1
|
Scott A, Paulson A, Prill C, Kermoade K, Newell B, Richard JM. Ventral pallidal GABAergic neurons drive consumption in male, but not female rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591876. [PMID: 38746325 PMCID: PMC11092650 DOI: 10.1101/2024.04.30.591876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Food intake is controlled by multiple converging signals: hormonal signals that provide information about energy homeostasis, but also hedonic and motivational aspects of food and food cues that can drive non-homeostatic or "hedonic "feeding. The ventral pallidum (VP) is a brain region implicated in the hedonic and motivational impact of food and foods cues, as well as consumption of rewards. Disinhibition of VP neurons has been shown to generate intense hyperphagia, or overconsumption. While VP gamma-Aminobutyric acidergic (GABA) neurons have been implicated in cue-elicited reward seeking and motivation, the role of these neurons in the hyperphagia resulting from VP activation remains unclear. Here, we used Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to activate or inhibit VP GABA neurons in sated male and female rats during chow and sucrose consumption. We found that activation of VP GABA neurons increases consumption of chow and sucrose in male rats, but not female rats. We also found that, while inhibition of VP GABA neurons tended to decrease sucrose consumption, this effect was not statistically significant. Together, these findings suggest that activation of VP GABA neurons can stimulate consumption of routine or highly palatable rewards selectively in male rats.
Collapse
Affiliation(s)
- Alexandra Scott
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN
| | - Anika Paulson
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN
- Department of Neuroscience, University of Minnesota, Minneapolis, MN
| | - Collin Prill
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN
- Department of Neuroscience, University of Minnesota, Minneapolis, MN
| | - Klaiten Kermoade
- Department of Neuroscience, University of Minnesota, Minneapolis, MN
- Molecular and Pharmacological Therapeutics, University of Minnesota, Minneapolis, MN
| | - Bailey Newell
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN
- Department of Neuroscience, University of Minnesota, Minneapolis, MN
| | - Jocelyn M. Richard
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN
- Department of Neuroscience, University of Minnesota, Minneapolis, MN
| |
Collapse
|
2
|
Richard JM, Newell B, Muruganandan P, Janak PH, Saunders BT. Pavlovian cue-evoked alcohol seeking is disrupted by ventral pallidal inhibition. ADDICTION NEUROSCIENCE 2024; 13:100186. [PMID: 39640360 PMCID: PMC11619284 DOI: 10.1016/j.addicn.2024.100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Cues paired with alcohol can be potent drivers of craving, alcohol-seeking, consumption, and relapse. While the ventral pallidum is implicated in appetitive and consummatory responses across several reward classes and types of behaviors, its role in behavioral responses to Pavlovian alcohol cues has not previously been established. Here, we tested the impact of optogenetic inhibition of ventral pallidum on Pavlovian-conditioned alcohol-seeking in male Long Evans rats. Rats underwent Pavlovian conditioning with an auditory cue predicting alcohol delivery to a reward port and a control cue predicting no alcohol delivery, until they consistently entered the reward port more during the alcohol cue than the control cue. We then tested the within-session effects of optogenetic inhibition during 50% of cue presentations. We found that optogenetic inhibition of ventral pallidum during the alcohol cue reduced port entry likelihood and time spent in the port, and increased port entry latency. Overall, these results suggest that normal ventral pallidum activity is necessary for Pavlovian alcohol-seeking.
Collapse
Affiliation(s)
- Jocelyn M. Richard
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55415
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN 55415
| | - Bailey Newell
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55415
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN 55415
| | - Preethi Muruganandan
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55415
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN 55415
| | - Patricia H. Janak
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21218
| | - Benjamin T. Saunders
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55415
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN 55415
| |
Collapse
|
3
|
Cristina Bianchi P, Palombo P, Antonagi Engi S, Eduardo Carneiro de Oliveira P, Emily Boaventura Tavares G, Anjos-Santos A, Suemi Yokoyama T, da Silva Planeta C, Cardoso Cruz F, Molini Leão R. Involvement of Pre-limbic Cortex-Nucleus accumbens projections in Context-Induced alcohol seeking. Brain Res 2024; 1841:149086. [PMID: 38876319 DOI: 10.1016/j.brainres.2024.149086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Alcohol use disorder (AUD) remains a critical public health issue worldwide, characterized by high relapse rates often triggered by contextual cues. This research investigates the neural mechanisms behind context-induced reinstatement of alcohol-seeking behavior, focusing on the nucleus accumbens and its interactions with the prelimbic cortex, employing Male Long-Evans rats in an ABA renewal model. In our experimental setup, rats were trained to self-administer 10 % ethanol in Context A, followed by extinction of lever pressing in the presence of discrete cues in Context B. The context-induced reinstatement of ethanol-seeking was then assessed by re-exposing rats to Context A or B under extinction conditions, aiming to simulate the environmental cues' influence on relapse behaviors. Three experiments were conducted: Experiment 1 utilized Fos-immunohistochemistry to examine neuronal activation in the nucleus accumbens; Experiment 2 applied the baclofen + muscimol inactivation technique to probe the functional importance of the nucleus accumbens core; Experiment 3 used Fos-immunofluorescence along with Retrobeads injection to investigate activation of neurons projecting from the prelimbic cortex to the nucleus accumbens core. Our findings revealed significant increases in Fos-immunoreactive nuclei within the nucleus accumbens core and shell during the reinstatement phase in Context A, underscoring the environment's potent effect on ethanol-seeking behavior. Additionally, inactivation of the nucleus accumbens core markedly reduced reinstatement, and there was a notable activation of neurons from the prelimbic cortex to the nucleus accumbens core in the ethanol-associated context. These results highlight the critical role of the nucleus accumbens core and its corticostriatal projections in the neural circuitry underlying context-driven ethanol seeking.
Collapse
Affiliation(s)
- Paula Cristina Bianchi
- Laboratory of Behavioral Neuroscience, Paulista Medicine School, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil
| | - Paola Palombo
- Laboratory of Behavioral Neuroscience, Paulista Medicine School, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil
| | - Sheila Antonagi Engi
- Laboratory of Behavioral Neuroscience, Paulista Medicine School, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil
| | | | | | - Alexia Anjos-Santos
- Laboratory of Behavioral Neuroscience, Paulista Medicine School, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil
| | - Thais Suemi Yokoyama
- Laboratory of Behavioral Neuroscience, Paulista Medicine School, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil
| | - Cleopatra da Silva Planeta
- Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - Fabio Cardoso Cruz
- Laboratory of Behavioral Neuroscience, Paulista Medicine School, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil
| | - Rodrigo Molini Leão
- Laboratory of Pharmacology, Biomedical Sciences Institute, Department of Pharmacology, Federal University of Uberlândia, Uberlândia, MG, Brazil; Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia/MG, Brazil.
| |
Collapse
|
4
|
Faget L, Oriol L, Lee WC, Zell V, Sargent C, Flores A, Hollon NG, Ramanathan D, Hnasko TS. Ventral pallidum GABA and glutamate neurons drive approach and avoidance through distinct modulation of VTA cell types. Nat Commun 2024; 15:4233. [PMID: 38762463 PMCID: PMC11102457 DOI: 10.1038/s41467-024-48340-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 04/26/2024] [Indexed: 05/20/2024] Open
Abstract
The ventral pallidum (VP) contains GABA and glutamate neurons projecting to ventral tegmental area (VTA) whose stimulation drives approach and avoidance, respectively. Yet little is known about the mechanisms by which VP cell types shape VTA activity and drive behavior. Here, we found that both VP GABA and glutamate neurons were activated during approach to reward or by delivery of an aversive stimulus. Stimulation of VP GABA neurons inhibited VTA GABA, but activated dopamine and glutamate neurons. Remarkably, stimulation-evoked activation was behavior-contingent such that VTA recruitment was inhibited when evoked by the subject's own action. Conversely, VP glutamate neurons activated VTA GABA, as well as dopamine and glutamate neurons, despite driving aversion. However, VP glutamate neurons evoked dopamine in aversion-associated ventromedial nucleus accumbens (NAc), but reduced dopamine release in reward-associated dorsomedial NAc. These findings show how heterogeneous VP projections to VTA can be engaged to shape approach and avoidance behaviors.
Collapse
Affiliation(s)
- Lauren Faget
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.
| | - Lucie Oriol
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Wen-Chun Lee
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Vivien Zell
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Cody Sargent
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Andrew Flores
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Nick G Hollon
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Dhakshin Ramanathan
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Thomas S Hnasko
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
5
|
Bernat N, Campbell RR, Nam H, Basu M, Odesser T, Elyasaf G, Engeln M, Chandra R, Golden S, Ament S, Lobo MK, Kupchik YM. Multimodal Interrogation of Ventral Pallidum Projections Reveals Projection-Specific Signatures and Effects on Cocaine Reward. J Neurosci 2024; 44:e1469232024. [PMID: 38485256 PMCID: PMC11063828 DOI: 10.1523/jneurosci.1469-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/26/2024] Open
Abstract
The ventral pallidum (VP) is a central hub in the reward circuitry with diverse projections that have different behavioral roles attributed mostly to the connectivity with the downstream target. However, different VP projections may represent, as in the striatum, separate neuronal populations that differ in more than just connectivity. In this study, we performed in mice of both sexes a multimodal dissection of four major projections of the VP-to the lateral hypothalamus (VP→LH), ventral tegmental area (VP→VTA), lateral habenula (VP→LHb), and mediodorsal thalamus (VP→MDT)-with physiological, anatomical, genetic, and behavioral tools. We also tested for physiological differences between VP neurons receiving input from nucleus accumbens medium spiny neurons (MSNs) that express either the D1 (D1-MSNs) or the D2 (D2-MSNs) dopamine receptor. We show that each VP projection (1) when inhibited during a cocaine conditioned place preference (CPP) test affects performance differently, (2) receives a different pattern of inputs using rabies retrograde labeling, (3) shows differentially expressed genes using RNA sequencing, and (4) has projection-specific characteristics in excitability and synaptic input characteristics using whole-cell patch clamp. VP→LH and VP→VTA projections have different effects on CPP and show low overlap in circuit tracing experiments, as VP→VTA neurons receive more striatal input, while VP→LH neurons receive more olfactory input. Additionally, VP→VTA neurons are less excitable, while VP→LH neurons are more excitable than the average VP neuron, a difference driven mainly by D2-MSN-responding neurons. Thus, VP→VTA and VP→LH neurons may represent largely distinct populations of VP neurons.
Collapse
Affiliation(s)
- Nimrod Bernat
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- IMRIC Center for Addiction Research (ICARe), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Rianne R Campbell
- Departments of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Hyungwoo Nam
- Departments of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Mahashweta Basu
- Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Tal Odesser
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Gal Elyasaf
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Michel Engeln
- Departments of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- CNRS, INCIA, UMR 5287, University of Bordeaux, Bordeaux F-33000, France
| | - Ramesh Chandra
- Departments of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Shana Golden
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Seth Ament
- Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Mary Kay Lobo
- Departments of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Yonatan M Kupchik
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- IMRIC Center for Addiction Research (ICARe), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
6
|
Chen RS, Liu J, Wang YJ, Ning K, Liu JG, Liu ZQ. Glutamatergic neurons in ventral pallidum modulate heroin addiction via epithalamic innervation in rats. Acta Pharmacol Sin 2024; 45:945-958. [PMID: 38326624 PMCID: PMC11053033 DOI: 10.1038/s41401-024-01229-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/16/2024] [Indexed: 02/09/2024] Open
Abstract
Glutamatergic neurons in ventral pallidum (VPGlu) were recently reported to mediate motivational and emotional behavior, but its role in opioid addiction still remains to be elucidated. In this study we investigated the function of VPGlu in the context-dependent heroin taking and seeking behavior in male rats under the ABA renewal paradigm. By use of cell-type-specific fiber photometry, we showed that the calcium activity of VPGlu were inhibited during heroin self-administration and context-induced relapse, but activated after extinction in a new context. The drug seeking behavior was accompanied by the decreased calcium signal of VPGlu. Chemogenetic manipulation of VPGlu bidirectionally regulated heroin taking and seeking behavior. Anterograde tracing showed that the lateral habenula, one of the epithalamic structures, was the major output region of VPGlu, and its neuronal activity was consistent with VPGlu in different phases of heroin addiction and contributed to the motivation for heroin. VPGlu axon terminals in LHb exhibited dynamic activity in different phases of heroin addiction. Activation of VPGlu-LHb circuit reduced heroin seeking behavior during context-induced relapse. Furthermore, the balance of excitation/inhibition from VP to LHb was shifted to enhanced glutamate transmission after extinction of heroin seeking motivation. Overall, the present study demonstrated that the activity of VPGlu was involved in the regulation of heroin addiction and identified the VPGlu-LHb pathway as a potential intervention to reduce heroin seeking motivation.
Collapse
Affiliation(s)
- Ruo-Song Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 201204, China
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jing Liu
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- State Key Laboratory of Natural Medicines, School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yu-Jun Wang
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Kuan Ning
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jing-Gen Liu
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhi-Qiang Liu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 201204, China.
| |
Collapse
|
7
|
Richard JM, Armstrong A, Newell B, Muruganandan P, Janak PH, Saunders BT. Pavlovian cue-evoked alcohol seeking is disrupted by ventral pallidal inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585064. [PMID: 38559136 PMCID: PMC10980019 DOI: 10.1101/2024.03.14.585064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Cues paired with alcohol can be potent drivers of craving, alcohol-seeking, consumption, and relapse. While the ventral pallidum is implicated in appetitive and consummatory responses across several reward classes and types of behaviors, its role in behavioral responses to Pavlovian alcohol cues has not previously been established. Here, we tested the impact of optogenetic inhibition of ventral pallidum on Pavlovian-conditioned alcohol-seeking in male Long Evans rats. Rats underwent Pavlovian conditioning with an auditory cue predicting alcohol delivery to a reward port and a control cue predicting no alcohol delivery, until they consistently entered the reward port more during the alcohol cue than the control cue. We then tested the within-session effects of optogenetic inhibition during 50% of cue presentations. We found that optogenetic inhibition of ventral pallidum during the alcohol cue reduced port entry likelihood and time spent in the port, and increased port entry latency. Overall, these results suggest that normal ventral pallidum activity is necessary for Pavlovian alcohol-seeking.
Collapse
Affiliation(s)
- Jocelyn M. Richard
- Department of Neuroscience, University of Minnesota, Minneapolis, MN
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN
| | - Anne Armstrong
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences Johns Hopkins University, Baltimore, MD
| | - Bailey Newell
- Department of Neuroscience, University of Minnesota, Minneapolis, MN
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN
| | - Preethi Muruganandan
- Department of Neuroscience, University of Minnesota, Minneapolis, MN
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN
| | - Patricia H. Janak
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences Johns Hopkins University, Baltimore, MD
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD
| | - Benjamin T. Saunders
- Department of Neuroscience, University of Minnesota, Minneapolis, MN
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN
| |
Collapse
|
8
|
Palmer D, Cayton CA, Scott A, Lin I, Newell B, Paulson A, Weberg M, Richard JM. Ventral pallidum neurons projecting to the ventral tegmental area reinforce but do not invigorate reward-seeking behavior. Cell Rep 2024; 43:113669. [PMID: 38194343 PMCID: PMC10865898 DOI: 10.1016/j.celrep.2023.113669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/02/2023] [Accepted: 12/26/2023] [Indexed: 01/10/2024] Open
Abstract
Reward-predictive cues acquire motivating and reinforcing properties that contribute to the escalation and relapse of drug use in addiction. The ventral pallidum (VP) and ventral tegmental area (VTA) are two key nodes in brain reward circuitry implicated in addiction and cue-driven behavior. In the current study, we use in vivo fiber photometry and optogenetics to record from and manipulate VP→VTA in rats performing a discriminative stimulus task to determine the role these neurons play in invigoration and reinforcement by reward cues. We find that VP→VTA neurons are active during reward consumption and that optogenetic stimulation of these neurons biases choice behavior and is reinforcing. Critically, we find no encoding of reward-seeking vigor, and optogenetic stimulation does not enhance the probability or vigor of reward seeking in response to cues. Our results suggest that VP→VTA activity is more important for reinforcement than for invigoration of reward seeking by cues.
Collapse
Affiliation(s)
- Dakota Palmer
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christelle A Cayton
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alexandra Scott
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Iris Lin
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bailey Newell
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anika Paulson
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Morgan Weberg
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jocelyn M Richard
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
9
|
Prasad AA, Wallén-Mackenzie Å. Architecture of the subthalamic nucleus. Commun Biol 2024; 7:78. [PMID: 38200143 PMCID: PMC10782020 DOI: 10.1038/s42003-023-05691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
The subthalamic nucleus (STN) is a major neuromodulation target for the alleviation of neurological and neuropsychiatric symptoms using deep brain stimulation (DBS). STN-DBS is today applied as treatment in Parkinson´s disease, dystonia, essential tremor, and obsessive-compulsive disorder (OCD). STN-DBS also shows promise as a treatment for refractory Tourette syndrome. However, the internal organization of the STN has remained elusive and challenges researchers and clinicians: How can this small brain structure engage in the multitude of functions that renders it a key hub for therapeutic intervention of a variety of brain disorders ranging from motor to affective to cognitive? Based on recent gene expression studies of the STN, a comprehensive view of the anatomical and cellular organization, including revelations of spatio-molecular heterogeneity, is now possible to outline. In this review, we focus attention to the neurobiological architecture of the STN with specific emphasis on molecular patterns discovered within this complex brain area. Studies from human, non-human primate, and rodent brains now reveal anatomically defined distribution of specific molecular markers. Together their spatial patterns indicate a heterogeneous molecular architecture within the STN. Considering the translational capacity of targeting the STN in severe brain disorders, the addition of molecular profiling of the STN will allow for advancement in precision of clinical STN-based interventions.
Collapse
Affiliation(s)
- Asheeta A Prasad
- University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, NSW, Australia.
| | | |
Collapse
|
10
|
Campbell RR, Lobo MK. Pallidal circuits drive addiction behavior. Trends Neurosci 2023; 46:S0166-2236(23)00228-X. [PMID: 39492310 DOI: 10.1016/j.tins.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/11/2023] [Accepted: 10/02/2023] [Indexed: 11/05/2024]
Abstract
Understanding the neural mechanisms that control addiction processes, including drug-seeking and relapse, is key to finding new targets for substance use disorder (SUD) pharmacotherapies and circuit-based therapies. Addictive drugs alter activity in distinct neural circuits that can lead to SUD symptoms, including compulsive drug craving and taking. This includes the pallidum, a region in the basal ganglia that acts as an integrator of associative, sensorimotor, and limbic information to shape motor responses, promote reward-learning, and regulate habit formation. Here, we review key findings that demonstrate the sub-regional and circuit-specific functions of the pallidum that drive addiction-related behaviors in rodents. We also highlight newly discovered mechanisms within distinct cell types and circuits of the pallidum that drive drug-seeking. Overall, this review serves to emphasize the importance of the pallidum in addiction processes and underscore the need for studying circuit-specific mechanisms in SUD research.
Collapse
Affiliation(s)
- Rianne R Campbell
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mary Kay Lobo
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
11
|
Scott A, Palmer D, Newell B, Lin I, Cayton CA, Paulson A, Remde P, Richard JM. Ventral Pallidal GABAergic Neuron Calcium Activity Encodes Cue-Driven Reward Seeking and Persists in the Absence of Reward Delivery. J Neurosci 2023; 43:5191-5203. [PMID: 37339880 PMCID: PMC10342224 DOI: 10.1523/jneurosci.0013-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/01/2023] [Accepted: 06/10/2023] [Indexed: 06/22/2023] Open
Abstract
Reward-seeking behavior is often initiated by environmental cues that signal reward availability. This is a necessary behavioral response; however, cue reactivity and reward-seeking behavior can become maladaptive. To better understand how cue-elicited reward seeking becomes maladaptive, it is important to understand the neural circuits involved in assigning appetitive value to rewarding cues and actions. Ventral pallidum (VP) neurons are known to contribute to cue-elicited reward-seeking behavior and have heterogeneous responses in a discriminative stimulus (DS) task. The VP neuronal subtypes and output pathways that encode distinct aspects of the DS task remain unknown. Here, we used an intersectional viral approach with fiber photometry to record bulk calcium activity in VP GABAergic (VP GABA) neurons in male and female rats as they learned and performed the DS task. We found that VP GABA neurons are excited by reward-predictive cues but not neutral cues and that this response develops over time. We also found that this cue-evoked response predicts reward-seeking behavior and that inhibiting this VP GABA activity during cue presentation decreases reward-seeking behavior. Additionally, we found increased VP GABA calcium activity at the time of expected reward delivery, which occurred even on trials when reward was omitted. Together, these findings suggest that VP GABA neurons encode reward expectation, and calcium activity in these neurons encodes the vigor of cue-elicited reward seeking.SIGNIFICANCE STATEMENT VP circuitry is a major driver of cue-evoked behaviors. Previous work has found that VP neurons have heterogenous responses and contributions to reward-seeking behavior. This functional heterogeneity is because of differences of neurochemical subtypes and projections of VP neurons. Understanding the heterogenous responses among and within VP neuronal cell types is a necessary step in further understanding how cue-evoked behavior becomes maladaptive. Our work explores the canonical GABAergic VP neuron and how the calcium activity of these cells encodes components of cue-evoked reward seeking, including the vigor and persistence of reward seeking.
Collapse
Affiliation(s)
- Alexandra Scott
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
| | - Dakota Palmer
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
| | - Bailey Newell
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Iris Lin
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Christelle A Cayton
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Anika Paulson
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Paige Remde
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Jocelyn M Richard
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
12
|
Faget L, Oriol L, Lee WC, Sargent C, Ramanathan D, Hnasko TS. Ventral pallidum GABA and glutamate neurons drive approach and avoidance through distinct modulation of VTA cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548750. [PMID: 37502884 PMCID: PMC10369949 DOI: 10.1101/2023.07.12.548750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The ventral pallidum (VP) contains GABA and glutamate (Glut) neurons projecting to ventral tegmental area (VTA) whose stimulation drives approach and avoidance, respectively. Yet little is known about the cell-type-specific mechanisms by which VP projections to VTA drive behavior. Here, we found that both VP GABA and Glut neurons were activated during approach to reward or delivery of an aversive stimulus. Stimulation of VP GABA neurons inhibited VTA GABA, but activated dopamine (DA) and glutamate neurons. Remarkably, this cell-type-specific recruitment was behavior-contingent such that VTA recruitment was inhibited when evoked by the subject's own action. Conversely, VP Glut neurons activated VTA GABA, as well as DA and Glut neurons, despite driving aversion. However, VP Glut neurons evoked DA in reward-associated ventromedial nucleus accumbens (NAc), but reduced DA in aversion-associated dorsomedial NAc. These findings show how heterogeneous VP cell types can engage VTA cell types to shape approach and avoidance behaviors.
Collapse
Affiliation(s)
- Lauren Faget
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - Lucie Oriol
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Wen-Chun Lee
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Cody Sargent
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Dhakshin Ramanathan
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - Thomas S. Hnasko
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| |
Collapse
|
13
|
Carlson HN, Weiner JL. The maladaptive alcohol self-administration task: An adapted novel model of alcohol seeking with negative consequences. J Exp Anal Behav 2023; 119:488-500. [PMID: 36788660 PMCID: PMC10175096 DOI: 10.1002/jeab.834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/18/2023] [Indexed: 02/16/2023]
Abstract
The progression of recreational drinking to alcohol use disorder is characterized by loss of control over seeking, which involves continued use of alcohol despite negative consequences. The present study proposes a novel maladaptive alcohol self-administration task in which animals are trained to withhold alcohol drinking in the presence of an auditory cue signaling consequence (conflict phase) but to drink freely when there is no consequence (neutral phase). These phases are performed within trial; successful performance involves waiting for the conflict phase to end and drinking during the neutral phase. We discuss the background and implementation of the task, its relation to existing models, and its relevance to the field of translational alcohol research. Importantly, we also present evidence of its efficacy. Both male and female Long-Evans rats are capable of performing the maladaptive alcohol self-administration task for both sweetened and unsweetened alcohol solutions. Finally, we show that acute injection of a pharmacological stressor (yohimbine) significantly disrupted performance of the task in both sexes and reinforcers. We suggest the maladaptive alcohol self-administration task may prove particularly useful in models of alcohol use disorder or vulnerability to this disorder where its application may reveal maladaptive neural circuit adaptations responsible for motivational perturbations associated with loss of control over alcohol seeking.
Collapse
Affiliation(s)
- Hannah N. Carlson
- Wake Forest University School of Medicine, Department of Physiology and Pharmacology, Winston-Salem, NC, United States
| | - Jeffrey L. Weiner
- Wake Forest University School of Medicine, Department of Physiology and Pharmacology, Winston-Salem, NC, United States
| |
Collapse
|
14
|
Claypool SM, Reiner DJ, Behdin S, Orihuel J, Batista A, Caldwell KE, Chow JJ, Bossert JM, Rubio FJ, Hope BT, Shaham Y. Role of Piriform Cortex and Its Afferent Projections in Relapse to Fentanyl Seeking after Food Choice-Induced Voluntary Abstinence. J Neurosci 2023; 43:2597-2614. [PMID: 36898838 PMCID: PMC10082459 DOI: 10.1523/jneurosci.0034-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
We previously demonstrated a role of piriform cortex (Pir) in relapse to fentanyl seeking after food choice-induced voluntary abstinence. Here, we used this model to further study the role of Pir and its afferent projections in fentanyl relapse. We trained male and female rats to self-administer palatable food pellets for 6 d (6 h/day) and fentanyl (2.5 µg/kg/infusion, i.v.) for 12 d (6 h/day). We assessed relapse to fentanyl seeking after 12 voluntary abstinence sessions, achieved through a discrete choice procedure between fentanyl and palatable food (20 trials/session). We determined projection-specific activation of Pir afferents during fentanyl relapse with Fos plus the retrograde tracer cholera toxin B (injected into Pir). Fentanyl relapse was associated with increased Fos expression in anterior insular cortex (AI) and prelimbic cortex (PL) neurons projecting to Pir. We next used an anatomical disconnection procedure to determine the causal role of these two projections (AI→Pir and PL→Pir) in fentanyl relapse. Contralateral but not ipsilateral disconnection of AI→Pir projections decreased fentanyl relapse but not reacquisition of fentanyl self-administration. In contrast, contralateral but not ipsilateral disconnection of PL→Pir projections modestly decreased reacquisition but not relapse. Fluorescence-activated cell sorting and quantitative PCR data showed molecular changes within Pir Fos-expressing neurons associated with fentanyl relapse. Finally, we found minimal or no sex differences in fentanyl self-administration, fentanyl versus food choice, and fentanyl relapse. Our results indicate that AI→Pir and PL→Pir projections play dissociable roles in nonreinforced relapse to fentanyl seeking versus reacquisition of fentanyl self-administration after food choice-induced voluntary abstinence.SIGNIFICANCE STATEMENT We previously showed a role of Pir in fentanyl relapse after food choice-induced voluntary abstinence in rats, a procedure mimicking human abstinence or a significant reduction in drug self-administration because of the availability of alternative nondrug rewards. Here, we aimed to further characterize the role of Pir in fentanyl relapse by investigating the role of Pir afferent projections and analyzing molecular changes in relapse-activated Pir neurons. We identified dissociable roles of two Pir afferent projections (AI→Pir and PL→Pir) in relapse to fentanyl seeking versus reacquisition of fentanyl self-administration after voluntary abstinence. We also characterized molecular changes within Pir Fos-expressing neurons associated with fentanyl relapse.
Collapse
Affiliation(s)
- Sarah M Claypool
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - David J Reiner
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Sana Behdin
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Javier Orihuel
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Ashley Batista
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Kiera E Caldwell
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Jonathan J Chow
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Jennifer M Bossert
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - F Javier Rubio
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Bruce T Hope
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Yavin Shaham
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| |
Collapse
|
15
|
Valyear MD, LeCocq MR, Brown A, Villaruel FR, Segal D, Chaudhri N. Learning processes in relapse to alcohol use: lessons from animal models. Psychopharmacology (Berl) 2023; 240:393-416. [PMID: 36264342 DOI: 10.1007/s00213-022-06254-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/02/2022] [Indexed: 11/29/2022]
Abstract
RATIONALE Alcohol use is reliably preceded by discrete and contextual stimuli which, through diverse learning processes, acquire the capacity to promote alcohol use and relapse to alcohol use. OBJECTIVE We review contemporary extinction, renewal, reinstatement, occasion setting, and sex differences research within a conditioning framework of relapse to alcohol use to inform the development of behavioural and pharmacological therapies. KEY FINDINGS Diverse learning processes and corresponding neurobiological substrates contribute to relapse to alcohol use. Results from animal models indicate that cortical, thalamic, accumbal, hypothalamic, mesolimbic, glutamatergic, opioidergic, and dopaminergic circuitries contribute to alcohol relapse through separable learning processes. Behavioural therapies could be improved by increasing the endurance and generalizability of extinction learning and should incorporate whether discrete cues and contexts influence behaviour through direct excitatory conditioning or occasion setting mechanisms. The types of learning processes that most effectively influence responding for alcohol differ in female and male rats. CONCLUSION Sophisticated conditioning experiments suggest that diverse learning processes are mediated by distinct neural circuits and contribute to relapse to alcohol use. These experiments also suggest that gender-specific behavioural and pharmacological interventions are a way towards efficacious therapies to prevent relapse to alcohol use.
Collapse
Affiliation(s)
- Milan D Valyear
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, Canada. .,Department of Psychology, McGill University, 1205 Ave. Dr. Penfield, Room N8/5, Montréal, QC, H3A 1B1, Canada.
| | - Mandy R LeCocq
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, Canada
| | - Alexa Brown
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, Canada
| | - Franz R Villaruel
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, Canada
| | - Diana Segal
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, Canada
| | - Nadia Chaudhri
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, Canada
| |
Collapse
|
16
|
Soares-Cunha C, Heinsbroek JA. Ventral pallidal regulation of motivated behaviors and reinforcement. Front Neural Circuits 2023; 17:1086053. [PMID: 36817646 PMCID: PMC9932340 DOI: 10.3389/fncir.2023.1086053] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
The interconnected nuclei of the ventral basal ganglia have long been identified as key regulators of motivated behavior, and dysfunction of this circuit is strongly implicated in mood and substance use disorders. The ventral pallidum (VP) is a central node of the ventral basal ganglia, and recent studies have revealed complex VP cellular heterogeneity and cell- and circuit-specific regulation of reward, aversion, motivation, and drug-seeking behaviors. Although the VP is canonically considered a relay and output structure for this circuit, emerging data indicate that the VP is a central hub in an extensive network for reward processing and the regulation of motivation that extends beyond classically defined basal ganglia borders. VP neurons respond temporally faster and show more advanced reward coding and prediction error processing than neurons in the upstream nucleus accumbens, and regulate the activity of the ventral mesencephalon dopamine system. This review will summarize recent findings in the literature and provide an update on the complex cellular heterogeneity and cell- and circuit-specific regulation of motivated behaviors and reinforcement by the VP with a specific focus on mood and substance use disorders. In addition, we will discuss mechanisms by which stress and drug exposure alter the functioning of the VP and produce susceptibility to neuropsychiatric disorders. Lastly, we will outline unanswered questions and identify future directions for studies necessary to further clarify the central role of VP neurons in the regulation of motivated behaviors. Significance: Research in the last decade has revealed a complex cell- and circuit-specific role for the VP in reward processing and the regulation of motivated behaviors. Novel insights obtained using cell- and circuit-specific interrogation strategies have led to a major shift in our understanding of this region. Here, we provide a comprehensive review of the VP in which we integrate novel findings with the existing literature and highlight the emerging role of the VP as a linchpin of the neural systems that regulate motivation, reward, and aversion. In addition, we discuss the dysfunction of the VP in animal models of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jasper A. Heinsbroek
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
17
|
Kourosh-Arami M, Gholami M, Alavi-Kakhki SS, Komaki A. Neural correlates and potential targets for the contribution of orexin to addiction in cortical and subcortical areas. Neuropeptides 2022; 95:102259. [PMID: 35714437 DOI: 10.1016/j.npep.2022.102259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 02/01/2023]
Abstract
The orexin (hypocretin) is one of the hypothalamic neuropeptides that plays a critical role in some behaviors including feeding, sleep, arousal, reward processing, and drug addiction. This variety of functions can be described by a united function for orexins in translating states of heightened motivation, for example during physiological requirement states or following exposure to reward opportunities, into planned goal-directed behaviors. An addicted state is characterized by robust activation of orexin neurons from the environment, which triggers downstream circuits to facilitate behavior directed towards obtaining the drug. Two orexin receptors 1 (OX1R) and 2 (OX2R) are widely distributed in the brain. Here, we will introduce and describe the cortical and subcortical brain areas involved in addictive-like behaviors and the impact of orexin on addiction.
Collapse
Affiliation(s)
- Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Gholami
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Seyed Sajjad Alavi-Kakhki
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
18
|
Farrell MR, Ye Q, Xie Y, Esteban JSD, Mahler SV. Ventral pallidum GABA neurons bidirectionally control opioid relapse across rat behavioral models. ADDICTION NEUROSCIENCE 2022; 3:100026. [PMID: 36156918 PMCID: PMC9494709 DOI: 10.1016/j.addicn.2022.100026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Opioid addiction is a chronic, relapsing disorder. Whether addicted individuals are forced to abstain or they decide themselves to quit using drugs, relapse rates are high-especially upon encountering contexts and stimuli associated with prior opioid use. Rodents similarly show context- and cue-induced reinstatement of drug seeking following abstinence, and intriguingly, the neural circuits underlying these relapse-like behaviors differ when abstinence is involuntarily imposed, responding is extinguished, or animals decide themselves to cease taking drug. Here, we employ two complementary rat behavioral models of relapse-like behavior for the highly reinforcing opioid drug remifentanil, and asked whether GABAergic neurons in the ventral pallidum (VPGABA) control opioid seeking under these behavioral conditions. Specifically, we asked how chemogenetically stimulating VPGABA neurons with clozapine-N-oxide (CNO) influences the ability of contextual or discrete remifentanil-paired cues to reinstate drug seeking following either voluntary abstinence (punishment-induced; GroupPunish), or extinction training (GroupExt). In GroupPunish rats, we also chemogenetically inhibited VPGABA neurons, and examined spontaneous VP activity (Fos) during cued reinstatement. In both GroupPunish and GroupExt rats, stimulating Gq-signaling in VPGABA neurons augmented remifentanil reinstatement in a cue- and context-dependent manner. Conversely, engaging inhibitory Gi-signaling in VPGABA neurons in GroupPunish suppressed cue-induced reinstatement, and cue-triggered seeking was correlated with Fos expression in rostral, but not caudal VP. Neither stimulating nor inhibiting VPGABA neurons influenced unpunished remifentanil self-administration. We conclude that VPGABA neurons bidirectionally control opioid seeking regardless of the specific relapse model employed, highlighting their fundamental role in opioid relapse-like behavior across behavioral models, and potentially across species.
Collapse
Affiliation(s)
- Mitchell R. Farrell
- University of California, Irvine Department of Neurobiology and Behavior, 1203 McGaugh Hall Irvine, CA, 92697, USA
| | - Qiying Ye
- University of California, Irvine Department of Neurobiology and Behavior, 1203 McGaugh Hall Irvine, CA, 92697, USA
| | - Yiyan Xie
- University of California, Irvine Department of Neurobiology and Behavior, 1203 McGaugh Hall Irvine, CA, 92697, USA
| | - Jeanine Sandra D. Esteban
- University of California, Irvine Department of Neurobiology and Behavior, 1203 McGaugh Hall Irvine, CA, 92697, USA
| | - Stephen V. Mahler
- University of California, Irvine Department of Neurobiology and Behavior, 1203 McGaugh Hall Irvine, CA, 92697, USA
| |
Collapse
|
19
|
Doucette WT, Smedley EB, Ruiz-Jaquez M, Khokhar JY, Smith KS. Chronic Chemogenetic Manipulation of Ventral Pallidum Targeted Neurons in Male Rats Fed an Obesogenic Diet. Brain Res 2022; 1784:147886. [DOI: 10.1016/j.brainres.2022.147886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/14/2022] [Accepted: 03/16/2022] [Indexed: 11/26/2022]
|
20
|
Nakata KG, Yin E, Sutlief E, Ferguson SM. Chemogenetic modulation reveals distinct roles of the subthalamic nucleus and its afferents in the regulation of locomotor sensitization to amphetamine in rats. Psychopharmacology (Berl) 2022; 239:353-364. [PMID: 34549316 DOI: 10.1007/s00213-021-05985-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022]
Abstract
The subthalamic nucleus (STN) is a key node in cortico-basal-ganglia thalamic circuits, guiding behavioral output through its position as an excitatory relay of the striatal indirect pathway and its direct connections with the cortex. There have been conflicting results regarding the role of the STN in addiction-related behavior to psychostimulants, and little is known with respect to the role of STN afferents. To address this, we used viral vectors to express DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) in the STN of rats in order to bidirectionally manipulate STN activity during the induction of amphetamine sensitization. In addition, we used a Cre-recombinase dependent Gi/o-coupled DREADD approach to transiently inhibit afferents from ventral pallidum (a subcomponent of the striatal indirect pathway) or the prelimbic cortex (a subcomponent of the cortico-STN hyperdirect pathway). Despite inducing mild hyperactivity in non-drug controls, stimulation of STN neurons with Gq-DREADDs blocked the development and persistence of amphetamine sensitization as well as conditioned responding. In contrast, inhibition of STN neurons with Gi/o-DREADDs enhanced the induction of sensitization without altering its persistence or conditioned responding. Chemogenetic inhibition of afferents from ventral pallidum had no effect on amphetamine sensitization but blocked conditioned responding whereas chemogenetic inhibition of afferents from prelimbic cortex attenuated the persistence of sensitization as well as conditioned responding. These results suggest the STN and its afferents play complex roles in the regulation of amphetamine sensitization and highlight the need for further characterization of how integration of inputs within STN guide behavior.
Collapse
Affiliation(s)
- K G Nakata
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, 98195, USA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - E Yin
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - E Sutlief
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Susan M Ferguson
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, 98195, USA. .,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA. .,Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, 98195, USA. .,Addictions, Drug & Alcohol Insitute, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
21
|
Borrego MB, Grigsby KB, Townsley KG, Chan A, Firsick EJ, Tran A, Savarese A, Ozburn AR. Central nucleus of the amygdala projections onto the nucleus accumbens core regulate binge-like alcohol drinking in a CRF-dependent manner. Neuropharmacology 2022; 203:108874. [PMID: 34748860 PMCID: PMC10578155 DOI: 10.1016/j.neuropharm.2021.108874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/13/2021] [Accepted: 11/02/2021] [Indexed: 12/16/2022]
Abstract
RATIONALE The nucleus accumbens (NAc) is important for regulating a number of behaviors, including alcohol and substance use. We previously found that chemogenetically manipulating neuronal activity in the NAc core regulates binge-like drinking in mice. The central amygdala (CeA) is also an important regulator of alcohol drinking, and projects to the NAc core. We tested whether neuronal projections from the CeA to the NAc core, or neuropeptides released by the CeA in the NAc core, could regulate binge drinking. METHODS For experiment 1, mice were administered AAV2 Cre-GFP into the NAc core and a Cre-inducible DREADD [AAV2 DIO- hM3Dq, -hM4Di, or -mCherry control] into the CeA. We tested the effects of altering CeA to NAc core activity on binge-like ethanol intake (via "Drinking in the Dark", DID). For experiment 2, we bilaterally microinfused corticotropin releasing factor (CRF), neuropeptide Y (NPY), or somatostatin (SST) into the NAc core prior to DID. For experiment 3, we tested whether intra-NAc CRF antagonism prevented reductions in drinking induced by CNO/hM3Dq stimulation of CeA->NAc projections. RESULTS Chemogenetically increasing activity in neurons projecting from the CeA to NAc core decreased binge-like ethanol drinking (p < 0.01). Intra-NAc core CRF mimicked chemogenetic stimulation of this pathway (p < 0.05). Binge-like drinking was unaffected by the doses of NPY and SST tested. Lastly, we found that intra-NAc CRF antagonism prevented reductions in drinking induced by chemogenetic stimulation of CeA->NAc projections. These findings demonstrate that neurons projecting from the CeA to NAc core that release CRF are capable of regulating binge-like drinking in mice.
Collapse
Affiliation(s)
- Marissa B Borrego
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, OR, 97239, USA
| | - Kolter B Grigsby
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, OR, 97239, USA
| | - Kayla G Townsley
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, OR, 97239, USA
| | - Amy Chan
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, OR, 97239, USA
| | - Evan J Firsick
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, OR, 97239, USA
| | - Alex Tran
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, OR, 97239, USA
| | - Antonia Savarese
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, OR, 97239, USA
| | - Angela R Ozburn
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, OR, 97239, USA.
| |
Collapse
|
22
|
Kupchik YM, Prasad AA. Ventral pallidum cellular and pathway specificity in drug seeking. Neurosci Biobehav Rev 2021; 131:373-386. [PMID: 34562544 DOI: 10.1016/j.neubiorev.2021.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 01/12/2023]
Abstract
The ventral pallidum (VP) is central to the reinforcing effects across a variety of drugs and relapse to drug seeking. Emerging studies from animal models of reinstatement reveal a complex neurobiology of the VP that contributes to different aspects of relapse to drug seeking. This review builds on classical understanding of the VP as part of the final common pathway of relapse but also discusses the properties of the VP as an independent structure. These include VP neural anatomical subregions, cellular heterogeneity, circuitry, neurotransmitters and peptides. Collectively, this review provides a current understanding of the VP from molecular to circuit level architecture that contributes to both the appetitive and aversive symptoms of drug addiction. We show the complex neurobiology of the VP in drug seeking, emphasizing its critical role in addiction, and review strategic approaches that target the VP to reduce relapse rates.
Collapse
Affiliation(s)
- Yonatan M Kupchik
- Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem. P.O. Box 12271, Jerusalem, 9112102, Israel
| | - Asheeta A Prasad
- School of Psychology, UNSW Sydney, NSW, 2052, Australia; Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
23
|
Pribiag H, Shin S, Wang EHJ, Sun F, Datta P, Okamoto A, Guss H, Jain A, Wang XY, De Freitas B, Honma P, Pate S, Lilascharoen V, Li Y, Lim BK. Ventral pallidum DRD3 potentiates a pallido-habenular circuit driving accumbal dopamine release and cocaine seeking. Neuron 2021; 109:2165-2182.e10. [PMID: 34048697 PMCID: PMC9013317 DOI: 10.1016/j.neuron.2021.05.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/01/2021] [Accepted: 05/04/2021] [Indexed: 01/18/2023]
Abstract
Drugs of abuse induce persistent remodeling of reward circuit function, a process thought to underlie the emergence of drug craving and relapse to drug use. However, how circuit-specific, drug-induced molecular and cellular plasticity can have distributed effects on the mesolimbic dopamine reward system to facilitate relapse to drug use is not fully elucidated. Here, we demonstrate that dopamine receptor D3 (DRD3)-dependent plasticity in the ventral pallidum (VP) drives potentiation of dopamine release in the nucleus accumbens during relapse to cocaine seeking after abstinence. We show that two distinct VP DRD3+ neuronal populations projecting to either the lateral habenula (LHb) or the ventral tegmental area (VTA) display different patterns of activity during drug seeking following abstinence from cocaine self-administration and that selective suppression of elevated activity or DRD3 signaling in the LHb-projecting population reduces drug seeking. Together, our results uncover how circuit-specific DRD3-mediated plasticity contributes to the process of drug relapse.
Collapse
Affiliation(s)
- Horia Pribiag
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sora Shin
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA 24016, USA; Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, USA
| | - Eric Hou-Jen Wang
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Fangmiao Sun
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, 100871 10 Beijing, China; PKU-IDG/McGovern Institute for Brain Research, 100871 Beijing, China
| | - Paul Datta
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexander Okamoto
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hayden Guss
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Akanksha Jain
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiao-Yun Wang
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bruna De Freitas
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Patrick Honma
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stefan Pate
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Varoth Lilascharoen
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, 100871 10 Beijing, China; PKU-IDG/McGovern Institute for Brain Research, 100871 Beijing, China
| | - Byung Kook Lim
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
24
|
Li YD, Luo YJ, Xu W, Ge J, Cherasse Y, Wang YQ, Lazarus M, Qu WM, Huang ZL. Ventral pallidal GABAergic neurons control wakefulness associated with motivation through the ventral tegmental pathway. Mol Psychiatry 2021; 26:2912-2928. [PMID: 33057171 PMCID: PMC8505244 DOI: 10.1038/s41380-020-00906-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/13/2020] [Accepted: 10/01/2020] [Indexed: 01/08/2023]
Abstract
The ventral pallidum (VP) regulates motivation, drug addiction, and several behaviors that rely on heightened arousal. However, the role and underlying neural circuits of the VP in the control of wakefulness remain poorly understood. In the present study, we sought to elucidate the specific role of VP GABAergic neurons in controlling sleep-wake behaviors in mice. Fiber photometry revealed that the population activity of VP GABAergic neurons was increased during physiological transitions from non-rapid eye movement (non-REM, NREM) sleep to either wakefulness or REM sleep. Moreover, chemogenetic and optogenetic manipulations were leveraged to investigate a potential causal role of VP GABAergic neurons in initiating and/or maintaining arousal. In vivo optogenetic stimulation of VP GABAergic neurons innervating the ventral tegmental area (VTA) strongly promoted arousal via disinhibition of VTA dopaminergic neurons. Functional in vitro mapping revealed that VP GABAergic neurons, in principle, inhibited VTA GABAergic neurons but also inhibited VTA dopaminergic neurons. In addition, optogenetic stimulation of terminals of VP GABAergic neurons revealed that they promoted arousal by innervating the lateral hypothalamus, but not the mediodorsal thalamus or lateral habenula. The increased wakefulness chemogenetically evoked by VP GABAergic neuronal activation was completely abolished by pretreatment with dopaminergic D1 and D2/D3 receptor antagonists. Furthermore, activation of VP GABAergic neurons increased exploration time in both the open-field and light-dark box tests but did not modulate depression-like behaviors or food intake. Finally, chemogenetic inhibition of VP GABAergic neurons decreased arousal. Taken together, our findings indicate that VP GABAergic neurons are essential for arousal related to motivation.
Collapse
Affiliation(s)
- Ya-Dong Li
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yan-Jia Luo
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Wei Xu
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Jing Ge
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yoan Cherasse
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yi-Qun Wang
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
25
|
Bouton ME, Maren S, McNally GP. BEHAVIORAL AND NEUROBIOLOGICAL MECHANISMS OF PAVLOVIAN AND INSTRUMENTAL EXTINCTION LEARNING. Physiol Rev 2021; 101:611-681. [PMID: 32970967 PMCID: PMC8428921 DOI: 10.1152/physrev.00016.2020] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This article reviews the behavioral neuroscience of extinction, the phenomenon in which a behavior that has been acquired through Pavlovian or instrumental (operant) learning decreases in strength when the outcome that reinforced it is removed. Behavioral research indicates that neither Pavlovian nor operant extinction depends substantially on erasure of the original learning but instead depends on new inhibitory learning that is primarily expressed in the context in which it is learned, as exemplified by the renewal effect. Although the nature of the inhibition may differ in Pavlovian and operant extinction, in either case the decline in responding may depend on both generalization decrement and the correction of prediction error. At the neural level, Pavlovian extinction requires a tripartite neural circuit involving the amygdala, prefrontal cortex, and hippocampus. Synaptic plasticity in the amygdala is essential for extinction learning, and prefrontal cortical inhibition of amygdala neurons encoding fear memories is involved in extinction retrieval. Hippocampal-prefrontal circuits mediate fear relapse phenomena, including renewal. Instrumental extinction involves distinct ensembles in corticostriatal, striatopallidal, and striatohypothalamic circuits as well as their thalamic returns for inhibitory (extinction) and excitatory (renewal and other relapse phenomena) control over operant responding. The field has made significant progress in recent decades, although a fully integrated biobehavioral understanding still awaits.
Collapse
Affiliation(s)
- Mark E Bouton
- Department of Psychological Science, University of Vermont, Burlington, Vermont
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, Texas
| | - Gavan P McNally
- School of Psychology, University of New South Wales, Sydney, Australia
| |
Collapse
|
26
|
Opposing Regulation of Cocaine Seeking by Glutamate and GABA Neurons in the Ventral Pallidum. Cell Rep 2021; 30:2018-2027.e3. [PMID: 32049028 PMCID: PMC7045305 DOI: 10.1016/j.celrep.2020.01.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/11/2019] [Accepted: 01/07/2020] [Indexed: 11/21/2022] Open
Abstract
Projections from the nucleus accumbens to the ventral pallidum (VP) regulate relapse in animal models of addiction. The VP contains GABAergic (VPGABA) and glutamatergic (VPGlu) neurons, and a subpopulation of GABAergic neurons co-express enkephalin (VPPenk). Rabies tracing reveals that VPGlu and VPPenk neurons receive preferential innervation from upstream D1- relative to D2-expressing accumbens neurons. Chemogenetic stimulation of VPGlu neurons inhibits, whereas stimulation of VPGABA and VPPenk neurons potentiates cocaine seeking in mice withdrawn from intravenous cocaine self-administration. Calcium imaging reveals cell type-specific activity patterns when animals learn to suppress drug seeking during extinction training versus engaging in cue-induced cocaine seeking. During cued seeking, VPGABA neurons increase their overall activity, and VPPenk neurons are selectively activated around nose pokes for cocaine. In contrast, VPGlu neurons increase their spike rate following extinction training. These data show that VP subpopulations differentially encode and regulate cocaine seeking, with VPPenk and VPGABA neurons facilitating and VPGlu neurons inhibiting cocaine seeking. Heinsbroek et al. show that glutamate and GABA neurons in ventral pallidum differentially regulate cued cocaine seeking. Calcium activity in glutamate neurons increases when mice refrain from cocaine seeking. Activating glutamate neurons inhibits cocaine seeking. Calcium activity increases in GABA neurons during cocaine seeking, and activating GABA or enkephalin neurons induces cocaine seeking.
Collapse
|
27
|
Lay BPP, Khoo SYS. Associative processes in addiction relapse models: A review of their Pavlovian and instrumental mechanisms, history, and terminology. NEUROANATOMY AND BEHAVIOUR 2021. [DOI: 10.35430/nab.2021.e18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Animal models of relapse to drug-seeking have borrowed heavily from associative learning approaches. In studies of relapse-like behaviour, animals learn to self-administer drugs then receive a period of extinction during which they learn to inhibit the operant response. Several triggers can produce a recovery of responding which form the basis of a variety of models. These include the passage of time (spontaneous recovery), drug availability (rapid reacquisition), extinction of an alternative response (resurgence), context change (renewal), drug priming, stress, and cues (reinstatement). In most cases, the behavioural processes driving extinction and recovery in operant drug self-administration studies are similar to those in the Pavlovian and behavioural literature, such as context effects. However, reinstatement in addiction studies have several differences with Pavlovian reinstatement, which have emerged over several decades, in experimental procedures, associative mechanisms, and terminology. Interestingly, in cue-induced reinstatement, drug-paired cues that are present during acquisition are omitted during lever extinction. The unextinguished drug-paired cue may limit the model’s translational relevance to cue exposure therapy and renders its underlying associative mechanisms ambiguous. We review major behavioural theories that explain recovery phenomena, with a particular focus on cue-induced reinstatement because it is a widely used model in addiction. We argue that cue-induced reinstatement may be explained by a combination of behavioural processes, including reacquisition of conditioned reinforcement and Pavlovian to Instrumental Transfer. While there are important differences between addiction studies and the behavioural literature in terminology and procedures, it is clear that understanding associative learning processes is essential for studying relapse.
Collapse
Affiliation(s)
- Belinda Po Pyn Lay
- Center for Studies in Behavioral Neurobiology/Groupe de Recherche en Neurobiologie Comportementale, Department of Psychology, Concordia University, Montreal, Canada
| | - Shaun Yon-Seng Khoo
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
28
|
Liu Y, McNally GP. Dopamine and relapse to drug seeking. J Neurochem 2021; 157:1572-1584. [PMID: 33486769 DOI: 10.1111/jnc.15309] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/04/2021] [Accepted: 01/13/2021] [Indexed: 12/29/2022]
Abstract
The actions of dopamine are essential to relapse to drug seeking but we still lack a precise understanding of how dopamine achieves these effects. Here we review recent advances from animal models in understanding how dopamine controls relapse to drug seeking. These advances have been enabled by important developments in understanding the basic neurochemical, molecular, anatomical, physiological and functional properties of the major dopamine pathways in the mammalian brain. The literature shows that although different forms of relapse to seeking different drugs of abuse each depend on dopamine, there are distinct dopamine mechanisms for relapse. Different circuit-level mechanisms, different populations of dopamine neurons and different activity profiles within these dopamine neurons, are important for driving different forms of relapse. This diversity highlights the need to better understand when, where and how dopamine contributes to relapse behaviours.
Collapse
Affiliation(s)
- Yu Liu
- School of Psychology, UNSW Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
29
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
30
|
Xie C, Prasad AA. Probiotics Treatment Improves Hippocampal Dependent Cognition in a Rodent Model of Parkinson's Disease. Microorganisms 2020; 8:microorganisms8111661. [PMID: 33120961 PMCID: PMC7692862 DOI: 10.3390/microorganisms8111661] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is a neurological disorder with motor dysfunction and a number of psychiatric symptoms. Symptoms such as anxiety and cognitive deficits emerge prior to motor symptoms and persist over time. There are limited treatments targeting PD psychiatric symptoms. Emerging studies reveal that the gut microbe is altered in PD patients. Here we assessed the effect of a probiotic treatment in a rat model of PD. We used the neurotoxin (6-hydroxydopamine, 6-OHDA) in a preclinical PD model to examine the impact of a probiotic treatment (Lacticaseibacillus rhamnosus HA-114) on anxiety and memory. Rats underwent either sham surgery or received 6-OHDA bilaterally into the striatum. Three weeks post-surgery, rats were divided into three experimental groups: a sham group that received probiotics, a 6-OHDA group that received probiotics, and the third group of 6-OHDA received the placebo formula. All rats had access to either placebo or probiotics formula for 6 weeks. All groups were assessed for anxiety-like behaviour using the elevated plus maze. Cognition was assessed for both non-hippocampal and hippocampal dependent tasks using the novel object recognition and novel place recognition. We report that the 6-OHDA lesion induced anxiety-like behaviour and deficits in hippocampal dependent cognition. Interestingly, the probiotics treatment had no impact on anxiety-like behaviour but selectively improved hippocampal dependent cognition deficits. Together, the results presented here highlight the utility of animal models in examining the neuropsychiatric symptoms of PD and the potential of probiotics as adjunctive treatment for non-motor symptoms of PD.
Collapse
|
31
|
Kleinhans NM, Sweigert J, Blake M, Douglass B, Doane B, Reitz F, Larimer M. FMRI activation to cannabis odor cues is altered in individuals at risk for a cannabis use disorder. Brain Behav 2020; 10:e01764. [PMID: 32862560 PMCID: PMC7559640 DOI: 10.1002/brb3.1764] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/08/2020] [Accepted: 07/01/2020] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION The smell of cannabis is a cue with universal relevance to cannabis users. However, most cue reactivity imaging studies have solely utilized visual images, auditory imagery scripts, or tactile cues in their experiments. This study introduces a multimodal cue reactivity paradigm that includes picture, odor, and bimodal picture + odor cues. METHODS Twenty-eight adults at risk for cannabis use disorder (CUD; defined as at least weekly use and Substance Involvement Score of ≥4 on the Cannabis sub-test of the Alcohol, Smoking and Substance Involvement Screening Test) and 26 cannabis-naive controls were exposed to cannabis and floral cues during event-related fMRI. Between-group differences in fMRI activation and correlations were tested using FMRIB's Local Analyses of Mixed Effects and corrected for multiple comparisons using a voxelwise threshold of z > 2.3 and a corrected cluster threshold of p < .05. RESULTS Both visual and olfactory modalities resulted in significant activation of craving and reward systems, with cannabis odor cues eliciting a significantly greater response in regions mediating anticipation and reward (nucleus accumbens, pallidum, putamen, and anterior insular cortex, supplementary motor area, angular gyrus and superior frontal gyrus) and cannabis picture cues eliciting a significantly greater response in the occipital cortex and amygdala. Furthermore, the CUD group showed significantly increased activation in the ventral tegmental area (VTA), the insula, and the pallidum compared to controls. Within the CUD group, activation in the insula, anterior cingulate, and occipital cortex to bimodal cannabis cues was significantly correlated with self-reported craving. CONCLUSION Our multimodal cue reactivity paradigm is sensitive to neural adaptations associated with problematic cannabis use.
Collapse
Affiliation(s)
- Natalia M Kleinhans
- Department of Radiology, University of Washington, Seattle, WA, USA.,Integrated Brain Imaging Center, University of Washington, Seattle, WA, USA.,Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Julia Sweigert
- Department of Radiology, University of Washington, Seattle, WA, USA.,Integrated Brain Imaging Center, University of Washington, Seattle, WA, USA
| | - Matthew Blake
- Department of Radiology, University of Washington, Seattle, WA, USA.,Integrated Brain Imaging Center, University of Washington, Seattle, WA, USA
| | | | | | - Fredrick Reitz
- Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Mary Larimer
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
32
|
Prasad AA, McNally GP. The ventral pallidum and relapse in alcohol seeking. Br J Pharmacol 2020; 177:3855-3864. [PMID: 32557550 DOI: 10.1111/bph.15160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022] Open
Abstract
Alcohol-use disorders are chronically relapsing conditions characterized by cycles of use, abstinence and relapse. The ventral pallidum (VP) is a key node in the neural circuits controlling relapse to alcohol seeking and a key target of pharmacotherapies for relapse prevention. There has been a significant increase in our understanding of the molecular, anatomical, pharmacological and functional properties of the ventral pallidum, laying foundations for a new understanding of its role in relapse to alcohol seeking and motivation. Here we review these advances, placing special emphasis on how advances in understanding in the cellular and circuit architectures of ventral pallidum contributes to the relapse to alcohol seeking. We show how this knowledge improves mechanistic understanding of current relapse prevention pharmacotherapies, how it may be used to tailor these against different forms of relapse and how it may help provide insights into the mental health problems frequently co-morbid with alcohol-use disorders.
Collapse
|
33
|
Li XX, Yang T, Wang N, Zhang LL, Liu X, Xu YM, Gao Q, Zhu XF, Guan YZ. 7,8-Dihydroxyflavone Attenuates Alcohol-Related Behavior in Rat Models of Alcohol Consumption via TrkB in the Ventral Tegmental Area. Front Neurosci 2020; 14:467. [PMID: 32508571 PMCID: PMC7248303 DOI: 10.3389/fnins.2020.00467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/15/2020] [Indexed: 12/22/2022] Open
Abstract
Alcohol use disorder (AUD) is a ubiquitous substance use disorder in the world, of which neural mechanisms remain unclear. Alcohol consumption induces neuro-adaptations in the dopaminergic system originating from the ventral tegmental area (VTA), an important brain region for the reward function in AUD. Endogenous brain-derived neurotrophic factor (BDNF)-TrkB implicated in the development of neuroplasticity, including long-term potentiation of GABAergic synapses (LTP GABA ). We previously found that ethanol blocks LTP GABA in the VTA, either in vivo or in vitro. 7,8-dihydroflavone (7,8-DHF), a BDNF-mimicking small compound, was recently found to penetrate the blood-brain barrier to mimic the biological role of BDNF-TrkB. In this study, we demonstrate that repeated ethanol consumption (including intermittent and continuous ethanol exposure) results in low expression of BDNF in rat VTA. The amount of ethanol intake enhances significantly in rats with intermittent ethanol exposure after 72 h abstinence. Withdrawal signs emerge in rats with continuous ethanol exposure within 3 days after abstinence. Using behavioral tests, intraperitoneal injection of 7,8-DHF can reduce excessive ethanol consumption and preference as well as withdrawal signs in rats with repeated ethanol exposure. Interestingly, microinjection of K252a, an antagonist of TrkB, into the VTA blocks the effects of 7,8-DHF on ethanol-related behaviors. Furthermore, direct microinjection of BDNF into the VTA mimics the effect of 7,8-DHF on ethanol related behaviors. Taken together, 7,8-DHF attenuates alcohol-related behaviors in rats undergoing alcohol consumption via TrkB in the VTA. Our findings suggest BDNF-TrkB in VTA is a part of regulating signals for opposing neural adaptations in AUD, and 7,8-DHF may serve as a potential candidate for treating alcoholism.
Collapse
Affiliation(s)
- Xin-Xin Li
- Department of Physiology and Neurobiology, Mudanjiang Medical University, Mudanjiang, China
| | - Tao Yang
- Department of Physiology and Neurobiology, Mudanjiang Medical University, Mudanjiang, China
| | - Na Wang
- Department of Physiology and Neurobiology, Mudanjiang Medical University, Mudanjiang, China
| | - Li-Li Zhang
- Department of Physiology and Neurobiology, Mudanjiang Medical University, Mudanjiang, China
| | - Xing Liu
- Department of Physiology and Neurobiology, Mudanjiang Medical University, Mudanjiang, China
| | - Yan-Min Xu
- Department of Physiology and Neurobiology, Mudanjiang Medical University, Mudanjiang, China
| | - Qing Gao
- Department of Physiology and Neurobiology, Mudanjiang Medical University, Mudanjiang, China
| | - Xiao-Feng Zhu
- Department of Physiology and Neurobiology, Mudanjiang Medical University, Mudanjiang, China
| | - Yan-Zhong Guan
- Department of Physiology and Neurobiology, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
34
|
Inbar K, Levi LA, Bernat N, Odesser T, Inbar D, Kupchik YM. Cocaine Dysregulates Dynorphin Modulation of Inhibitory Neurotransmission in the Ventral Pallidum in a Cell-Type-Specific Manner. J Neurosci 2020; 40:1321-1331. [PMID: 31836660 PMCID: PMC7002149 DOI: 10.1523/jneurosci.1262-19.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 11/21/2022] Open
Abstract
Cocaine-driven changes in the modulation of neurotransmission by neuromodulators are poorly understood. The ventral pallidum (VP) is a key structure in the reward system, in which GABA neurotransmission is regulated by opioid neuropeptides, including dynorphin. However, it is not known whether dynorphin acts differently on different cell types in the VP and whether its effects are altered by withdrawal from cocaine. Here, we trained wild-type, D1-Cre, A2A-Cre, or vGluT2-Cre:Ai9 male and female mice in a cocaine conditioned place preference protocol followed by 2 weeks of abstinence, and then recorded GABAergic synaptic input evoked either electrically or optogenetically onto identified VP neurons before and after applying dynorphin. We found that after cocaine CPP and abstinence dynorphin attenuated inhibitory input to VPGABA neurons through a postsynaptic mechanism. This effect was absent in saline mice. Furthermore, this effect was seen specifically on the inputs from nucleus accumbens medium spiny neurons expressing either the D1 or the D2 dopamine receptor. Unlike its effect on VPGABA neurons, dynorphin surprisingly potentiated the inhibitory input on VPvGluT2 neurons, but this effect was abolished after cocaine CPP and abstinence. Thus, dynorphin has contrasting influences on GABA input to VPGABA and VPvGluT2 neurons and these influences are affected differentially by cocaine CPP and abstinence. Collectively, our data suggest a role for dynorphin in withdrawal through its actions in the VP. As VPGABA and VPvGluT2 neurons have contrasting effects on drug-seeking behavior, our data may indicate a complex role for dynorphin in withdrawal from cocaine.SIGNIFICANCE STATEMENT The ventral pallidum consists mainly of GABAergic reward-promoting neurons, but it also encloses a subgroup of aversion-promoting glutamatergic neurons. Dynorphin, an opioid neuropeptide abundant in the ventral pallidum, shows differential modulation of GABA input to GABAergic and glutamatergic pallidal neurons and may therefore affect both the rewarding and aversive aspects of withdrawal. Indeed, abstinence after repeated exposure to cocaine alters dynorphin actions in a cell-type-specific manner; after abstinence dynorphin suppresses the inhibitory drive on the "rewarding" GABAergic neurons but ceases to modulate the inhibitory drive on the "aversive" glutamatergic neurons. This reflects a complex role for dynorphin in cocaine reward and abstinence.
Collapse
Affiliation(s)
- Kineret Inbar
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Israel 9112102
| | - Liran A Levi
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Israel 9112102
| | - Nimrod Bernat
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Israel 9112102
| | - Tal Odesser
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Israel 9112102
| | - Dorrit Inbar
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Israel 9112102
| | - Yonatan M Kupchik
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Israel 9112102
| |
Collapse
|
35
|
Prasad AA, Xie C, Chaichim C, Nguyen JH, McClusky HE, Killcross S, Power JM, McNally GP. Complementary Roles for Ventral Pallidum Cell Types and Their Projections in Relapse. J Neurosci 2020; 40:880-893. [PMID: 31818977 PMCID: PMC6975293 DOI: 10.1523/jneurosci.0262-19.2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
The ventral pallidum (VP) is a key node in the neural circuits controlling relapse to drug seeking. How this role relates to different VP cell types and their projections is poorly understood. Using male rats, we show how different forms of relapse to alcohol-seeking are assembled from VP cell types and their projections to lateral hypothalamus (LH) and ventral tegmental area (VTA). Using RNAScope in situ hybridization to characterize activity of different VP cell types during relapse to alcohol-seeking provoked by renewal (context-induced reinstatement), we found that VP Gad1 and parvalbumin (PV), but not vGlut2, neurons show relapse-associated changes in c-Fos expression. Next, we used retrograde tracing, chemogenetic, and electrophysiological approaches to study the roles of VPGad1 and VPPV neurons in relapse. We show that VPGad1 neurons contribute to contextual control over relapse (renewal), but not to relapse during reacquisition, via projections to LH, where they converge with ventral striatal inputs onto LHGad1 neurons. This convergence of striatopallidal inputs at the level of individual LHGad1 neurons may be critical to balancing propensity for relapse versus abstinence. In contrast, VPPV neurons contribute to relapse during both renewal and reacquisition via projections to VTA. These findings identify a double dissociation in the roles for different VP cell types and their projections in relapse. VPGad1 neurons control relapse during renewal via projections to LH. VPPV neurons control relapse during both renewal and reacquisition via projections to VTA. Targeting these different pathways may provide tailored interventions for different forms of relapse.SIGNIFICANCE STATEMENT Relapse to drug or reward seeking after a period of extinction or abstinence remains a key impediment to successful treatment. The ventral pallidum, located in the ventral basal ganglia, has long been recognized as an obligatory node in a 'final common pathway' for relapse. Yet how this role relates to the considerable VP cellular and circuit heterogeneity is not well understood. We studied the cellular and circuit architecture for VP in relapse control. We show that different forms of relapse have complementary VP cellular and circuit architectures, raising the possibility that targeting these different neural architectures may provide tailored interventions for different forms of relapse.
Collapse
Affiliation(s)
| | | | - Chanchanok Chaichim
- Department of Physiology and Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales Sydney (UNSW), Sydney, New South Wales 2052, Australia
| | | | | | | | - John M Power
- Department of Physiology and Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales Sydney (UNSW), Sydney, New South Wales 2052, Australia
| | | |
Collapse
|
36
|
Farrell MR, Ruiz CM, Castillo E, Faget L, Khanbijian C, Liu S, Schoch H, Rojas G, Huerta MY, Hnasko TS, Mahler SV. Ventral pallidum is essential for cocaine relapse after voluntary abstinence in rats. Neuropsychopharmacology 2019; 44:2174-2185. [PMID: 31476762 PMCID: PMC6898676 DOI: 10.1038/s41386-019-0507-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 12/22/2022]
Abstract
Addiction is a chronic relapsing disorder, and during recovery many people experience several relapse events as they attempt to voluntarily abstain from drug. New preclinical relapse models have emerged that capture this common human experience, and mounting evidence indicates that resumption of drug seeking after voluntary abstinence recruits neural circuits distinct from those recruited during reinstatement after experimenter-imposed abstinence, or abstinence due to extinction training. Ventral pallidum (VP), a key limbic node involved in drug seeking, has well-established roles in conventional reinstatement models tested following extinction training, but it is unclear whether this region also participates in more translationally relevant models of relapse. Here we show that chemogenetic inhibition of VP neurons decreased cocaine-, context-, and cue-induced relapse tested after voluntary, punishment-induced abstinence. This effect was strongest in the most compulsive, punishment-resistant rats, and reinstatement was associated with neural activity in anatomically defined VP subregions. VP inhibition also attenuated the propensity of rats to display "abortive lever pressing," a species-typical risk assessment behavior seen here during punished drug taking, likely resulting from concurrent approach and avoidance motivations. These results indicate that VP, unlike other connected limbic brain regions, is essential for resumption of drug seeking after voluntary abstinence. Since VP inhibition effects were strongest in the most compulsively cocaine-seeking individuals, this may also indicate that VP plays a particularly important role in the most pathological, addiction-like behavior, making it an attractive target for future therapeutic interventions.
Collapse
Affiliation(s)
- Mitchell R Farrell
- Department of Neurobiology & Behavior, University of California, Irvine, 1203 McGaugh Hall, Irvine, CA, 92697, USA
| | - Christina M Ruiz
- Department of Neurobiology & Behavior, University of California, Irvine, 1203 McGaugh Hall, Irvine, CA, 92697, USA
| | - Erik Castillo
- Department of Neurobiology & Behavior, University of California, Irvine, 1203 McGaugh Hall, Irvine, CA, 92697, USA
| | - Lauren Faget
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Christine Khanbijian
- Department of Neurobiology & Behavior, University of California, Irvine, 1203 McGaugh Hall, Irvine, CA, 92697, USA
| | - Siyu Liu
- Department of Neurobiology & Behavior, University of California, Irvine, 1203 McGaugh Hall, Irvine, CA, 92697, USA
| | - Hannah Schoch
- Department of Neurobiology & Behavior, University of California, Irvine, 1203 McGaugh Hall, Irvine, CA, 92697, USA
| | - Gerardo Rojas
- Department of Neurobiology & Behavior, University of California, Irvine, 1203 McGaugh Hall, Irvine, CA, 92697, USA
| | - Michelle Y Huerta
- Department of Neurobiology & Behavior, University of California, Irvine, 1203 McGaugh Hall, Irvine, CA, 92697, USA
| | - Thomas S Hnasko
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- VASDHS Research Service, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
| | - Stephen V Mahler
- Department of Neurobiology & Behavior, University of California, Irvine, 1203 McGaugh Hall, Irvine, CA, 92697, USA.
| |
Collapse
|
37
|
Orexin-1 Receptor Signaling in Ventral Pallidum Regulates Motivation for the Opioid Remifentanil. J Neurosci 2019; 39:9831-9840. [PMID: 31641055 DOI: 10.1523/jneurosci.0255-19.2019] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 02/07/2023] Open
Abstract
Signaling at the orexin-1 receptor (OxR1) is important for motivated drug taking. Using a within-session behavioral economics (BE) procedure, we previously found that pharmacologic blockade of the OxR1 decreased motivation (increased demand elasticity) for the potent and short-acting opioid remifentanil and reduced low-effort remifentanil consumption. However, the mechanism through which orexin regulates remifentanil demand is currently unknown. Previous work implicated OxR1 signaling within ventral pallidum (VP) as a potential target. VP is densely innervated by orexin fibers and is known to regulate opioid reward. Accordingly, this study sought to determine the role of VP OxR1 signaling in remifentanil demand and cue-induced reinstatement of remifentanil seeking in male rats. Intra-VP microinjections of the OxR1 antagonist SB-334867 (SB) decreased motivation (increased demand elasticity; α) for remifentanil without affecting remifentanil consumption at low effort. Baseline α values predicted the degree of cue-induced remifentanil seeking, and microinjection of SB into VP attenuated this behavior without affecting extinction responding. Baseline α values also predicted SB efficacy, such that SB was most effective in attenuating reinstatement behavior in highly motivated rats. Together, these findings support a selective role for VP OxR1 signaling in motivation for the opioid remifentanil. Our findings also highlight the utility of BE in predicting relapse propensity and efficacy of treatment with OxR1 antagonists.SIGNIFICANCE STATEMENT Abuse of opioids has risen rapidly and continues to be a major health crisis. Thus, there is an urgent need to better understand the neurobiological and behavioral mechanisms underlying opioid addiction. Here, we investigate the role of orexin-1 receptor signaling (OxR1) within ventral pallidum (VP) in remifentanil demand and cue-induced reinstatement of remifentanil seeking. Using a within-session behavioral economics procedure, we show that intra-VP microinjections of the OxR1 antagonist SB-334867 decreased motivation (increased demand elasticity) without affecting remifentanil consumption at low effort. We also found that SB microinjected intra-VP attenuated cue-induced reinstatement of remifentanil seeking. Together, our results support a role for VP OxR1 signaling in opioid reward.
Collapse
|
38
|
Ottenheimer DJ, Wang K, Haimbaugh A, Janak PH, Richard JM. Recruitment and disruption of ventral pallidal cue encoding during alcohol seeking. Eur J Neurosci 2019; 50:3428-3444. [PMID: 31338915 DOI: 10.1111/ejn.14527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/14/2019] [Accepted: 07/15/2019] [Indexed: 01/18/2023]
Abstract
A critical area of inquiry in the neurobiology of alcohol abuse is the mechanism by which cues gain the ability to elicit alcohol use. Previously, we found that cue-evoked activity in rat ventral pallidum robustly encodes the value of sucrose cues trained under both Pavlovian and instrumental contingencies, despite a stronger relationship between cue-evoked activity and behavioral latency after instrumental training (Richard et al., 2018, Elife, 7, e33107). Here, we assessed: (a) ventral pallidal representations of Pavlovian versus instrumental cues trained with alcohol reward, and (b) the impact of non-associative alcohol exposure on ventral pallidal representations of sucrose cues. Decoding of cue identity based on ventral pallidum firing was blunted for the Pavlovian alcohol cue in comparison to both the instrumental cue trained with alcohol and either cue type trained with sucrose. Further, non-associative alcohol exposure had opposing effects on ventral pallidal encoding of sucrose cues trained on instrumental versus Pavlovian associations, enhancing decoding accuracy for an instrumental discriminative stimulus and reducing decoding accuracy for a Pavlovian conditioned stimulus. These findings suggest that alcohol exposure can drive biased engagement of specific reward-related signals in the ventral pallidum.
Collapse
Affiliation(s)
- David J Ottenheimer
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Karen Wang
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Alexandria Haimbaugh
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Patricia H Janak
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, USA.,Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jocelyn M Richard
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
39
|
Morel C, Montgomery S, Han MH. Nicotine and alcohol: the role of midbrain dopaminergic neurons in drug reinforcement. Eur J Neurosci 2019; 50:2180-2200. [PMID: 30251377 PMCID: PMC6431587 DOI: 10.1111/ejn.14160] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/31/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Abstract
Nicotine and alcohol addiction are leading causes of preventable death worldwide and continue to constitute a huge socio-economic burden. Both nicotine and alcohol perturb the brain's mesocorticolimbic system. Dopamine (DA) neurons projecting from the ventral tegmental area (VTA) to multiple downstream structures, including the nucleus accumbens, prefrontal cortex, and amygdala, are highly involved in the maintenance of healthy brain function. VTA DA neurons play a crucial role in associative learning and reinforcement. Nicotine and alcohol usurp these functions, promoting reinforcement of drug taking behaviors. In this review, we will first describe how nicotine and alcohol individually affect VTA DA neurons by examining how drug exposure alters the heterogeneous VTA microcircuit and network-wide projections. We will also examine how coadministration or previous exposure to nicotine or alcohol may augment the reinforcing effects of the other. Additionally, this review briefly summarizes the role of VTA DA neurons in nicotine, alcohol, and their synergistic effects in reinforcement and also addresses the remaining questions related to the circuit-function specificity of the dopaminergic system in mediating nicotine/alcohol reinforcement and comorbidity.
Collapse
Affiliation(s)
- Carole Morel
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah Montgomery
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ming-Hu Han
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
40
|
Runegaard AH, Fitzpatrick CM, Woldbye DPD, Andreasen JT, Sørensen AT, Gether U. Modulating Dopamine Signaling and Behavior with Chemogenetics: Concepts, Progress, and Challenges. Pharmacol Rev 2019; 71:123-156. [PMID: 30814274 DOI: 10.1124/pr.117.013995] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
For more than 60 years, dopamine (DA) has been known as a critical modulatory neurotransmitter regulating locomotion, reward-based motivation, and endocrine functions. Disturbances in DA signaling have been linked to an array of different neurologic and psychiatric disorders, including Parkinson's disease, schizophrenia, and addiction, but the underlying pathologic mechanisms have never been fully elucidated. One major obstacle limiting interpretation of standard pharmacological and transgenic interventions is the complexity of the DA system, which only appears to widen as research progresses. Nonetheless, development of new genetic tools, such as chemogenetics, has led to an entirely new era for functional studies of neuronal signaling. By exploiting receptors that are engineered to respond selectively to an otherwise inert ligand, so-called Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), chemogenetics enables pharmacological remote control of neuronal activity. Here we review the recent, extensive application of this technique to the DA field and how its use has advanced the study of the DA system and contributed to our general understanding of DA signaling and related behaviors. Moreover, we discuss the challenges and pitfalls associated with the chemogenetic technology, such as the metabolism of the DREADD ligand clozapine N-oxide (CNO) to the D2 receptor antagonist clozapine. We conclude that despite the recent concerns regarding CNO, the chemogenetic toolbox provides an exceptional approach to study neuronal function. The huge potential should promote continued investigations and additional refinements to further expound key mechanisms of DA signaling and circuitries in normal as well as maladaptive behaviors.
Collapse
Affiliation(s)
- Annika Højrup Runegaard
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience (A.H.R., D.P.D.W., A.T.S., U.G.) and Department of Drug Design and Pharmacology (C.M.F., J.T.A.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ciarán Martin Fitzpatrick
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience (A.H.R., D.P.D.W., A.T.S., U.G.) and Department of Drug Design and Pharmacology (C.M.F., J.T.A.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David Paul Drucker Woldbye
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience (A.H.R., D.P.D.W., A.T.S., U.G.) and Department of Drug Design and Pharmacology (C.M.F., J.T.A.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Tobias Andreasen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience (A.H.R., D.P.D.W., A.T.S., U.G.) and Department of Drug Design and Pharmacology (C.M.F., J.T.A.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Toft Sørensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience (A.H.R., D.P.D.W., A.T.S., U.G.) and Department of Drug Design and Pharmacology (C.M.F., J.T.A.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience (A.H.R., D.P.D.W., A.T.S., U.G.) and Department of Drug Design and Pharmacology (C.M.F., J.T.A.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Cheng Y, Wang J. The use of chemogenetic approaches in alcohol use disorder research and treatment. Alcohol 2019; 74:39-45. [PMID: 30442535 DOI: 10.1016/j.alcohol.2018.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/15/2018] [Accepted: 05/28/2018] [Indexed: 02/09/2023]
Abstract
Several novel techniques were developed recently to explore neural circuit mechanisms of neuropsychiatric disorders. These techniques include the Designer Receptors Exclusively Activated by Designer Drugs (DREADD)-based chemogenetic tools, which represent valuable platforms for selective and non-invasive control of neural activity with a high degree of spatial resolution. Among all variants, Gq- and Gi-DREADDs are widely used by neuroscientists to dissect out the circuitry and cellular signals. This review is focused on strategies to access a specific neuronal population or circuit using the DREADD technique and summarizes the current knowledge of the DREADDs' application in alcohol use disorder research and therapeutics.
Collapse
|
42
|
Context-induced relapse after extinction versus punishment: similarities and differences. Psychopharmacology (Berl) 2019; 236:439-448. [PMID: 29799072 PMCID: PMC6373446 DOI: 10.1007/s00213-018-4929-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/14/2018] [Indexed: 01/26/2023]
Abstract
Results from clinical studies suggest that drug relapse and craving are often provoked by exposure to drug-associated contexts. Since 2002, this phenomenon has been modeled in laboratory animals using the ABA renewal model. In the classical version of this model, rats with a history of drug self-administration in one context (A) undergo extinction in a different context (B) and reinstate (or relapse to) drug seeking after exposure to the original drug-associated context (A). In a more recent version of the model introduced in 2013, the experimental conditions in context A are identical to those used in the classical model, but drug-reinforced responding in context B is suppressed by probabilistic punishment. The punishment-based ABA renewal model is proposed to resemble abstinence in humans, which is often initiated by the desire to avoid the negative consequences of drug use. The goal of our review is to discuss similarities and differences in mechanisms that play a role in suppression of drug seeking in context B and context-induced relapse to drug seeking in context A in the two models. We first describe psychological mechanisms that mediate extinction and punishment of drug-reinforced responding in context B. We then summarize recent findings on brain mechanisms of context-induced relapse of drug seeking after extinction, or punishment-imposed abstinence. These findings demonstrate both similarities and differences in brain mechanisms underlying relapse in the two variations of the ABA renewal model. We conclude by briefly discussing clinical implications of the preclinical studies.
Collapse
|
43
|
Farrell MR, Schoch H, Mahler SV. Modeling cocaine relapse in rodents: Behavioral considerations and circuit mechanisms. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:33-47. [PMID: 29305936 PMCID: PMC6034989 DOI: 10.1016/j.pnpbp.2018.01.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/18/2017] [Accepted: 01/02/2018] [Indexed: 12/29/2022]
Abstract
Addiction is a chronic relapsing disorder, in that most addicted individuals who choose to quit taking drugs fail to maintain abstinence in the long-term. Relapse is especially likely when recovering addicts encounter risk factors like small "priming" doses of drug, stress, or drug-associated cues and locations. In rodents, these same factors reinstate cocaine seeking after a period of abstinence, and extensive preclinical work has used priming, stress, or cue reinstatement models to uncover brain circuits underlying cocaine reinstatement. Here, we review common rat models of cocaine relapse, and discuss how specific features of each model influence the neural circuits recruited during reinstated drug seeking. To illustrate this point, we highlight the surprisingly specific roles played by ventral pallidum subcircuits in cocaine seeking reinstated by either cocaine-associated cues, or cocaine itself. One goal of such studies is to identify, and eventually to reverse the specific circuit activity that underlies the inability of some humans to control their drug use. Based on preclinical findings, we posit that circuit activity in humans also differs based on the triggers that precipitate craving and relapse, and that associated neural responses could help predict the triggers most likely to elicit relapse in a given person. If so, examining circuit activity could facilitate diagnosis of subgroups of addicted people, allowing individualized treatment based on the most problematic risk factors.
Collapse
Affiliation(s)
- Mitchell R Farrell
- Department of Neurobiology & Behavior, University of California, 1203 McGaugh Hall, Irvine, United States
| | - Hannah Schoch
- Department of Neurobiology & Behavior, University of California, 1203 McGaugh Hall, Irvine, United States
| | - Stephen V Mahler
- Department of Neurobiology & Behavior, University of California, 1203 McGaugh Hall, Irvine, United States.
| |
Collapse
|
44
|
Wulff AB, Tooley J, Marconi LJ, Creed MC. Ventral pallidal modulation of aversion processing. Brain Res 2018; 1713:62-69. [PMID: 30300634 DOI: 10.1016/j.brainres.2018.10.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/27/2018] [Accepted: 10/05/2018] [Indexed: 12/23/2022]
Abstract
Responding to aversive and rewarding stimuli is essential to survival. The ventral pallidum (VP) is a critical node in the mesolimbic network, being the primary output of the nucleus accumbens and projecting to the lateral habenula (LHb) and ventral tegmental area (VTA). The VP is thus poised to modulate the habenula-tegmental circuitry and contribute to processing both rewarding and aversive stimuli. Here, we integrate human functional imaging, behavioral pharmacology in rodents, and recent optogenetic circuit dissection studies of the VP with a focus on the role of the neurochemically-distinct subpopulations in aversion processing. These recent results support a model in which glutamatergic VP neurons play a unique role in aversion processing, while canonical GABAergic VP neurons promote reinforcement and encode the hedonic value of reward. Genetic ablation of glutamatergic, but not GABAergic VP neurons abolishes devaluation of natural reward (sucrose) by pairing with an aversive stimulus (lithium chloride injection). Both of these populations modulate activity throughout the LHb and VTA, which is necessary for expression of adaptive behavior in response to rewarding or aversive stimuli. Future work will address how neuromodulators such as endogenous opioids or dopamine shape function and plasticity within these distinct populations of VP neurons, when these subpopulations are engaged during learning responses to rewarding and aversive stimuli, and how their activity is altered in models of reward-related disorders. Answering these questions will be necessary to understand the basis and ultimately develop targeted therapies for disorders of reward/aversion processing, such as affective, chronic pain and substance use disorders.
Collapse
Affiliation(s)
- Andreas B Wulff
- University of Maryland School of Medicine, Department of Pharmacology, United States
| | - Jessica Tooley
- Washington University School of Medicine in St. Louis, Department of Anesthesiology, United States; University of Maryland School of Medicine, Department of Pharmacology, United States
| | - Lauren J Marconi
- University of Maryland School of Medicine, Department of Pharmacology, United States
| | - Meaghan C Creed
- Washington University School of Medicine in St. Louis, Department of Anesthesiology, United States
| |
Collapse
|
45
|
Clark M, Bracci E. Dichotomous Dopaminergic Control of Ventral Pallidum Neurons. Front Cell Neurosci 2018; 12:260. [PMID: 30186117 PMCID: PMC6113373 DOI: 10.3389/fncel.2018.00260] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/30/2018] [Indexed: 01/14/2023] Open
Abstract
The ventral pallidum (VP) is crucially involved in reward processing. Dopaminergic afferents reach the VP from the ventral tegmental area (VTA). Recent in vivo studies suggest dopamine application increase the firing in the VP. However, little is known about the cellular effects of dopamine within the VP. We aimed to address this paucity of data using brain slices containing the VP and multi-electrode array recordings. Dopamine significantly affected firing in 86% of spontaneously active VP neurons. Among the affected neurons, 84% were excited, while 16% were inhibited. The selective D1-like receptor agonist SKF81297 also had modulatory effects on the majority of VP neurons, but its effects were universally excitatory. On the other hand, the D2-like receptor agonist quinpirole had modulatory effects on 87% of VP neurons studied. It caused significant inhibitory effects in 33% of the cases and excitatory effects in the remaining 67%. The effects of D1-like receptor activation were presynaptic as blocking synaptic transmission with low Ca2+ abolished the effects of SKF81297 application. Furthermore, SKF81297 effects were abolished by blocking ionotropic glutamate receptors, suggesting that D1-like receptors boost glutamate release, which in turn excites VP neurons through postsynaptic glutamate receptors. Effects caused by D2-like receptor activation were found to involve pre and postsynaptic mechanisms, as low Ca2+ abolished the excitatory effects of quinpirole but not the inhibitory ones. Increases in firing frequency (ff) to quinpirole application were abolished by a group 2/3 mGluR antagonist, suggesting that D2-like receptors cause presynaptic inhibition of glutamate release, resulting in reduced postsynaptic activation of inhibitory mGluRs. Conversely, the inhibitory effects of quinpirole persisted in low Ca2+ and therefore can be attributed to postsynaptic D2-like receptor activation. VP neurons excited by dopamine had shorter spike half-widths and are excited by D1-like receptors (presynaptically) and by D2-like receptors (postsynaptically). VP neurons inhibited by dopamine have longer spike half-widths and while D1-like receptor activation has a presynaptic excitatory influence on them, D2-like receptor activation has a postsynaptic inhibitory effect that prevails, on balance. These data provide novel insights into the cellular mechanisms by which dopamine controls information processing within the VP.
Collapse
Affiliation(s)
- Martin Clark
- Department of Psychology, The University of Sheffield, Sheffield, United Kingdom
| | - Enrico Bracci
- Department of Psychology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
46
|
Gibson GD, Millan EZ, McNally GP. The nucleus accumbens shell in reinstatement and extinction of drug seeking. Eur J Neurosci 2018; 50:2014-2022. [PMID: 30044017 DOI: 10.1111/ejn.14084] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/05/2018] [Accepted: 07/17/2018] [Indexed: 12/31/2022]
Abstract
The contexts where drugs are self-administered have important control over relapse and extinction of drug-seeking behavior. The nucleus accumbens shell (AcbSh) is essential to this contextual control over drug-seeking behavior. It has been consistently implicated in both the expression of context-induced reinstatement and the expression of extinction, across a variety of drug classes and other rewards. Here, we review the evidence linking AcbSh to the extinction and reinstatement of drug seeking. We consider whether this dual role can be linked to known heterogeneities in AcbSh cell types, their major afferents, and their major efferents. We show that although these heterogeneities are each important and can determine extinction vs. reinstatement, they do not seem adequate to explain the body of findings from the behavioral literature. Rather, we suggest that this functional specialization of AcbSh may be more profitably viewed in terms of the segregation and compartmentalization of AcbSh channels.
Collapse
Affiliation(s)
| | - E Zayra Millan
- School of Psychology, UNSW Sydney, Sydney, 2052, NSW, Australia
| | - Gavan P McNally
- School of Psychology, UNSW Sydney, Sydney, 2052, NSW, Australia
| |
Collapse
|
47
|
Tooley J, Marconi L, Alipio JB, Matikainen-Ankney B, Georgiou P, Kravitz AV, Creed MC. Glutamatergic Ventral Pallidal Neurons Modulate Activity of the Habenula-Tegmental Circuitry and Constrain Reward Seeking. Biol Psychiatry 2018; 83:1012-1023. [PMID: 29452828 PMCID: PMC5972062 DOI: 10.1016/j.biopsych.2018.01.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND The ability to appropriately integrate and respond to rewarding and aversive stimuli is essential for survival. The ventral pallidum (VP) plays a critical role in processing both rewarding and aversive stimuli. However, the VP is a heterogeneous structure, and how VP subpopulations integrate into larger reward networks to ultimately modulate these behaviors is not known. We identify a noncanonical population of glutamatergic VP neurons that play a unique role in responding to aversive stimuli and constraining inappropriate reward seeking. METHODS Using neurochemical, genetic, and electrophysiological approaches, we characterized glutamatergic VP neurons (n = 4-8 mice/group). We performed patch clamp and in vivo electrophysiology recordings in the lateral habenula, rostromedial tegmental nucleus, and ventral tegmental area to determine the effect of glutamatergic VP neuron activation in these target regions (n = 6-10 mice/group). Finally, we selectively optogenetically stimulated glutamatergic VP neurons in a real-time place preference task and ablated these neurons using a virally expressed caspase to determine their necessity for reward seeking. RESULTS Glutamatergic VP neurons exhibit little overlap with cholinergic or gamma-aminobutyric acidergic markers, the canonical VP subtypes, and exhibit distinct membrane properties. Glutamatergic VP neurons innervate and increase firing activity of the lateral habenula, rostromedial tegmental nucleus, and gamma-aminobutyric acidergic ventral tegmental area neurons. While nonselective optogenetic stimulation of the VP induced a robust place preference, selective activation of glutamatergic VP neurons induced a place avoidance. Viral ablation of glutamatergic VP neurons increased reward responding and abolished taste aversion to sucrose. CONCLUSIONS Glutamatergic VP neurons constitute a noncanonical subpopulation of VP neurons. These glutamatergic VP neurons increase activity of the lateral habenula, rostromedial tegmental nucleus, and gamma-aminobutyric acidergic ventral tegmental area neurons and adaptively constrain reward seeking.
Collapse
Affiliation(s)
- Jessica Tooley
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Lauren Marconi
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jason Bondoc Alipio
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Bridget Matikainen-Ankney
- Eating and Addiction Section, National Institute of Digestive and Diabetes and Kidney Diseases, Bethesda, Maryland
| | - Polymnia Georgiou
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - Alexxai V Kravitz
- Eating and Addiction Section, National Institute of Digestive and Diabetes and Kidney Diseases, Bethesda, Maryland
| | - Meaghan C Creed
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
48
|
Richard JM, Stout N, Acs D, Janak PH. Ventral pallidal encoding of reward-seeking behavior depends on the underlying associative structure. eLife 2018; 7:33107. [PMID: 29565248 PMCID: PMC5864276 DOI: 10.7554/elife.33107] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/21/2018] [Indexed: 12/22/2022] Open
Abstract
Despite its being historically conceptualized as a motor expression site, emerging evidence suggests the ventral pallidum (VP) plays a more active role in integrating information to generate motivation. Here, we investigated whether rat VP cue responses would encode and contribute similarly to the vigor of reward-seeking behaviors trained under Pavlovian versus instrumental contingencies, when these behavioral responses consist of superficially similar locomotor response patterns but may reflect distinct underlying decision-making processes. We find that cue-elicited activity in many VP neurons predicts the latency of instrumental reward seeking, but not of Pavlovian response latency. Further, disruption of VP signaling increases the latency of instrumental but not Pavlovian reward seeking. This suggests that VP encoding of and contributions to response vigor are specific to the ability of incentive cues to invigorate reward-seeking behaviors upon which reward delivery is contingent. Sounds or other cues associated with receiving a reward can have a powerful effect on an individual’s behavior or emotions. For example, the sound of an ice cream truck might cause salivation and motivate an individual to stand in a long line. Cues may prompt specific actions necessary to receive a reward, for example, approaching the ice cream truck and paying to get an ice cream. This is called instrumental conditioning. Some cues predict reward delivery, without requiring a specific action. This is called Pavlovian conditioning. Pavlovian cues can still prompt actions, such as approaching the truck, even though the action is not required. But exactly what happens in the brain to generate these actions during the two types of learning, is unclear. Learning more about these reward-driven brain mechanisms might help scientists to develop better treatments for people with addiction or other conditions that involve compulsive reward-seeking behavior. Currently, scientists do not know enough about how the brain triggers this kind of behavior or how these processes lead to relapse in individuals who have been abstinent. Basic studies on the brain mechanisms that trigger reward-seeking behavior are needed. Now, Richard et al. show that a greater activity in neurons, or brain cells, in a part of the brain called the ventral pallidum predicts a faster response to a reward cue. In the experiments, some rats were trained to approach a certain location when they heard a particular sound in order to receive sugar water, a form of instrumental conditioning. Another group of rats underwent Pavlovian training and learned to expect sugar water every time they heard sound even if they did nothing. Both groups learned to approach the sugar water location when they heard the cue, despite the different training requirements. Richard et al. measured the activity of neurons in the ventral pallidum when the rats in the two groups heard the reward-associated sound. The experiments showed that the amount of activity in the brain cells in this area predicted whether a rat would approach the sugar-water delivery area and how quickly they would approach the reward after hearing the cue. The predictions were most reliable for rats that had to do something to get the sugar water. When Richard et al. reduced the activity in these cells they found the rats took longer to approach the reward source, but only when this action was required to receive sugar water. The experiments show that the ventral pallidum may provide the motivation to undertake reward-seeking behavior.
Collapse
Affiliation(s)
- Jocelyn M Richard
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, United States
| | - Nakura Stout
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, United States
| | - Deanna Acs
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, United States
| | - Patricia H Janak
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, United States.,Solomon H Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, United States.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
49
|
Chang SE, Todd TP, Smith KS. Paradoxical accentuation of motivation following accumbens-pallidum disconnection. Neurobiol Learn Mem 2018; 149:39-45. [PMID: 29408054 PMCID: PMC5864546 DOI: 10.1016/j.nlm.2018.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/24/2018] [Accepted: 02/03/2018] [Indexed: 10/18/2022]
Abstract
The nucleus accumbens (NAc) and ventral pallidum (VP) are reciprocally connected, and activity within this circuit is thought to promote reward learning. Inconsistent with this notion, we find that disconnecting NAc medial shell and VP greatly enhances the attribution of value to a cue that is paired with reward. This result suggests that medial NAc shell and VP are both needed for attributing value to cues yet can also oppose one-another's functional contribution.
Collapse
Affiliation(s)
- Stephen E Chang
- Dartmouth College, Department of Psychological and Brain Sciences, 6207 Moore Hall, Hanover, NH 03755, United States.
| | - Travis P Todd
- Dartmouth College, Department of Psychological and Brain Sciences, 6207 Moore Hall, Hanover, NH 03755, United States
| | - Kyle S Smith
- Dartmouth College, Department of Psychological and Brain Sciences, 6207 Moore Hall, Hanover, NH 03755, United States
| |
Collapse
|
50
|
Namba MD, Tomek SE, Olive MF, Beckmann JS, Gipson CD. The Winding Road to Relapse: Forging a New Understanding of Cue-Induced Reinstatement Models and Their Associated Neural Mechanisms. Front Behav Neurosci 2018; 12:17. [PMID: 29479311 PMCID: PMC5811475 DOI: 10.3389/fnbeh.2018.00017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/22/2018] [Indexed: 12/13/2022] Open
Abstract
In drug addiction, cues previously associated with drug use can produce craving and frequently trigger the resumption of drug taking in individuals vulnerable to relapse. Environmental stimuli associated with drugs or natural reinforcers can become reliably conditioned to increase behavior that was previously reinforced. In preclinical models of addiction, these cues enhance both drug self-administration and reinstatement of drug seeking. In this review, we will dissociate the roles of conditioned stimuli as reinforcers from their modulatory or discriminative functions in producing drug-seeking behavior. As well, we will examine possible differences in neurobiological encoding underlying these functional differences. Specifically, we will discuss how models of drug addiction and relapse should more systematically evaluate these different types of stimuli to better understand the neurobiology underlying craving and relapse. In this way, behavioral and pharmacotherapeutic interventions may be better tailored to promote drug use cessation outcomes and long-term abstinence.
Collapse
Affiliation(s)
- Mark D. Namba
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - Seven E. Tomek
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - M. Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - Joshua S. Beckmann
- Department of Psychology, University of Kentucky, Lexington, KY, United States
| | - Cassandra D. Gipson
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| |
Collapse
|