1
|
Meng R, Li Y, Yang X, Cheng Y, Xu M, Zhou L, Wu C, Yu S, Huang W, Wang T, Zhang Q. Polyphenol Mediated Assembly: Tailored Nano-Dredger Unblocks Axonal Autophagosomes Retrograde Transport Traffic Jam for Accelerated Alzheimer's Waste Clearance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413614. [PMID: 39686827 DOI: 10.1002/adma.202413614] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/01/2024] [Indexed: 12/18/2024]
Abstract
Clear-cut evidence has linked defective autophagy to Alzheimer's disease (AD). Recent studies underscore a unique hurdle in AD neuronal autophagy: impaired retrograde axonal transport of autophagosomes, potent enough to induce autophagic stress and neurodegeneration. Nonetheless, pertinent therapy is unavailable. Here, a novel combinational therapy composed of siROCK2 and lithospermic acid B (LA) is introduced, tailored to dredge blocked axonal autophagy by multi-mitigating microtubule disruption, ATP depletion, oxidative stress, and autophagy initiation impediments in AD. Leveraging the recent discovery of multi-interactions between polyphenol LA and siRNA, ε-Poly-L-lysine, and anionic lipid nanovacuoles, LA and siROCK2 are successfully co-loaded into a fresh nano-drug delivery system, LIP@PL-LA/siRC, via a ratio-flexible and straightforward fabrication process. Further modification with the TPL peptide onto LIP@PL-LA/siRC creates a brain-neuron targeted, biocompatible, and pluripotent nanomedicine, named "Nano-dredger" (T-LIP@PL-LA/siRC). Nano-dredger efficiently accelerates axonal retrograde transport and lysosomal degradation of autophagosomes, thereby facilitating the clearance of neurotoxic proteins, improving neuronal complexity, and alleviating memory defects in 3×Tg-AD transgenic mice. This study provides a fresh and flexible polyphenol/siRNA co-delivery paradigm and furnishes conceptual proof that dredging axonal autophagy represents a promising AD therapeutic avenue.
Collapse
Affiliation(s)
- Ran Meng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Yixian Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Xiyu Yang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Yunlong Cheng
- Shanxi Academy of Traditional Chinese Medicine, Xi'an, 710003, P. R. China
| | - Minjun Xu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - LingLing Zhou
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Chengqin Wu
- Guangzhou CSR Biotech Co. Ltd, Guangzhou, 510700, P. R. China
| | - Shuai Yu
- Guangzhou CSR Biotech Co. Ltd, Guangzhou, 510700, P. R. China
| | - Wenyi Huang
- Guangzhou CSR Biotech Co. Ltd, Guangzhou, 510700, P. R. China
| | - Tianying Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Qizhi Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| |
Collapse
|
2
|
Verma H, Kaur S, Kaur S, Gangwar P, Dhiman M, Mantha AK. Role of Cytoskeletal Elements in Regulation of Synaptic Functions: Implications Toward Alzheimer's Disease and Phytochemicals-Based Interventions. Mol Neurobiol 2024; 61:8320-8343. [PMID: 38491338 DOI: 10.1007/s12035-024-04053-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/13/2024] [Indexed: 03/18/2024]
Abstract
Alzheimer's disease (AD), a multifactorial disease, is characterized by the accumulation of neurofibrillary tangles (NFTs) and amyloid beta (Aβ) plaques. AD is triggered via several factors like alteration in cytoskeletal proteins, a mutation in presenilin 1 (PSEN1), presenilin 2 (PSEN2), amyloid precursor protein (APP), and post-translational modifications (PTMs) in the cytoskeletal elements. Owing to the major structural and functional role of cytoskeletal elements, like the organization of axon initial segmentation, dendritic spines, synaptic regulation, and delivery of cargo at the synapse; modulation of these elements plays an important role in AD pathogenesis; like Tau is a microtubule-associated protein that stabilizes the microtubules, and it also causes inhibition of nucleo-cytoplasmic transportation by disrupting the integrity of nuclear pore complex. One of the major cytoskeletal elements, actin and its dynamics, regulate the dendritic spine structure and functions; impairments have been documented towards learning and memory defects. The second major constituent of these cytoskeletal elements, microtubules, are necessary for the delivery of the cargo, like ion channels and receptors at the synaptic membranes, whereas actin-binding protein, i.e., Cofilin's activation form rod-like structures, is involved in the formation of paired helical filaments (PHFs) observed in AD. Also, the glial cells rely on their cytoskeleton to maintain synaptic functionality. Thus, making cytoskeletal elements and their regulation in synaptic structure and function as an important aspect to be focused for better management and targeting AD pathology. This review advocates exploring phytochemicals and Ayurvedic plant extracts against AD by elucidating their neuroprotective mechanisms involving cytoskeletal modulation and enhancing synaptic plasticity. However, challenges include their limited bioavailability due to the poor solubility and the limited potential to cross the blood-brain barrier (BBB), emphasizing the need for targeted strategies to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Harkomal Verma
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Village Ghudda, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Sharanjot Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Village Ghudda, Bathinda, Punjab, India
| | - Sukhchain Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Village Ghudda, Bathinda, Punjab, India
| | - Prabhakar Gangwar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Village Ghudda, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Village Ghudda, Bathinda, Punjab, India
| | - Anil Kumar Mantha
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Village Ghudda, VPO - Ghudda, Bathinda, 151 401, Punjab, India.
| |
Collapse
|
3
|
Lee P, Kim J, Choi IY, Pal R, Hui D, Marcario JK, Michaelis ML, Michaelis EK. Increases in anterograde axoplasmic transport in neurons of the hyper-glutamatergic, glutamate dehydrogenase 1 (Glud1) transgenic mouse: Effects of glutamate receptors on transport. J Neurochem 2024; 168:719-727. [PMID: 38124277 PMCID: PMC11102336 DOI: 10.1111/jnc.16035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
The excitatory neurotransmitter glutamate has a role in neuronal migration and process elongation in the central nervous system (CNS). The effects of chronic glutamate hyperactivity on vesicular and protein transport within CNS neurons, that is, processes necessary for neurite growth, have not been examined previously. In this study, we measured the effects of lifelong hyperactivity of glutamate neurotransmission on axoplasmic transport in CNS neurons. We compared wild-type (wt) to transgenic (Tg) mice over-expressing the glutamate dehydrogenase gene Glud1 in CNS neurons and exhibiting increases in glutamate transmitter formation, release, and synaptic activation in brain throughout the lifespan. We found that Glud1 Tg as compared with wt mice exhibited increases in the rate of anterograde axoplasmic transport in neurons of the hippocampus measured in brain slices ex vivo, and in olfactory neurons measured in vivo. We also showed that the in vitro pharmacologic activation of glutamate synapses in wt mice led to moderate increases in axoplasmic transport, while exposure to selective inhibitors of ion channel forming glutamate receptors very significantly suppressed anterograde transport, suggesting a link between synaptic glutamate receptor activation and axoplasmic transport. Finally, axoplasmic transport in olfactory neurons of Tg mice in vivo was partially inhibited following 14-day intake of ethanol, a known suppressor of axoplasmic transport and of glutamate neurotransmission. The same was true for transport in hippocampal neurons in slices from Glud1 Tg mice exposed to ethanol for 2 h ex vivo. In conclusion, endogenous activity at glutamate synapses regulates and glutamate synaptic hyperactivity increases intraneuronal transport rates in CNS neurons.
Collapse
Affiliation(s)
- Phil Lee
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, Kansas 66160 USA
- Department of Radiology, University of Kansas Medical Center, Kansas City, Kansas 66160 USA
| | - Jieun Kim
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, Kansas 66160 USA
| | - In-Young Choi
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, Kansas 66160 USA
- Department of Radiology, University of Kansas Medical Center, Kansas City, Kansas 66160 USA
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas 66160 USA
| | - Ranu Pal
- Higuchi Biosciences Center, University of Kansas, Lawrence, KS 66047, USA
| | - Dongwei Hui
- Higuchi Biosciences Center, University of Kansas, Lawrence, KS 66047, USA
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Joanne K. Marcario
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, Kansas 66160 USA
| | - Mary L. Michaelis
- Higuchi Biosciences Center, University of Kansas, Lawrence, KS 66047, USA
| | - Elias K. Michaelis
- Higuchi Biosciences Center, University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
4
|
Velu L, Pellerin L, Julian A, Paccalin M, Giraud C, Fayolle P, Guillevin R, Guillevin C. Early rise of glutamate-glutamine levels in mild cognitive impairment: Evidence for emerging excitotoxicity. J Neuroradiol 2024; 51:168-175. [PMID: 37777087 DOI: 10.1016/j.neurad.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/16/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Use proton magnetic resonance spectroscopy (1H-MRS) non invasive technique to assess the modifications of glutamate-glutamine (Glx) and gammaaminobutyric acid (GABA) brain levels in patients reporting a cognitive complain METHODS: Posterior cingular cortex 1H-MRS spectra of 46 patients (19 male, 27 female) aged 57 to 87 years (mean : 73.32 ± 7.33 years) with a cognitive complaint were examined with a MEGA PRESS sequence at 3T, and compounds Glutamateglutamine (Glx), GABA, Creatine (Cr) and NAA were measured. From this data the metabolite ratios Glx/Cr, GABA/Cr and NAA/Cr were calculated. In addition, all patient performed the Mini Mental State Evaluation (MMSE) and 2 groups were realized with the clinical threshold of 24. RESULTS 16 patients with MMSE 〈 24 and 30 patients with MMSE 〉 24. Significant increase of Glx/Cr in PCC of patients with MMSE 〈 24 compared to patients with MMSE 〉 24. Moreover, GABA/Cr ratio exhibited a trend for a decrease in PCC between the two groups, while they showed a significant decrease NAA/Cr ratio. CONCLUSION Our results concerning Glx are in agreement with a physiopathological hypothesis involving a biphasic variation of glutamate levels associated with excitotoxicity, correlated with the clinical evolution of the disease. These observations suggest that MRS assessment of glutamate levels could be helpful for both diagnosis and classification of cognitive impairment in stage.
Collapse
Affiliation(s)
- Laura Velu
- University Hospital center of Poitiers, Department of Imaging, France
| | - Luc Pellerin
- University of Poitiers and University Hospital center of Poitiers, France
| | - Adrien Julian
- University Hospital Center of Poitiers, Department of neurology, France
| | - Marc Paccalin
- University Hospital Center of Poitiers, Department of neurology, France
| | - Clément Giraud
- University Hospital center of Poitiers, Department of Imaging, France
| | - Pierre Fayolle
- University Hospital center of Poitiers, Department of Imaging, France
| | - Rémy Guillevin
- University Hospital center of Poitiers, Department of Imaging, France
| | - Carole Guillevin
- University Hospital center of Poitiers, Department of Imaging, France.
| |
Collapse
|
5
|
Pathophysiology of neurodegenerative diseases: An interplay among axonal transport failure, oxidative stress, and inflammation? Semin Immunol 2022; 59:101628. [PMID: 35779975 PMCID: PMC9807734 DOI: 10.1016/j.smim.2022.101628] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/09/2022] [Accepted: 06/13/2022] [Indexed: 01/15/2023]
Abstract
Neurodegenerative diseases (NDs) are heterogeneous neurological disorders characterized by a progressive loss of selected neuronal populations. A significant risk factor for most NDs is aging. Considering the constant increase in life expectancy, NDs represent a global public health burden. Axonal transport (AT) is a central cellular process underlying the generation and maintenance of neuronal architecture and connectivity. Deficits in AT appear to be a common thread for most, if not all, NDs. Neuroinflammation has been notoriously difficult to define in relation to NDs. Inflammation is a complex multifactorial process in the CNS, which varies depending on the disease stage. Several lines of evidence suggest that AT defect, axonopathy and neuroinflammation are tightly interlaced. However, whether these impairments play a causative role in NDs or are merely a downstream effect of neuronal degeneration remains unsettled. We still lack reliable information on the temporal relationship between these pathogenic mechanisms, although several findings suggest that they may occur early during ND pathophysiology. This article will review the latest evidence emerging on whether the interplay between AT perturbations and some aspects of CNS inflammation can participate in ND etiology, analyze their potential as therapeutic targets, and the urge to identify early surrogate biomarkers.
Collapse
|
6
|
Ghosh A, Singh S. Regulation Of Microtubule: Current Concepts And Relevance To Neurodegenerative Diseases. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:656-679. [PMID: 34323203 DOI: 10.2174/1871527320666210728144043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/05/2021] [Accepted: 02/23/2021] [Indexed: 11/22/2022]
Abstract
Neurodevelopmental disorders (NDDs) are abnormalities linked to neuronal structure and irregularities associated with the proliferation of cells, transportation, and differentiation. NDD also involves synaptic circuitry and neural network alterations known as synaptopathies. Microtubules (MTs) and MTs-associated proteins help to maintain neuronal health as well as their development. The microtubular dynamic structure plays a crucial role in the division of cells and forms mitotic spindles, thus take part in initiating stages of differentiation and polarization for various types of cells. The MTs also take part in the cellular death but MT-based cellular degenerations are not yet well excavated. In the last few years, studies have provided the protagonist activity of MTs in neuronal degeneration. In this review, we largely engrossed our discussion on the change of MT cytoskeleton structure, describing their organization, dynamics, transportation, and their failure causing NDDs. At end of this review, we are targeting the therapeutic neuroprotective strategies on clinical priority and also try to discuss the clues for the development of new MT-based therapy as a new pharmacological intervention. This will be a new potential site to block not only neurodegeneration but also promotes the regeneration of neurons.
Collapse
Affiliation(s)
- Anirban Ghosh
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga-142001 Punjab, India
| | - Shamsher Singh
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga-142001 Punjab, India
| |
Collapse
|
7
|
Sublingual AKBA Exerts Antidepressant Effects in the Aβ-Treated Mouse Model. Biomolecules 2021; 11:biom11050686. [PMID: 34063630 PMCID: PMC8170916 DOI: 10.3390/biom11050686] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
The 3-O-acetyl-11-keto-β-boswellic acid (AKBA) is the most active compound of Boswellia serrata proposed for treating neurodegenerative disorders, including Alzheimer’s disease (AD), characterized in its early phase by alteration in mood. Accordingly, we have previously demonstrated that an intracerebroventricular injection of soluble amyloid beta 1-42 (Aβ) peptide evokes a depressive-like phenotype in rats. We tested the protective effects of AKBA in the mouse model of an Aβ-induced depressive-like phenotype. We evaluated the depressive-like behavior by using the tail suspension test (TST) and the splash test (ST). Behavioral analyses were accompanied by neurochemical quantifications, such as glutamate (GLU), kynurenine (KYN) and monoamines, and by biochemical measurements, such as glial fibrillary acid protein (GFAP), CD11b and nuclear factor kappa B (NF-kB), in mice prefrontal cortex (PFC) and hippocampus (HIPP). AKBA prevented the depressive-like behaviors induced by Aβ administration, since we recorded a reduction in latency to initiate self-care and total time spent to perform self-care in the ST and reduced time of immobility in the TST. Likewise, the increase in GLU and KYN levels in PFC and HIPP induced by the peptide injection were reverted by AKBA administration, as well as the displayed increase in levels of GFAP and NF-kB in both PFC and HIPP, but not in CD11b. Therefore, AKBA might represent a food supplement suitable as an adjuvant for therapy of depression in early-stage AD.
Collapse
|
8
|
Olajide OJ, Suvanto ME, Chapman CA. Molecular mechanisms of neurodegeneration in the entorhinal cortex that underlie its selective vulnerability during the pathogenesis of Alzheimer's disease. Biol Open 2021; 10:bio056796. [PMID: 33495355 PMCID: PMC7860115 DOI: 10.1242/bio.056796] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The entorhinal cortex (EC) is a vital component of the medial temporal lobe, and its contributions to cognitive processes and memory formation are supported through its extensive interconnections with the hippocampal formation. During the pathogenesis of Alzheimer's disease (AD), many of the earliest degenerative changes are seen within the EC. Neurodegeneration in the EC and hippocampus during AD has been clearly linked to impairments in memory and cognitive function, and a growing body of evidence indicates that molecular and functional neurodegeneration within the EC may play a primary role in cognitive decline in the early phases of AD. Defining the mechanisms underlying molecular neurodegeneration in the EC is crucial to determining its contributions to the pathogenesis of AD. Surprisingly few studies have focused on understanding the mechanisms of molecular neurodegeneration and selective vulnerability within the EC. However, there have been advancements indicating that early dysregulation of cellular and molecular signaling pathways in the EC involve neurodegenerative cascades including oxidative stress, neuroinflammation, glia activation, stress kinases activation, and neuronal loss. Dysfunction within the EC can impact the function of the hippocampus, which relies on entorhinal inputs, and further degeneration within the hippocampus can compound this effect, leading to severe cognitive disruption. This review assesses the molecular and cellular mechanisms underlying early degeneration in the EC during AD. These mechanisms may underlie the selective vulnerability of neuronal subpopulations in this brain region to the disease development and contribute both directly and indirectly to cognitive loss.This paper has an associated Future Leader to Watch interview with the first author of the article.
Collapse
Affiliation(s)
- Olayemi Joseph Olajide
- Division of Neurobiology, Department of Anatomy, University of Ilorin, Ilorin, Nigeria, PMB 1515
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada H4B 1R6
| | - Marcus E Suvanto
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada H4B 1R6
| | - Clifton Andrew Chapman
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada H4B 1R6
| |
Collapse
|
9
|
Acute Effects of Two Different Species of Amyloid- β on Oscillatory Activity and Synaptic Plasticity in the Commissural CA3-CA1 Circuit of the Hippocampus. Neural Plast 2021; 2020:8869526. [PMID: 33381164 PMCID: PMC7765721 DOI: 10.1155/2020/8869526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 11/29/2022] Open
Abstract
Recent evidence indicates that soluble amyloid-β (Aβ) species induce imbalances in excitatory and inhibitory transmission, resulting in neural network functional impairment and cognitive deficits during early stages of Alzheimer's disease (AD). To evaluate the in vivo effects of two soluble Aβ species (Aβ25-35 and Aβ1-40) on commissural CA3-to-CA1 (cCA3-to-CA1) synaptic transmission and plasticity, and CA1 oscillatory activity, we used acute intrahippocampal microinjections in adult anaesthetized male Wistar rats. Soluble Aβ microinjection increased cCA3-to-CA1 synaptic variability without significant changes in synaptic efficiency. High-frequency CA3 stimulation was rendered inefficient by soluble Aβ intrahippocampal injection to induce long-term potentiation and to enhance synaptic variability in CA1, contrasting with what was observed in vehicle-injected subjects. Although soluble Aβ microinjection significantly increased the relative power of γ-band and ripple oscillations and significantly shifted the average vector of θ-to-γ phase-amplitude coupling (PAC) in CA1, it prevented θ-to-γ PAC shift induced by high-frequency CA3 stimulation, opposite to what was observed in vehicle-injected animals. These results provide further evidence that soluble Aβ species induce synaptic dysfunction causing abnormal synaptic variability, impaired long-term plasticity, and deviant oscillatory activity, leading to network activity derailment in the hippocampus.
Collapse
|
10
|
Findley CA, Bartke A, Hascup KN, Hascup ER. Amyloid Beta-Related Alterations to Glutamate Signaling Dynamics During Alzheimer's Disease Progression. ASN Neuro 2020; 11:1759091419855541. [PMID: 31213067 PMCID: PMC6582288 DOI: 10.1177/1759091419855541] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Alzheimer’s disease (AD) ranks sixth on the Centers for Disease Control and Prevention Top 10 Leading Causes of Death list for 2016, and the Alzheimer’s Association attributes 60% to 80% of dementia cases as AD related. AD pathology hallmarks include accumulation of senile plaques and neurofibrillary tangles; however, evidence supports that soluble amyloid beta (Aβ), rather than insoluble plaques, may instigate synaptic failure. Soluble Aβ accumulation results in depression of long-term potentiation leading to cognitive deficits commonly characterized in AD. The mechanisms through which Aβ incites cognitive decline have been extensively explored, with a growing body of evidence pointing to modulation of the glutamatergic system. The period of glutamatergic hypoactivation observed alongside long-term potentiation depression and cognitive deficits in later disease stages may be the consequence of a preceding period of increased glutamatergic activity. This review will explore the Aβ-related changes to the tripartite glutamate synapse resulting in altered cell signaling throughout disease progression, ultimately culminating in oxidative stress, synaptic dysfunction, and neuronal loss.
Collapse
Affiliation(s)
- Caleigh A Findley
- 1 Department of Neurology, Center for Alzheimer's Disease and Related Disorders, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, USA.,2 Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Andrzej Bartke
- 3 Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Kevin N Hascup
- 1 Department of Neurology, Center for Alzheimer's Disease and Related Disorders, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, USA.,2 Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA.,4 Department of Molecular Biology, Microbiology & Biochemistry, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Erin R Hascup
- 1 Department of Neurology, Center for Alzheimer's Disease and Related Disorders, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, USA.,2 Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
11
|
Venkatesh K, Mathew A, Koushika SP. Role of actin in organelle trafficking in neurons. Cytoskeleton (Hoboken) 2020; 77:97-109. [DOI: 10.1002/cm.21580] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/14/2019] [Accepted: 11/05/2019] [Indexed: 01/29/2023]
Affiliation(s)
- Keertana Venkatesh
- Department of Biological SciencesTata Institute of Fundamental Research Mumbai India
| | - Amal Mathew
- Department of Biological SciencesTata Institute of Fundamental Research Mumbai India
| | - Sandhya P. Koushika
- Department of Biological SciencesTata Institute of Fundamental Research Mumbai India
| |
Collapse
|
12
|
Shamsher E, Davis BM, Yap TE, Guo L, Cordeiro MF. Neuroprotection in glaucoma: old concepts, new ideas. EXPERT REVIEW OF OPHTHALMOLOGY 2019. [DOI: 10.1080/17469899.2019.1604222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Ehtesham Shamsher
- Department of Visual Neuroscience, University College London Institute of Ophthalmology, London, UK
| | - Benjamin M. Davis
- Department of Visual Neuroscience, University College London Institute of Ophthalmology, London, UK
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London
| | - Timothy E. Yap
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London
- The Western Eye Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Li Guo
- Department of Visual Neuroscience, University College London Institute of Ophthalmology, London, UK
| | - Maria Francesca Cordeiro
- Department of Visual Neuroscience, University College London Institute of Ophthalmology, London, UK
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London
- The Western Eye Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
13
|
Li H, Liu CC, Zheng H, Huang TY. Amyloid, tau, pathogen infection and antimicrobial protection in Alzheimer's disease -conformist, nonconformist, and realistic prospects for AD pathogenesis. Transl Neurodegener 2018; 7:34. [PMID: 30603085 PMCID: PMC6306008 DOI: 10.1186/s40035-018-0139-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/02/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a fatal disease that threatens the quality of life of an aging population at a global scale. Various hypotheses on the etiology of AD have been developed over the years to guide efforts in search of therapeutic strategies. MAIN BODY In this review, we focus on four AD hypotheses currently relevant to AD onset: the prevailing amyloid cascade hypothesis, the well-recognized tau hypothesis, the increasingly popular pathogen (viral infection) hypothesis, and the infection-related antimicrobial protection hypothesis. In briefly reviewing the main evidence supporting each hypothesis and discussing the questions that need to be addressed, we hope to gain a better understanding of the complicated multi-layered interactions in potential causal and/or risk factors in AD pathogenesis. As a defining feature of AD, the existence of amyloid deposits is likely fundamental to AD onset but is insufficient to wholly reproduce many complexities of the disorder. A similar belief is currently also applied to hyperphosphorylated tau aggregates within neurons, where tau has been postulated to drive neurodegeneration in the presence of pre-existing Aβ plaques in the brain. Although infection of the central nerve system by pathogens such as viruses may increase AD risk, it is yet to be determined whether this phenomenon is applicable to all cases of sporadic AD and whether it is a primary trigger for AD onset. Lastly, the antimicrobial protection hypothesis provides insight into a potential physiological role for Aβ peptides, but how Aβ/microbial interactions affect AD pathogenesis during aging awaits further validation. Nevertheless, this hypothesis cautions potential adverse effects in Aβ-targeting therapies by hindering potential roles for Aβ in anti-viral protection. CONCLUSION AD is a multi-factor complex disorder, which likely requires a combinatorial therapeutic approach to successfully slow or reduce symptomatic memory decline. A better understanding of how various causal and/or risk factors affecting disease onset and progression will enhance the likelihood of conceiving effective treatment paradigms, which may involve personalized treatment strategies for individual patients at varying stages of disease progression.
Collapse
Affiliation(s)
- Hongmei Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX USA
| | - Timothy Y. Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA USA
| |
Collapse
|
14
|
Region-specific depletion of synaptic mitochondria in the brains of patients with Alzheimer's disease. Acta Neuropathol 2018; 136:747-757. [PMID: 30191401 PMCID: PMC6208730 DOI: 10.1007/s00401-018-1903-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 01/04/2023]
Abstract
Of all of the neuropathological changes observed in Alzheimer’s disease (AD), the loss of synapses correlates most strongly with cognitive decline. The precise mechanisms of synapse degeneration in AD remain unclear, although strong evidence indicates that pathological forms of both amyloid beta and tau contribute to synaptic dysfunction and loss. Synaptic mitochondria play a potentially important role in synapse degeneration in AD. Many studies in model systems indicate that amyloid beta and tau both impair mitochondrial function and impair transport of mitochondria to synapses. To date, much less is known about whether synaptic mitochondria are affected in human AD brain. Here, we used transmission electron microscopy to examine synapses and synaptic mitochondria in two cortical regions (BA41/42 and BA46) from eight AD and nine control cases. In this study, we observed 3000 synapses and find region-specific differences in synaptic mitochondria in AD cases compared to controls. In BA41/42, we observe a fourfold reduction in the proportion of presynaptic terminals that contain multiple mitochondria profiles in AD. We also observe ultrastructural changes including abnormal mitochondrial morphology, the presence of multivesicular bodies in synapses, and reduced synapse apposition length near plaques in AD. Together, our data show region-specific changes in synaptic mitochondria in AD and support the idea that the transport of mitochondria to presynaptic terminals or synaptic mitochondrial dynamics may be altered in AD.
Collapse
|
15
|
Ovsepian SV, O'Leary VB, Zaborszky L, Ntziachristos V, Dolly JO. Amyloid Plaques of Alzheimer's Disease as Hotspots of Glutamatergic Activity. Neuroscientist 2018; 25:288-297. [PMID: 30051750 DOI: 10.1177/1073858418791128] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Deposition of amyloid plaques in limbic and associative cortices is amongst the most recognized histopathologic hallmarks of Alzheimer's disease. Despite decades of research, there is a lack of consensus over the impact of plaques on neuronal function, with their role in cognitive decline and memory loss undecided. Evidence has emerged suggesting complex and localized axonal pathology around amyloid plaques, with a significant fraction of swellings and dystrophies becoming enriched with putative synaptic vesicles and presynaptic proteins normally colocalized at hotspots of transmitter release. In the absence of hallmark active zone proteins and postsynaptic receptive elements, the axonal swellings surrounding amyloid plaques have been suggested as sites for ectopic release of glutamate, which under reduced clearance can lead to elevated local excitatory drive. Throughout this review, we consider the emerging data suggestive of amyloid plaques as hotspots of compulsive glutamatergic activity. Evidence for local and long-range effects of nonsynaptic glutamate is discussed in the context of circuit dysfunctions and neurodegenerative changes of Alzheimer's disease.
Collapse
Affiliation(s)
- Saak V Ovsepian
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Munich School of Bioengineering, Technical University Munich, Munich, Germany.,International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
| | - Valerie B O'Leary
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers, the State University of New Jersey, Newark, NJ, USA
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Munich School of Bioengineering, Technical University Munich, Munich, Germany
| | - J Oliver Dolly
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
| |
Collapse
|
16
|
Adalbert R, Milde S, Durrant C, Ando K, Stygelbout V, Yilmaz Z, Gould S, Brion JP, Coleman MP. Interaction between a MAPT variant causing frontotemporal dementia and mutant APP affects axonal transport. Neurobiol Aging 2018; 68:68-75. [PMID: 29729423 PMCID: PMC5998378 DOI: 10.1016/j.neurobiolaging.2018.03.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/27/2018] [Accepted: 03/29/2018] [Indexed: 01/28/2023]
Abstract
In Alzheimer's disease, many indicators point to a central role for poor axonal transport, but the potential for stimulating axonal transport to alleviate the disease remains largely untested. Previously, we reported enhanced anterograde axonal transport of mitochondria in 8- to 11-month-old MAPTP301L knockin mice, a genetic model of frontotemporal dementia with parkinsonism-17T. In this study, we further characterized the axonal transport of mitochondria in younger MAPTP301L mice crossed with the familial Alzheimer's disease model, TgCRND8, aiming to test whether boosting axonal transport in young TgCRND8 mice can alleviate axonal swelling. We successfully replicated the enhancement of anterograde axonal transport in young MAPTP301L/P301L knockin animals. Surprisingly, we found that in the presence of the amyloid precursor protein mutations, MAPTP301L/P3101L impaired anterograde axonal transport. The numbers of plaque-associated axonal swellings or amyloid plaques in TgCRND8 brains were unaltered. These findings suggest that amyloid-β promotes an action of mutant tau that impairs axonal transport. As amyloid-β levels increase with age even without amyloid precursor protein mutation, we suggest that this rise could contribute to age-related decline in frontotemporal dementia.
Collapse
Affiliation(s)
- Robert Adalbert
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK; John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Stefan Milde
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Claire Durrant
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK; John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Kunie Ando
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussells, Belgium
| | - Virginie Stygelbout
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussells, Belgium
| | - Zehra Yilmaz
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussells, Belgium
| | - Stacey Gould
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK; John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussells, Belgium
| | - Michael P Coleman
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK; John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
17
|
Ohgomori T, Yamasaki R, Kira JI, Jinno S. Upregulation of Vesicular Glutamate Transporter 2 and STAT3 Activation in the Spinal Cord of Mice Receiving 3,3'-Iminodipropionitrile. Neurotox Res 2017; 33:768-780. [PMID: 28965218 DOI: 10.1007/s12640-017-9822-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/14/2017] [Accepted: 09/20/2017] [Indexed: 12/12/2022]
Abstract
Chronic administration of 3,3'-iminodipropionitrile (IDPN) causes axonal impairment. Although controversy still remains, it has been suggested that IDPN intoxication mimics the axonopathy of amyotrophic lateral sclerosis (ALS). Interestingly, recent studies including our own showed that signal transducer and activator of transcription 3 (STAT3) in spinal α-motoneurons was activated in both IDPN-treated mice and SOD1 G93A mice, a genetic model of familial ALS. Because activation of STAT3 occurs in response to various stimuli, such as axonal injury, ischemia, and excessive glutamate, here we focused on a potential link between phosphorylated STAT3 (pSTAT3, an active form) and vesicular glutamate transporter 2 (VGluT2, a regulator of glutamate storage and release) in IDPN-treated mice and SOD1 G93A mice. Impairment of axonal transport was confirmed by western blot analysis: the expression levels of phosphorylated neurofilament H were elevated in both models. As shown in SOD1 G93A mice, the expression frequencies of VGluT2 in synaptophysin-positive (SYP)+ presynaptic terminals around spinal α-motoneurons were significantly higher in IDPN-treated mice than in vehicle controls. The coverages of spinal α-motoneurons by VGluT2+ presynaptic terminals were more elevated around pSTAT3+ cells than around pSTAT3- cells in IDPN-treated mice and SOD1 G93A mice. Considering that excessive glutamate is shown to be involved in axonal impairment and STAT3 activation, the present results suggest that IDPN-induced upregulation of VGluT2 may result in an increase in glutamate, which might cause axonopathy and induction of pSTAT3. The link between upregulation of VGluT2 and activation of STAT3 via glutamate may represent a common pathological feature of IDPN-treated mice and SOD1 G93A mice.
Collapse
Affiliation(s)
- Tomohiro Ohgomori
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
18
|
The Physiological and Pathological Implications of the Formation of Hydrogels, with a Specific Focus on Amyloid Polypeptides. Biomolecules 2017; 7:biom7040070. [PMID: 28937634 PMCID: PMC5745453 DOI: 10.3390/biom7040070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/30/2017] [Accepted: 09/18/2017] [Indexed: 02/07/2023] Open
Abstract
Hydrogels are water-swollen and viscoelastic three-dimensional cross-linked polymeric network originating from monomer polymerisation. Hydrogel-forming polypeptides are widely found in nature and, at a cellular and organismal level, they provide a wide range of functions for the organism making them. Amyloid structures, arising from polypeptide aggregation, can be damaging or beneficial to different types of organisms. Although the best-known amyloids are those associated with human pathologies, this underlying structure is commonly used by higher eukaryotes to maintain normal cellular activities, and also by microbial communities to promote their survival and growth. Amyloidogenesis occurs by nucleation-dependent polymerisation, which includes several species (monomers, nuclei, oligomers, and fibrils). Oligomers of pathological amyloids are considered the toxic species through cellular membrane perturbation, with the fibrils thought to represent a protective sink for toxic species. However, both functional and disease-associated amyloids use fibril cross-linking to form hydrogels. The properties of amyloid hydrogels can be exploited by organisms to fulfil specific physiological functions. Non-physiological hydrogelation by pathological amyloids may provide additional toxic mechanism(s), outside of membrane toxicity by oligomers, such as physical changes to the intracellular and extracellular environments, with wide-spread consequences for many structural and dynamic processes, and overall effects on cell survival.
Collapse
|
19
|
Axonal transport deficits in multiple sclerosis: spiraling into the abyss. Acta Neuropathol 2017; 134:1-14. [PMID: 28315956 PMCID: PMC5486629 DOI: 10.1007/s00401-017-1697-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 12/16/2022]
Abstract
The transport of mitochondria and other cellular components along the axonal microtubule cytoskeleton plays an essential role in neuronal survival. Defects in this system have been linked to a large number of neurological disorders. In multiple sclerosis (MS) and associated models such as experimental autoimmune encephalomyelitis (EAE), alterations in axonal transport have been shown to exist before neurodegeneration occurs. Genome-wide association (GWA) studies have linked several motor proteins to MS susceptibility, while neuropathological studies have shown accumulations of proteins and organelles suggestive for transport deficits. A reduced effectiveness of axonal transport can lead to neurodegeneration through inhibition of mitochondrial motility, disruption of axoglial interaction or prevention of remyelination. In MS, demyelination leads to dysregulation of axonal transport, aggravated by the effects of TNF-alpha, nitric oxide and glutamate on the cytoskeleton. The combined effect of all these pathways is a vicious cycle in which a defective axonal transport system leads to an increase in ATP consumption through loss of membrane organization and a reduction in available ATP through inhibition of mitochondrial transport, resulting in even further inhibition of transport. The persistent activity of this positive feedback loop contributes to neurodegeneration in MS.
Collapse
|
20
|
Brahic M, Bousset L, Bieri G, Melki R, Gitler AD. Axonal transport and secretion of fibrillar forms of α-synuclein, Aβ42 peptide and HTTExon 1. Acta Neuropathol 2016; 131:539-48. [PMID: 26820848 PMCID: PMC4789229 DOI: 10.1007/s00401-016-1538-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 01/12/2016] [Accepted: 01/16/2016] [Indexed: 12/04/2022]
Abstract
Accruing evidence suggests that prion-like behavior of fibrillar forms of α-synuclein, β-amyloid peptide and mutant huntingtin are responsible for the spread of the lesions that characterize Parkinson disease, Alzheimer disease and Huntington disease, respectively. It is unknown whether these distinct protein assemblies are transported within and between neurons by similar or distinct mechanisms. It is also unclear if neuronal death or injury is required for neuron-to-neuron transfer. To address these questions, we used mouse primary cortical neurons grown in microfluidic devices to measure the amounts of α-synuclein, Aβ42 and HTTExon1 fibrils transported by axons in both directions (anterograde and retrograde), as well as to examine the mechanism of their release from axons after anterograde transport. We observed that the three fibrils were transported in both anterograde and retrograde directions but with strikingly different efficiencies. The amount of Aβ42 fibrils transported was ten times higher than that of the other two fibrils. HTTExon1 was efficiently transported in the retrograde direction but only marginally in the anterograde direction. Finally, using neurons from two distinct mutant mouse strains whose axons are highly resistant to neurodegeneration (WldS and Sarm1−/−), we found that the three different fibrils were secreted by axons after anterograde transport, in the absence of axonal lysis, indicating that trans-neuronal spread can occur in intact healthy neurons. In summary, fibrils of α-synuclein, Aβ42 and HTTExon1 are all transported in axons but in directions and amounts that are specific of each fibril. After anterograde transport, the three fibrils were secreted in the medium in the absence of axon lysis. Continuous secretion could play an important role in the spread of pathology between neurons but may be amenable to pharmacological intervention.
Collapse
Affiliation(s)
- Michel Brahic
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305-5120, USA.
| | - Luc Bousset
- Paris-Saclay Institute of Neuroscience, CNRS, Gif-sur-Yvette, France
| | - Gregor Bieri
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305-5120, USA
- Neurosciences Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Ronald Melki
- Paris-Saclay Institute of Neuroscience, CNRS, Gif-sur-Yvette, France
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305-5120, USA
| |
Collapse
|
21
|
Protective effects of NMDA receptor antagonist, memantine, against senescence of PC12 cells: A possible role of nNOS and combined effects with donepezil. Exp Gerontol 2015; 72:109-16. [DOI: 10.1016/j.exger.2015.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/15/2015] [Accepted: 09/21/2015] [Indexed: 11/23/2022]
|
22
|
Gan KJ, Silverman MA. Imaging organelle transport in primary hippocampal neurons treated with amyloid-β oligomers. Methods Cell Biol 2015; 131:425-51. [PMID: 26794527 DOI: 10.1016/bs.mcb.2015.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We describe a strategy for fluorescent imaging of organelle transport in primary hippocampal neurons treated with amyloid-β (Aβ) peptides that cause Alzheimer's disease (AD). This method enables careful, rigorous analyses of axonal transport defects, which are implicated in AD and other neurodegenerative diseases. Moreover, we present and emphasize guidelines for investigating Aβ-induced mechanisms of axonal transport disruption in the absence of nonspecific, irreversible cellular toxicity. This approach should be accessible to most laboratories equipped with cell culture facilities and a standard fluorescent microscope and may be adapted to other cell types.
Collapse
Affiliation(s)
- Kathlyn J Gan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Michael A Silverman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada; Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada; Brain Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
23
|
Vossel KA, Xu JC, Fomenko V, Miyamoto T, Suberbielle E, Knox JA, Ho K, Kim DH, Yu GQ, Mucke L. Tau reduction prevents Aβ-induced axonal transport deficits by blocking activation of GSK3β. ACTA ACUST UNITED AC 2015; 209:419-33. [PMID: 25963821 PMCID: PMC4427789 DOI: 10.1083/jcb.201407065] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tau ablation, knockdown, and reconstitution studies in primary mouse neurons show that tau enables amyloid β oligomers to inhibit axonal transport through activation of GSK3β and through functions of tau that do not depend on its microtubule binding activity. Axonal transport deficits in Alzheimer’s disease (AD) are attributed to amyloid β (Aβ) peptides and pathological forms of the microtubule-associated protein tau. Genetic ablation of tau prevents neuronal overexcitation and axonal transport deficits caused by recombinant Aβ oligomers. Relevance of these findings to naturally secreted Aβ and mechanisms underlying tau’s enabling effect are unknown. Here we demonstrate deficits in anterograde axonal transport of mitochondria in primary neurons from transgenic mice expressing familial AD-linked forms of human amyloid precursor protein. We show that these deficits depend on Aβ1–42 production and are prevented by tau reduction. The copathogenic effect of tau did not depend on its microtubule binding, interactions with Fyn, or potential role in neuronal development. Inhibition of neuronal activity, N-methyl-d-aspartate receptor function, or glycogen synthase kinase 3β (GSK3β) activity or expression also abolished Aβ-induced transport deficits. Tau ablation prevented Aβ-induced GSK3β activation. Thus, tau allows Aβ oligomers to inhibit axonal transport through activation of GSK3β, possibly by facilitating aberrant neuronal activity.
Collapse
Affiliation(s)
- Keith A Vossel
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158 Department of Neurology, University of California, San Francisco, San Francisco, CA 94158
| | - Jordan C Xu
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158
| | - Vira Fomenko
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158
| | - Takashi Miyamoto
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158 Department of Neurology, University of California, San Francisco, San Francisco, CA 94158
| | - Elsa Suberbielle
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158 Department of Neurology, University of California, San Francisco, San Francisco, CA 94158
| | - Joseph A Knox
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158
| | - Kaitlyn Ho
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158
| | - Daniel H Kim
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158
| | - Gui-Qiu Yu
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158 Department of Neurology, University of California, San Francisco, San Francisco, CA 94158
| |
Collapse
|
24
|
Abstract
To create a presynaptic terminal, molecular signaling events must be orchestrated across a number of subcellular compartments. In the soma, presynaptic proteins need to be synthesized, packaged together, and attached to microtubule motors for shipment through the axon. Within the axon, transport of presynaptic packages is regulated to ensure that developing synapses receive an adequate supply of components. At individual axonal sites, extracellular interactions must be translated into intracellular signals that can incorporate mobile transport vesicles into the nascent presynaptic terminal. Even once the initial recruitment process is complete, the components and subsequent functionality of presynaptic terminals need to constantly be remodeled. Perhaps most remarkably, all of these processes need to be coordinated in space and time. In this review, we discuss how these dynamic cellular processes occur in neurons of the central nervous system in order to generate presynaptic terminals in the brain.
Collapse
Affiliation(s)
- Luke A D Bury
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Shasta L Sabo
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
25
|
Nieweg K, Andreyeva A, van Stegen B, Tanriöver G, Gottmann K. Alzheimer's disease-related amyloid-β induces synaptotoxicity in human iPS cell-derived neurons. Cell Death Dis 2015; 6:e1709. [PMID: 25837485 PMCID: PMC4650541 DOI: 10.1038/cddis.2015.72] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 02/13/2015] [Accepted: 02/17/2015] [Indexed: 12/22/2022]
Abstract
Human induced pluripotent stem cell (iPSC)-derived neurons have been proposed to be a highly valuable cellular model for studying the pathomechanisms of Alzheimer's disease (AD). Studies employing patient-specific human iPSCs as models of familial and sporadic forms of AD described elevated levels of AD-related amyloid-β (Aβ). However, none of the present AD iPSC studies could recapitulate the synaptotoxic actions of Aβ, which are crucial early events in a cascade that eventually leads to vast brain degeneration. Here we established highly reproducible, human iPSC-derived cortical cultures as a cellular model to study the synaptotoxic effects of Aβ. We developed a highly efficient immunopurification procedure yielding immature neurons that express markers of deep layer cortical pyramidal neurons and GABAergic interneurons. Upon long-term cultivation, purified cells differentiated into mature neurons exhibiting the generation of action potentials and excitatory glutamatergic and inhibitory GABAergic synapses. Most interestingly, these iPSC-derived human neurons were strongly susceptible to the synaptotoxic actions of Aβ. Application of Aβ for 8 days led to a reduction in the overall FM4–64 and vGlut1 staining of vesicles in neurites, indicating a loss of vesicle clusters. A selective analysis of presynaptic vesicle clusters on dendrites did not reveal a significant change, thus suggesting that Aβ impaired axonal vesicle clusters. In addition, electrophysiological patch-clamp recordings of AMPA receptor-mediated miniature EPSCs revealed an Aβ-induced reduction in amplitudes, indicating an impairment of postsynaptic AMPA receptors. A loss of postsynaptic AMPA receptor clusters was confirmed by immunocytochemical stainings for GluA1. Incubation with Aβ for 8 days did not result in a significant loss of neurites or cell death. In summary, we describe a highly reproducible cellular AD model based on human iPSC-derived cortical neurons that enables the mechanistic analysis of Aβ-induced synaptic pathomechanisms and the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- K Nieweg
- 1] Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany [2] Institute of Pharmacology and Clinical Pharmacy, Phillips University, Marburg, Germany
| | - A Andreyeva
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - B van Stegen
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - G Tanriöver
- Institute of Pharmacology and Clinical Pharmacy, Phillips University, Marburg, Germany
| | - K Gottmann
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
26
|
Liang W, Zhang W, Zhao S, Li Q, Liang H, Ceng R. Altered expression of neurofilament 200 and amyloid-β peptide (1-40) in a rat model of chronic cerebral hypoperfusion. Neurol Sci 2014; 36:707-12. [PMID: 25452168 DOI: 10.1007/s10072-014-2014-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 11/19/2014] [Indexed: 12/21/2022]
Abstract
Chronic cerebral hypoperfusion (CCH) is damaging to white matter in the brain. So far few studies have investigated long-term axonal damage following CCH. The aim of this study was to investigate the involvement of neurofilament 200 (NF200) and amyloid-β (1-40) [Aβ (1-40)] in the pathological mechanism for neuronal damage, and to quantify changes in their expression over time in a rat model of CCH. A rat model of CCH was established using partial bilateral ligation of the common carotid arteries. The extent of stenosis was verified by measuring the changes in cerebral blood flow after surgery. Histology was used to assess hippocampal neuronal pathology, and immunohistochemistry was used to quantify the expression of NF200 and Aβ (1-40) at 2, 4, and 12 weeks after surgery. The cerebral blood flow reduced to 33.89 ± 5.48 % at 2 weeks, 36.83 ± 4.63 % at 4 weeks and 51.44 ± 4.90 % at 12 weeks. Immunofluorescence staining of neuronal perikarya sections revealed a marked decrease in the population of surviving pyramidal cells in the hippocampal CA1 region, a significant up-regulation in the expression of Aβ (1-40), and a significant reduction in the expression of NF200 following CCH surgery. Moreover, this trend was increasingly obvious over time. Our data demonstrate that CCH leads to axonal damage over time. We also confirmed that the expression of Aβ (1-40) and NF200 may be useful biomarkers of axonal damage following CCH.
Collapse
Affiliation(s)
- Weihua Liang
- Department of Neurology, Xinqiao Hospital, The Third Military Medical University, No. 183 Xinqiao Street, Shapingba District, Chongqing, 400038, China,
| | | | | | | | | | | |
Collapse
|
27
|
Henriques AG, Oliveira JM, Carvalho LP, da Cruz E Silva OAB. Aβ Influences Cytoskeletal Signaling Cascades with Consequences to Alzheimer's Disease. Mol Neurobiol 2014; 52:1391-1407. [PMID: 25344315 DOI: 10.1007/s12035-014-8913-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/28/2014] [Indexed: 01/16/2023]
Abstract
Abnormal signal transduction events can impact upon the cytoskeleton, affecting the actin and microtubule networks with direct relevance to Alzheimer's disease (AD). Cytoskeletal anomalies, in turn, promote atypical neuronal responses, with consequences for cellular organization and function. Neuronal cytoskeletal modifications in AD include neurofibrillary tangles, which result from aggregates of hyperphosphorylated tau protein. The latter is a microtubule (MT)-binding protein, whose abnormal phosphorylation leads to MT instability and consequently provokes irregularities in the neuronal trafficking pathways. Early stages of AD are also characterized by synaptic dysfunction and loss of dendritic spines, which correlate with cognitive deficit and impaired brain function. Actin dynamics has a prominent role in maintaining spine plasticity and integrity, thus providing the basis for memory and learning processes. Hence, factors that disrupt both actin and MT network dynamics will compromise neuronal function and survival. The peptide Aβ is the major component of senile plaques and has been described as a pivotal mediator of neuronal dystrophy and synaptic loss in AD. Here, we review Aβ-mediated effects on both MT and actin networks and focus on the relevance of the elicited cytoskeletal signaling events targeted in AD pathology.
Collapse
Affiliation(s)
- Ana Gabriela Henriques
- Laboratório de Neurociências e Sinalização, Centro de Biologia Celular, SACS, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Joana Machado Oliveira
- Laboratório de Neurociências e Sinalização, Centro de Biologia Celular, SACS, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Liliana Patrícia Carvalho
- Laboratório de Neurociências e Sinalização, Centro de Biologia Celular, SACS, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Odete A B da Cruz E Silva
- Laboratório de Neurociências e Sinalização, Centro de Biologia Celular, SACS, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
28
|
Encalada SE, Goldstein LSB. Biophysical challenges to axonal transport: motor-cargo deficiencies and neurodegeneration. Annu Rev Biophys 2014; 43:141-69. [PMID: 24702007 DOI: 10.1146/annurev-biophys-051013-022746] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Axonal transport is indispensable for the distribution of vesicles, organelles, messenger RNAs (mRNAs), and signaling molecules along the axon. This process is mediated by kinesins and dyneins, molecular motors that bind to cargoes and translocate on microtubule tracks. Tight modulation of motor protein activity is necessary, but little is known about the molecules and mechanisms that regulate transport. Moreover, evidence suggests that transport impairments contribute to the initiation or progression of neurodegenerative diseases, or both, but the mechanisms by which motor activity is affected in disease are unclear. In this review, we discuss some of the physical and biophysical properties that influence motor regulation in healthy neurons. We further discuss the evidence for the role of transport in neurodegeneration, highlighting two pathways that may contribute to transport impairment-dependent disease: genetic mutations or variation, and protein aggregation. Understanding how and when transport parameters change in disease will help delineate molecular mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Sandra E Encalada
- Department of Molecular and Experimental Medicine, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037;
| | | |
Collapse
|
29
|
Axonal Transport Defects in Alzheimer’s Disease. Mol Neurobiol 2014; 51:1309-21. [DOI: 10.1007/s12035-014-8810-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 07/10/2014] [Indexed: 10/25/2022]
|
30
|
Annweiler C, Brugg B, Peyrin JM, Bartha R, Beauchet O. Combination of memantine and vitamin D prevents axon degeneration induced by amyloid-beta and glutamate. Neurobiol Aging 2014; 35:331-5. [DOI: 10.1016/j.neurobiolaging.2013.07.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 07/01/2013] [Accepted: 07/31/2013] [Indexed: 01/14/2023]
|
31
|
Troulinaki K, Tavernarakis N. Necrotic cell death and neurodegeneration: The involvement of endocytosis and intracellular trafficking. WORM 2013; 1:176-81. [PMID: 24058844 PMCID: PMC3670410 DOI: 10.4161/worm.20457] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 04/20/2012] [Indexed: 11/26/2022]
Abstract
Necrosis, one of the two main types of cell death, contributes critically in many devastating pathological conditions in human, including stroke, ischemia, trauma and neurodegenerative diseases. However, unlike apoptosis, the molecular mechanisms underlying necrotic cell death and neurodegeneration are poorly understood. Caenorhabditis elegans offers a powerful platform for a thorough and systematic dissection of the molecular basis of necrotic cell death. Similarly to humans, neuronal necrosis can be induced by several well-characterized genetic lesions and by adverse environmental conditions in the nematode. The availability of precisely-defined C. elegans neurodegeneration models provides a unique opportunity for comprehensive delineation of the cellular and molecular mechanisms mediating necrotic cell death. Through genetic dissection of such models, we recently uncovered an unexpected requirement for specific proteins involved in endocytosis and intracellular trafficking, in the execution of necrosis. Moreover, initiation of necrotic cell death is accompanied by a sharp increase in the formation of early and recycling endosomes, which subsequently disintegrate during the final stage of cell death. These findings implicate endocytic and intracellular trafficking processes in the cellular destruction during necrosis. Indeed, endocytosis synergizes with two other essential cellular processes, autophagy and lysosomal proteolysis to facilitate necrotic neurodegeneration. In this commentary, we consider the contribution of endocytosis and intracellular trafficking to cell injury and discuss the crosstalk between these processes and other molecular mechanisms that mediate necrosis.
Collapse
Affiliation(s)
- Kostoula Troulinaki
- Institute of Molecular Biology and Biotechnology; Foundation for Research and Technology; Heraklion, Crete Greece
| | | |
Collapse
|
32
|
Kanaan NM, Pigino GF, Brady ST, Lazarov O, Binder LI, Morfini GA. Axonal degeneration in Alzheimer's disease: when signaling abnormalities meet the axonal transport system. Exp Neurol 2013; 246:44-53. [PMID: 22721767 PMCID: PMC3465504 DOI: 10.1016/j.expneurol.2012.06.003] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 04/17/2012] [Accepted: 06/09/2012] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is characterized by progressive, age-dependent degeneration of neurons in the central nervous system. A large body of evidence indicates that neurons affected in AD follow a dying-back pattern of degeneration, where abnormalities in synaptic function and axonal connectivity long precede somatic cell death. Mechanisms underlying dying-back degeneration of neurons in AD remain elusive but several have been proposed, including deficits in fast axonal transport (FAT). Accordingly, genetic evidence linked alterations in FAT to dying-back degeneration of neurons, and FAT defects have been widely documented in various AD models. In light of these findings, we discuss experimental evidence linking several AD-related pathogenic polypeptides to aberrant activation of signaling pathways involved in the phosphoregulation of microtubule-based motor proteins. While each pathway appears to affect FAT in a unique manner, in the context of AD, many of these pathways might work synergistically to compromise the delivery of molecular components critical for the maintenance and function of synapses and axons. Therapeutic approaches aimed at preventing FAT deficits by normalizing the activity of specific protein kinases may help prevent degeneration of vulnerable neurons in AD.
Collapse
Affiliation(s)
- Nicholas M Kanaan
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | | | | | | | | | | |
Collapse
|
33
|
Vagnoni A, Glennon EBC, Perkinton MS, Gray EH, Noble W, Miller CCJ. Loss of c-Jun N-terminal kinase-interacting protein-1 does not affect axonal transport of the amyloid precursor protein or Aβ production. Hum Mol Genet 2013; 22:4646-52. [PMID: 23825109 PMCID: PMC3889811 DOI: 10.1093/hmg/ddt313] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Disruption to axonal transport is an early pathological feature in Alzheimer's disease. The amyloid precursor protein (APP) is a key axonal transport cargo in Alzheimer's disease since perturbation of its transport increases APP processing and production of amyloid-β peptide (Aβ) that is deposited in the brains of Alzheimer's disease patients. APP is transported anterogradely through axons on kinesin-1 motors. One favoured route for attachment of APP to kinesin-1 involves the scaffolding protein c-Jun N-terminal kinase-interacting protein-1 (JIP1), which has been shown to bind both APP and kinesin-1 light chain (KLC). However, direct experimental evidence to support a role of JIP1 in APP transport is lacking. Notably, the effect of loss of JIP1 on movement of APP through axons of living neurons, and the impact of such loss on APP processing and Aβ production has not been reported. To address these issues, we monitored how siRNA mediated loss of JIP1 influenced transport of enhanced green fluorescent protein (EGFP)-tagged APP through axons and production of endogenous Aβ in living neurons. Surprisingly, we found that knockdown of JIP1 did not affect either APP transport or Aβ production. These results have important implications for our understanding of APP trafficking in Alzheimer's disease.
Collapse
Affiliation(s)
- Alessio Vagnoni
- Departments of Neuroscience and Clinical Neurosciences, Institute of Psychiatry, King's College London, London, UK
| | | | | | | | | | | |
Collapse
|
34
|
Amyloid Beta peptides differentially affect hippocampal theta rhythms in vitro. INTERNATIONAL JOURNAL OF PEPTIDES 2013; 2013:328140. [PMID: 23878547 PMCID: PMC3708430 DOI: 10.1155/2013/328140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 06/03/2013] [Indexed: 12/27/2022]
Abstract
Soluble amyloid beta peptide (A β ) is responsible for the early cognitive dysfunction observed in Alzheimer's disease. Both cholinergically and glutamatergically induced hippocampal theta rhythms are related to learning and memory, spatial navigation, and spatial memory. However, these two types of theta rhythms are not identical; they are associated with different behaviors and can be differentially modulated by diverse experimental conditions. Therefore, in this study, we aimed to investigate whether or not application of soluble A β alters the two types of theta frequency oscillatory network activity generated in rat hippocampal slices by application of the cholinergic and glutamatergic agonists carbachol or DHPG, respectively. Due to previous evidence that oscillatory activity can be differentially affected by different A β peptides, we also compared Aβ 25-35 and Aβ 1-42 for their effects on theta rhythms in vitro at similar concentrations (0.5 to 1.0 μ M). We found that Aβ 25-35 reduces, with less potency than Aβ 1-42, carbachol-induced population theta oscillatory activity. In contrast, DHPG-induced oscillatory activity was not affected by a high concentration of Aβ 25-35 but was reduced by Aβ 1-42. Our results support the idea that different amyloid peptides might alter specific cellular mechanisms related to the generation of specific neuronal network activities, instead of exerting a generalized inhibitory effect on neuronal network function.
Collapse
|
35
|
Ramser EM, Gan KJ, Decker H, Fan EY, Suzuki MM, Ferreira ST, Silverman MA. Amyloid-β oligomers induce tau-independent disruption of BDNF axonal transport via calcineurin activation in cultured hippocampal neurons. Mol Biol Cell 2013; 24:2494-505. [PMID: 23783030 PMCID: PMC3744947 DOI: 10.1091/mbc.e12-12-0858] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The role of tau in axonal transport disruption during early-stage Alzheimer disease is controversial. The amyloid-β oligomers markedly impair BDNF transport in primary wild-type and tau-knockout neurons. This occurs by nonexcitotoxic activation of calcineurin, and inhibition of calcineurin rescues transport defects independent of tau. Disruption of fast axonal transport (FAT) is an early pathological event in Alzheimer's disease (AD). Soluble amyloid-β oligomers (AβOs), increasingly recognized as proximal neurotoxins in AD, impair organelle transport in cultured neurons and transgenic mouse models. AβOs also stimulate hyperphosphorylation of the axonal microtubule-associated protein, tau. However, the role of tau in FAT disruption is controversial. Here we show that AβOs reduce vesicular transport of brain-derived neurotrophic factor (BDNF) in hippocampal neurons from both wild-type and tau-knockout mice, indicating that tau is not required for transport disruption. FAT inhibition is not accompanied by microtubule destabilization or neuronal death. Significantly, inhibition of calcineurin (CaN), a calcium-dependent phosphatase implicated in AD pathogenesis, rescues BDNF transport. Moreover, inhibition of protein phosphatase 1 and glycogen synthase kinase 3β, downstream targets of CaN, prevents BDNF transport defects induced by AβOs. We further show that AβOs induce CaN activation through nonexcitotoxic calcium signaling. Results implicate CaN in FAT regulation and demonstrate that tau is not required for AβO-induced BDNF transport disruption.
Collapse
Affiliation(s)
- Elisa M Ramser
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | | | | | | | | | | | | |
Collapse
|
36
|
Poon WW, Carlos AJ, Aguilar BL, Berchtold NC, Kawano CK, Zograbyan V, Yaopruke T, Shelanski M, Cotman CW. β-Amyloid (Aβ) oligomers impair brain-derived neurotrophic factor retrograde trafficking by down-regulating ubiquitin C-terminal hydrolase, UCH-L1. J Biol Chem 2013; 288:16937-16948. [PMID: 23599427 DOI: 10.1074/jbc.m113.463711] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We previously found that BDNF-dependent retrograde trafficking is impaired in AD transgenic mouse neurons. Utilizing a novel microfluidic culture chamber, we demonstrate that Aβ oligomers compromise BDNF-mediated retrograde transport by impairing endosomal vesicle velocities, resulting in impaired downstream signaling driven by BDNF/TrkB, including ERK5 activation, and CREB-dependent gene regulation. Our data suggest that a key mechanism mediating the deficit involves ubiquitin C-terminal hydrolase L1 (UCH-L1), a deubiquitinating enzyme that functions to regulate cellular ubiquitin. Aβ-induced deficits in BDNF trafficking and signaling are mimicked by LDN (an inhibitor of UCH-L1) and can be reversed by increasing cellular UCH-L1 levels, demonstrated here using a transducible TAT-UCH-L1 strategy. Finally, our data reveal that UCH-L1 mRNA levels are decreased in the hippocampi of AD brains. Taken together, our data implicate that UCH-L1 is important for regulating neurotrophin receptor sorting to signaling endosomes and supporting retrograde transport. Further, our results support the idea that in AD, Aβ may down-regulate UCH-L1 in the AD brain, which in turn impairs BDNF/TrkB-mediated retrograde signaling, compromising synaptic plasticity and neuronal survival.
Collapse
Affiliation(s)
- Wayne W Poon
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697.
| | - Anthony J Carlos
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697
| | - Brittany L Aguilar
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697
| | - Nicole C Berchtold
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697
| | - Crystal K Kawano
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697
| | - Vahe Zograbyan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697
| | - Tim Yaopruke
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697
| | - Michael Shelanski
- Department of Pathology and the Taub Institute, Columbia University, New York, New York 10032
| | - Carl W Cotman
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697
| |
Collapse
|
37
|
β-Amyloid-aluminum complex alters cytoskeletal stability and increases ROS production in cortical neurons. Neurochem Int 2013; 62:566-74. [DOI: 10.1016/j.neuint.2013.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 01/31/2013] [Accepted: 02/04/2013] [Indexed: 12/15/2022]
|
38
|
|
39
|
Rodrigues EM, Weissmiller AM, Goldstein LSB. Enhanced β-secretase processing alters APP axonal transport and leads to axonal defects. Hum Mol Genet 2012; 21:4587-601. [PMID: 22843498 DOI: 10.1093/hmg/dds297] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease pathologically characterized by amyloid plaques and neurofibrillary tangles in the brain. Before these hallmark features appear, signs of axonal transport defects develop, though the initiating events are not clear. Enhanced amyloidogenic processing of amyloid precursor protein (APP) plays an integral role in AD pathogenesis, and previous work suggests that both the Aβ region and the C-terminal fragments (CTFs) of APP can cause transport defects. However, it remains unknown if APP processing affects the axonal transport of APP itself, and whether increased APP processing is sufficient to promote axonal dystrophy. We tested the hypothesis that β-secretase cleavage site mutations of APP alter APP axonal transport directly. We found that the enhanced β-secretase cleavage reduces the anterograde axonal transport of APP, while inhibited β-cleavage stimulates APP anterograde axonal transport. Transport behavior of APP after treatment with β- or γ-secretase inhibitors suggests that the amount of β-secretase cleaved CTFs (βCTFs) of APP underlies these transport differences. Consistent with these findings, βCTFs have reduced anterograde axonal transport compared with full-length, wild-type APP. Finally, a gene-targeted mouse with familial AD (FAD) Swedish mutations to APP, which enhance the β-cleavage of APP, develops axonal dystrophy in the absence of mutant protein overexpression, amyloid plaque deposition and synaptic degradation. These results suggest that the enhanced β-secretase processing of APP can directly impair the anterograde axonal transport of APP and are sufficient to lead to axonal defects in vivo.
Collapse
Affiliation(s)
- Elizabeth M Rodrigues
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
40
|
Goldstein LSB. Axonal transport and neurodegenerative disease: can we see the elephant? Prog Neurobiol 2012; 99:186-90. [PMID: 22484448 DOI: 10.1016/j.pneurobio.2012.03.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 03/18/2012] [Accepted: 03/20/2012] [Indexed: 01/07/2023]
Abstract
Although it is well established that axonal transport defects are part of the initiation or progression of some neurodegenerative diseases, the precise role of these defects in disease development is poorly understood. Thus, in this article, rather than enumerate the already well-reviewed evidence that there are transport deficits in disease, I will focus on a discussion of two crucial and unanswered questions about the possible role of axonal transport defects in HD and AD. (1) Are alterations in axonal transport caused by changes in the normal function of proteins mutated or altered in HD and AD and/or do such alterations in transport occur as a result of the formation of toxic aggregates of peptides or proteins? (2) Do alterations in axonal transport contribute to the causes of HD and AD or are they early, or late, secondary consequences of other cellular defects caused by disease-induction?
Collapse
Affiliation(s)
- Lawrence S B Goldstein
- Department of Cellular and Molecular Medicine and Department of Neurosciences, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0695, USA.
| |
Collapse
|
41
|
Tang Y, Scott DA, Das U, Edland SD, Radomski K, Koo EH, Roy S. Early and selective impairments in axonal transport kinetics of synaptic cargoes induced by soluble amyloid β-protein oligomers. Traffic 2012; 13:681-93. [PMID: 22309053 DOI: 10.1111/j.1600-0854.2012.01340.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 02/02/2012] [Accepted: 02/06/2012] [Indexed: 11/28/2022]
Abstract
The downstream targets of amyloid β (Aβ)-oligomers remain elusive. One hypothesis is that Aβ-oligomers interrupt axonal transport. Although previous studies have demonstrated Aβ-induced transport blockade, early effects of low-n soluble Aβ-oligomers on axonal transport remain unclear. Furthermore, the cargo selectivity for such deficits (if any) or the specific effects of Aβ on the motility kinetics of transported cargoes are also unknown. Toward this, we visualized axonal transport of vesicles in cultured hippocampal neurons treated with picomolar (pm) levels of cell-derived soluble Aβ-oligomers. We examined select cargoes thought to move as distinct organelles and established imaging parameters that allow organelle tracking with consistency and high fidelity - analyzing all data in a blinded fashion. Aβ-oligomers induced early and selective diminutions in velocities of synaptic cargoes but had no effect on mitochondrial motility, contrary to previous reports. These changes were N-methyl D-aspartate receptor/glycogen synthase kinase-3β dependent and reversible upon washout of the oligomers. Cluster-mode analyses reveal selective attenuations in faster-moving synaptic vesicles, suggesting possible decreases in cargo/motor associations, and biochemical experiments implicate tau phosphorylation in the process. Collectively, the data provide a biological basis for Aβ-induced axonal transport deficits.
Collapse
Affiliation(s)
- Yong Tang
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Gene products such as organelles, proteins and RNAs are actively transported to synaptic terminals for the remodeling of pre-existing neuronal connections and formation of new ones. Proteins described as molecular motors mediate this transport and utilize specialized cytoskeletal proteins that function as molecular tracks for the motor based transport of cargos. Molecular motors such as kinesins and dynein's move along microtubule tracks formed by tubulins whereas myosin motors utilize tracks formed by actin. Deficits in active transport of gene products have been implicated in a number of neurological disorders. We describe such disorders collectively as "transportopathies". Here we review current knowledge of critical components of active transport and their relevance to neurodegenerative diseases.
Collapse
|
43
|
Ye X, Tai W, Zhang D. The early events of Alzheimer's disease pathology: from mitochondrial dysfunction to BDNF axonal transport deficits. Neurobiol Aging 2011; 33:1122.e1-10. [PMID: 22212405 DOI: 10.1016/j.neurobiolaging.2011.11.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 11/01/2011] [Accepted: 11/04/2011] [Indexed: 01/05/2023]
Abstract
Although there are numerous studies regarding Alzheimer's disease (AD), the cause and progression of AD are still not well understood. The researches in the past decade implicated amyloid-beta (Aβ) overproduction as a causative event in disease pathogenesis, but still failed to clarify the mechanism of pathology from Aβ production to central neural system defects in AD. The present review raises the hypothesis that the onset of AD pathology is closely related with mitochondrial dysfunction induced by Aβ and brain-derived neurotrophic factor (BDNF) axonal transport deficits. It is well-known that axonal transport defect and attenuation of BDNF-neurotrophic tyrosine receptor kinase 2 (TrkB) signal are fatal to neuronal function and survival. We hypothesized that abnormal amyloid precursor protein (APP) processing and Aβ production in mitochondria disturb the axonal transport by impairing mitochondrial function and attenuate BDNF-neurotrophic tyrosine receptor kinase 2 signal subsequently. For this hypothesis, the factors related with the initiation of AD pathology are not only limited to the neurons per se but also expanded to the microenvironment around neurons, such as the secretion of BDNF from astrocytes. The modification of the origin in this pathway may contribute to slow down the disease progression of AD.
Collapse
Affiliation(s)
- Xuan Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | |
Collapse
|
44
|
Inhibition of superoxide dismutase selectively suppresses growth of rat spinal motor neurons: Comparison with phosphorylated neurofilament-containing spinal neurons. Brain Res 2011; 1425:13-9. [DOI: 10.1016/j.brainres.2011.09.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 09/01/2011] [Accepted: 09/22/2011] [Indexed: 11/23/2022]
|
45
|
Quinlan KA. Links between electrophysiological and molecular pathology of amyotrophic lateral sclerosis. Integr Comp Biol 2011; 51:913-25. [PMID: 21989221 DOI: 10.1093/icb/icr116] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multiple deficits have been described in amyotrophic lateral sclerosis (ALS), from the first changes in normal functioning of the motoneurons and glia to the eventual loss of spinal and cortical motoneurons. In this review, current results, including changes in size, and electrical properties of motoneurons, glutamate excitotoxicity, calcium buffering, deficits in mitochondrial and cellular transport, impediments to proteostasis which lead to stress of the endoplasmic reticulum (ER), and glial contributions to motoneuronal vulnerability are recapitulated. Results are mainly drawn from the mutant SOD1 mouse model of ALS, and emphasis is placed on early changes that precede the onset of symptoms and the interplay between molecular and electrical processes.
Collapse
Affiliation(s)
- Katharina A Quinlan
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
46
|
Glutamate excitotoxicity is involved in the induction of paralysis in mice after infection by a human coronavirus with a single point mutation in its spike protein. J Virol 2011; 85:12464-73. [PMID: 21957311 DOI: 10.1128/jvi.05576-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Human coronaviruses (HCoV) are recognized respiratory pathogens, and some strains, including HCoV-OC43, can infect human neuronal and glial cells of the central nervous system (CNS) and activate neuroinflammatory mechanisms. Moreover, HCoV-OC43 is neuroinvasive, neurotropic, and neurovirulent in susceptible mice, where it induces chronic encephalitis. Herein, we show that a single point mutation in the viral spike (S) glycoprotein (Y241H), acquired during viral persistence in human neural cells, led to a hind-limb paralytic disease in infected mice. Inhibition of glutamate excitotoxicity using a 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propranoic acid (AMPA) receptor antagonist (GYKI-52466) improved clinical scores related to the paralysis and motor disabilities in S mutant virus-infected mice, as well as protected the CNS from neuronal dysfunctions, as illustrated by restoration of the phosphorylation state of neurofilaments. Expression of the glial glutamate transporter GLT-1, responsible for glutamate homeostasis, was downregulated following infection, and GYKI-52466 also significantly restored its steady-state expression level. Finally, GYKI-52466 treatment of S mutant virus-infected mice led to reduced microglial activation, which may lead to improvement in the regulation of CNS glutamate homeostasis. Taken together, our results strongly suggest an involvement of excitotoxicity in the paralysis-associated neuropathology induced by an HCoV-OC43 mutant which harbors a single point mutation in its spike protein that is acquired upon persistent virus infection.
Collapse
|
47
|
Smith KDB, Paylor R, Pautler RG. R-flurbiprofen improves axonal transport in the Tg2576 mouse model of Alzheimer's disease as determined by MEMRI. Magn Reson Med 2010; 65:1423-9. [PMID: 21500269 DOI: 10.1002/mrm.22733] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 09/28/2010] [Accepted: 10/27/2010] [Indexed: 12/18/2022]
Abstract
Axonal pathology is a prevalent feature of Alzheimer's disease (AD) and is thought to occur predominantly due to the accumulation of amyloid beta (Aβ). However, it remains unclear whether therapeutics geared toward reducing Aβ improves axonal deficits. We have previously used Manganese Enhanced MRI to demonstrate that axonal transport deficits occur before plaque formation in the Tg2576 mouse model of Alzheimer's disease. Here we tested whether axonal transport deficits in the Tg2576 mouse model improve in response to the Aβ42 selective lowering agent R-Flurbiprofen (R-F). We demonstrated that in young animals (before Aβ plaque formation), R-F treatment reduced Aβ42 levels and coincided with a significant improvement in axonal transport (P = 0.0186). However, in older animals (after plaque formation had occurred), we observed that R-F treatment did not reduce Aβ42 levels although we still observed a significant improvement in axonal transport as assessed with MEMRI (P = 0.0329). We then determined that R-F treatment reduced tau hyper-phosphorylation in the older animals. These data indicate that both Aβ42 and tau comprise a role in axonal transport rate deficits in the Tg2576 model of Alzheimer's Disease.
Collapse
Affiliation(s)
- Karen D B Smith
- Dept. Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
| | | | | |
Collapse
|
48
|
Vossel KA, Zhang K, Brodbeck J, Daub AC, Sharma P, Finkbeiner S, Cui B, Mucke L. Tau reduction prevents Abeta-induced defects in axonal transport. Science 2010; 330:198. [PMID: 20829454 DOI: 10.1126/science.1194653] [Citation(s) in RCA: 398] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amyloid-β (Aβ) peptides, derived from the amyloid precursor protein, and the microtubule-associated protein tau are key pathogenic factors in Alzheimer's disease (AD). How exactly they impair cognitive functions is unknown. We assessed the effects of Aβ and tau on axonal transport of mitochondria and the neurotrophin receptor TrkA, cargoes that are critical for neuronal function and survival and whose distributions are altered in AD. Aβ oligomers rapidly inhibited axonal transport of these cargoes in wild-type neurons. Lowering tau levels prevented these defects without affecting baseline axonal transport. Thus, Aβ requires tau to impair axonal transport, and tau reduction protects against Aβ-induced axonal transport defects.
Collapse
Affiliation(s)
- Keith A Vossel
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Adaya-Villanueva A, Ordaz B, Balleza-Tapia H, Márquez-Ramos A, Peña-Ortega F. Beta-like hippocampal network activity is differentially affected by amyloid beta peptides. Peptides 2010; 31:1761-6. [PMID: 20558221 DOI: 10.1016/j.peptides.2010.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 06/05/2010] [Accepted: 06/06/2010] [Indexed: 01/29/2023]
Abstract
Alzheimer disease (AD) patients show alterations in both neuronal network oscillations and the cognitive processes associated to them. Related to this clinical observation, it has been found that amyloid beta protein (Abeta) differentially affects some hippocampal network activities, reducing theta and gamma oscillations, without affecting sharp waves and ripples. Beta-like oscillations is another cognitive-related network activity that can be evoked in hippocampal slices by several experimental manipulations, including bath application of kainate and increasing extracellular potassium. Here, we tested whether or not different Abeta peptides differentially affect beta-like oscillatory patterns. We specifically tested the effects of fresh dissolved Abeta(25-35) and oligomerized Abeta(1-42) and found that kainate-induced oscillatory network activity was affected, in a slightly concentration dependent-manner, by both fresh dissolved (mostly monomeric) Abeta(25-35) and oligomeric Abeta(1-42). In contrast, potassium-induced oscillatory activity, which is reduced by oligomeric Abeta(1-42), is not affected by monomeric Abeta(25-35) at any of the concentrations tested. Our results support the idea that different amyloid peptides might alter specific cellular mechanisms related to the generation of specific neuronal network activities, instead of a generalized inhibitory effect of Abeta peptides on neuronal network function.
Collapse
|
50
|
Rui Y, Gu J, Yu K, Hartzell HC, Zheng JQ. Inhibition of AMPA receptor trafficking at hippocampal synapses by beta-amyloid oligomers: the mitochondrial contribution. Mol Brain 2010; 3:10. [PMID: 20346152 PMCID: PMC2853530 DOI: 10.1186/1756-6606-3-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 03/26/2010] [Indexed: 01/12/2023] Open
Abstract
Background Synaptic defects represent a major mechanism underlying altered brain functions of patients suffering Alzheimer's disease (AD) [1-3]. An increasing body of work indicates that the oligomeric forms of β-amyloid (Aβ) molecules exert profound inhibition on synaptic functions and can cause a significant loss of neurotransmitter receptors from the postsynaptic surface, but the underlying mechanisms remain poorly understood. In this study, we investigated a potential contribution of mitochondria to Aβ inhibition of AMPA receptor (AMPAR) trafficking. Results We found that a brief exposure of hippocampal neurons to Aβ oligomers not only led to marked removal of AMPARs from postsynaptic surface but also impaired rapid AMPAR insertion during chemically-induced synaptic potentiation. We also found that Aβ oligomers exerted acute impairment of fast mitochondrial transport, as well as mitochondrial translocation into dendritic spines in response to repetitive membrane depolarization. Quantitative analyses at the single spine level showed a positive correlation between spine-mitochondria association and the surface accumulation of AMPARs. In particular, we found that spines associated with mitochondria tended to be more resistant to Aβ inhibition on AMPAR trafficking. Finally, we showed that inhibition of GSK3β alleviated Aβ impairment of mitochondrial transport, and effectively abolished Aβ-induced AMPAR loss and inhibition of AMPAR insertion at spines during cLTP. Conclusions Our findings indicate that mitochondrial association with dendritic spines may play an important role in supporting AMPAR presence on or trafficking to the postsynaptic membrane. Aβ disruption of mitochondrial trafficking could contribute to AMPAR removal and trafficking defects leading to synaptic inhibition.
Collapse
Affiliation(s)
- Yanfang Rui
- Departments of Cell Biology and Neurology, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|