and the conditioning of opiate reward. Importantly, they demonstrate that DOPr has a distinct role in the development of each of these drug-induced adaptations. The anti-rewarding and tolerance-reducing properties of DOPr antagonists may offer new opportunities for the treatment and prevention of opioid dependence as well as for the development of effective analgesics with reduced abuse liability.
Collapse
|
41
|
Mickiewicz AL, Dallimore JE, Napier TC. The ventral pallidum is critically involved in the development and expression of morphine-induced sensitization. Neuropsychopharmacology 2009; 34:874-86. [PMID: 18668032 DOI: 10.1038/npp.2008.111] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Repeated, intermittent exposure to drugs of abuse results in response enhancements to subsequent drug treatments, a phenomenon referred to as sensitization. As persistent neuronal sensitization may contribute to the long-lasting consequences of drug abuse, characterizing the neuroanatomical substrates of sensitization is providing insights into addiction. It is known that the ventral tegmental area (VTA) is necessary for induction, and expression involves the nucleus accumbens (NAc). We reveal here that the ventral pallidum (VP), a brain region reciprocally innervated by the VTA and the NAc, is a critical mediator of opiate-induced behavioral sensitization. Blockade of VP mu-opioid receptors (via intra-VP CTOP injections) negated the ability of systemic administration of the opiate, morphine to induce motor sensitization, and for sensitized rats to subsequently express enhanced responding to a morphine challenge. Intra-VP morphine was sufficient to induce motor sensitization, and this sensitization was expressed following 17 days of withdrawal. Rats with a treatment history of intra-VP morphine demonstrated cross-sensitization to a challenge injection of systemically administered morphine. Conversely, repeated systemic treatments of morphine cross-sensitized to an intra-VP morphine challenge. These results indicate that activation of VP mu-opioid receptors is sufficient to evoke behavioral sensitization and that these receptors are necessary for sensitized responding to systemic morphine. The study pioneers the concept that both development and expression of drug-induced sensitization are regulated by the VP. Thus, the VP is likely an important contributor to neuronal adaptations that underlie addiction.
Collapse
Affiliation(s)
- Amanda L Mickiewicz
- Department of Pharmacology and Experimental Therapeutics, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.
| | | | | |
Collapse
|
42
|
Increased elevated plus maze open-arm time in mice during spontaneous morphine withdrawal. Behav Brain Res 2009; 197:454-6. [DOI: 10.1016/j.bbr.2008.09.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 09/18/2008] [Accepted: 09/26/2008] [Indexed: 11/22/2022]
|
43
|
Hodgson SR, Hofford RS, Wellman PJ, Eitan S. Different affective response to opioid withdrawal in adolescent and adult mice. Life Sci 2008; 84:52-60. [PMID: 19032959 DOI: 10.1016/j.lfs.2008.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 11/03/2008] [Accepted: 11/04/2008] [Indexed: 10/21/2022]
Abstract
AIMS Drug withdrawal is suggested to play a role in precipitating mood disorders in individuals with familial predisposition. Age-related differences in affective responses to withdrawal might explain the increased risk of mental illnesses when drug use begins during adolescence. Since there is a lack of animal research examining the effects of opioid withdrawal during adolescence, the present study examined whether there are age-related differences in affective responses to opioid withdrawal. MAIN METHODS Adolescent and adult mice were injected with two different morphine regimens, namely low and high, which differed in the dosage. Three and nine days following discontinuation of morphine administration, immobility time in the forced swim test (FST) and locomotion (total distance traveled) were evaluated. KEY FINDINGS On withdrawal day 3 (WD3), adolescent mice exhibited a decrease in immobility as compared to controls. No significant differences in immobility were observed on withdrawal day 9 (WD9). This effect on FST behaviors was not due to changes in overall motor activity, since no differences in locomotion were observed on either WD3 or WD9 in adolescent mice. In adults, no differences in either FST or locomotor behaviors were observed on WD3. As expected, on WD9, adult mice exhibited an increase in immobility and a decrease in locomotion. SIGNIFICANCE This study demonstrates age-dependent differences in both FST scores and locomotor behaviors during opioid withdrawal. FST behaviors are classically used to evaluate mood in rodents, thus this study suggests that opioid withdrawal might affect mood differentially across age.
Collapse
Affiliation(s)
- Stephen R Hodgson
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
44
|
Effects of chronic inflammation and morphine tolerance on the expression of phospho-ERK 1/2 and phospho-P38 in the injured tissue. Naunyn Schmiedebergs Arch Pharmacol 2008; 379:315-23. [DOI: 10.1007/s00210-008-0356-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 09/22/2008] [Indexed: 01/09/2023]
|
45
|
Abstract
The mechanisms underlying responses to drugs of abuse have been widely investigated; however, less is known about pathways normally protective against the development of drug reinforcement. These pathways are also important since they may regulate individual differences in vulnerability to addiction. The neuropeptide galanin and its binding sites are expressed in brain areas important for drug reward. Previous studies have shown that centrally infused galanin attenuates morphine place preference and peripheral injection of galnon, a galanin agonist, decreases opiate withdrawal signs. The current studies in galanin knockout (GKO) mice examined the hypothesis that galanin is an endogenous negative regulator of opiate reward and identified downstream signaling pathways regulated by galanin. We show that GKO mice demonstrate increased locomotor activation following morphine administration, which is inhibited by acute administration of galnon. GKO mice also show enhanced morphine place preference, supporting the idea that galanin normally antagonizes opiate reward. In addition, morphine-induced ERK1/2 phosphorylation was increased in the VTA of both wild-type and GKO mice, but only the GKO mice showed increases in ERK1/2 and CREB phosphorylation in the amygdala or nucleus accumbens. Furthermore, a single systemic injection of galnon in GKO mice was sufficient to reverse some of the biochemical changes brought about by morphine administration. These data suggest that galanin normally attenuates behavioral and neurochemical effects of opiates; thus, galanin agonists may represent a new class of therapeutic targets for opiate addiction.
Collapse
|
46
|
Núñez C, Castells MT, Laorden ML, Milanés MV. Regulation of extracellular signal-regulated kinases (ERKs) by naloxone-induced morphine withdrawal in the brain stress system. Naunyn Schmiedebergs Arch Pharmacol 2008; 378:407-20. [PMID: 18548233 DOI: 10.1007/s00210-008-0304-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2008] [Accepted: 04/24/2008] [Indexed: 11/30/2022]
Abstract
Our previous studies have shown that morphine withdrawal increases the hypothalamic-pituitary-adrenocortical axis activity, which is dependent on a hyperactivity of noradrenergic pathways (nucleus tractus solitarius-A(2)) innervating the hypothalamic paraventricular nucleus. The extracellular signal-regulated kinase has been implicated in drug addiction, but its role in activation of paraventricular nucleus and nucleus tractus solitarius during morphine dependence remain poorly understood. We have determined the activation of extracellular signal-regulated kinase during morphine dependence and withdrawal as well as its involvement in morphine withdrawal-induced gene expression. We show that naloxone-induced morphine withdrawal activates extracellular signal-regulated kinases(1/2) and increases c-Fos expression in rat paraventricular nucleus and nucleus tractus solitarius-A(2) neurons. Activated extracellular signal-regulated kinases(1/2) was colocalized with c-Fos in both nuclei, and this response was blocked by SL327, a drug that prevents extracellular signal-regulated kinase activation. In the paraventricular nucleus from morphine-withdrawn rats, the number of neurons expressing CRF was increased. Immunohistochemical study showed a dramatic increase in c-Fos immunoreactivity within CRF-positive cells. These results suggest that extracellular signal-regulated kinases1/2 signaling pathway is necessary for morphine withdrawal-induced activation of brain areas associated with the stress system.
Collapse
Affiliation(s)
- Cristina Núñez
- Department of Pharmacology, University School of Medicine, Campus de Espinardo, 30100, Murcia, Spain
| | | | | | | |
Collapse
|
47
|
Charlton JJ, Allen PB, Psifogeorgou K, Chakravarty S, Gomes I, Neve RL, Devi LA, Greengard P, Nestler EJ, Zachariou V. Multiple actions of spinophilin regulate mu opioid receptor function. Neuron 2008; 58:238-47. [PMID: 18439408 DOI: 10.1016/j.neuron.2008.02.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2007] [Revised: 12/12/2007] [Accepted: 02/07/2008] [Indexed: 10/22/2022]
Abstract
Spinophilin, a dendritic spine-enriched scaffold protein, modulates synaptic transmission via multiple functions mediated by distinct domains of the protein. Here, we show that spinophilin is a key modulator of opiate action. Knockout of the spinophilin gene causes reduced sensitivity to the analgesic effects of morphine and early development of tolerance but a higher degree of physical dependence and increased sensitivity to the rewarding actions of the drug. At the cellular level, spinophilin associates with the mu opioid receptor (MOR) in striatum and modulates MOR signaling and endocytosis. Activation of MOR by opiate agonists such as fentanyl and morphine promotes these events, which feedback to suppress MOR responsiveness. Our findings support a potent physiological role of spinophilin in regulating MOR function and provide a potential new target for the treatment of opiate addiction.
Collapse
Affiliation(s)
- Joanna J Charlton
- Department of Pharmacology, University of Crete, 71409 Heraklion, Crete, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Christie MJ. Cellular neuroadaptations to chronic opioids: tolerance, withdrawal and addiction. Br J Pharmacol 2008; 154:384-96. [PMID: 18414400 DOI: 10.1038/bjp.2008.100] [Citation(s) in RCA: 289] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A large range of neuroadaptations develop in response to chronic opioid exposure and these are thought to be more or less critical for expression of the major features of opioid addiction: tolerance, withdrawal and processes that may contribute to compulsive use and relapse. This review considers these adaptations at different levels of organization in the nervous system including tolerance at the mu-opioid receptor itself, cellular tolerance and withdrawal in opioid-sensitive neurons, systems tolerance and withdrawal in opioid-sensitive nerve networks, as well as synaptic plasticity in opioid sensitive nerve networks. Receptor tolerance appears to involve enhancement of mechanisms of receptor regulation, including desensitization and internalization. Adaptations causing cellular tolerance are more complex but several important processes have been identified including upregulation of cAMP/PKA and cAMP response element-binding signalling and perhaps the mitogen activated PK cascades in opioid sensitive neurons that might not only influence tolerance and withdrawal but also synaptic plasticity during cycles of intoxication and withdrawal. The potential complexity of network, or systems adaptations that interact with opioid-sensitive neurons is great but some candidate neuropeptide systems that interact with mu-opioid sensitive neurons may play a role in tolerance and withdrawal, as might activation of glial signalling. Implication of synaptic forms of learning such as long term potentiation and long term depression in opioid addiction is still in its infancy but this ultimately has the potential to identify specific synapses that contribute to compulsive use and relapse.
Collapse
Affiliation(s)
- M J Christie
- Pain Management Research Institute and Kolling Institute, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, Australia.
| |
Collapse
|
49
|
Zhai H, Li Y, Wang X, Lu L. Drug-induced alterations in the extracellular signal-regulated kinase (ERK) signalling pathway: implications for reinforcement and reinstatement. Cell Mol Neurobiol 2008; 28:157-72. [PMID: 18041576 DOI: 10.1007/s10571-007-9240-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 11/06/2007] [Indexed: 12/01/2022]
Abstract
Drug addiction, characterized by high rates of relapse, is recognized as a kind of neuroadaptive disorder. Since the extracellular signal-regulated kinase (ERK) pathway is critical to neuroplasticity in the adult brain, understanding the role this pathway plays is important for understanding the molecular mechanism underlying drug addiction and relapse. Here, we review previous literatures that focus on the effects of exposure to cocaine, amphetamine, Delta(9)-tetrahydrocannabinol (THC), nicotine, morphine, and alcohol on ERK signaling in the mesocorticolimbic dopamine system; these alterations of ERK signaling have been thought to contribute to the drug's rewarding effects and to the long-term maladaptation induced by drug abuse. We then discuss the possible upstreams of the ERK signaling pathway activated by exposure of drugs of abuse and the environmental cues previously paired with drugs. Finally, we argue that since ERK activation is a key molecular process in reinstatement of conditioned place preference and drug self-administration, the pharmacological manipulation of the ERK pathway is a potential treatment strategy for drug addiction.
Collapse
Affiliation(s)
- Haifeng Zhai
- Department of Neuropharmacology, National Institute on Drug Dependence, Peking University, 38, Xue Yuan Road, Hai Dian District, Beijing, 100083, China
| | | | | | | |
Collapse
|
50
|
Gu C, Li P, Hu B, Ouyang X, Fu J, Gao J, Song Z, Han L, Ma Y, Tian S, Hu X. Chronic morphine selectively impairs cued fear extinction in rats: implications for anxiety disorders associated with opiate use. Neuropsychopharmacology 2008; 33:666-73. [PMID: 17507919 DOI: 10.1038/sj.npp.1301441] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previous studies have shown that opioid transmission plays an important role in learning and memory. However, little is known about the course of opiate-associated learning and memory deficits after cessation of chronic opiate use in a behavioral animal model. In the present study, we examined the effects of chronic morphine on fear extinction, an important preclinical model for behavior therapy of human anxiety disorders. Rats were administrated subcutaneously morphine hydrochloride or saline twice per day for continuous 10 days. Rats received a cued or contextual fear conditioning session 7 days after the last morphine injection. During subsequent days, rats received four cued or contextual extinction sessions (one session per day). Percent freezing was assessed during all phases of training. Chronic morphine did not affect the acquisition of cued fear response or the initial encoding of extinction memory within each session, but produced an impairment in the between-session extinction. However, the same morphine treatment schedule did not affect the acquisition or extinction of contextual fear response. These results suggest that the effects of chronic morphine on memory for fear extinction are complex. Chronic morphine selectively impairs extinction of cued fear response. This deficit in fear extinction may be one of those critical components that contribute to the high prevalence of anxiety disorders in opiate addicts.
Collapse
Affiliation(s)
- Chaoliang Gu
- Department of Physiology, College of Medicine, Nanhua University, Hengyang, Hunan, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|