1
|
Jurewicz K, Sleezer BJ, Mehta PS, Hayden BY, Ebitz RB. Irrational choices via a curvilinear representational geometry for value. Nat Commun 2024; 15:6424. [PMID: 39080250 PMCID: PMC11289086 DOI: 10.1038/s41467-024-49568-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/06/2024] [Indexed: 08/02/2024] Open
Abstract
We make decisions by comparing values, but it is not yet clear how value is represented in the brain. Many models assume, if only implicitly, that the representational geometry of value is linear. However, in part due to a historical focus on noisy single neurons, rather than neuronal populations, this hypothesis has not been rigorously tested. Here, we examine the representational geometry of value in the ventromedial prefrontal cortex (vmPFC), a part of the brain linked to economic decision-making, in two male rhesus macaques. We find that values are encoded along a curved manifold in vmPFC. This curvilinear geometry predicts a specific pattern of irrational decision-making: that decision-makers will make worse choices when an irrelevant, decoy option is worse in value, compared to when it is better. We observe this type of irrational choices in behavior. Together, these results not only suggest that the representational geometry of value is nonlinear, but that this nonlinearity could impose bounds on rational decision-making.
Collapse
Affiliation(s)
- Katarzyna Jurewicz
- Department of Neurosciences, Faculté de médecine, and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Université de Montréal, Montréal, QC, Canada
- Department of Physiology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Brianna J Sleezer
- Department of Neuroscience, Center for Magnetic Resonance Research, and Center for Neuroengineering, University of Minnesota, Minneapolis, MN, USA
| | - Priyanka S Mehta
- Department of Neuroscience, Center for Magnetic Resonance Research, and Center for Neuroengineering, University of Minnesota, Minneapolis, MN, USA
- Psychology Program, Department of Human Behavior, Justice, and Diversity, University of Wisconsin, Superior, Superior, WI, USA
| | - Benjamin Y Hayden
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - R Becket Ebitz
- Department of Neurosciences, Faculté de médecine, and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
2
|
Hajnal MA, Tran D, Szabó Z, Albert A, Safaryan K, Einstein M, Vallejo Martelo M, Polack PO, Golshani P, Orbán G. Shifts in attention drive context-dependent subspace encoding in anterior cingulate cortex in mice during decision making. Nat Commun 2024; 15:5559. [PMID: 38956080 PMCID: PMC11220070 DOI: 10.1038/s41467-024-49845-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
Attention supports decision making by selecting the features that are relevant for decisions. Selective enhancement of the relevant features and inhibition of distractors has been proposed as potential neural mechanisms driving this selection process. Yet, how attention operates when relevance cannot be directly determined, and the attention signal needs to be internally constructed is less understood. Here we recorded from populations of neurons in the anterior cingulate cortex (ACC) of mice in an attention-shifting task where relevance of stimulus modalities changed across blocks of trials. In contrast with V1 recordings, decoding of the irrelevant modality gradually declined in ACC after an initial transient. Our analytical proof and a recurrent neural network model of the task revealed mutually inhibiting connections that produced context-gated suppression as observed in mice. Using this RNN model we predicted a correlation between contextual modulation of individual neurons and their stimulus drive, which we confirmed in ACC but not in V1.
Collapse
Affiliation(s)
- Márton Albert Hajnal
- Department of Computational Sciences, HUN-REN Wigner Research Centre for Physics, Budapest, Hungary.
| | - Duy Tran
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Albert Einstein College of Medicine, New York, NY, USA
| | - Zsombor Szabó
- Department of Computational Sciences, HUN-REN Wigner Research Centre for Physics, Budapest, Hungary
| | - Andrea Albert
- Department of Computational Sciences, HUN-REN Wigner Research Centre for Physics, Budapest, Hungary
| | - Karen Safaryan
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael Einstein
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mauricio Vallejo Martelo
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Pierre-Olivier Polack
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| | - Peyman Golshani
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA.
- West Los Angeles VA Medical Center, Los Angeles, CA, USA.
| | - Gergő Orbán
- Department of Computational Sciences, HUN-REN Wigner Research Centre for Physics, Budapest, Hungary.
| |
Collapse
|
3
|
Lloyd A, Viding E, McKay R, Furl N. Understanding patch foraging strategies across development. Trends Cogn Sci 2023; 27:1085-1098. [PMID: 37500422 DOI: 10.1016/j.tics.2023.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
Patch foraging is a near-ubiquitous behaviour across the animal kingdom and characterises many decision-making domains encountered by humans. We review how a disposition to explore in adolescence may reflect the evolutionary conditions under which hunter-gatherers foraged for resources. We propose that neurocomputational mechanisms responsible for reward processing, learning, and cognitive control facilitate the transition from exploratory strategies in adolescence to exploitative strategies in adulthood - where individuals capitalise on known resources. This developmental transition may be disrupted by psychopathology, as there is emerging evidence of biases in explore/exploit choices in mental health problems. Explore/exploit choices may be an informative marker for mental health across development and future research should consider this feature of decision-making as a target for clinical intervention.
Collapse
Affiliation(s)
- Alex Lloyd
- Clinical, Educational, and Health Psychology, Psychology and Language Sciences, University College London, 26 Bedford Way, London, WC1H 0AP, UK.
| | - Essi Viding
- Clinical, Educational, and Health Psychology, Psychology and Language Sciences, University College London, 26 Bedford Way, London, WC1H 0AP, UK
| | - Ryan McKay
- Department of Psychology, Royal Holloway, University of London, Egham Hill, Egham, TW20 0EX, UK
| | - Nicholas Furl
- Department of Psychology, Royal Holloway, University of London, Egham Hill, Egham, TW20 0EX, UK
| |
Collapse
|
4
|
Hajnal MA, Tran D, Szabó Z, Albert A, Safaryan K, Einstein M, Martelo MV, Polack PO, Golshani P, Orbán G. Shifts in attention drive context-dependent subspace encoding in anterior cingulate cortex during decision making. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561737. [PMID: 37873364 PMCID: PMC10592791 DOI: 10.1101/2023.10.10.561737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Attention is a cognitive faculty that selects part of a larger set of percepts, driven by cues such as stimulus saliency, internal goals or priors. The enhancement of the attended representation and inhibition of distractors have been proposed as potential neural mechanisms driving this selection process. Yet, how attention operates when the cue has to be internally constructed from conflicting stimuli, decision rules, and reward contingencies, is less understood. Here we recorded from populations of neurons in the anterior cingulate cortex (ACC), an area implicated in ongoing error monitoring and correction during decision conflicts, in a challenging attention-shifting task. In this task, mice had to attend to the rewarded modality when presented identical auditory and visual stimuli in two contexts without direct external cues. In the ACC, the irrelevant stimulus continuously became less decodable than the relevant stimulus as the trial progressed to the decision point. This contrasted strongly with our previous findings in V1 where both relevant and irrelevant stimuli were equally decodable throughout the trial. Using analytical tools and a recurrent neural network (RNN) model, we found that the linearly independent representation of stimulus modalities in ACC was well suited to context-gated suppression of a stimulus modality. We demonstrated that the feedback structure of lateral connections in the RNN consisted of excitatory interactions between cell ensembles representing the same modality and mutual inhibition between cell ensembles representing distinct stimulus modalities. Using this RNN model showing signatures of context-gated suppression, we predicted that the level of contextual modulation of individual neurons should be correlated with their relative responsiveness to the two stimulus modalities used in the task. We verified this prediction in recordings from ACC neurons but not from recordings from V1 neurons. Therefore, ACC effectively operates on low-dimensional neuronal subspaces to combine stimulus related information with internal cues to drive actions under conflict.
Collapse
Affiliation(s)
- Márton Albert Hajnal
- Department of Computational Sciences, Wigner Research Center for Physics, Budapest, 1121, Hungary
| | - Duy Tran
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Albert Einstein College of Medicine, New York, NY 10461, United States
| | - Zsombor Szabó
- Department of Computational Sciences, Wigner Research Center for Physics, Budapest, 1121, Hungary
| | - Andrea Albert
- Department of Computational Sciences, Wigner Research Center for Physics, Budapest, 1121, Hungary
| | - Karen Safaryan
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Michael Einstein
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Mauricio Vallejo Martelo
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Pierre-Olivier Polack
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, United States
| | - Peyman Golshani
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
- West Los Angeles VA Medical Center, CA 90073 Los Angeles, United States
| | - Gergő Orbán
- Department of Computational Sciences, Wigner Research Center for Physics, Budapest, 1121, Hungary
| |
Collapse
|
5
|
Klein-Flügge MC, Bongioanni A, Rushworth MFS. Medial and orbital frontal cortex in decision-making and flexible behavior. Neuron 2022; 110:2743-2770. [PMID: 35705077 DOI: 10.1016/j.neuron.2022.05.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/15/2022]
Abstract
The medial frontal cortex and adjacent orbitofrontal cortex have been the focus of investigations of decision-making, behavioral flexibility, and social behavior. We review studies conducted in humans, macaques, and rodents and argue that several regions with different functional roles can be identified in the dorsal anterior cingulate cortex, perigenual anterior cingulate cortex, anterior medial frontal cortex, ventromedial prefrontal cortex, and medial and lateral parts of the orbitofrontal cortex. There is increasing evidence that the manner in which these areas represent the value of the environment and specific choices is different from subcortical brain regions and more complex than previously thought. Although activity in some regions reflects distributions of reward and opportunities across the environment, in other cases, activity reflects the structural relationships between features of the environment that animals can use to infer what decision to take even if they have not encountered identical opportunities in the past.
Collapse
Affiliation(s)
- Miriam C Klein-Flügge
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3TA, UK; Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK; Department of Psychiatry, University of Oxford, Warneford Lane, Headington, Oxford OX3 7JX, UK.
| | - Alessandro Bongioanni
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3TA, UK
| | - Matthew F S Rushworth
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3TA, UK; Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
6
|
Murray EA, Fellows LK. Prefrontal cortex interactions with the amygdala in primates. Neuropsychopharmacology 2022; 47:163-179. [PMID: 34446829 PMCID: PMC8616954 DOI: 10.1038/s41386-021-01128-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
This review addresses functional interactions between the primate prefrontal cortex (PFC) and the amygdala, with emphasis on their contributions to behavior and cognition. The interplay between these two telencephalic structures contributes to adaptive behavior and to the evolutionary success of all primate species. In our species, dysfunction in this circuitry creates vulnerabilities to psychopathologies. Here, we describe amygdala-PFC contributions to behaviors that have direct relevance to Darwinian fitness: learned approach and avoidance, foraging, predator defense, and social signaling, which have in common the need for flexibility and sensitivity to specific and rapidly changing contexts. Examples include the prediction of positive outcomes, such as food availability, food desirability, and various social rewards, or of negative outcomes, such as threats of harm from predators or conspecifics. To promote fitness optimally, these stimulus-outcome associations need to be rapidly updated when an associative contingency changes or when the value of a predicted outcome changes. We review evidence from nonhuman primates implicating the PFC, the amygdala, and their functional interactions in these processes, with links to experimental work and clinical findings in humans where possible.
Collapse
Affiliation(s)
| | - Lesley K Fellows
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Spreng RN, Turner GR. From exploration to exploitation: a shifting mental mode in late life development. Trends Cogn Sci 2021; 25:1058-1071. [PMID: 34593321 PMCID: PMC8844884 DOI: 10.1016/j.tics.2021.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/31/2022]
Abstract
Changes in cognition, affect, and brain function combine to promote a shift in the nature of mentation in older adulthood, favoring exploitation of prior knowledge over exploratory search as the starting point for thought and action. Age-related exploitation biases result from the accumulation of prior knowledge, reduced cognitive control, and a shift toward affective goals. These are accompanied by changes in cortical networks, as well as attention and reward circuits. By incorporating these factors into a unified account, the exploration-to-exploitation shift offers an integrative model of cognitive, affective, and brain aging. Here, we review evidence for this model, identify determinants and consequences, and survey the challenges and opportunities posed by an exploitation-biased mental mode in later life.
Collapse
Affiliation(s)
- R Nathan Spreng
- Laboratory of Brain and Cognition, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada; Departments of Psychiatry and Psychology, McGill University, Montreal, QC H3A 0G4, Canada.
| | - Gary R Turner
- Department of Psychology, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
8
|
Lopez-Gamundi P, Yao YW, Chong TTJ, Heekeren HR, Mas-Herrero E, Marco-Pallarés J. The neural basis of effort valuation: A meta-analysis of functional magnetic resonance imaging studies. Neurosci Biobehav Rev 2021; 131:1275-1287. [PMID: 34710515 DOI: 10.1016/j.neubiorev.2021.10.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 08/19/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022]
Abstract
Choosing how much effort to expend is critical for everyday decisions. While several neuroimaging studies have examined effort-based decision-making, results have been highly heterogeneous, leaving unclear which brain regions process effort-related costs and integrate them with rewards. We conducted two meta-analyses of functional magnetic resonance imaging data to examine consistent neural correlates of effort demands (23 studies, 15 maps, 549 participants) and net value (15 studies, 11 maps, 428 participants). The pre-supplementary motor area (pre-SMA) scaled positively with pure effort demand, whereas the ventromedial prefrontal cortex (vmPFC) showed the opposite effect. Moreover, regions that have been previously implicated in value integration in other cost domains, such as the vmPFC and ventral striatum, were consistently involved in signaling net value. The opposite response patterns of the pre-SMA and vmPFC imply that they are differentially involved in the representation of effort costs and value integration. These findings provide conclusive evidence that the vmPFC is a central node for net value computation and reveal potential brain targets to treat motivation-related disorders.
Collapse
Affiliation(s)
- Paula Lopez-Gamundi
- Department of Cognition, Development and Educational Psychology, Institute of Neurosciences, University of Barcelona, Passeig de la Vall d'Hebron, 171, 08035 Barcelona, Spain; Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), C/ Feixa Llarga, s/n - Pavelló de Govern - Edifici Modular, 08907 Hospitalet de Llobregat, Spain.
| | - Yuan-Wei Yao
- Department of Education and Psychology, Freie Universität Berlin, Berlin, 14159, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, 10117, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, 10117, Germany.
| | - Trevor T-J Chong
- Turner Institute for Brain and Mental Health, Monash University, Victoria, 3800, Australia
| | - Hauke R Heekeren
- Department of Education and Psychology, Freie Universität Berlin, Berlin, 14159, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, 10117, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, 10117, Germany
| | - Ernest Mas-Herrero
- Department of Cognition, Development and Educational Psychology, Institute of Neurosciences, University of Barcelona, Passeig de la Vall d'Hebron, 171, 08035 Barcelona, Spain; Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), C/ Feixa Llarga, s/n - Pavelló de Govern - Edifici Modular, 08907 Hospitalet de Llobregat, Spain
| | - Josep Marco-Pallarés
- Department of Cognition, Development and Educational Psychology, Institute of Neurosciences, University of Barcelona, Passeig de la Vall d'Hebron, 171, 08035 Barcelona, Spain; Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), C/ Feixa Llarga, s/n - Pavelló de Govern - Edifici Modular, 08907 Hospitalet de Llobregat, Spain
| |
Collapse
|
9
|
Maisson DJN, Cash-Padgett TV, Wang MZ, Hayden BY, Heilbronner SR, Zimmermann J. Choice-relevant information transformation along a ventrodorsal axis in the medial prefrontal cortex. Nat Commun 2021; 12:4830. [PMID: 34376663 PMCID: PMC8355277 DOI: 10.1038/s41467-021-25219-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
Choice-relevant brain regions in prefrontal cortex may progressively transform information about options into choices. Here, we examine responses of neurons in four regions of the medial prefrontal cortex as macaques performed two-option risky choices. All four regions encode economic variables in similar proportions and show similar putative signatures of key choice-related computations. We provide evidence to support a gradient of function that proceeds from areas 14 to 25 to 32 to 24. Specifically, we show that decodability of twelve distinct task variables increases along that path, consistent with the idea that regions that are higher in the anatomical hierarchy make choice-relevant variables more separable. We also show progressively longer intrinsic timescales in the same series. Together these results highlight the importance of the medial wall in choice, endorse a specific gradient-based organization, and argue against a modular functional neuroanatomy of choice.
Collapse
Affiliation(s)
- David J-N Maisson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.
- Center for Neuroengineering, University of Minnesota, Minneapolis, MN, USA.
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Tyler V Cash-Padgett
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
- Center for Neuroengineering, University of Minnesota, Minneapolis, MN, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Maya Z Wang
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
- Center for Neuroengineering, University of Minnesota, Minneapolis, MN, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Benjamin Y Hayden
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
- Center for Neuroengineering, University of Minnesota, Minneapolis, MN, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Sarah R Heilbronner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
- Center for Neuroengineering, University of Minnesota, Minneapolis, MN, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jan Zimmermann
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
- Center for Neuroengineering, University of Minnesota, Minneapolis, MN, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
10
|
Yoo SBM, Tu JC, Hayden BY. Multicentric tracking of multiple agents by anterior cingulate cortex during pursuit and evasion. Nat Commun 2021; 12:1985. [PMID: 33790275 PMCID: PMC8012621 DOI: 10.1038/s41467-021-22195-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 03/01/2021] [Indexed: 12/16/2022] Open
Abstract
Successful pursuit and evasion require rapid and precise coordination of navigation with adaptive motor control. We hypothesize that the dorsal anterior cingulate cortex (dACC), which communicates bidirectionally with both the hippocampal complex and premotor/motor areas, would serve a mapping role in this process. We recorded responses of dACC ensembles in two macaques performing a joystick-controlled continuous pursuit/evasion task. We find that dACC carries two sets of signals, (1) world-centric variables that together form a representation of the position and velocity of all relevant agents (self, prey, and predator) in the virtual world, and (2) avatar-centric variables, i.e. self-prey distance and angle. Both sets of variables are multiplexed within an overlapping set of neurons. Our results suggest that dACC may contribute to pursuit and evasion by computing and continuously updating a multicentric representation of the unfolding task state, and support the hypothesis that it plays a high-level abstract role in the control of behavior.
Collapse
Affiliation(s)
- Seng Bum Michael Yoo
- Department of Neuroscience, Center for Magnetic Resonance Research, and Center for Neuroengineering, University of Minnesota, Minneapolis, MN, USA. .,Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea. .,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea. .,Department of Brain and Cognitive Sciences, Massachusetts Institution of Technology, Cambridge, MA, USA.
| | - Jiaxin Cindy Tu
- Department of Neuroscience, Center for Magnetic Resonance Research, and Center for Neuroengineering, University of Minnesota, Minneapolis, MN, USA.,Department of Neuroscience, Washington University at St.Louis, St.Louis, MO, USA
| | - Benjamin Yost Hayden
- Department of Neuroscience, Center for Magnetic Resonance Research, and Center for Neuroengineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|