1
|
Cornejo F, Franchini N, Cortés BI, Elgueta D, Cancino GI. Neural conditional ablation of the protein tyrosine phosphatase receptor Delta PTPRD impairs gliogenesis in the developing mouse brain cortex. Front Cell Dev Biol 2024; 12:1357862. [PMID: 38487272 PMCID: PMC10937347 DOI: 10.3389/fcell.2024.1357862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
Neurodevelopmental disorders are characterized by alterations in the development of the cerebral cortex, including aberrant changes in the number and function of neural cells. Although neurogenesis is one of the most studied cellular processes in these pathologies, little evidence is known about glial development. Genetic association studies have identified several genes associated with neurodevelopmental disorders. Indeed, variations in the PTPRD gene have been associated with numerous brain disorders, including autism spectrum disorder, restless leg syndrome, and schizophrenia. We previously demonstrated that constitutive loss of PTPRD expression induces significant alterations in cortical neurogenesis, promoting an increase in intermediate progenitors and neurons in mice. However, its role in gliogenesis has not been evaluated. To assess this, we developed a conditional knockout mouse model lacking PTPRD expression in telencephalon cells. Here, we found that the lack of PTPRD in the mouse cortex reduces glial precursors, astrocytes, and oligodendrocytes. According to our results, this decrease in gliogenesis resulted from a reduced number of radial glia cells at gliogenesis onset and a lower gliogenic potential in cortical neural precursors due to less activation of the JAK/STAT pathway and reduced expression of gliogenic genes. Our study shows PTPRD as a regulator of the glial/neuronal balance during cortical neurodevelopment and highlights the importance of studying glial development to understand the etiology of neurodevelopmental diseases.
Collapse
Affiliation(s)
- Francisca Cornejo
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Nayhara Franchini
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Bastián I. Cortés
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela Elgueta
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gonzalo I. Cancino
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
2
|
Qian Z, Song D, Ipsaro JJ, Bautista C, Joshua-Tor L, Yeh JTH, Tonks NK. Manipulating PTPRD function with ectodomain antibodies. Genes Dev 2023; 37:743-759. [PMID: 37669874 PMCID: PMC10546974 DOI: 10.1101/gad.350713.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/28/2023] [Indexed: 09/07/2023]
Abstract
Protein tyrosine phosphatases (PTPs) are critical regulators of signal transduction but have yet to be exploited fully for drug development. Receptor protein tyrosine phosphatase δ (RPTPδ/PTPRD) has been shown to elicit tumor-promoting functions, including elevating SRC activity and promoting metastasis in certain cell contexts. Dimerization has been implicated in the inhibition of receptor protein tyrosine phosphatases (RPTPs). We have generated antibodies targeting PTPRD ectodomains with the goal of manipulating their dimerization status ectopically, thereby regulating intracellular signaling. We have validated antibody binding to endogenous PTPRD in a metastatic breast cancer cell line, CAL51, and demonstrated that a monoclonal antibody, RD-43, inhibited phosphatase activity and induced the degradation of PTPRD. Similar effects were observed following chemically induced dimerization of its phosphatase domain. Mechanistically, RD-43 triggered the formation of PTPRD dimers in which the phosphatase activity was impaired. Subsequently, the mAb-PTPRD dimer complex was degraded through lysosomal and proteasomal pathways, independently of secretase cleavage. Consequently, treatment with RD-43 inhibited SRC signaling and suppressed PTPRD-dependent cell invasion. Together, these findings demonstrate that manipulating RPTP function via antibodies to the extracellular segments has therapeutic potential.
Collapse
Affiliation(s)
- Zhe Qian
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Graduate Program of Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York 11760, USA
| | - Dongyan Song
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Jonathan J Ipsaro
- Howard Hughes Medical Institute, W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | - Leemor Joshua-Tor
- Howard Hughes Medical Institute, W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Johannes T-H Yeh
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Nicholas K Tonks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;
| |
Collapse
|
3
|
Okuno Y, Sakoori K, Matsuyama K, Yamasaki M, Watanabe M, Hashimoto K, Watanabe T, Kano M. PTPδ is a presynaptic organizer for the formation and maintenance of climbing fiber to Purkinje cell synapses in the developing cerebellum. Front Mol Neurosci 2023; 16:1206245. [PMID: 37426069 PMCID: PMC10323364 DOI: 10.3389/fnmol.2023.1206245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
Functionally mature neural circuits are shaped during postnatal development by eliminating redundant synapses formed during the perinatal period. In the cerebellum of neonatal rodents, each Purkinje cell (PC) receives synaptic inputs from multiple (more than 4) climbing fibers (CFs). During the first 3 postnatal weeks, synaptic inputs from a single CF become markedly larger and those from the other CFs are eliminated in each PC, leading to mono-innervation of each PC by a strong CF in adulthood. While molecules involved in the strengthening and elimination of CF synapses during postnatal development are being elucidated, much less is known about the molecular mechanisms underlying CF synapse formation during the early postnatal period. Here, we show experimental evidence that suggests that a synapse organizer, PTPδ, is required for early postnatal CF synapse formation and the subsequent establishment of CF to PC synaptic wiring. We showed that PTPδ was localized at CF-PC synapses from postnatal day 0 (P0) irrespective of the expression of Aldolase C (Aldoc), a major marker of PC that distinguishes the cerebellar compartments. We found that the extension of a single strong CF along PC dendrites (CF translocation) was impaired in global PTPδ knockout (KO) mice from P12 to P29-31 predominantly in PCs that did not express Aldoc [Aldoc (-) PCs]. We also demonstrated via morphological and electrophysiological analyses that the number of CFs innervating individual PCs in PTPδ KO mice were fewer than in wild-type (WT) mice from P3 to P13 with a significant decrease in the strength of CF synaptic inputs in cerebellar anterior lobules where most PCs are Aldoc (-). Furthermore, CF-specific PTPδ-knockdown (KD) caused a reduction in the number of CFs innervating PCs with decreased CF synaptic inputs at P10-13 in anterior lobules. We found a mild impairment of motor performance in adult PTPδ KO mice. These results indicate that PTPδ acts as a presynaptic organizer for CF-PC formation and is required for normal CF-PC synaptic transmission, CF translocation, and presumably CF synapse maintenance predominantly in Aldoc (-) PCs. Furthermore, this study suggests that the impaired CF-PC synapse formation and development by the lack of PTPδ causes mild impairment of motor performance.
Collapse
Affiliation(s)
- Yuto Okuno
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuto Sakoori
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kyoko Matsuyama
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Miwako Yamasaki
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takaki Watanabe
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Chen M, Dong Y, Tian L, Zhou J, Zhu E, Yuan H, Li X, Wang B. Metastasis suppressor 1 interacts with protein tyrosine phosphatase receptor-δ to regulate adipogenesis. FASEB J 2023; 37:e22857. [PMID: 36906292 DOI: 10.1096/fj.202201322r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 02/07/2023] [Accepted: 02/22/2023] [Indexed: 03/13/2023]
Abstract
Adipogenesis is a finely controlled process and its dysfunction may contribute to metabolic disorders such as obesity. Metastasis suppressor 1 (MTSS1) is a player in tumorigenesis and metastasis of various types of cancers. To date, it is not known whether and how MTSS1 plays a role in adipocyte differentiation. In the current study, we found that MTSS1 was upregulated during adipogenic differentiation of established mesenchymal cell lines and primary cultured bone marrow stromal cells. Gain-of-function and loss-of-function experiments uncovered that MTSS1 facilitated adipocyte differentiation from mesenchymal progenitor cells. Mechanistic explorations revealed that MTSS1 bound and interacted with FYN, a member of Src family of tyrosine kinases (SFKs), and protein tyrosine phosphatase receptor-δ (PTPRD). We demonstrated that PTPRD was capable of inducing the differentiation of adipocytes. Overexpression of PTPRD attenuated the impaired adipogenesis induced by the siRNA targeting MTSS1. Both MTSS1 and PTPRD activated SFKs by suppressing the phosphorylation of SFKs at Tyr530 and inducing the phosphorylation of FYN at Tyr419. Further investigation showed that MTSS1 and PTPRD were able to activate FYN. Collectively, our study has for the first time unraveled that MTSS1 plays a role in adipocyte differentiation in vitro through interacting with PTPRD and thereby activating SFKs such as FYN tyrosine kinase.
Collapse
Affiliation(s)
- Meng Chen
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yuan Dong
- College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lijie Tian
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jie Zhou
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Endong Zhu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Hairui Yuan
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xiaoxia Li
- College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Baoli Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
5
|
Ferretti G, Romano A, Sirabella R, Serafini S, Maier TJ, Matrone C. An increase in Semaphorin 3A biases the axonal direction and induces an aberrant dendritic arborization in an in vitro model of human neural progenitor differentiation. Cell Biosci 2022; 12:182. [DOI: 10.1186/s13578-022-00916-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/17/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Semaphorins (Sema) belong to a large family of repellent guidance cues instrumental in guiding axons during development. In particular, Class 3 Sema (Sema 3) is among the best characterized Sema family members and the only produced as secreted proteins in mammals, thereby exerting both autocrine and paracrine functions. Intriguingly, an increasing number of studies supports the crucial role of the Sema 3A in hippocampal and cortical neurodevelopment. This means that alterations in Sema 3A signaling might compromise hippocampal and cortical circuits and predispose to disorders such as autism and schizophrenia. Consistently, increased Sema 3A levels have been detected in brain of patients with schizophrenia and many polymorphisms in Sema 3A or in the Sema 3A receptors, Neuropilins (Npn 1 and 2) and Plexin As (Plxn As), have been associated to autism.
Results
Here we present data indicating that when overexpressed, Sema 3A causes human neural progenitors (NP) axonal retraction and an aberrant dendritic arborization. Similarly, Sema 3A, when overexpressed in human microglia, triggers proinflammatory processes that are highly detrimental to themselves as well as NP. Indeed, NP incubated in microglia overexpressing Sema 3A media retract axons within an hour and then start suffering and finally die. Sema 3A mediated retraction appears to be related to its binding to Npn 1 and Plxn A2 receptors, thus activating the downstream Fyn tyrosine kinase pathway that promotes the threonine-serine kinase cyclin-dependent kinase 5, CDK5, phosphorylation at the Tyr15 residue and the CDK5 processing to generate the active fragment p35.
Conclusions
All together this study identifies Sema 3A as a critical regulator of human NP differentiation. This may imply that an insult due to Sema 3A overexpression during the early phases of neuronal development might compromise neuronal organization and connectivity and make neurons perhaps more vulnerable to other insults across their lifespan.
Collapse
|
6
|
Liu L, Xia L, Li Y, Zhang Y, Wang Q, Ding J, Wang X. Inhibiting SRC activity attenuates kainic-acid induced mouse epilepsy via reducing NR2B phosphorylation and full-length NR2B expression. Epilepsy Res 2022; 185:106975. [PMID: 35907325 DOI: 10.1016/j.eplepsyres.2022.106975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/25/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To explore the effect of SRC activation on spontaneously recurrent seizures and to investigate the underlying mechanisms of NR2B phosphorylation. METHODS C57BL/6 mice were injected intrahippocampally with kainic acid (KA, 0.4 μg/25 g) to induce status epilepticus (SE). Saracatinib(STB) was used as an SRC inhibitor. Spontaneously recurrent seizures were monitored from day 7 to day 14 after the KA injection. Nissl's stain and NeuN were used to detect neuron loss and Timm stain was used to evaluate mossy fibre sprouting 14 days after KA injection. We also investigated the effect of SRC on full-length expression of NR2B. MDL28170 was used to inhibit calpain activity. Western blotting and qPCR were performed to verify phosphorylation levels and expression of SRC and NR2B 24 h after KA injection. RESULTS The duration of status epileptics in the SRC inhibitor group decreased significantly compared to the KA group 24 h after the injection of KA (P < 0.05). The application of the SRC inhibitor significantly reduced the degree of contralateral mossy fibre sprouting (P < 0.05) and improved the degree of neuron loss (P < 0.01) compared to the epilepsy group. Full-length NR2B levels in the ipsilateral hippocampus decreased in the epilepsy group (P < 0.01) compared to the sham group, and it further decreased in the STB inhibitor group (P < 0.01). The effect of the STB inhibitor was counteracted by simultaneous inhibition of SRC activity and calpain activation, while the level of full-length NR2B increased compared to the KA+STB group(P < 0.01). Reduction of NR2B cleavage by MDL28170 significantly increased the duration of epileptic status compared to the KA group (P < 0.05). SIGNIFICANCE Our data indicated that the early application of SRC inhibitors exerted protective effects on seizure severity, loss of neurons, and sprouting of mossy fibres in KA-induced mouse epilepsy. Seizure severity attenuation due to SRC inhibition was associated with the decrease of NR2B in both the phosphorylation and full-length forms.
Collapse
Affiliation(s)
- Lu Liu
- Department of Neurology, Zhongshan Hospital, Fudan University, Fenglin Road, Shanghai 200032, China
| | - Lu Xia
- Department of Neurology, Zhongshan Hospital, Fudan University, Fenglin Road, Shanghai 200032, China
| | - Yuxiang Li
- Department of Neurology, Zhongshan Hospital, Fudan University, Fenglin Road, Shanghai 200032, China
| | - Yiying Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, Fenglin Road, Shanghai 200032, China
| | - Qiang Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Fenglin Road, Shanghai 200032, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Fenglin Road, Shanghai 200032, China.
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Fenglin Road, Shanghai 200032, China; Department of The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Cornejo F, Cortés BI, Findlay GM, Cancino GI. LAR Receptor Tyrosine Phosphatase Family in Healthy and Diseased Brain. Front Cell Dev Biol 2021; 9:659951. [PMID: 34966732 PMCID: PMC8711739 DOI: 10.3389/fcell.2021.659951] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 11/17/2021] [Indexed: 11/23/2022] Open
Abstract
Protein phosphatases are major regulators of signal transduction and they are involved in key cellular mechanisms such as proliferation, differentiation, and cell survival. Here we focus on one class of protein phosphatases, the type IIA Receptor-type Protein Tyrosine Phosphatases (RPTPs), or LAR-RPTP subfamily. In the last decade, LAR-RPTPs have been demonstrated to have great importance in neurobiology, from neurodevelopment to brain disorders. In vertebrates, the LAR-RPTP subfamily is composed of three members: PTPRF (LAR), PTPRD (PTPδ) and PTPRS (PTPσ), and all participate in several brain functions. In this review we describe the structure and proteolytic processing of the LAR-RPTP subfamily, their alternative splicing and enzymatic regulation. Also, we review the role of the LAR-RPTP subfamily in neural function such as dendrite and axon growth and guidance, synapse formation and differentiation, their participation in synaptic activity, and in brain development, discussing controversial findings and commenting on the most recent studies in the field. Finally, we discuss the clinical outcomes of LAR-RPTP mutations, which are associated with several brain disorders.
Collapse
Affiliation(s)
- Francisca Cornejo
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Bastián I Cortés
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Greg M Findlay
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Gonzalo I Cancino
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| |
Collapse
|
8
|
Kawashima T, Jitsuki-Takahashi A, Takizawa K, Jitsuki S, Takahashi T, Ohshima T, Goshima Y, Nakamura F. Phosphorylation of Collapsin Response Mediator Protein 1 (CRMP1) at Tyrosine 504 residue regulates Semaphorin 3A-induced cortical dendritic growth. J Neurochem 2021; 157:1207-1221. [PMID: 33449368 DOI: 10.1111/jnc.15304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/11/2020] [Accepted: 01/08/2021] [Indexed: 11/30/2022]
Abstract
Collapsin response mediator proteins (CRMPs) have been identified as mediating proteins of repulsive axon guidance cue Semaphorin-3A (Sema3A). Phosphorylation of CRMPs plays a crucial role in the Sema3A signaling cascade. It has been shown that Fyn phosphorylates CRMP1 at Tyrosine 504 residue (Tyr504); however, the physiological role of this phosphorylation has not been examined. We found that CRMP1 was the most strongly phosphorylated by Fyn among the five members of CRMPs. We confirmed Tyr504 phosphorylation of CRMP1 by Fyn. Immunocytochemistry of mouse dorsal root ganglion (DRG) neurons showed that phosphotyrosine signal in the growth cones was transiently increased in the growth cones upon Sema3A stimulation. Tyr504-phosphorylated CRMP1 also tended to increase after Sema3A simulation. Ectopic expression of a single amino acid mutant of CRMP1 replacing Tyr504 with phenylalanine (CRMP1-Tyr504Phe) suppressed Sema3A-induced growth cone collapse response in chick DRG neurons. CRMP1-Tyr504Phe expression in mouse hippocampal neurons also suppressed Sema3A but not Sema3F-induced growth cone collapse response. Immunohistochemistry showed that Tyr504-phosphorylated CRMP1 was present in the cell bodies and in the dendritic processes of mouse cortical neurons. CRMP1-Tyr504Phe suppressed Sema3A-induced dendritic growth of primary cultured mouse cortical neurons as well as the dendritic development of cortical pyramidal neurons in vivo. Fyn± ; Crmp1± double heterozygous mutant mice exhibited poor development of cortical layer V basal dendrites, which was the similar phenotype observed in Sema3a-/- , Fyn-/- , and Crmp1-/- mice. These findings demonstrate that Tyr504 phosphorylation of CRMP1 by Fyn is an essential step of Sema3A-regulated dendritic development of cortical pyramidal neurons. (247 words).
Collapse
Affiliation(s)
- Takeshi Kawashima
- Department of Molecular Pharmacology & Neurobiology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Aoi Jitsuki-Takahashi
- Department of Biochemistry, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan.,Department of Physiology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Kohtaro Takizawa
- Department of Biochemistry, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Susumu Jitsuki
- Department of Physiology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Takuya Takahashi
- Department of Physiology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Toshio Ohshima
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bio-science, Waseda University, Tokyo, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology & Neurobiology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Fumio Nakamura
- Department of Molecular Pharmacology & Neurobiology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan.,Department of Biochemistry, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
9
|
Tomita H, Cornejo F, Aranda-Pino B, Woodard CL, Rioseco CC, Neel BG, Alvarez AR, Kaplan DR, Miller FD, Cancino GI. The Protein Tyrosine Phosphatase Receptor Delta Regulates Developmental Neurogenesis. Cell Rep 2021; 30:215-228.e5. [PMID: 31914388 DOI: 10.1016/j.celrep.2019.11.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 10/10/2019] [Accepted: 11/07/2019] [Indexed: 12/26/2022] Open
Abstract
PTPRD is a receptor protein tyrosine phosphatase that is genetically associated with neurodevelopmental disorders. Here, we asked whether Ptprd mutations cause aberrant neural development by perturbing neurogenesis in the murine cortex. We show that loss of Ptprd causes increases in neurogenic transit-amplifying intermediate progenitor cells and cortical neurons and perturbations in neuronal localization. These effects are intrinsic to neural precursor cells since acute Ptprd knockdown causes similar perturbations. PTPRD mediates these effects by dephosphorylating receptor tyrosine kinases, including TrkB and PDGFRβ, and loss of Ptprd causes the hyperactivation of TrkB and PDGFRβ and their downstream MEK-ERK signaling pathway in neural precursor cells. Moreover, inhibition of aberrant TrkB or MEK activation rescues the increased neurogenesis caused by knockdown or homozygous loss of Ptprd. These results suggest that PTPRD regulates receptor tyrosine kinases to ensure appropriate numbers of intermediate progenitor cells and neurons, suggesting a mechanism for its genetic association with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hideaki Tomita
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1X8, ON, Canada
| | - Francisca Cornejo
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
| | - Begoña Aranda-Pino
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
| | - Cameron L Woodard
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1X8, ON, Canada
| | - Constanza C Rioseco
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1X8, ON, Canada
| | - Benjamin G Neel
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Alejandra R Alvarez
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - David R Kaplan
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1X8, ON, Canada; Institute of Medical Science, University of Toronto, Toronto M5S 1A8, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, ON, Canada
| | - Freda D Miller
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1X8, ON, Canada; Institute of Medical Science, University of Toronto, Toronto M5S 1A8, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, ON, Canada; Department of Physiology, University of Toronto, Toronto M5S 1A8, ON, Canada
| | - Gonzalo I Cancino
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1X8, ON, Canada; Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile.
| |
Collapse
|
10
|
Sami A, Selzer ME, Li S. Advances in the Signaling Pathways Downstream of Glial-Scar Axon Growth Inhibitors. Front Cell Neurosci 2020; 14:174. [PMID: 32714150 PMCID: PMC7346763 DOI: 10.3389/fncel.2020.00174] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022] Open
Abstract
Axon growth inhibitors generated by reactive glial scars play an important role in failure of axon regeneration after CNS injury in mature mammals. Among the inhibitory factors, chondroitin sulfate proteoglycans (CSPGs) are potent suppressors of axon regeneration and are important molecular targets for designing effective therapies for traumatic brain injury or spinal cord injury (SCI). CSPGs bind with high affinity to several transmembrane receptors, including two members of the leukocyte common antigen related (LAR) subfamily of receptor protein tyrosine phosphatases (RPTPs). Recent studies demonstrate that multiple intracellular signaling pathways downstream of these two RPTPs mediate the growth-inhibitory actions of CSPGs. A better understanding of these signaling pathways may facilitate development of new and effective therapies for CNS disorders characterized by axonal disconnections. This review will focus on recent advances in the downstream signaling pathways of scar-mediated inhibition and their potential as the molecular targets for CNS repair.
Collapse
Affiliation(s)
- Armin Sami
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Michael E Selzer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
11
|
Han KA, Lee HY, Lim D, Shin J, Yoon TH, Liu X, Um JW, Choi SY, Ko J. Receptor protein tyrosine phosphatase delta is not essential for synapse maintenance or transmission at hippocampal synapses. Mol Brain 2020; 13:94. [PMID: 32552840 PMCID: PMC7301452 DOI: 10.1186/s13041-020-00629-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/29/2020] [Indexed: 12/26/2022] Open
Abstract
Members of the leukocyte common antigen-related receptor protein tyrosine phosphatase (LAR-RPTP) family, comprising PTPσ, PTPδ and LAR, are key hubs for presynaptic assembly and differentiation in vertebrate neurons. However, roles of individual LAR-RPTP members have not been investigated using member-specific conditional knockout mice. Here, we show that loss of PTPδ had no overt effect on synapse development in mouse cultured hippocampal neurons. Moreover, loss of PTPδ in presynaptic CA1 hippocampal neurons did not influence neurotransmitter release in subicular pyramidal neurons, suggesting that PTPδ is not critical for presynaptic function in vivo. Our results demonstrate that PTPδ is not essential for synapse maintenance or transmission, at least in the mouse hippocampus, and underscore the importance of using sophisticated genetic approaches to confirm the roles of synaptic proteins.
Collapse
Affiliation(s)
- Kyung Ah Han
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988, South Korea.,Core Protein Resources Center, DGIST, 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988, South Korea
| | - Hee-Yoon Lee
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 03080, South Korea
| | - Dongseok Lim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988, South Korea
| | - Jungsu Shin
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988, South Korea
| | - Taek Han Yoon
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988, South Korea
| | - Xinran Liu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988, South Korea.,Core Protein Resources Center, DGIST, 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988, South Korea
| | - Se-Young Choi
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 03080, South Korea
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988, South Korea.
| |
Collapse
|
12
|
Modular and Distinct Plexin-A4/FARP2/Rac1 Signaling Controls Dendrite Morphogenesis. J Neurosci 2020; 40:5413-5430. [PMID: 32499377 DOI: 10.1523/jneurosci.2730-19.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 04/29/2020] [Accepted: 05/26/2020] [Indexed: 12/26/2022] Open
Abstract
Diverse neuronal populations with distinct cellular morphologies coordinate the complex function of the nervous system. Establishment of distinct neuronal morphologies critically depends on signaling pathways that control axonal and dendritic development. The Sema3A-Nrp1/PlxnA4 signaling pathway promotes cortical neuron basal dendrite arborization but also repels axons. However, the downstream signaling components underlying these disparate functions of Sema3A signaling are unclear. Using the novel PlxnA4KRK-AAA knock-in male and female mice, generated by CRISPR/cas9, we show here that the KRK motif in the PlxnA4 cytoplasmic domain is required for Sema3A-mediated cortical neuron dendritic elaboration but is dispensable for inhibitory axon guidance. The RhoGEF FARP2, which binds to the KRK motif, shows identical functional specificity as the KRK motif in the PlxnA4 receptor. We find that Sema3A activates the small GTPase Rac1, and that Rac1 activity is required for dendrite elaboration but not axon growth cone collapse. This work identifies a novel Sema3A-Nrp1/PlxnA4/FARP2/Rac1 signaling pathway that specifically controls dendritic morphogenesis but is dispensable for repulsive guidance events. Overall, our results demonstrate that the divergent signaling output from multifunctional receptor complexes critically depends on distinct signaling motifs, highlighting the modular nature of guidance cue receptors and its potential to regulate diverse cellular responses.SIGNIFICANCE STATEMENT The proper formation of axonal and dendritic morphologies is crucial for the precise wiring of the nervous system that ultimately leads to the generation of complex functions in an organism. The Semaphorin3A-Neuropilin1/Plexin-A4 signaling pathway has been shown to have multiple key roles in neurodevelopment, from axon repulsion to dendrite elaboration. This study demonstrates that three specific amino acids, the KRK motif within the Plexin-A4 receptor cytoplasmic domain, are required to coordinate the downstream signaling molecules to promote Sema3A-mediated cortical neuron dendritic elaboration, but not inhibitory axon guidance. Our results unravel a novel Semaphorin3A-Plexin-A4 downstream signaling pathway and shed light on how the disparate functions of axon guidance and dendritic morphogenesis are accomplished by the same extracellular ligand in vivo.
Collapse
|
13
|
Jiang T, Zhang G, Liang Y, Cai Z, Liang Z, Lin H, Tan M. PlexinA3 Interacts with CRMP2 to Mediate Sema3A Signalling During Dendritic Growth in Cultured Cerebellar Granule Neurons. Neuroscience 2020; 434:83-92. [DOI: 10.1016/j.neuroscience.2020.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 11/26/2022]
|
14
|
Park H, Choi Y, Jung H, Kim S, Lee S, Han H, Kweon H, Kang S, Sim WS, Koopmans F, Yang E, Kim H, Smit AB, Bae YC, Kim E. Splice-dependent trans-synaptic PTPδ-IL1RAPL1 interaction regulates synapse formation and non-REM sleep. EMBO J 2020; 39:e104150. [PMID: 32347567 PMCID: PMC7265247 DOI: 10.15252/embj.2019104150] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Alternative splicing regulates trans‐synaptic adhesions and synapse development, but supporting in vivo evidence is limited. PTPδ, a receptor tyrosine phosphatase adhering to multiple synaptic adhesion molecules, is associated with various neuropsychiatric disorders; however, its in vivo functions remain unclear. Here, we show that PTPδ is mainly present at excitatory presynaptic sites by endogenous PTPδ tagging. Global PTPδ deletion in mice leads to input‐specific decreases in excitatory synapse development and strength. This involves tyrosine dephosphorylation and synaptic loss of IL1RAPL1, a postsynaptic partner of PTPδ requiring the PTPδ‐meA splice insert for binding. Importantly, PTPδ‐mutant mice lacking the PTPδ‐meA insert, and thus lacking the PTPδ interaction with IL1RAPL1 but not other postsynaptic partners, recapitulate biochemical and synaptic phenotypes of global PTPδ‐mutant mice. Behaviorally, both global and meA‐specific PTPδ‐mutant mice display abnormal sleep behavior and non‐REM rhythms. Therefore, alternative splicing in PTPδ regulates excitatory synapse development and sleep by modulating a specific trans‐synaptic adhesion.
Collapse
Affiliation(s)
- Haram Park
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Yeonsoo Choi
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Hwajin Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Seoyeong Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
| | - Suho Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Hyemin Han
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Hanseul Kweon
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
| | - Suwon Kang
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
| | - Woong Seob Sim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
| | - Frank Koopmans
- Department of Functional Genomics, CNCR, VU University and UMC Amsterdam, Amsterdam, The Netherlands.,Department of Molecular and Cellular Neurobiology, CNCR, VU University and UMC Amsterdam, Amsterdam, The Netherlands
| | - Esther Yang
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, CNCR, VU University and UMC Amsterdam, Amsterdam, The Netherlands
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea.,Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
15
|
Sclip A, Südhof TC. LAR receptor phospho-tyrosine phosphatases regulate NMDA-receptor responses. eLife 2020; 9:53406. [PMID: 31985401 PMCID: PMC6984820 DOI: 10.7554/elife.53406] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/08/2020] [Indexed: 12/24/2022] Open
Abstract
LAR-type receptor phosphotyrosine-phosphatases (LAR-RPTPs) are presynaptic adhesion molecules that interact trans-synaptically with multitudinous postsynaptic adhesion molecules, including SliTrks, SALMs, and TrkC. Via these interactions, LAR-RPTPs are thought to function as synaptogenic wiring molecules that promote neural circuit formation by mediating the establishment of synapses. To test the synaptogenic functions of LAR-RPTPs, we conditionally deleted the genes encoding all three LAR-RPTPs, singly or in combination, in mice before synapse formation. Strikingly, deletion of LAR-RPTPs had no effect on synaptic connectivity in cultured neurons or in vivo, but impaired NMDA-receptor-mediated responses. Deletion of LAR-RPTPs decreased NMDA-receptor-mediated responses by a trans-synaptic mechanism. In cultured neurons, deletion of all LAR-RPTPs led to a reduction in synaptic NMDA-receptor EPSCs, without changing the subunit composition or the protein levels of NMDA-receptors. In vivo, deletion of all LAR-RPTPs in the hippocampus at birth also did not alter synaptic connectivity as measured via AMPA-receptor-mediated synaptic responses at Schaffer-collateral synapses monitored in juvenile mice, but again decreased NMDA-receptor mediated synaptic transmission. Thus, LAR-RPTPs are not essential for synapse formation, but control synapse properties by regulating postsynaptic NMDA-receptors via a trans-synaptic mechanism that likely involves binding to one or multiple postsynaptic ligands.
Collapse
Affiliation(s)
- Alessandra Sclip
- Department of Cellular and Molecular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
| | - Thomas C Südhof
- Department of Cellular and Molecular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
16
|
Stedden CG, Menegas W, Zajac AL, Williams AM, Cheng S, Özkan E, Horne-Badovinac S. Planar-Polarized Semaphorin-5c and Plexin A Promote the Collective Migration of Epithelial Cells in Drosophila. Curr Biol 2019; 29:908-920.e6. [PMID: 30827914 PMCID: PMC6424623 DOI: 10.1016/j.cub.2019.01.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 12/14/2018] [Accepted: 01/18/2019] [Indexed: 12/29/2022]
Abstract
Collective migration of epithelial cells is essential for morphogenesis, wound repair, and the spread of many cancers, yet how individual cells signal to one another to coordinate their movements is largely unknown. Here, we introduce a tissue-autonomous paradigm for semaphorin-based regulation of collective cell migration. Semaphorins typically regulate the motility of neuronal growth cones and other migrating cell types by acting as repulsive cues within the migratory environment. Studying the follicular epithelial cells of Drosophila, we discovered that the transmembrane semaphorin, Sema-5c, promotes collective cell migration by acting within the migrating cells themselves, not the surrounding environment. Sema-5c is planar polarized at the basal epithelial surface such that it is enriched at the leading edge of each cell. This location places it in a prime position to send a repulsive signal to the trailing edge of the cell ahead to communicate directional information between neighboring cells. Our data show that Sema-5c can signal across cell-cell boundaries to suppress protrusions in neighboring cells and that Plexin A is the receptor that transduces this signal. Finally, we present evidence that Sema-5c antagonizes the activity of Lar, another transmembrane guidance cue that operates along leading-trailing cell-cell interfaces in this tissue, via a mechanism that appears to be independent of Plexin A. Together, our results suggest that multiple transmembrane guidance cues can be deployed in a planar-polarized manner across an epithelium and work in concert to coordinate individual cell movements for collective migration.
Collapse
Affiliation(s)
- Claire G Stedden
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, USA; Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, USA
| | - William Menegas
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, USA
| | - Allison L Zajac
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, USA
| | - Audrey M Williams
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, USA
| | - Shouqiang Cheng
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Sally Horne-Badovinac
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, USA; Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, USA.
| |
Collapse
|
17
|
Chen P, Ijomone OM, Lee KH, Aschner M. Caenorhabditis elegans and its applicability to studies on restless legs syndrome. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 84:147-174. [PMID: 31229169 DOI: 10.1016/bs.apha.2018.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Restless legs syndrome (RLS) is a common neurological disorder in the United States. This disorder is characterized by an irresistible urge to move the legs, although the symptoms vary in a wide range. The pathobiology of RLS has been linked to iron (Fe) deficiency and dopaminergic (DAergic) dysfunction. Several genetic factors have been reported to increase the risk of RLS. Caenorhabditis elegans (C. elegans) is a well-established animal model with a fully sequenced genome, which is highly conserved with mammals. Given the detailed knowledge of its genomic architecture, ease of genetic manipulation and conserved biosynthetic and metabolic pathways, as well as its small size, ease of maintenance, speedy generation time and large brood size, C. elegans provides numerous advantages in studying RLS-associated gene-environment interactions. Here we will review current knowledge about RLS symptoms, pathology and treatments, and discuss the application of C. elegans in RLS study, including the worm homologous genes and methods that could be performed to advance the pathophysiology RLS.
Collapse
Affiliation(s)
- Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Omamuyovwi Meashack Ijomone
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Human Anatomy, Federal University of Technology, Akure, Nigeria
| | - Kun He Lee
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
18
|
Uhl GR, Martinez MJ. PTPRD: neurobiology, genetics, and initial pharmacology of a pleiotropic contributor to brain phenotypes. Ann N Y Acad Sci 2019; 1451:112-129. [PMID: 30648269 PMCID: PMC6629525 DOI: 10.1111/nyas.14002] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/12/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022]
Abstract
Receptor-type protein tyrosine phosphatase, receptor type D (PTPRD) has likely roles as a neuronal cell adhesion molecule and synaptic specifier. Interest in its neurobiology and genomics has been stimulated by results from human genetics and mouse models for phenotypes related to addiction, restless leg syndrome, neurofibrillary pathology in Alzheimer's disease, cognitive impairment/intellectual disability, mood lability, and obsessive-compulsive disorder. We review PTPRD's discovery, gene family, candidate homomeric and heteromeric binding partners, phosphatase activities, brain distribution, human genetic associations with nervous system phenotypes, and mouse model data relevant to these phenotypes. We discuss the recently reported discovery of the first small molecule inhibitor of PTPRD phosphatase, the identification of its addiction-related effects, and the implications of these findings for the PTPRD-associated brain phenotypes. In assembling PTPRD neurobiology, human genetics, and mouse genetic and pharmacological datasets, we provide a compelling picture of the roles played by PTPRD, its variation, and its potential as a target for novel therapeutics.
Collapse
Affiliation(s)
- George R Uhl
- Neurology and Research Services, New Mexico VA Healthcare System, Albuquerque, New Mexico.,Departments of Neurology, Neuroscience, Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, New Mexico.,Biomedical Research Institute of New Mexico, Albuquerque, New Mexico.,Departments of Neurology, Neuroscience and Mental Health, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Maria J Martinez
- Neurology and Research Services, New Mexico VA Healthcare System, Albuquerque, New Mexico.,Biomedical Research Institute of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
19
|
Han KA, Um JW, Ko J. Intracellular protein complexes involved in synapse assembly in presynaptic neurons. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 116:347-373. [PMID: 31036296 DOI: 10.1016/bs.apcsb.2018.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The presynaptic active zone, composed of evolutionarily conserved protein complexes, is a specialized area that serves to orchestrate precise and efficient neurotransmitter release by organizing various presynaptic proteins involved in mediating docking and priming of synaptic vesicles, recruiting voltage-gated calcium channels, and modulating presynaptic nerve terminals with aligned postsynaptic structures. Among membrane proteins localized to active zone, presynaptic neurexins and LAR-RPTPs (leukocyte common antigen-related receptor tyrosine phosphatase) have emerged as hubs that orchestrate both shared and distinct extracellular synaptic adhesion pathways. In this chapter, we discuss intracellular signaling cascades involved in recruiting various intracellular proteins at both excitatory and inhibitory synaptic sites. In particular, we highlight recent studies on key active zone proteins that physically and functionally link these cascades with neurexins and LAR-RPTPs in both vertebrate and invertebrate model systems. These studies allow us to build a general, universal view of how presynaptic active zones operate together with postsynaptic structures in neural circuits.
Collapse
Affiliation(s)
- Kyung Ah Han
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea.
| |
Collapse
|
20
|
Abstract
Proper neuronal wiring is central to all bodily functions, sensory perception, cognition, memory, and learning. Establishment of a functional neuronal circuit is a highly regulated and dynamic process involving axonal and dendritic branching and navigation toward appropriate targets and connection partners. This intricate circuitry includes axo-dendritic synapse formation, synaptic connections formed with effector cells, and extensive dendritic arborization that function to receive and transmit mechanical and chemical sensory inputs. Such complexity is primarily achieved by extensive axonal and dendritic branch formation and pruning. Fundamental to neuronal branching are cytoskeletal dynamics and plasma membrane expansion, both of which are regulated via numerous extracellular and intracellular signaling mechanisms and molecules. This review focuses on recent advances in understanding the biology of neuronal branching.
Collapse
Affiliation(s)
- Shalini Menon
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Stephanie Gupton
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, Chapel Hill, NC, 27599, USA.,Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
21
|
Katano T, Takao K, Abe M, Yamazaki M, Watanabe M, Miyakawa T, Sakimura K, Ito S. Distribution of Caskin1 protein and phenotypic characterization of its knockout mice using a comprehensive behavioral test battery. Mol Brain 2018; 11:63. [PMID: 30359304 PMCID: PMC6202847 DOI: 10.1186/s13041-018-0407-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/14/2018] [Indexed: 01/17/2023] Open
Abstract
Calcium/calmodulin-dependent serine protein kinase (CASK)-interacting protein 1 (Caskin1) is a direct binding partner of the synaptic adaptor protein CASK. Because Caskin1 forms homo-multimers and binds not only CASK but also other neuronal proteins in vitro, it is anticipated to have neural functions; but its exact role in mammals remains unclear. Previously, we showed that the concentration of Caskin1 in the spinal dorsal horn increases under chronic pain. To characterize this protein, we generated Caskin1-knockout (Caskin1-KO) mice and specific anti-Caskin1 antibodies. Biochemical and immunohistochemical analyses demonstrated that Caskin1 was broadly distributed in the whole brain and spinal cord, and that it primarily localized at synapses. To elucidate the neural function of Caskin1 in vivo, we subjected Caskin1-KO mice to comprehensive behavioral analysis. The mutant mice exhibited differences in gait, enhanced nociception, and anxiety-like behavior relative to their wild-type littermates. In addition, the knockouts exhibited strong freezing responses, with or without a cue tone, in contextual and cued-fear conditioning tests as well as low memory retention in the Barnes Maze test. Taken together, these results suggest that Caskin1 contributes to a wide spectrum of behavioral phenotypes, including gait, nociception, memory, and stress response, in broad regions of the central nervous system.
Collapse
Affiliation(s)
- Tayo Katano
- Department of Medical Chemistry, Kansai Medical University, Hirakata, 573-1010 Japan
| | - Keizo Takao
- Section of Behavior Patterns, National Institute of Physiological Sciences NINS, Okazaki, Aichi 444-8585 Japan
- Division of Experimental Animal Resource and Development, Life Science Research Center, University of Toyama, Toyama, 930-0194 Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585 Japan
| | - Maya Yamazaki
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585 Japan
- Department of Neurology, University of California, San Francisco, 94158 USA
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, 060-8638 Japan
| | - Tsuyoshi Miyakawa
- Section of Behavior Patterns, National Institute of Physiological Sciences NINS, Okazaki, Aichi 444-8585 Japan
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585 Japan
| | - Seiji Ito
- Department of Medical Chemistry, Kansai Medical University, Hirakata, 573-1010 Japan
| |
Collapse
|
22
|
Ohtake Y, Saito A, Li S. Diverse functions of protein tyrosine phosphatase σ in the nervous and immune systems. Exp Neurol 2018; 302:196-204. [PMID: 29374568 PMCID: PMC6275553 DOI: 10.1016/j.expneurol.2018.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 02/07/2023]
Abstract
Tyrosine phosphorylation is a common means of regulating protein functions and signal transduction in multiple cells. Protein tyrosine phosphatases (PTPs) are a large family of signaling enzymes that remove phosphate groups from tyrosine residues of target proteins and change their functions. Among them, receptor-type PTPs (RPTPs) exhibit a distinct spatial pattern of expression and play essential roles in regulating neurite outgrowth, axon guidance, and synaptic organization in developmental nervous system. Some RPTPs function as essential receptors for chondroitin sulfate proteoglycans that inhibit axon regeneration following CNS injury. Interestingly, certain RPTPs are also important to regulate functions of immune cells and development of autoimmune diseases. PTPσ, a RPTP in the LAR subfamily, is expressed in various immune cells and regulates their differentiation, production of various cytokines and immune responses. In this review, we highlight the physiological and pathological significance of PTPσ and related molecules in both nervous and immune systems.
Collapse
Affiliation(s)
- Yosuke Ohtake
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Atsushi Saito
- Department of Stress Protein Processing, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|