1
|
Harada S, Imai T, Takimoto Y, Ohta Y, Sato T, Kamakura T, Takeda N, Kitahara T, Kondo M, Ueno Y, Shimada S, Inohara H. Development of a new method for assessing otolith function in mice using three-dimensional binocular analysis of the otolith-ocular reflex. Sci Rep 2021; 11:17191. [PMID: 34433883 PMCID: PMC8387381 DOI: 10.1038/s41598-021-96596-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022] Open
Abstract
In the interaural direction, translational linear acceleration is loaded during lateral translational movement and gravitational acceleration is loaded during lateral tilting movement. These two types of acceleration induce eye movements via two kinds of otolith-ocular reflexes to compensate for movement and maintain clear vision: horizontal eye movement during translational movement, and torsional eye movement (torsion) during tilting movement. Although the two types of acceleration cannot be discriminated, the two otolith-ocular reflexes can distinguish them effectively. In the current study, we tested whether lateral-eyed mice exhibit both of these otolith-ocular reflexes. In addition, we propose a new index for assessing the otolith-ocular reflex in mice. During lateral translational movement, mice did not show appropriate horizontal eye movement, but exhibited unnecessary vertical torsion-like eye movement that compensated for the angle between the body axis and gravito-inertial acceleration (GIA; i.e., the sum of gravity and inertial force due to movement) by interpreting GIA as gravity. Using the new index (amplitude of vertical component of eye movement)/(angle between body axis and GIA), the mouse otolith-ocular reflex can be assessed without determining whether the otolith-ocular reflex is induced during translational movement or during tilting movement.
Collapse
Affiliation(s)
- Shotaro Harada
- Department of Otorhinolaryngology - Head and Neck Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takao Imai
- Department of Otorhinolaryngology - Head and Neck Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Yasumitsu Takimoto
- Department of Otorhinolaryngology - Head and Neck Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yumi Ohta
- Department of Otorhinolaryngology - Head and Neck Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takashi Sato
- Department of Otorhinolaryngology - Head and Neck Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takefumi Kamakura
- Department of Otorhinolaryngology - Head and Neck Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Noriaki Takeda
- Department of Otorhinolaryngology - Head and Neck Surgery, Tokushima University Graduate School of Medicine, Tokushima, Japan
| | - Tadashi Kitahara
- Department of Otorhinolaryngology - Head and Neck Surgery, Nara Medical University, Nara, Japan
| | - Makoto Kondo
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuya Ueno
- Department of Otorhinolaryngology - Head and Neck Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology - Head and Neck Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
2
|
Variance based weighting of multisensory head rotation signals for verticality perception. PLoS One 2020; 15:e0227040. [PMID: 31940387 PMCID: PMC6961893 DOI: 10.1371/journal.pone.0227040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/10/2019] [Indexed: 11/19/2022] Open
Abstract
We tested the hypothesis that the brain uses a variance-based weighting of multisensory cues to estimate head rotation to perceive which way is up. The hypothesis predicts that the known bias in perceived vertical, which occurs when the visual environment is rotated in a vertical-plane, will be reduced by the addition of visual noise. Ten healthy participants sat head-fixed in front of a vertical screen presenting an annulus filled with coloured dots, which could rotate clockwise or counter-clockwise at six angular velocities (1, 2, 4, 6, 8, 16°/s) and with six levels of noise (0, 25, 50, 60, 75, 80%). Participants were required to keep a central bar vertical by rotating a hand-held dial. Continuous adjustments of the bar were required to counteract low-amplitude low-frequency noise that was added to the bar's angular position. During visual rotation, the bias in verticality perception increased over time to reach an asymptotic value. Increases in visual rotation velocity significantly increased this bias, while the addition of visual noise significantly reduced it, but did not affect perception of visual rotation velocity. The biasing phenomena were reproduced by a model that uses a multisensory variance-weighted estimate of head rotation velocity combined with a gravito-inertial acceleration signal (GIA) from the vestibular otoliths. The time-dependent asymptotic behaviour depends on internal feedback loops that act to pull the brain's estimate of gravity direction towards the GIA signal. The model's prediction of our experimental data furthers our understanding of the neural processes underlying human verticality perception.
Collapse
|
3
|
Khosravi‐Hashemi N, Forbes PA, Dakin CJ, Blouin J. Virtual signals of head rotation induce gravity‐dependent inferences of linear acceleration. J Physiol 2019; 597:5231-5246. [DOI: 10.1113/jp278642] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Patrick A. Forbes
- Department of NeuroscienceErasmus MCUniversity Medical Center Rotterdam Rotterdam The Netherlands
| | | | | |
Collapse
|
4
|
Nooij SAE, Pretto P, Bülthoff HH. More vection means more velocity storage activity: a factor in visually induced motion sickness? Exp Brain Res 2018; 236:3031-3041. [PMID: 30120498 PMCID: PMC6223881 DOI: 10.1007/s00221-018-5340-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/20/2018] [Indexed: 02/03/2023]
Abstract
Full-field visual rotation around the vertical axis induces a sense of self-motion (vection), optokinetic nystagmus (OKN), and, eventually, also motion sickness (MS). If the lights are then suddenly switched off, optokinetic afternystagmus (OKAN) occurs. This is due to the discharge of the velocity storage mechanism (VSM), a central integrative network that has been suggested to be involved in motion sickness. We previously showed that visually induced motion sickness (VIMS) following optokinetic stimulation is dependent on vection intensity. To shed light on this relationship, the current study investigated whether vection intensity is related to VSM activity, and thus, to the OKAN. In repetitive trials (eight per condition), 15 stationary participants were exposed to 120 s of visual yaw rotation (60°/s), followed by 90 s in darkness. The visual stimulus either induced strong vection (i.e., scene rotating normally) or weak vection (central and peripheral part moving in opposite directions). Eye movements and subjective vection intensity were continuously measured. Results showed that OKAN occurred less frequently and with lower initial magnitude in the weak-vection condition compared to the strong-vection condition. OKAN decay time constants were not significantly different. The results suggest that the stimuli that produced strong vection also enhanced the charging of the VSM. As VSM activity presumably is a factor in motion sickness, the enhanced VSM activity in our strong-vection condition hints at an involvement of the VSM in VIMS, and could explain why visual stimuli producing a strong sense of vection also elicit high levels of VIMS.
Collapse
Affiliation(s)
- Suzanne A E Nooij
- Department of Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 8, 72076, Tübingen, Germany.
| | - Paolo Pretto
- Department of Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 8, 72076, Tübingen, Germany
| | - Heinrich H Bülthoff
- Department of Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 8, 72076, Tübingen, Germany
| |
Collapse
|
5
|
Dakin CJ, Rosenberg A. Gravity estimation and verticality perception. HANDBOOK OF CLINICAL NEUROLOGY 2018; 159:43-59. [PMID: 30482332 DOI: 10.1016/b978-0-444-63916-5.00003-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Gravity is a defining force that governs the evolution of mechanical forms, shapes and anchors our perception of the environment, and imposes fundamental constraints on our interactions with the world. Within the animal kingdom, humans are relatively unique in having evolved a vertical, bipedal posture. Although a vertical posture confers numerous benefits, it also renders us less stable than quadrupeds, increasing susceptibility to falls. The ability to accurately and precisely estimate our orientation relative to gravity is therefore of utmost importance. Here we review sensory information and computational processes underlying gravity estimation and verticality perception. Central to gravity estimation and verticality perception is multisensory cue combination, which serves to improve the precision of perception and resolve ambiguities in sensory representations by combining information from across the visual, vestibular, and somatosensory systems. We additionally review experimental paradigms for evaluating verticality perception, and discuss how particular disorders affect the perception of upright. Together, the work reviewed here highlights the critical role of multisensory cue combination in gravity estimation, verticality perception, and creating stable gravity-centered representations of our environment.
Collapse
Affiliation(s)
- Christopher J Dakin
- Department of Kinesiology and Health Science, Utah State University, Logan, UT, United States.
| | - Ari Rosenberg
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, United States
| |
Collapse
|
6
|
Karmali F, Bermúdez Rey MC, Clark TK, Wang W, Merfeld DM. Multivariate Analyses of Balance Test Performance, Vestibular Thresholds, and Age. Front Neurol 2017; 8:578. [PMID: 29167656 PMCID: PMC5682300 DOI: 10.3389/fneur.2017.00578] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/13/2017] [Indexed: 11/30/2022] Open
Abstract
We previously published vestibular perceptual thresholds and performance in the Modified Romberg Test of Standing Balance in 105 healthy humans ranging from ages 18 to 80 (1). Self-motion thresholds in the dark included roll tilt about an earth-horizontal axis at 0.2 and 1 Hz, yaw rotation about an earth-vertical axis at 1 Hz, y-translation (interaural/lateral) at 1 Hz, and z-translation (vertical) at 1 Hz. In this study, we focus on multiple variable analyses not reported in the earlier study. Specifically, we investigate correlations (1) among the five thresholds measured and (2) between thresholds, age, and the chance of failing condition 4 of the balance test, which increases vestibular reliance by having subjects stand on foam with eyes closed. We found moderate correlations (0.30–0.51) between vestibular thresholds for different motions, both before and after using our published aging regression to remove age effects. We found that lower or higher thresholds across all threshold measures are an individual trait that account for about 60% of the variation in the population. This can be further distributed into two components with about 20% of the variation explained by aging and 40% of variation explained by a single principal component that includes similar contributions from all threshold measures. When only roll tilt 0.2 Hz thresholds and age were analyzed together, we found that the chance of failing condition 4 depends significantly on both (p = 0.006 and p = 0.013, respectively). An analysis incorporating more variables found that the chance of failing condition 4 depended significantly only on roll tilt 0.2 Hz thresholds (p = 0.046) and not age (p = 0.10), sex nor any of the other four threshold measures, suggesting that some of the age effect might be captured by the fact that vestibular thresholds increase with age. For example, at 60 years of age, the chance of failing is roughly 5% for the lowest roll tilt thresholds in our population, but this increases to 80% for the highest roll tilt thresholds. These findings demonstrate the importance of roll tilt vestibular cues for balance, even in individuals reporting no vestibular symptoms and with no evidence of vestibular dysfunction.
Collapse
Affiliation(s)
- Faisal Karmali
- Jenks Vestibular Physiology Laboratory, Mass Eye and Ear Infirmary, Boston, MA, United States.,Otolaryngology, Harvard Medical School, Harvard University, Boston, MA, United States
| | - María Carolina Bermúdez Rey
- Jenks Vestibular Physiology Laboratory, Mass Eye and Ear Infirmary, Boston, MA, United States.,Otolaryngology, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Torin K Clark
- Jenks Vestibular Physiology Laboratory, Mass Eye and Ear Infirmary, Boston, MA, United States.,Otolaryngology, Harvard Medical School, Harvard University, Boston, MA, United States.,Smead Aerospace Engineering Sciences, University of Colorado, Boulder, CO, United States
| | - Wei Wang
- Otolaryngology, Harvard Medical School, Harvard University, Boston, MA, United States.,Division of Sleep Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Daniel M Merfeld
- Jenks Vestibular Physiology Laboratory, Mass Eye and Ear Infirmary, Boston, MA, United States.,Otolaryngology, Harvard Medical School, Harvard University, Boston, MA, United States
| |
Collapse
|
7
|
Tamura A, Wada Y, Kurita A, Matsunobu T, Inui T, Shiotani A. Visual effects on the subjective visual vertical and subjective postural head vertical during static roll-tilt. Laryngoscope Investig Otolaryngol 2017; 2:125-130. [PMID: 28894832 PMCID: PMC5527364 DOI: 10.1002/lio2.72] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2017] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVES Tilt perception is part of the perception of spatial orientation. It is determined not only by the allocentric gravity axis, but also by a second allocentric axis induced by visual information as well as by the egocentric body (head) axis induced by somatosensory information. The aim of this study was to quantify roll-tilt perception using the subjective visual vertical (SVV) and the newly developed subjective postural head vertical (SPHV) and to investigate the visual effects on both during static roll-tilt. STUDY DESIGN Basic science. METHODS Nine male volunteers participated in this study. A flight simulator was used to create several roll-tilt environments that were then combined with visual information. SVV and SPHV were evaluated in healthy participants during static roll-tilt. RESULTS The SVV evaluation revealed significant differences between the dark condition (control) and other visual conditions with respect to some of the body roll-tilt environments, and between a body roll-tilt of 0° and ≥ 20°. The SPHV evaluation revealed a significant difference between the dark condition and the visual condition that was always roll-tilted 20° to the right of the body axis. However, there were no significant differences in SPHV error between a body roll-tilt of 0° and other tilt angles for every visual condition, unlike SVV error. CONCLUSIONS Our data indicate that human susceptibility to spatial disorientation is dependent on roll-tilt angle and visual information. They also suggest that the SPHV is not affected by roll-tilt angle, and thus differs from SVV. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
- Atsushi Tamura
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yoshiro Wada
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Kashihara, Nara, Japan.,Wada ENT Clinic, Higashisumiyoshi-ku, Osaka, Japan
| | - Akihiro Kurita
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Takeshi Matsunobu
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Takuo Inui
- Warabikitamachi Hospital Warabi Saitama Japan
| | - Akihiro Shiotani
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
8
|
Imai T, Takimoto Y, Takeda N, Okumura T, Inohara H. Three-dimensional analysis of linear vestibulo-ocular reflex in humans during eccentric rotation while facing downwards. Exp Brain Res 2017; 235:2575-2590. [DOI: 10.1007/s00221-017-4990-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 05/17/2017] [Indexed: 10/19/2022]
|
9
|
Macdonald NK, Kaski D, Saman Y, Al-Shaikh Sulaiman A, Anwer A, Bamiou DE. Central Positional Nystagmus: A Systematic Literature Review. Front Neurol 2017; 8:141. [PMID: 28473800 PMCID: PMC5397512 DOI: 10.3389/fneur.2017.00141] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/28/2017] [Indexed: 11/13/2022] Open
Abstract
Objective To provide a systematic review of the clinical and radiological features of lesion-induced central positional nystagmus (CPN) and identify salient characteristics that differentiate central from peripheral positional nystagmus (PN). Methods Systematic literature search according to the preferred reporting items for systematic reviews and meta-analysis. Results A total of 82 patients from 28 studies met the participants intervention, comparison, outcomes, and study designs criteria for inclusion. An atypical direction of nystagmus for the stimulated canal was reported in 97.5% patients during Dix–Hallpike (D–H) and 54.5% upon supine roll testing. Five types of CPNs were identified during positional testing: positional horizontal nystagmus (pHN) (36.8%), positional downbeating nystagmus (pDBN) (29.2%), positional torsional nystagmus (pTN) (2.1%), positional upbeating nystagmus (pUBN) (2.1%), and a combination of the four profiles (29.9%). CPN was paroxysmal (<60 s) in 85% patients on straight head hanging (SHH), 63.9% on D–H, and 37.5% on supine roll, and had a latency <3 s upon positioning in 94.7% patients in which it was reported. Concurrent vertigo was reportedly present in 63.4% patients and 48.8% demonstrated other neurological signs. Radiologically, in 74.4%, there was mention of cerebellar involvement, isolated brainstem involvement in 8.5%, and 14.6% involved the fourth ventricle. Conclusion Currently, there is a lack of robust data on the clinical and radiological characteristics of CPN highlighting the need for better phenotyping of CPN to help differentiate this entity from peripheral causes of PN. With increased awareness of CPN, particularly in the acute setting, we may see a change in the estimated prevalence of CPN and improved clinical markers to promptly identify the frequently sinister underlying causes.
Collapse
Affiliation(s)
- Nora K Macdonald
- Neuro-otology Department, National Hospital for Neurology and Neurosurgery, London, UK
| | | | - Yougan Saman
- Neuro-otology Department, National Hospital for Neurology and Neurosurgery, London, UK
| | - Amal Al-Shaikh Sulaiman
- UCL Ear Institute, London, UK.,Department of Otolaryngology and Head and Neck Surgery, King Fahd Hospital of University, University of Dammam, Al-Khobar, Saudi Arabia
| | | | - Doris-Eva Bamiou
- Neuro-otology Department, National Hospital for Neurology and Neurosurgery, London, UK.,UCL Ear Institute, London, UK
| |
Collapse
|
10
|
Purkinje Cells Directly Inhibit Granule Cells in Specialized Regions of the Cerebellar Cortex. Neuron 2016; 91:1330-1341. [PMID: 27593180 DOI: 10.1016/j.neuron.2016.08.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/02/2016] [Accepted: 08/11/2016] [Indexed: 01/19/2023]
Abstract
Inhibition of granule cells plays a key role in gating the flow of signals into the cerebellum, and it is thought that Golgi cells are the only interneurons that inhibit granule cells. Here we show that Purkinje cells, the sole output neurons of the cerebellar cortex, also directly inhibit granule cells via their axon collaterals. Anatomical and optogenetic studies indicate that this non-canonical feedback is region specific: it is most prominent in lobules that regulate eye movement and process vestibular information. Collaterals provide fast, slow, and tonic inhibition to granule cells, and thus allow Purkinje cells to regulate granule cell excitability on multiple timescales. We propose that this feedback mechanism could regulate excitability of the input layer, contribute to sparse coding, and mediate temporal integration.
Collapse
|
11
|
Abstract
The relative simplicity of the neural circuits that mediate vestibular reflexes is well suited for linking systems and cellular levels of analyses. Notably, a distinctive feature of the vestibular system is that neurons at the first central stage of sensory processing in the vestibular nuclei are premotor neurons; the same neurons that receive vestibular-nerve input also send direct projections to motor pathways. For example, the simplicity of the three-neuron pathway that mediates the vestibulo-ocular reflex leads to the generation of compensatory eye movements within ~5ms of a head movement. Similarly, relatively direct pathways between the labyrinth and spinal cord control vestibulospinal reflexes. A second distinctive feature of the vestibular system is that the first stage of central processing is strongly multimodal. This is because the vestibular nuclei receive inputs from a wide range of cortical, cerebellar, and other brainstem structures in addition to direct inputs from the vestibular nerve. Recent studies in alert animals have established how extravestibular signals shape these "simple" reflexes to meet the needs of current behavioral goal. Moreover, multimodal interactions at higher levels, such as the vestibular cerebellum, thalamus, and cortex, play a vital role in ensuring accurate self-motion and spatial orientation perception.
Collapse
Affiliation(s)
- K E Cullen
- Department of Physiology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
12
|
Authié CN, Hilt PM, N'Guyen S, Berthoz A, Bennequin D. Differences in gaze anticipation for locomotion with and without vision. Front Hum Neurosci 2015; 9:312. [PMID: 26106313 PMCID: PMC4458691 DOI: 10.3389/fnhum.2015.00312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 05/16/2015] [Indexed: 12/02/2022] Open
Abstract
Previous experimental studies have shown a spontaneous anticipation of locomotor trajectory by the head and gaze direction during human locomotion. This anticipatory behavior could serve several functions: an optimal selection of visual information, for instance through landmarks and optic flow, as well as trajectory planning and motor control. This would imply that anticipation remains in darkness but with different characteristics. We asked 10 participants to walk along two predefined complex trajectories (limaçon and figure eight) without any cue on the trajectory to follow. Two visual conditions were used: (i) in light and (ii) in complete darkness with eyes open. The whole body kinematics were recorded by motion capture, along with the participant's right eye movements. We showed that in darkness and in light, horizontal gaze anticipates the orientation of the head which itself anticipates the trajectory direction. However, the horizontal angular anticipation decreases by a half in darkness for both gaze and head. In both visual conditions we observed an eye nystagmus with similar properties (frequency and amplitude). The main difference comes from the fact that in light, there is a shift of the orientations of the eye nystagmus and the head in the direction of the trajectory. These results suggest that a fundamental function of gaze is to represent self motion, stabilize the perception of space during locomotion, and to simulate the future trajectory, regardless of the vision condition.
Collapse
Affiliation(s)
- Colas N Authié
- Laboratoire de Physiologie de la Perception et de l'Action, UMR 7152, Collège de France, Centre National de la Recherche Scientifique Paris, France
| | - Pauline M Hilt
- Laboratoire de Physiologie de la Perception et de l'Action, UMR 7152, Collège de France, Centre National de la Recherche Scientifique Paris, France
| | - Steve N'Guyen
- Laboratoire de Physiologie de la Perception et de l'Action, UMR 7152, Collège de France, Centre National de la Recherche Scientifique Paris, France
| | - Alain Berthoz
- Laboratoire de Physiologie de la Perception et de l'Action, UMR 7152, Collège de France, Centre National de la Recherche Scientifique Paris, France
| | - Daniel Bennequin
- UFR de Mathématiques, Équipe Géométrie et Dynamique, Institut de Mathématiques de Jussieu, Université Paris Diderot-Paris 7, UMR 7586 Paris, France
| |
Collapse
|
13
|
The influence of head and body tilt on human fore-aft translation perception. Exp Brain Res 2014; 232:3897-905. [PMID: 25160866 DOI: 10.1007/s00221-014-4060-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
Abstract
The tilt-translation ambiguity occurs because acceleration due to translation cannot be differentiated from gravitational acceleration. Head tilt can occur independent of body tilt which further complicates the problem. The tilt-translation ambiguity is examined for fore-aft (surge) translation with head and/or body orientations that are tilted in pitch 10° forward or backward. Eleven human subjects (six female), mean age 40 years participated. Conditions included no tilt (NT), head and body tilt (HBT), head only tilt (HOT), and body only tilt (BOT). The fore-aft stimulus consisted of a 2 s (0.5 Hz) sine wave in acceleration which a maximum peak velocity of 10 cm/s. After each stimulus, the subject reported the direction of motion as forward or backward. Subsequent stimuli were adjusted to determine the point at which subjects were equally likely to report motion in either direction. During the HBT, responses were biased such that upward pitch caused a neutral stimulus to be more likely to be perceived as forward and downward pitch caused the stimulus to be more likely to be perceived as backward. The difference in the point of subjective equality based on the direction of tilt was 3.3 cm/s. During the BOT condition, the bias with respect to the direction of body tilt was in a similar direction with a difference in PSE 1.6 cm/s. During HOT and NT, there was no significant bias on fore-aft perception. These findings demonstrate that body tilt shifts the PSE of fore-aft direction discrimination while head tilt has no influence.
Collapse
|
14
|
Laurens J, Meng H, Angelaki DE. Computation of linear acceleration through an internal model in the macaque cerebellum. Nat Neurosci 2013; 16:1701-8. [PMID: 24077562 PMCID: PMC3818145 DOI: 10.1038/nn.3530] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/04/2013] [Indexed: 11/18/2022]
Abstract
A combination of theory and behavioral findings has supported a role for internal models in the resolution of sensory ambiguities and sensorimotor processing. Although the cerebellum has been proposed as a candidate for implementation of internal models, concrete evidence from neural responses is lacking. Here we exploit un-natural motion stimuli, which induce incorrect self-motion perception and eye movements, to explore the neural correlates of an internal model proposed to compensate for Einstein’s equivalence principle and generate neural estimates of linear acceleration and gravity. We show that caudal cerebellar vermis Purkinje cells and cerebellar nuclei neurons selective for actual linear acceleration also encode erroneous linear acceleration, as expected from the internal model hypothesis, even when no actual linear acceleration occurs. These findings provide strong evidence that the cerebellum might be involved in the implementation of internal models that mimic physical principles to interpret sensory signals, as previously hypothesized by theorists.
Collapse
Affiliation(s)
- Jean Laurens
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | |
Collapse
|
15
|
Maex R, Steuber V. An integrator circuit in cerebellar cortex. Eur J Neurosci 2013; 38:2917-32. [PMID: 23731348 DOI: 10.1111/ejn.12272] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 04/24/2013] [Accepted: 05/06/2013] [Indexed: 11/27/2022]
Abstract
The brain builds dynamic models of the body and the outside world to predict the consequences of actions and stimuli. A well-known example is the oculomotor integrator, which anticipates the position-dependent elasticity forces acting on the eye ball by mathematically integrating over time oculomotor velocity commands. Many models of neural integration have been proposed, based on feedback excitation, lateral inhibition or intrinsic neuronal nonlinearities. We report here that a computational model of the cerebellar cortex, a structure thought to implement dynamic models, reveals a hitherto unrecognized integrator circuit. In this model, comprising Purkinje cells, molecular layer interneurons and parallel fibres, Purkinje cells were able to generate responses lasting more than 10 s, to which both neuronal and network mechanisms contributed. Activation of the somatic fast sodium current by subthreshold voltage fluctuations was able to maintain pulse-evoked graded persistent activity, whereas lateral inhibition among Purkinje cells via recurrent axon collaterals further prolonged the responses to step and sine wave stimulation. The responses of Purkinje cells decayed with a time-constant whose value depended on their baseline spike rate, with integration vanishing at low (< 1 per s) and high rates (> 30 per s). The model predicts that the apparently fast circuit of the cerebellar cortex may control the timing of slow processes without having to rely on sensory feedback. Thus, the cerebellar cortex may contain an adaptive temporal integrator, with the sensitivity of integration to the baseline spike rate offering a potential mechanism of plasticity of the response time-constant.
Collapse
Affiliation(s)
- Reinoud Maex
- Science and Technology Research Institute, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK
| | | |
Collapse
|
16
|
Shaikh AG, Palla A, Marti S, Olasagasti I, Optican LM, Zee DS, Straumann D. Role of cerebellum in motion perception and vestibulo-ocular reflex-similarities and disparities. CEREBELLUM (LONDON, ENGLAND) 2013; 12:97-107. [PMID: 22777507 PMCID: PMC3510326 DOI: 10.1007/s12311-012-0401-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vestibular velocity storage enhances the efficacy of the angular vestibulo-ocular reflex (VOR) during relatively low-frequency head rotations. This function is modulated by GABA-mediated inhibitory cerebellar projections. Velocity storage also exists in perceptual pathway and has similar functional principles as VOR. However, it is not known whether the neural substrate for perception and VOR overlap. We propose two possibilities. First, there is the same velocity storage for both VOR and perception; second, there are nonoverlapping neural networks: one might be involved in perception and the other for the VOR. We investigated these possibilities by measuring VOR and perceptual responses in healthy human subjects during whole-body, constant-velocity rotation steps about all three dimensions (yaw, pitch, and roll) before and after 10 mg of 4-aminopyridine (4-AP). 4-AP, a selective blocker of inward rectifier potassium conductance, can lead to increased synchronization and precision of Purkinje neuron discharge and possibly enhance the GABAergic action. Hence 4-AP could reduce the decay time constant of the perceived angular velocity and VOR. We found that 4-AP reduced the decay time constant, but the amount of reduction in the two processes, perception and VOR, was not the same, suggesting the possibility of nonoverlapping or partially overlapping neural substrates for VOR and perception. We also noted that, unlike the VOR, the perceived angular velocity gradually built up and plateau prior to decay. Hence, the perception pathway may have additional mechanism that changes the dynamics of perceived angular velocity beyond the velocity storage. 4-AP had no effects on the duration of build-up of perceived angular velocity, suggesting that the higher order processing of perception, beyond the velocity storage, might not occur under the influence of mechanism that could be influenced by 4-AP.
Collapse
Affiliation(s)
- Aasef G Shaikh
- Department of Neurology, Case Western Reserve University, Cleveland, OH 44106-5040, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Chen LL, Lee D, Fukushima K, Fukushima J. Submovement composition of head movement. PLoS One 2012; 7:e47565. [PMID: 23139749 PMCID: PMC3489904 DOI: 10.1371/journal.pone.0047565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/18/2012] [Indexed: 11/19/2022] Open
Abstract
Limb movement is smooth and corrections of movement trajectory and amplitude are barely noticeable midflight. This suggests that skeletomuscular motor commands are smooth in transition, such that the rate of change of acceleration (or jerk) is minimized. Here we applied the methodology of minimum-jerk submovement decomposition to a member of the skeletomuscular family, the head movement. We examined the submovement composition of three types of horizontal head movements generated by nonhuman primates: head-alone tracking, head-gaze pursuit, and eye-head combined gaze shifts. The first two types of head movements tracked a moving target, whereas the last type oriented the head with rapid gaze shifts toward a target fixed in space. During head tracking, the head movement was composed of a series of episodes, each consisting of a distinct, bell-shaped velocity profile (submovement) that rarely overlapped with each other. There was no specific magnitude order in the peak velocities of these submovements. In contrast, during eye-head combined gaze shifts, the head movement was often comprised of overlapping submovements, in which the peak velocity of the primary submovement was always higher than that of the subsequent submovement, consistent with the two-component strategy observed in goal-directed limb movements. These results extend the previous submovement composition studies from limb to head movements, suggesting that submovement composition provides a biologically plausible approach to characterizing the head motor recruitment that can vary depending on task demand.
Collapse
Affiliation(s)
- Lewis L Chen
- Department of Otolaryngology, Neurobiology and Anatomical Sciences, Ophthalmology, University of Mississippi Medical Center, Jackson, Mississippi, USA.
| | | | | | | |
Collapse
|
18
|
Beraneck M, Bojados M, Le Séac'h A, Jamon M, Vidal PP. Ontogeny of mouse vestibulo-ocular reflex following genetic or environmental alteration of gravity sensing. PLoS One 2012; 7:e40414. [PMID: 22808156 PMCID: PMC3393735 DOI: 10.1371/journal.pone.0040414] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/07/2012] [Indexed: 11/28/2022] Open
Abstract
The vestibular organs consist of complementary sensors: the semicircular canals detect rotations while the otoliths detect linear accelerations, including the constant pull of gravity. Several fundamental questions remain on how the vestibular system would develop and/or adapt to prolonged changes in gravity such as during long-term space journey. How do vestibular reflexes develop if the appropriate assembly of otoliths and semi-circular canals is perturbed? The aim of present work was to evaluate the role of gravity sensing during ontogeny of the vestibular system. In otoconia-deficient mice (ied), gravity cannot be sensed and therefore maculo-ocular reflexes (MOR) were absent. While canals-related reflexes were present, the ied deficit also led to the abnormal spatial tuning of the horizontal angular canal-related VOR. To identify putative otolith-related critical periods, normal C57Bl/6J mice were subjected to 2G hypergravity by chronic centrifugation during different periods of development or adulthood (Adult-HG) and compared to non-centrifuged (control) C57Bl/6J mice. Mice exposed to hypergravity during development had completely normal vestibulo-ocular reflexes 6 months after end of centrifugation. Adult-HG mice all displayed major abnormalities in maculo-ocular reflexe one month after return to normal gravity. During the next 5 months, adaptation to normal gravity occurred in half of the individuals. In summary, genetic suppression of gravity sensing indicated that otolith-related signals might be necessary to ensure proper functioning of canal-related vestibular reflexes. On the other hand, exposure to hypergravity during development was not sufficient to modify durably motor behaviour. Hence, 2G centrifugation during development revealed no otolith-specific critical period.
Collapse
Affiliation(s)
- Mathieu Beraneck
- CNRS UMR 8194, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | | | | | | | | |
Collapse
|
19
|
Karmali F, Merfeld DM. A distributed, dynamic, parallel computational model: the role of noise in velocity storage. J Neurophysiol 2012; 108:390-405. [PMID: 22514288 PMCID: PMC3404789 DOI: 10.1152/jn.00883.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 04/13/2012] [Indexed: 11/22/2022] Open
Abstract
Networks of neurons perform complex calculations using distributed, parallel computation, including dynamic "real-time" calculations required for motion control. The brain must combine sensory signals to estimate the motion of body parts using imperfect information from noisy neurons. Models and experiments suggest that the brain sometimes optimally minimizes the influence of noise, although it remains unclear when and precisely how neurons perform such optimal computations. To investigate, we created a model of velocity storage based on a relatively new technique--"particle filtering"--that is both distributed and parallel. It extends existing observer and Kalman filter models of vestibular processing by simulating the observer model many times in parallel with noise added. During simulation, the variance of the particles defining the estimator state is used to compute the particle filter gain. We applied our model to estimate one-dimensional angular velocity during yaw rotation, which yielded estimates for the velocity storage time constant, afferent noise, and perceptual noise that matched experimental data. We also found that the velocity storage time constant was Bayesian optimal by comparing the estimate of our particle filter with the estimate of the Kalman filter, which is optimal. The particle filter demonstrated a reduced velocity storage time constant when afferent noise increased, which mimics what is known about aminoglycoside ablation of semicircular canal hair cells. This model helps bridge the gap between parallel distributed neural computation and systems-level behavioral responses like the vestibuloocular response and perception.
Collapse
Affiliation(s)
- Faisal Karmali
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, and Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114, USA.
| | | |
Collapse
|
20
|
Bertolini G, Ramat S, Bockisch CJ, Marti S, Straumann D, Palla A. Is vestibular self-motion perception controlled by the velocity storage? Insights from patients with chronic degeneration of the vestibulo-cerebellum. PLoS One 2012; 7:e36763. [PMID: 22719833 PMCID: PMC3376140 DOI: 10.1371/journal.pone.0036763] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 04/09/2012] [Indexed: 11/20/2022] Open
Abstract
Background The rotational vestibulo-ocular reflex (rVOR) generates compensatory eye movements in response to rotational head accelerations. The velocity-storage mechanism (VSM), which is controlled by the vestibulo-cerebellar nodulus and uvula, determines the rVOR time constant. In healthy subjects, it has been suggested that self-motion perception in response to earth-vertical axis rotations depends on the VSM in a similar way as reflexive eye movements. We aimed at further investigating this hypothesis and speculated that if the rVOR and rotational self-motion perception share a common VSM, alteration in the latter, such as those occurring after a loss of the regulatory control by vestibulo-cerebellar structures, would result in similar reflexive and perceptual response changes. We therefore set out to explore both responses in patients with vestibulo-cerebellar degeneration. Methodology/Principal Findings Reflexive eye movements and perceived rotational velocity were simultaneously recorded in 14 patients with chronic vestibulo-cerebellar degeneration (28–81yrs) and 12 age-matched healthy subjects (30–72yrs) after the sudden deceleration (90°/s2) from constant-velocity (90°/s) rotations about the earth-vertical yaw and pitch axes. rVOR and perceived rotational velocity data were analyzed using a two-exponential model with a direct pathway, representing semicircular canal activity, and an indirect pathway, implementing the VSM. We found that VSM time constants of rVOR and perceived rotational velocity co-varied in cerebellar patients and in healthy controls (Pearson correlation coefficient for yaw 0.95; for pitch 0.93, p<0.01). When constraining model parameters to use the same VSM time constant for rVOR and perceived rotational velocity, moreover, no significant deterioration of the quality of fit was found for both populations (variance-accounted-for >0.8). Conclusions/Significance Our results confirm that self-motion perception in response to rotational velocity-steps may be controlled by the same velocity storage network that controls reflexive eye movements and that no additional, e.g. cortical, mechanisms are required to explain perceptual dynamics.
Collapse
Affiliation(s)
- Giovanni Bertolini
- Department of Neurology, Zurich University Hospital, Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
21
|
Lewis RF, Haburcakova C, Gong W, Karmali F, Merfeld DM. Spatial and temporal properties of eye movements produced by electrical stimulation of semicircular canal afferents. J Neurophysiol 2012; 108:1511-20. [PMID: 22673321 DOI: 10.1152/jn.01029.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To investigate the characteristics of eye movements produced by electrical stimulation of semicircular canal afferents, we studied the spatial and temporal features of eye movements elicited by short-term lateral canal stimulation in two squirrel monkeys with plugged lateral canals, with the head upright or statically tilted in the roll plane. The electrically induced vestibuloocular reflex (eVOR) evoked with the head upright decayed more quickly than the stimulation signal provided by the electrode, demonstrating an absence of the classic velocity storage effect that improves the dynamics of the low-frequency VOR. When stimulation was provided with the head tilted in roll, however, the eVOR decayed more rapidly than when the head was upright, and a cross-coupled vertical response developed that shifted the eye's rotational axis toward alignment with gravity. These results demonstrate that rotational information provided by electrical stimulation of canal afferents interacts with otolith inputs (or other graviceptive cues) in a qualitatively normal manner, a process that is thought to be mediated by the velocity storage network. The observed interaction between the eVOR and graviceptive cues is of critical importance for the development of a functionally useful vestibular prosthesis. Furthermore, the presence of gravity-dependent effects (dumping, spatial orientation) despite an absence of low-frequency augmentation of the eVOR has not been previously described in any experimental preparation.
Collapse
Affiliation(s)
- Richard F Lewis
- Department of Otolaryngology, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | |
Collapse
|
22
|
Farshadmanesh F, Byrne P, Keith GP, Wang H, Corneil BD, Crawford JD. Cross-validated models of the relationships between neck muscle electromyography and three-dimensional head kinematics during gaze behavior. J Neurophysiol 2011; 107:573-90. [PMID: 21994269 DOI: 10.1152/jn.00315.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The object of this study was to model the relationship between neck electromyography (EMG) and three-dimensional (3-D) head kinematics during gaze behavior. In two monkeys, we recorded 3-D gaze, head orientation, and bilateral EMG activity in the sternocleidomastoid, splenius capitis, complexus, biventer cervicis, rectus capitis posterior major, and occipital capitis inferior muscles. Head-unrestrained animals fixated and made gaze saccades between targets within a 60° × 60° grid. We performed a stepwise regression in which polynomial model terms were retained/rejected based on their tendency to increase/decrease a cross-validation-based measure of model generalizability. This revealed several results that could not have been predicted from knowledge of musculoskeletal anatomy. During head holding, EMG activity in most muscles was related to horizontal head orientation, whereas fewer muscles correlated to vertical head orientation and none to small random variations in head torsion. A fourth-order polynomial model, with horizontal head orientation as the only independent variable, generalized nearly as well as higher order models. For head movements, we added time-varying linear and nonlinear perturbations in velocity and acceleration to the previously derived static (head holding) models. The static models still explained most of the EMG variance, but the additional motion terms, which included horizontal, vertical, and torsional contributions, significantly improved the results. Several coordinate systems were used for both static and dynamic analyses, with Fick coordinates showing a marginal (nonsignificant) advantage. Thus, during gaze fixations, recruitment within the neck muscles from which we recorded contributed primarily to position-dependent horizontal orientation terms in our data set, with more complex multidimensional contributions emerging during the head movements that accompany gaze shifts. These are crucial components of the late neuromuscular transformations in a complete model of 3-D head-neck system and should help constrain the study of premotor signals for head control during gaze behaviors.
Collapse
Affiliation(s)
- Farshad Farshadmanesh
- York Center for Vision Research, Neuroscience Graduate Diploma Program, Departments of Psychology, Biology, and Kinesiology and Health Sciences, York University, Toronto, Ontario
| | | | | | | | | | | |
Collapse
|
23
|
Walker MF, Tian J, Shan X, Tamargo RJ, Ying H, Zee DS. The cerebellar nodulus/uvula integrates otolith signals for the translational vestibulo-ocular reflex. PLoS One 2010; 5:e13981. [PMID: 21085587 PMCID: PMC2981566 DOI: 10.1371/journal.pone.0013981] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 10/09/2010] [Indexed: 11/19/2022] Open
Abstract
Background The otolith-driven translational vestibulo-ocular reflex (tVOR) generates compensatory eye movements to linear head accelerations. Studies in humans indicate that the cerebellum plays a critical role in the neural control of the tVOR, but little is known about mechanisms of this control or the functions of specific cerebellar structures. Here, we chose to investigate the contribution of the nodulus and uvula, which have been shown by prior studies to be involved in the processing of otolith signals in other contexts. Methodology/Principal Findings We recorded eye movements in two rhesus monkeys during steps of linear motion along the interaural axis before and after surgical lesions of the cerebellar uvula and nodulus. The lesions strikingly reduced eye velocity during constant-velocity motion but had only a small effect on the response to initial head acceleration. We fit eye velocity to a linear combination of head acceleration and velocity and to a dynamic mathematical model of the tVOR that incorporated a specific integrator of head acceleration. Based on parameter optimization, the lesion decreased the gain of the pathway containing this new integrator by 62%. The component of eye velocity that depended directly on head acceleration changed little (gain decrease of 13%). In a final set of simulations, we compared our data to the predictions of previous models of the tVOR, none of which could account for our experimental findings. Conclusions/ Significance Our results provide new and important information regarding the neural control of the tVOR. Specifically, they point to a key role for the cerebellar nodulus and uvula in the mathematical integration of afferent linear head acceleration signals. This function is likely to be critical not only for the tVOR but also for the otolith-mediated reflexes that control posture and balance.
Collapse
Affiliation(s)
- Mark F Walker
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America.
| | | | | | | | | | | |
Collapse
|
24
|
Bertolini G, Ramat S, Laurens J, Bockisch CJ, Marti S, Straumann D, Palla A. Velocity storage contribution to vestibular self-motion perception in healthy human subjects. J Neurophysiol 2010; 105:209-23. [PMID: 21068266 DOI: 10.1152/jn.00154.2010] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Self-motion perception after a sudden stop from a sustained rotation in darkness lasts approximately as long as reflexive eye movements. We hypothesized that, after an angular velocity step, self-motion perception and reflexive eye movements are driven by the same vestibular pathways. In 16 healthy subjects (25-71 years of age), perceived rotational velocity (PRV) and the vestibulo-ocular reflex (rVOR) after sudden decelerations (90°/s(2)) from constant-velocity (90°/s) earth-vertical axis rotations were simultaneously measured (PRV reported by hand-lever turning; rVOR recorded by search coils). Subjects were upright (yaw) or 90° left-ear-down (pitch). After both yaw and pitch decelerations, PRV rose rapidly and showed a plateau before decaying. In contrast, slow-phase eye velocity (SPV) decayed immediately after the initial increase. SPV and PRV were fitted with the sum of two exponentials: one time constant accounting for the semicircular canal (SCC) dynamics and one time constant accounting for a central process, known as velocity storage mechanism (VSM). Parameters were constrained by requiring equal SCC time constant and VSM time constant for SPV and PRV. The gains weighting the two exponential functions were free to change. SPV were accurately fitted (variance-accounted-for: 0.85 ± 0.10) and PRV (variance-accounted-for: 0.86 ± 0.07), showing that SPV and PRV curve differences can be explained by a greater relative weight of VSM in PRV compared with SPV (twofold for yaw, threefold for pitch). These results support our hypothesis that self-motion perception after angular velocity steps is be driven by the same central vestibular processes as reflexive eye movements and that no additional mechanisms are required to explain the perceptual dynamics.
Collapse
Affiliation(s)
- G Bertolini
- Neurology Department, Zurich University Hospital, Frauenklinikstrasse 26, CH-8091 Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
25
|
Angelaki DE, Yakusheva TA, Green AM, Dickman JD, Blazquez PM. Computation of egomotion in the macaque cerebellar vermis. THE CEREBELLUM 2010; 9:174-82. [PMID: 20012388 DOI: 10.1007/s12311-009-0147-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nodulus and uvula (lobules X and IX of the vermis) receive mossy fibers from both vestibular afferents and vestibular nuclei neurons and are thought to play a role in spatial orientation. Their properties relate to a sensory ambiguity of the vestibular periphery: otolith afferents respond identically to translational (inertial) accelerations and changes in orientation relative to gravity. Based on theoretical and behavioral evidence, this sensory ambiguity is resolved using rotational cues from the semicircular canals. Recordings from the cerebellar cortex have identified a neural correlate of the brain's ability to resolve this ambiguity in the simple spike activities of nodulus/uvula Purkinje cells. This computation, which likely involves the cerebellar circuitry and its reciprocal connections with the vestibular nuclei, results from a remarkable convergence of spatially- and temporally-aligned otolith-driven and semicircular canal-driven signals. Such convergence requires a spatio-temporal transformation of head-centered canal-driven signals into an estimate of head reorientation relative to gravity. This signal must then be subtracted from the otolith-driven estimate of net acceleration to compute inertial motion. At present, Purkinje cells in the nodulus/uvula appear to encode the output of this computation. However, how the required spatio-temporal matching takes place within the cerebellar circuitry and what role complex spikes play in spatial orientation and disorientation remains unknown. In addition, the role of visual cues in driving and/or modifying simple and complex spike activity, a process potentially critical for long-term adaptation, constitutes another important direction for future studies.
Collapse
Affiliation(s)
- Dora E Angelaki
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
26
|
MacNeilage PR, Turner AH, Angelaki DE. Canal-otolith interactions and detection thresholds of linear and angular components during curved-path self-motion. J Neurophysiol 2010; 104:765-73. [PMID: 20554843 DOI: 10.1152/jn.01067.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gravitational signals arising from the otolith organs and vertical plane rotational signals arising from the semicircular canals interact extensively for accurate estimation of tilt and inertial acceleration. Here we used a classical signal detection paradigm to examine perceptual interactions between otolith and horizontal semicircular canal signals during simultaneous rotation and translation on a curved path. In a rotation detection experiment, blindfolded subjects were asked to detect the presence of angular motion in blocks where half of the trials were pure nasooccipital translation and half were simultaneous translation and yaw rotation (curved-path motion). In separate, translation detection experiments, subjects were also asked to detect either the presence or the absence of nasooccipital linear motion in blocks, in which half of the trials were pure yaw rotation and half were curved path. Rotation thresholds increased slightly, but not significantly, with concurrent linear velocity magnitude. Yaw rotation detection threshold, averaged across all conditions, was 1.45 +/- 0.81 degrees/s (3.49 +/- 1.95 degrees/s(2)). Translation thresholds, on the other hand, increased significantly with increasing magnitude of concurrent angular velocity. Absolute nasooccipital translation detection threshold, averaged across all conditions, was 2.93 +/- 2.10 cm/s (7.07 +/- 5.05 cm/s(2)). These findings suggest that conscious perception might not have independent access to separate estimates of linear and angular movement parameters during curved-path motion. Estimates of linear (and perhaps angular) components might instead rely on integrated information from canals and otoliths. Such interaction may underlie previously reported perceptual errors during curved-path motion and may originate from mechanisms that are specialized for tilt-translation processing during vertical plane rotation.
Collapse
Affiliation(s)
- Paul R MacNeilage
- Department of Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
27
|
Multisensory integration: resolving sensory ambiguities to build novel representations. Curr Opin Neurobiol 2010; 20:353-60. [PMID: 20471245 DOI: 10.1016/j.conb.2010.04.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 04/10/2010] [Accepted: 04/14/2010] [Indexed: 11/19/2022]
Abstract
Multisensory integration plays several important roles in the nervous system. One is to combine information from multiple complementary cues to improve stimulus detection and discrimination. Another is to resolve peripheral sensory ambiguities and create novel internal representations that do not exist at the level of individual sensors. Here we focus on how ambiguities inherent in vestibular, proprioceptive and visual signals are resolved to create behaviorally useful internal estimates of our self-motion. We review recent studies that have shed new light on the nature of these estimates and how multiple, but individually ambiguous, sensory signals are processed and combined to compute them. We emphasize the need to combine experiments with theoretical insights to understand the transformations that are being performed.
Collapse
|
28
|
Green AM, Angelaki DE. Internal models and neural computation in the vestibular system. Exp Brain Res 2010; 200:197-222. [PMID: 19937232 PMCID: PMC2853943 DOI: 10.1007/s00221-009-2054-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 10/08/2009] [Indexed: 10/20/2022]
Abstract
The vestibular system is vital for motor control and spatial self-motion perception. Afferents from the otolith organs and the semicircular canals converge with optokinetic, somatosensory and motor-related signals in the vestibular nuclei, which are reciprocally interconnected with the vestibulocerebellar cortex and deep cerebellar nuclei. Here, we review the properties of the many cell types in the vestibular nuclei, as well as some fundamental computations implemented within this brainstem-cerebellar circuitry. These include the sensorimotor transformations for reflex generation, the neural computations for inertial motion estimation, the distinction between active and passive head movements, as well as the integration of vestibular and proprioceptive information for body motion estimation. A common theme in the solution to such computational problems is the concept of internal models and their neural implementation. Recent studies have shed new insights into important organizational principles that closely resemble those proposed for other sensorimotor systems, where their neural basis has often been more difficult to identify. As such, the vestibular system provides an excellent model to explore common neural processing strategies relevant both for reflexive and for goal-directed, voluntary movement as well as perception.
Collapse
Affiliation(s)
- Andrea M Green
- Dépt. de Physiologie, Université de Montréal, 2960 Chemin de la Tour, Rm. 4141, Montreal, QC H3T 1J4, Canada.
| | | |
Collapse
|
29
|
Angelaki DE, Klier EM, Snyder LH. A vestibular sensation: probabilistic approaches to spatial perception. Neuron 2009; 64:448-61. [PMID: 19945388 DOI: 10.1016/j.neuron.2009.11.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2009] [Indexed: 10/20/2022]
Abstract
The vestibular system helps maintain equilibrium and clear vision through reflexes, but it also contributes to spatial perception. In recent years, research in the vestibular field has expanded to higher-level processing involving the cortex. Vestibular contributions to spatial cognition have been difficult to study because the circuits involved are inherently multisensory. Computational methods and the application of Bayes theorem are used to form hypotheses about how information from different sensory modalities is combined together with expectations based on past experience in order to obtain optimal estimates of cognitive variables like current spatial orientation. To test these hypotheses, neuronal populations are being recorded during active tasks in which subjects make decisions based on vestibular and visual or somatosensory information. This review highlights what is currently known about the role of vestibular information in these processes, the computations necessary to obtain the appropriate signals, and the benefits that have emerged thus far.
Collapse
Affiliation(s)
- Dora E Angelaki
- Department of Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
30
|
Angelaki DE, Yakusheva TA. How vestibular neurons solve the tilt/translation ambiguity. Comparison of brainstem, cerebellum, and thalamus. Ann N Y Acad Sci 2009; 1164:19-28. [PMID: 19645876 PMCID: PMC2860452 DOI: 10.1111/j.1749-6632.2009.03939.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The peripheral vestibular system is faced by a sensory ambiguity, where primary otolith afferents respond identically to translational (inertial) accelerations and changes in head orientation relative to gravity. Under certain conditions, this sensory ambiguity can be resolved using extra-otolith cues, including semicircular canal signals. Here we review and summarize how neurons in the vestibular nuclei, rostral fastigial nuclei, cerebellar nodulus/uvula, and thalamus respond during combinations of tilt and translation. We focus primarily on cerebellar cortex responses, as nodulus/uvula Purkinje cells reliably encode translation rather than net gravito-inertial acceleration. In contrast, neurons in the vestibular and rostral fastigial nuclei, as well as the ventral lateral and ventral posterior nuclei of the thalamus represent a continuum, with some encoding translation and some net gravito-inertial acceleration. This review also outlines how Purkinje cells use semicircular canal signals to solve the ambiguity problem and how this solution fails at low frequencies. We conclude by attempting to bridge the gap between the proposed roles of nodulus/uvula in tilt/translation discrimination and velocity storage.
Collapse
Affiliation(s)
- Dora E Angelaki
- Department of Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
31
|
MacNeilage PR, Ganesan N, Angelaki DE. Computational approaches to spatial orientation: from transfer functions to dynamic Bayesian inference. J Neurophysiol 2008; 100:2981-96. [PMID: 18842952 DOI: 10.1152/jn.90677.2008] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spatial orientation is the sense of body orientation and self-motion relative to the stationary environment, fundamental to normal waking behavior and control of everyday motor actions including eye movements, postural control, and locomotion. The brain achieves spatial orientation by integrating visual, vestibular, and somatosensory signals. Over the past years, considerable progress has been made toward understanding how these signals are processed by the brain using multiple computational approaches that include frequency domain analysis, the concept of internal models, observer theory, Bayesian theory, and Kalman filtering. Here we put these approaches in context by examining the specific questions that can be addressed by each technique and some of the scientific insights that have resulted. We conclude with a recent application of particle filtering, a probabilistic simulation technique that aims to generate the most likely state estimates by incorporating internal models of sensor dynamics and physical laws and noise associated with sensory processing as well as prior knowledge or experience. In this framework, priors for low angular velocity and linear acceleration can explain the phenomena of velocity storage and frequency segregation, both of which have been modeled previously using arbitrary low-pass filtering. How Kalman and particle filters may be implemented by the brain is an emerging field. Unlike past neurophysiological research that has aimed to characterize mean responses of single neurons, investigations of dynamic Bayesian inference should attempt to characterize population activities that constitute probabilistic representations of sensory and prior information.
Collapse
Affiliation(s)
- Paul R MacNeilage
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
32
|
Abstract
Elegant sensory structures in the inner ear have evolved to measure head motion. These vestibular receptors consist of highly conserved semicircular canals and otolith organs. Unlike other senses, vestibular information in the central nervous system becomes immediately multisensory and multimodal. There is no overt, readily recognizable conscious sensation from these organs, yet vestibular signals contribute to a surprising range of brain functions, from the most automatic reflexes to spatial perception and motor coordination. Critical to these diverse, multimodal functions are multiple computationally intriguing levels of processing. For example, the need for multisensory integration necessitates vestibular representations in multiple reference frames. Proprioceptive-vestibular interactions, coupled with corollary discharge of a motor plan, allow the brain to distinguish actively generated from passive head movements. Finally, nonlinear interactions between otolith and canal signals allow the vestibular system to function as an inertial sensor and contribute critically to both navigation and spatial orientation.
Collapse
Affiliation(s)
- Dora E Angelaki
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
33
|
McArthur KL, Dickman JD. Canal and otolith contributions to compensatory tilt responses in pigeons. J Neurophysiol 2008; 100:1488-97. [PMID: 18632885 PMCID: PMC2544472 DOI: 10.1152/jn.90257.2008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 07/04/2008] [Indexed: 11/22/2022] Open
Abstract
Gaze-stabilizing eye and head responses compensate more effectively for low-frequency rotational motion when such motion stimulates the otolith organs, as during earth-horizontal axis rotations. However, the nature of the otolith signal responsible for this improvement in performance has not been previously determined. In this study, we used combinations of earth-horizontal axis rotational and translational motion to manipulate the magnitude of net linear acceleration experienced by pigeons, under both head-fixed and head-free conditions. We show that phase enhancement of eye and head responses to low-frequency rotational motion was causally related to the magnitude of dynamic net linear acceleration and not the gravitational acceleration component. We also show that canal-driven and otolith-driven eye responses were both spatially and temporally appropriate to combine linearly, and that a simple linear model combining canal- and otolith-driven components predicted eye responses to complex motion that were consistent with our experimental observations. However, the same model did not predict the observed head responses, which were spatially but not temporally appropriate to combine according to the same linear scheme. These results suggest that distinct vestibular processing substrates exist for eye and head responses in pigeons and that these are likely different from the vestibular processing substrates observed in primates.
Collapse
Affiliation(s)
- Kimberly L McArthur
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
34
|
Guerraz M, Bronstein AM. Mechanisms underlying visually induced body sway. Neurosci Lett 2008; 443:12-6. [PMID: 18672020 DOI: 10.1016/j.neulet.2008.07.053] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 06/15/2008] [Accepted: 07/21/2008] [Indexed: 10/21/2022]
Abstract
We investigate the relationship between visually induced perceptual illusions of body motion (vection) and visually induced postural responses (VEPRs). Ten standing healthy subjects were tested in two visual conditions known to induce directionally opposite VEPRs: subjects fixated either a static head-mounted or an earth-fixed visual display in front of a horizontally translating visual background. The VEPR was in the direction of background motion when fixating the head-mounted display but transiently reversed in the earth-fixed condition. In contrast, vection occurred in only one direction (opposite to background motion) and developed later than VEPRs. The different time course and in-congruency between direction of VEPRs and direction of vection suggests that perceptual and postural responses are not causally related. However, since vection did increase VEPR magnitude in the direction of background motion, we postulate that VEPRs might be mediated by two different mechanisms: (1) a short latency system, driven by transient visual stimuli and sensitive to visual geometry (parallax-no parallax), responsible for automatic postural sway adjustments and (2) a longer latency, vection-enhanced postural mechanism, related to the conscious perception of self-motion during longer duration (locomotor, vehicular) body displacements.
Collapse
Affiliation(s)
- Michel Guerraz
- Laboratoire de Psychologie et Neurocognition, CNRS UMR 5105, Université de Savoie, 73376 Le Bourget du lac, France.
| | | |
Collapse
|
35
|
Green AM, Angelaki DE. Coordinate transformations and sensory integration in the detection of spatial orientation and self-motion: from models to experiments. PROGRESS IN BRAIN RESEARCH 2008; 165:155-80. [PMID: 17925245 DOI: 10.1016/s0079-6123(06)65010-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
An accurate internal representation of our current motion and orientation in space is critical to navigate in the world and execute appropriate action. The force of gravity provides an allocentric frame of reference that defines one's motion relative to inertial (i.e., world-centered) space. However, movement in this environment also introduces particular motion detection problems as our internal linear accelerometers, the otolith organs, respond identically to either translational motion or changes in head orientation relative to gravity. According to physical principles, there exists an ideal solution to the problem of distinguishing between the two as long as the brain also has access to accurate internal estimates of angular velocity. Here, we illustrate how a nonlinear integrative neural network that receives sensory signals from the vestibular organs could be used to implement the required computations for inertial motion detection. The model predicts several distinct cell populations that are comparable with experimentally identified cell types and accounts for a number of previously unexplained characteristics of their responses. A key model prediction is the existence of cell populations that transform head-referenced rotational signals from the semicircular canals into spatially referenced estimates of head reorientation relative to gravity. This chapter provides an overview of how addressing the problem of inertial motion estimation from a computational standpoint has contributed to identifying the actual neuronal populations responsible for solving the tilt-translation ambiguity and has facilitated the interpretation of neural response properties.
Collapse
Affiliation(s)
- Andrea M Green
- Départment de Physiologie, Université de Montréal, 2960 Chemin de la Tour, Rm. 2140, Montréal, QC, Canada H3T 1J4.
| | | |
Collapse
|
36
|
Nooij SAE, Bos JE, Groen EL. Velocity storage activity is affected after sustained centrifugation: a relationship with spatial disorientation. Exp Brain Res 2008; 190:165-77. [DOI: 10.1007/s00221-008-1460-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 06/04/2008] [Indexed: 10/21/2022]
|
37
|
Lewis RF, Haburcakova C, Merfeld DM. Roll tilt psychophysics in rhesus monkeys during vestibular and visual stimulation. J Neurophysiol 2008; 100:140-53. [PMID: 18417632 DOI: 10.1152/jn.01012.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
How does the brain calculate the spatial orientation of the head relative to gravity? Psychophysical measurements are critical to investigate this question, but such measurements have been limited to humans. In non-human primates, behavioral measures have focused on vestibular-mediated eye movements, which do not reflect percepts of head orientation. We have therefore developed a method to measure tilt perception in monkeys, derived from the subjective visual vertical (SVV) task. Two rhesus monkeys were trained to align a light bar parallel to gravity and performed this task during roll tilts, centrifugation, and roll optokinetic stimulation. The monkeys accurately aligned the light bar with gravity during static roll tilts but also demonstrated small orientation-dependent misperceptions of the tilt angle analogous to those measured in humans. When the gravito-inertial force (GIF) rotated dynamically in the roll plane, SVV responses remained closely aligned with the GIF during roll tilt of the head (coplanar canal rotational cues present), lagged slightly behind the GIF during variable-radius centrifugation (no canal cues present), and shifted gradually during fixed-radius centrifugation (orthogonal yaw canal cues present). SVV responses also deviated away from the earth-vertical during roll optokinetic stimulation. These results demonstrate that rotational cues derived from the semicircular canals and visual system have prominent effects on psychophysical measurements of roll tilt in rhesus monkeys and therefore suggest that a central synthesis of graviceptive and rotational cues contributes to percepts of head orientation relative to gravity in non-human primates.
Collapse
Affiliation(s)
- Richard F Lewis
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
38
|
Walker MF, Tian J, Shan X, Tamargo RJ, Ying H, Zee DS. Lesions of the cerebellar nodulus and uvula in monkeys: effect on otolith-ocular reflexes. PROGRESS IN BRAIN RESEARCH 2008; 171:167-72. [PMID: 18718296 DOI: 10.1016/s0079-6123(08)00622-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
We studied two rhesus monkeys before and after surgical ablation of the nodulus and uvula (Nod/Uv) of the cerebellum. Three-axis eye movements were recorded with the magnetic-field scleral search coil system during a variety of vestibular and ocular motor tasks. Here we describe the effects of the Nod/Uv lesions on dynamic (head translation) and static (head tilt) otolith-mediated vestibulo-ocular reflexes. The main findings were: 1. eye velocity during sinusoidal vertical translation (1.5 Hz) was reduced by 59% in the dark and 36% in the light; 2. eye velocity during steps of horizontal translation was reduced, but only in the dark and more so during the sustained (constant velocity) than the initial (acceleration) part of the response, and 3. there was a torsional nystagmus that depended on the position of roll head tilt, but static ocular counterroll was unchanged. These results suggest new roles for the Nod/Uv in the processing of otolith signals. This is likely important not only for facilitating gaze during linear head motion, but also for maintaining postural stability and one's orientation relative to gravity. The lesions appeared to have a greater effect on responses to vertical motion, particularly in the light (in contrast, responses to interaural translation in the light were nearly normal), suggesting a particular importance of the Nod/Uv in processing signals arising from the sacculi.
Collapse
Affiliation(s)
- Mark F Walker
- Department of Neurology, The Johns Hopkins University, Baltimore, MD, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Yakusheva TA, Shaikh AG, Green AM, Blazquez PM, Dickman JD, Angelaki DE. Purkinje cells in posterior cerebellar vermis encode motion in an inertial reference frame. Neuron 2007; 54:973-85. [PMID: 17582336 DOI: 10.1016/j.neuron.2007.06.003] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 05/02/2007] [Accepted: 06/05/2007] [Indexed: 11/17/2022]
Abstract
The ability to orient and navigate through the terrestrial environment represents a computational challenge common to all vertebrates. It arises because motion sensors in the inner ear, the otolith organs, and the semicircular canals transduce self-motion in an egocentric reference frame. As a result, vestibular afferent information reaching the brain is inappropriate for coding our own motion and orientation relative to the outside world. Here we show that cerebellar cortical neuron activity in vermal lobules 9 and 10 reflects the critical computations of transforming head-centered vestibular afferent information into earth-referenced self-motion and spatial orientation signals. Unlike vestibular and deep cerebellar nuclei neurons, where a mixture of responses was observed, Purkinje cells represent a homogeneous population that encodes inertial motion. They carry the earth-horizontal component of a spatially transformed and temporally integrated rotation signal from the semicircular canals, which is critical for computing head attitude, thus isolating inertial linear accelerations during navigation.
Collapse
Affiliation(s)
- Tatyana A Yakusheva
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
40
|
Vingerhoets RAA, Van Gisbergen JAM, Medendorp WP. Verticality perception during off-vertical axis rotation. J Neurophysiol 2007; 97:3256-68. [PMID: 17329621 DOI: 10.1152/jn.01333.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During prolonged rotation about a tilted yaw axis, often referred to as off-vertical axis rotation (OVAR), a percept of being translated along a conical path slowly emerges as the sense of rotation subsides. Recently, we found that these perceptual changes are consistent with a canal-otolith interaction model that attributes the illusory translation percept to improper interpretation of the ambiguous otolith signals. The model further predicts that the illusory translation percept must be accompanied by slowly worsening tilt underestimates. Here, we tested this prediction in six subjects by measuring the time course of the subjective visual vertical (SVV) during OVAR stimulation at three different tilt-rotation speed combinations, in complete darkness. Throughout the 2-min run, at each left-ear-down and right-ear-down position, the subject indicated whether a briefly flashed line deviated clockwise or counterclockwise from vertical to determine the SVV with an adaptive staircase procedure. Typically, SVV errors indicating tilt underestimation were already present at rotation onset and then increased exponentially to an asymptotic value, reached at about 60 s after rotation onset. The initial error in the SVV was highly correlated to the response error in a static tilt control experiment. The subsequent increase in error depended on both rotation speed and OVAR tilt angle, in a manner predicted by the canal-otolith interaction model. We conclude that verticality misjudgments during OVAR reflect a dynamic component linked to canal-otolith interaction, superimposed on a tilt-related component that is also expressed under stationary conditions.
Collapse
Affiliation(s)
- R A A Vingerhoets
- Department of Biophysics, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | |
Collapse
|
41
|
Wada Y, Kodaka Y, Kawano K. Vertical ocular responses to constant linear acceleration generated by fore–aft head translation in monkeys. Neurosci Res 2007; 57:240-7. [PMID: 17126437 DOI: 10.1016/j.neures.2006.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 10/02/2006] [Accepted: 10/25/2006] [Indexed: 11/30/2022]
Abstract
We examined the vertical linear vestibuloocular reflexes (LVORs) elicited by constant linear acceleration (0-0.5 g for >95 ms) during transient fore-aft translation in three monkeys. In the dark condition, small but consistent downward ocular responses to forward translation were observed (latencies >41 ms) when the initial vertical eye positions were at 0 degrees , although eye movements following backward translation were inconsistent among animals. These downward ocular responses showed the following three characteristics: they were independent of vertical gaze eccentricities, their magnitudes were almost proportional to the forward acceleration, and they were reduced by the large-field (not the spot) visual information. These characteristics revealed that the downward ocular responses to forward translation were the tilt LVORs. In addition, we recognized that the translational LVOR, which depended on vertical gaze eccentricities, was working at the same time. Our data suggest that constant linear acceleration during forward translation evokes the tilt LVOR, as well as the illusory tilting perception.
Collapse
Affiliation(s)
- Yoshiro Wada
- Department of Physiology I, Nara Medical University, Nara, Japan.
| | | | | |
Collapse
|
42
|
Angelaki DE, Hess BJM. Self-motion-induced eye movements: effects on visual acuity and navigation. Nat Rev Neurosci 2007; 6:966-76. [PMID: 16340956 DOI: 10.1038/nrn1804] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Self-motion disturbs the stability of retinal images by inducing optic flow. Objects of interest need to be fixated or tracked, yet these eye movements can infringe on the experienced retinal flow that is important for visual navigation. Separating the components of optic flow caused by an eye movement from those due to self-motion, as well as using optic flow for visual navigation while simultaneously maintaining visual acuity on near targets, represent key challenges for the visual system. Here we summarize recent advances in our understanding of how the visuomotor and vestibulomotor systems function and interact, given the complex task of compensating for instabilities of retinal images, which typically vary as a function of retinal location and differ for each eye.
Collapse
Affiliation(s)
- Dora E Angelaki
- Department of Neurobiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
43
|
Tian JR, Ishiyama A, Demer JL. Temporal dynamics of semicircular canal and otolith function following acute unilateral vestibular deafferentation in humans. Exp Brain Res 2006; 178:529-41. [PMID: 17091290 PMCID: PMC1865110 DOI: 10.1007/s00221-006-0761-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 10/10/2006] [Indexed: 11/29/2022]
Abstract
Dynamic changes of deficits in canal and otolith vestibulo-ocular reflexes (VORs) to high acceleration, eccentric yaw rotations were investigated in five subjects aged 25-65 years before and at frequent intervals 3-451 days following unilateral vestibular deafferentation (UVD) due to labyrinthectomy or vestibular neurectomy. Eye and head movements were recorded using magnetic search coils during transients of directionally random, whole-body rotation in darkness at peak acceleration 2,800 degrees/s2. Canal VORs were characterized during rotation about a mid-otolith axis, viewing a target 500 cm distant until rotation onset in darkness. Otolith VOR responses were characterized by the increase in VOR gain during identical rotation about an axis 13 cm posterior to the otoliths, initially viewing a target 15 cm distant. Pre-UVD canal gain was directionally symmetrical, averaging 0.87 +/- 0.02 (+/-SEM). Contralesional canal gain declined from pre-UVD by an average of 22% in the first 3-5 days post-UVD, before recovering to an asymptote of close 90% of pre-UVD level at 1-3 months. This recovery corresponded to resolution of spontaneous nystagmus. Ipsilesional gain declined to 59%, and showed no consistent recovery afterwards. Pre-UVD otolith gain was directionally symmetrical, averaging 0.56 +/- 0.02. Immediately after UVD, the contralesional otolith gain declined to 0.30 +/- 0.02, and did not recover. Ipsilesional otolith gain declined profoundly to 0.08 +/- 0.03 (P < 0.01), and never recovered. In contrast to the modest and directionally symmetrical effect of UVD on the human otolith VOR during pure translational acceleration, otolith gain during eccentric yaw rotation exhibited a profound and lasting deficit that might be diagnostically useful in lateralizing otolith pathology. Most recovery of the human canal gain to high acceleration transients following UVD is for contralesional head rotation, occurring within 3 months as spontaneous nystagmus resolves.
Collapse
Affiliation(s)
- Jun-ru Tian
- Department of Ophthalmology, University of California, Los Angeles, CA 90095-7002, USA.
| | | | | |
Collapse
|
44
|
Holly JE, Pierce SE, McCollum G. Head tilt-translation combinations distinguished at the level of neurons. BIOLOGICAL CYBERNETICS 2006; 95:311-26. [PMID: 16944195 DOI: 10.1007/s00422-006-0099-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Accepted: 06/16/2006] [Indexed: 05/11/2023]
Abstract
Angular and linear accelerations of the head occur throughout everyday life, whether from external forces such as in a vehicle or from volitional head movements. The relative timing of the angular and linear components of motion differs depending on the movement. The inner ear detects the angular and linear components with its semicircular canals and otolith organs, respectively, and secondary neurons in the vestibular nuclei receive input from these vestibular organs. Many secondary neurons receive both angular and linear input. Linear information alone does not distinguish between translational linear acceleration and angular tilt, with its gravity-induced change in the linear acceleration vector. Instead, motions are thought to be distinguished by use of both angular and linear information. However, for combined motions, composed of angular tilt and linear translation, the infinite range of possible relative timing of the angular and linear components gives an infinite set of motions among which to distinguish the various types of movement. The present research focuses on motions consisting of angular tilt and horizontal translation, both sinusoidal, where the relative timing, i.e. phase, of the tilt and translation can take any value in the range -180 degrees to 180 degrees . The results show how hypothetical neurons receiving convergent input can distinguish tilt from translation, and that each of these neurons has a preferred combined motion, to which the neuron responds maximally. Also shown are the values of angular and linear response amplitudes and phases that can cause a neuron to be tilt-only or translation-only. Such neurons turn out to be sufficient for distinguishing between combined motions, with all of the possible relative angular-linear phases. Combinations of other neurons, as well, are shown to distinguish motions. Relative response phases and in-phase firing-rate modulation are the key to identifying specific motions from within this infinite set of combined motions.
Collapse
Affiliation(s)
- Jan E Holly
- Department of Mathematics, Colby College, Waterville, ME 04901, USA.
| | | | | |
Collapse
|
45
|
Zhou W, Tang BF, Newlands SD, King WM. Responses of monkey vestibular-only neurons to translation and angular rotation. J Neurophysiol 2006; 96:2915-30. [PMID: 16943321 DOI: 10.1152/jn.00013.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Single-unit recordings were obtained from central vestibular neurons in three monkeys during passive head movements. Neurons that discharged in relation to head translation or changes in head orientation, but not eye movement ("vestibular-only," n = 154), were examined in detail. Neuronal discharge rates were analyzed during four stimulus conditions: sinusoidal head translation in the horizontal plane (0.2-4 Hz, 0.2 g peak acceleration), static head tilt in the vertical plane (+/-20 degrees ), oscillatory head tilt (0.5-2 Hz), and sinusoidal angular rotation about an earth-vertical axis (0.5 or 1 Hz). Vestibular-only cells were divided into two groups based on the regularity of their spontaneous discharge rates (CV*). One group (low-sensitivity units) exhibited regular discharge rates (CV* < 0.2), weak discharge modulation during head translation (<25 spikes . s(-1) . g(-1) at f = 1 Hz), and persistent discharge rates related to static head tilt (0.68 spikes . s(-1) . degrees (-1) of head tilt). The second group (high sensitivity neurons) exhibited irregular discharge rates (CV* > 0.2), strong discharge modulation during head translation ( approximately 100 spikes . s(-1) . g(-1) at f = 1 Hz), and little or no change in discharge rate during static head tilt (0.32 spikes . s(-1) . degrees (-1)). The firing rates of some neurons in both groups were modulated during rotation about an earth-vertical axis (42%), but the modulation was greater for neurons classified as high sensitivity units. Previous reports have described neurons similar to the high sensitivity group; however, the low sensitivity or tilt neurons have not previously been characterized. Significantly, recent theoretical models have predicted neurons with discharge patterns similar to those of low- and high-sensitivity neurons.
Collapse
Affiliation(s)
- Wu Zhou
- Department of Otolaryngology, University of Michigan Medical Center, 1500 E. Medical Center Drive, Ann Arbor, MI 48105, USA
| | | | | | | |
Collapse
|
46
|
Shaikh AG, Green AM, Ghasia FF, Newlands SD, Dickman JD, Angelaki DE. Sensory convergence solves a motion ambiguity problem. Curr Biol 2006; 15:1657-62. [PMID: 16169488 DOI: 10.1016/j.cub.2005.08.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 07/15/2005] [Accepted: 08/01/2005] [Indexed: 11/19/2022]
Abstract
Our inner ear is equipped with a set of linear accelerometers, the otolith organs, that sense the inertial accelerations experienced during self-motion. However, as Einstein pointed out nearly a century ago, this signal would by itself be insufficient to detect our real movement, because gravity, another form of linear acceleration, and self-motion are sensed identically by otolith afferents. To deal with this ambiguity, it was proposed that neural populations in the pons and midline cerebellum compute an independent, internal estimate of gravity using signals arising from the vestibular rotation sensors, the semicircular canals. This hypothesis, regarding a causal relationship between firing rates and postulated sensory contributions to inertial motion estimation, has been directly tested here by recording neural activities before and after inactivation of the semicircular canals. We show that, unlike cells in normal animals, the gravity component of neural responses was nearly absent in canal-inactivated animals. We conclude that, through integration of temporally matched, multimodal information, neurons derive the mathematical signals predicted by the equations describing the physics of the outside world.
Collapse
Affiliation(s)
- Aasef G Shaikh
- Department of Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
47
|
Migliaccio AA, Della Santina CC, Carey JP, Minor LB, Zee DS. The effect of binocular eye position and head rotation plane on the human torsional vestibuloocular reflex. Vision Res 2006; 46:2475-86. [PMID: 16545855 DOI: 10.1016/j.visres.2006.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 02/03/2006] [Accepted: 02/06/2006] [Indexed: 11/16/2022]
Abstract
We examined how the gain of the torsional vestibulo-ocular reflex (VOR) (defined as the instantaneous eye velocity divided by inverted head velocity) in normal humans is affected by eye position, target distance, and the plane of head rotation. In six normal subjects we measured three-dimensional (3D) eye and head rotation axes using scleral search coils, and 6D head position using a magnetic angular and linear position measurement device, during low-amplitude (approximately 20 degrees ), high-velocity (approximately 200 degrees/s), high-acceleration (approximately 4000 degrees /s2) rapid head rotations or 'impulses.' Head impulses were imposed manually and delivered in five planes: yaw (horizontal canal plane), pitch, roll, left anterior-right posterior canal plane (LARP), and right anterior-left posterior canal plane (RALP). Subjects were instructed to fix on one of six targets at eye level. Targets were either straight-ahead, 20 degrees left or 20 degrees right from midline, at distance 15 or 124 cm from the subject. Two subjects also looked at more eccentric targets, 30 degrees left or 30 degrees right from midline. We found that the vertical and horizontal VOR gains increased with the proximity of the target to the subject. Previous studies suggest that the torsional VOR gain should decrease with target proximity. We found, however, that the torsional VOR gain did not change for all planes of head rotation and for both target distances. We also found a dynamic misalignment of the vertical positions of the eyes during the torsional VOR, which was greatest during near viewing with symmetric convergence. This dynamic vertical skew during the torsional VOR arises, in part, because when the eyes are converged, the optical axes are not parallel to the naso-occipital axes around which the eyes are rotating. In five of six subjects, the average skew ranged 0.9 degrees -2.9 degrees and was reduced to <0.4 degrees by a 'torsional' quick-phase (around the naso-occipital axis) occurring <110 ms after the onset of the impulse. We propose that the torsional quick-phase mechanism during the torsional VOR could serve at least three functions: (1) resetting the retinal meridians closer to their usual orientation in the head, (2) correcting for the 'skew' deviation created by misalignment between the axes around which the eyes are rotating and the line of sight, and (3) taking the eyes back toward Listing's plane.
Collapse
Affiliation(s)
- Americo A Migliaccio
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, MA 21205, USA.
| | | | | | | | | |
Collapse
|
48
|
Green AM, Shaikh AG, Angelaki DE. Sensory vestibular contributions to constructing internal models of self-motion. J Neural Eng 2005; 2:S164-79. [PMID: 16135882 DOI: 10.1088/1741-2560/2/3/s02] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The ability to navigate in the world and execute appropriate behavioral and motor responses depends critically on our capacity to construct an accurate internal representation of our current motion and orientation in space. Vestibular sensory signals are among those that may make an essential contribution to the construction of such 'internal models'. Movement in a gravitational environment represents a situation where the construction of internal models becomes particularly important because the otolith organs, like any linear accelerometer, sense inertial and gravitational accelerations equivalently. Otolith afferents thus provide inherently ambiguous motion information, as they respond identically to translation and head reorientation relative to gravity. Resolution of this ambiguity requires the nonlinear integration of linear acceleration and angular velocity cues, as predicted by the physical equations of motion. Here, we summarize evidence that during translations and tilts from upright the firing rates of brainstem and cerebellar neurons encode a combination of dynamically processed semicircular canal and otolith signals appropriate to construct an internal model representation of the computations required for inertial motion detection.
Collapse
Affiliation(s)
- Andrea M Green
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8108, St Louis, MO 63110, USA
| | | | | |
Collapse
|
49
|
Merfeld DM, Park S, Gianna-Poulin C, Black FO, Wood S. Vestibular Perception and Action Employ Qualitatively Different Mechanisms. I. Frequency Response of VOR and Perceptual Responses DuringTranslationandTilt. J Neurophysiol 2005; 94:186-98. [PMID: 15728767 DOI: 10.1152/jn.00904.2004] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To investigate the neural mechanisms that humans use to process the ambiguous force measured by the otolith organs, we measured vestibuloocular reflexes (VORs) and perceptions of tilt and translation. One primary goal was to determine if the same, or different, mechanisms contribute to vestibular perception and action. We used motion paradigms that provided identical sinusoidal inter-aural otolith cues across a broad frequency range. We accomplished this by sinusoidally tilting (20°, 0.005–0.7 Hz) subjects in roll about an earth-horizontal, head-centered, rotation axis (“ Tilt”) or sinusoidally accelerating (3.3 m/s2, 0.005–0.7 Hz) subjects along their inter-aural axis (“ Translation”). While identical inter-aural otolith cues were provided by these motion paradigms, the canal cues were substantially different because roll rotations were present during Tilt but not during Translation. We found that perception was dependent on canal cues because the reported perceptions of both roll tilt and inter-aural translation were substantially different during Translation and Tilt. These findings match internal model predictions that rotational cues from the canals influence the neural processing of otolith cues. We also found horizontal translational VORs at frequencies >0.2 Hz during both Translation and Tilt. These responses were dependent on otolith cues and match simple filtering predictions that translational VORs include contributions via simple high-pass filtering of otolith cues. More generally, these findings demonstrate that internal models govern human vestibular “perception” across a broad range of frequencies and that simple high-pass filters contribute to human horizontal translational VORs (“action”) at frequencies above ∼0.2 Hz.
Collapse
Affiliation(s)
- Daniel M Merfeld
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Room 421, MEEI, 243 Charles St., Boston, Massachusetts 02114, USA.
| | | | | | | | | |
Collapse
|
50
|
Merfeld DM, Park S, Gianna-Poulin C, Black FO, Wood S. Vestibular Perception and Action Employ Qualitatively Different Mechanisms. II. VOR and Perceptual Responses During Combined Tilt&Translation. J Neurophysiol 2005; 94:199-205. [PMID: 15730979 DOI: 10.1152/jn.00905.2004] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
II. VOR and perceptual responses during combined Tilt&Translation. To compare and contrast the neural mechanisms that contribute to vestibular perception and action, we measured vestibuloocular reflexes (VOR) and perceptions of tilt and translation. We took advantage of the well-known ambiguity that the otolith organs respond to both linear acceleration and tilt with respect to gravity and investigated the mechanisms by which this ambiguity is resolved. A new motion paradigm that combined roll tilt with inter-aural translation (“ Tilt&Translation”) was used; subjects were sinusoidally (0.8 Hz) roll tilted but with their ears above or below the rotation axis. This paradigm provided sinusoidal roll canal cues that were the same across trials while providing otolith cues that varied linearly with ear position relative to the earth-horizontal rotation axis. We found that perceived tilt and translation depended on canal cues, with substantial roll tilt and inter-aural translation perceptions reported even when the otolith organs measured no inter-aural force. These findings match internal model predictions that rotational cues from the canals influence the neural processing of otolith cues. We also found horizontal translational VORs that varied linearly with radius; a minimal response was measured when the otolith organs transduced little or no inter-aural force. Hence, the horizontal translational VOR was dependent on otolith cues but independent of canal cues. These findings match predictions that translational VORs are elicited by simple filtering of otolith signals. We conclude that internal models govern human perception of tilt and translation at 0.8 Hz and that high-pass filtering governs the human translational VOR at this same frequency.
Collapse
Affiliation(s)
- Daniel M Merfeld
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Room 421, MEEI, 243 Charles St., Boston, Massachusetts 02114, USA.
| | | | | | | | | |
Collapse
|