1
|
Ma YY, Li X, Yu ZY, Luo T, Tan CR, Bai YD, Xu G, Sun BD, Bu XL, Liu YH, Jin WS, Gao YQ, Zhou XF, Liu J, Wang YJ. Oral antioxidant edaravone protects against cognitive deficits induced by chronic hypobaric hypoxia at high altitudes. Transl Psychiatry 2024; 14:415. [PMID: 39362869 PMCID: PMC11450176 DOI: 10.1038/s41398-024-03133-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
Chronic hypobaric hypoxia at high altitudes can impair cognitive functions, especially causing deficits in learning and memory, which require therapeutic intervention. Here, we showed that mice subjected to hypobaric hypoxia (simulating an altitude of 5000 m) for one month experienced significant cognitive impairment, accompanied by increased biomarker levels of oxidative stress in the brain and blood. Oral administration of a novel formulation of edaravone, a free radical scavenger approved for the treatment of ischaemic stroke and amyotrophic lateral sclerosis, significantly alleviated oxidative stress and cognitive impairments caused by chronic hypobaric hypoxia. Furthermore, oral edaravone treatment also mitigated neuroinflammation and restored hippocampal neural stem cell exhaustion. Additionally, periostin (Postn) is vital in the cognitive deficits caused by chronic hypobaric hypoxia and may be a molecular target of edaravone. In conclusion, our results suggest that oxidative stress plays a crucial role in the cognitive deficits caused by chronic hypobaric hypoxia and that oral edaravone is a potential medicine for protecting against cognitive deficits caused by chronic hypobaric hypoxia in high-altitude areas.
Collapse
Affiliation(s)
- Yuan-Yuan Ma
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400042, China
| | - Xin Li
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Third Military Medical University, Shigatse, 857000, China
| | - Zhong-Yuan Yu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400042, China
| | - Tong Luo
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042, China
| | - Cheng-Rong Tan
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400042, China
| | - Yu-Di Bai
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400042, China
| | - Gang Xu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, 400038, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, 400038, China
- Key Laboratory of High Altitude and Frigidzone Medical Support, PLA, Chongqing, 400038, China
| | - Bin-Da Sun
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, 400038, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, 400038, China
- Key Laboratory of High Altitude and Frigidzone Medical Support, PLA, Chongqing, 400038, China
| | - Xian-Le Bu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400042, China
| | - Yu-Hui Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400042, China
| | - Wang-Sheng Jin
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400042, China
| | - Yu-Qi Gao
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, 400038, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, 400038, China
- Key Laboratory of High Altitude and Frigidzone Medical Support, PLA, Chongqing, 400038, China
| | - Xin-Fu Zhou
- Suzhou Auzone Biotech, Suzhou, 215123, China
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Juan Liu
- Department of Special Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
- Center for Hyperbaric Oxygen Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400042, China.
| |
Collapse
|
2
|
Signal B, Phipps AJ, Giles KA, Huskins SN, Mercer TR, Robinson MD, Woodhouse A, Taberlay PC. Ageing-Related Changes to H3K4me3, H3K27ac, and H3K27me3 in Purified Mouse Neurons. Cells 2024; 13:1393. [PMID: 39195281 DOI: 10.3390/cells13161393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Neurons are central to lifelong learning and memory, but ageing disrupts their morphology and function, leading to cognitive decline. Although epigenetic mechanisms are known to play crucial roles in learning and memory, neuron-specific genome-wide epigenetic maps into old age remain scarce, often being limited to whole-brain homogenates and confounded by glial cells. Here, we mapped H3K4me3, H3K27ac, and H3K27me3 in mouse neurons across their lifespan. This revealed stable H3K4me3 and global losses of H3K27ac and H3K27me3 into old age. We observed patterns of synaptic function gene deactivation, regulated through the loss of the active mark H3K27ac, but not H3K4me3. Alongside this, embryonic development loci lost repressive H3K27me3 in old age. This suggests a loss of a highly refined neuronal cellular identity linked to global chromatin reconfiguration. Collectively, these findings indicate a key role for epigenetic regulation in neurons that is inextricably linked with ageing.
Collapse
Affiliation(s)
- Brandon Signal
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS 7000, Australia
| | - Andrew J Phipps
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS 7000, Australia
| | - Katherine A Giles
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS 7000, Australia
- Children's Medical Research Institute, University of Sydney, 214 Hawkesbury Road, Westmead, NSW 2145, Australia
| | - Shannon N Huskins
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS 7000, Australia
| | - Timothy R Mercer
- Australian Institute for Bioengineering and Nanotechnology, Corner College and Cooper Roads, Brisbane, QLD 4072, Australia
| | - Mark D Robinson
- SIB Swiss Institute of Bioinformatics, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Adele Woodhouse
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS 7000, Australia
| | - Phillippa C Taberlay
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS 7000, Australia
| |
Collapse
|
3
|
Swissa E, Monsonego U, Yang LT, Schori L, Kamintsky L, Mirloo S, Burger I, Uzzan S, Patel R, Sudmant PH, Prager O, Kaufer D, Friedman A. Cortical plasticity is associated with blood-brain barrier modulation. eLife 2024; 12:RP89611. [PMID: 39024007 PMCID: PMC11257677 DOI: 10.7554/elife.89611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Brain microvessels possess the unique properties of a blood-brain barrier (BBB), tightly regulating the passage of molecules from the blood to the brain neuropil and vice versa. In models of brain injury, BBB dysfunction and the associated leakage of serum albumin to the neuropil have been shown to induce pathological plasticity, neuronal hyper-excitability, and seizures. The effect of neuronal activity on BBB function and whether it plays a role in plasticity in the healthy brain remain unclear. Here we show that neuronal activity induces modulation of microvascular permeability in the healthy brain and that it has a role in local network reorganization. Combining simultaneous electrophysiological recording and vascular imaging with transcriptomic analysis in rats, and functional and BBB-mapping MRI in human subjects, we show that prolonged stimulation of the limb induces a focal increase in BBB permeability in the corresponding somatosensory cortex that is associated with long-term synaptic plasticity. We further show that the increased microvascular permeability depends on neuronal activity and involves caveolae-mediated transcytosis and transforming growth factor β signaling. Our results reveal a role of BBB modulation in cortical plasticity in the healthy brain, highlighting the importance of neurovascular interactions for sensory experience and learning.
Collapse
Affiliation(s)
- Evyatar Swissa
- Department of Brain and Cognitive Sciences, The School of Brain Sciences and Cognition, Zlotowski Center for Neuroscience, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Uri Monsonego
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Lynn T Yang
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Lior Schori
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Lyna Kamintsky
- Department of Medical Neuroscience, Dalhousie UniversityHalifaxCanada
| | - Sheida Mirloo
- Department of Medical Neuroscience, Dalhousie UniversityHalifaxCanada
| | - Itamar Burger
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Sarit Uzzan
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Rishi Patel
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
| | - Ofer Prager
- Department of Brain and Cognitive Sciences, The School of Brain Sciences and Cognition, Zlotowski Center for Neuroscience, Ben-Gurion University of the NegevBeer-ShevaIsrael
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Daniela Kaufer
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Alon Friedman
- Department of Brain and Cognitive Sciences, The School of Brain Sciences and Cognition, Zlotowski Center for Neuroscience, Ben-Gurion University of the NegevBeer-ShevaIsrael
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
- Department of Medical Neuroscience, Dalhousie UniversityHalifaxCanada
| |
Collapse
|
4
|
Mosquera-Heredia MI, Vidal OM, Morales LC, Silvera-Redondo C, Barceló E, Allegri R, Arcos-Burgos M, Vélez JI, Garavito-Galofre P. Long Non-Coding RNAs and Alzheimer's Disease: Towards Personalized Diagnosis. Int J Mol Sci 2024; 25:7641. [PMID: 39062884 PMCID: PMC11277322 DOI: 10.3390/ijms25147641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder characterized by progressive cognitive decline, is the most common form of dementia. Currently, there is no single test that can diagnose AD, especially in understudied populations and developing countries. Instead, diagnosis is based on a combination of medical history, physical examination, cognitive testing, and brain imaging. Exosomes are extracellular nanovesicles, primarily composed of RNA, that participate in physiological processes related to AD pathogenesis such as cell proliferation, immune response, and neuronal and cardiovascular function. However, the identification and understanding of the potential role of long non-coding RNAs (lncRNAs) in AD diagnosis remain largely unexplored. Here, we clinically, cognitively, and genetically characterized a sample of 15 individuals diagnosed with AD (cases) and 15 controls from Barranquilla, Colombia. Advanced bioinformatics, analytics and Machine Learning (ML) techniques were used to identify lncRNAs differentially expressed between cases and controls. The expression of 28,909 lncRNAs was quantified. Of these, 18 were found to be differentially expressed and harbored in pivotal genes related to AD. Two lncRNAs, ENST00000608936 and ENST00000433747, show promise as diagnostic markers for AD, with ML models achieving > 95% sensitivity, specificity, and accuracy in both the training and testing datasets. These findings suggest that the expression profiles of lncRNAs could significantly contribute to advancing personalized AD diagnosis in this community, offering promising avenues for early detection and follow-up.
Collapse
Affiliation(s)
- Maria I. Mosquera-Heredia
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (M.I.M.-H.); (O.M.V.); (L.C.M.); (C.S.-R.)
| | - Oscar M. Vidal
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (M.I.M.-H.); (O.M.V.); (L.C.M.); (C.S.-R.)
| | - Luis C. Morales
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (M.I.M.-H.); (O.M.V.); (L.C.M.); (C.S.-R.)
| | - Carlos Silvera-Redondo
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (M.I.M.-H.); (O.M.V.); (L.C.M.); (C.S.-R.)
| | - Ernesto Barceló
- Instituto Colombiano de Neuropedagogía, Barranquilla 080020, Colombia;
- Department of Health Sciences, Universidad de La Costa, Barranquilla 080002, Colombia
- Grupo Internacional de Investigación Neuro-Conductual (GIINCO), Universidad de La Costa, Barranquilla 080002, Colombia
| | - Ricardo Allegri
- Institute for Neurological Research FLENI, Montañeses 2325, Buenos Aires C1428AQK, Argentina;
| | - Mauricio Arcos-Burgos
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellin 050010, Colombia;
| | - Jorge I. Vélez
- Department of Industrial Engineering, Universidad del Norte, Barranquilla 081007, Colombia
| | - Pilar Garavito-Galofre
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (M.I.M.-H.); (O.M.V.); (L.C.M.); (C.S.-R.)
| |
Collapse
|
5
|
Figge DA, Amaral HDO, Crim J, Cowell RM, Standaert DG, Eskow Jaunarajs KL. Differential Activation States of Direct Pathway Striatal Output Neurons during l-DOPA-Induced Dyskinesia Development. J Neurosci 2024; 44:e0050242024. [PMID: 38664012 PMCID: PMC11211726 DOI: 10.1523/jneurosci.0050-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 06/28/2024] Open
Abstract
l-DOPA-induced dyskinesia (LID) is a debilitating motor side effect arising from chronic dopamine (DA) replacement therapy with l-DOPA for the treatment of Parkinson's disease. LID is associated with supersensitivity of striatal dopaminergic signaling and fluctuations in synaptic DA following each l-DOPA dose, shrinking the therapeutic window. The heterogeneous composition of the striatum, including subpopulations of medium spiny output neurons (MSNs), interneurons, and supporting cells, complicates the identification of cell(s) underlying LID. We used single-nucleus RNA sequencing (snRNA-seq) to establish a comprehensive striatal transcriptional profile during LID development. Male hemiparkinsonian mice were treated with vehicle or l-DOPA for 1, 5, or 10 d, and striatal nuclei were processed for snRNA-seq. Analyses indicated a limited population of DA D1 receptor-expressing MSNs (D1-MSNs) formed three subclusters in response to l-DOPA treatment and expressed cellular markers of activation. These activated D1-MSNs display similar transcriptional changes previously associated with LID; however, their prevalence and transcriptional behavior were differentially influenced by l-DOPA experience. Differentially expressed genes indicated acute upregulation of plasticity-related transcription factors and mitogen-activated protein kinase signaling, while repeated l-DOPA-induced synaptic remodeling, learning and memory, and transforming growth factor-β (TGF-β) signaling genes. Notably, repeated l-DOPA sensitized Inhba, an activin subunit of the TGF-β superfamily, in activated D1-MSNs, and its pharmacological inhibition impaired LID development, suggesting that activin signaling may play an essential role in LID. These data suggest distinct subsets of D1-MSNs become differentially l-DOPA-responsive due to aberrant induction of molecular mechanisms necessary for neuronal entrainment, similar to processes underlying hippocampal learning and memory.
Collapse
Affiliation(s)
- David A Figge
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Henrique de Oliveira Amaral
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Jack Crim
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Rita M Cowell
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - David G Standaert
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Karen L Eskow Jaunarajs
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
6
|
Miyazawa K, Itoh Y, Fu H, Miyazono K. Receptor-activated transcription factors and beyond: multiple modes of Smad2/3-dependent transmission of TGF-β signaling. J Biol Chem 2024; 300:107256. [PMID: 38569937 PMCID: PMC11063908 DOI: 10.1016/j.jbc.2024.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Transforming growth factor β (TGF-β) is a pleiotropic cytokine that is widely distributed throughout the body. Its receptor proteins, TGF-β type I and type II receptors, are also ubiquitously expressed. Therefore, the regulation of various signaling outputs in a context-dependent manner is a critical issue in this field. Smad proteins were originally identified as signal-activated transcription factors similar to signal transducer and activator of transcription proteins. Smads are activated by serine phosphorylation mediated by intrinsic receptor dual specificity kinases of the TGF-β family, indicating that Smads are receptor-restricted effector molecules downstream of ligands of the TGF-β family. Smad proteins have other functions in addition to transcriptional regulation, including post-transcriptional regulation of micro-RNA processing, pre-mRNA splicing, and m6A methylation. Recent technical advances have identified a novel landscape of Smad-dependent signal transduction, including regulation of mitochondrial function without involving regulation of gene expression. Therefore, Smad proteins are receptor-activated transcription factors and also act as intracellular signaling modulators with multiple modes of function. In this review, we discuss the role of Smad proteins as receptor-activated transcription factors and beyond. We also describe the functional differences between Smad2 and Smad3, two receptor-activated Smad proteins downstream of TGF-β, activin, myostatin, growth and differentiation factor (GDF) 11, and Nodal.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Yuka Itoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hao Fu
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kohei Miyazono
- Department of Applied Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Laboratory for Cancer Invasion and Metastasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
7
|
Pereira ADS, Bottari NB, Nauderer JN, Assmann CE, Copetti PM, Reichert KP, Mostardeiro VB, da Silveira MV, Morsch VMM, Schetinger MRC. Purinergic signaling influences the neuroinflammatory outcomes of a testosterone-derived synthetic in female rats: Resistance training protective effects on brain health. Steroids 2024; 203:109352. [PMID: 38128896 DOI: 10.1016/j.steroids.2023.109352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Physical exercise is recognized as a non-pharmacological approach to treat and protect against several neuroinflammatory conditions and thus to prevent brain disorders. However, the interest in ergogenic resources by athletes and bodybuilding practitioners is widespread and on the rise. These substances shorten the process of performance gain and improve aesthetics, having led to the prominent use and abuse of hormones in the past years. Recent evidence has shown that the purinergic system, composed of adenine nucleotides, nucleosides, enzymes, and receptors, participates in a wide range of processes within the brain, such as neuroinflammation, neuromodulation, and cellular communication. Here, we investigated the effects of the anabolic androgenic steroid (AAS) testosterone (TES) at a dose of 70 mg/kg/week in female rats and the neuroprotective effect of resistance exercise related to the purinergic system and oxidative stress parameters. Our findings showed a decrease in ATP and ADO hydrolysis in treated and trained animals. Furthermore, there was an increase in the density of purinoceptors (P2X7 and A2A) and inflammatory markers (IBA-1, NRLP3, CASP-1, IL-1β, and IL-6) in the cerebral cortex of animals that received AAS. On the other hand, exercise reversed neuroinflammatory parameters such as IBA-1, NLRP3, CASP-1, and IL-1β and improved antioxidant response and anti-inflammatory IL-10 cytokine levels. Overall, this study shows that the use of TES without indication or prescription disrupts brain homeostasis, as demonstrated by the increase in neuroinflammation, and that the practice of exercise can protect brain health.
Collapse
Affiliation(s)
- Aline da Silva Pereira
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Nathieli Bianchin Bottari
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Jelson Norberto Nauderer
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Charles Elias Assmann
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Priscila Marquezan Copetti
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Karine Paula Reichert
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Vitor Bastianello Mostardeiro
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Marcylene Vieira da Silveira
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Vera Maria Melchiors Morsch
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| |
Collapse
|
8
|
Raschick M, Richter A, Fischer L, Knopf L, Schult A, Yakupov R, Behnisch G, Guttek K, Düzel E, Dunay IR, Seidenbecher CI, Schraven B, Reinhold D, Schott BH. Plasma concentrations of anti-inflammatory cytokine TGF-β are associated with hippocampal structure related to explicit memory performance in older adults. J Neural Transm (Vienna) 2023:10.1007/s00702-023-02638-1. [PMID: 37115329 PMCID: PMC10374779 DOI: 10.1007/s00702-023-02638-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/19/2023] [Indexed: 04/29/2023]
Abstract
Human cognitive abilities, and particularly hippocampus-dependent memory performance typically decline with increasing age. Immunosenescence, the age-related disintegration of the immune system, is increasingly coming into the focus of research as a considerable factor contributing to cognitive decline. In the present study, we investigated potential associations between plasma levels of pro- and anti-inflammatory cytokines and learning and memory performance as well as hippocampal anatomy in young and older adults. Plasma concentrations of the inflammation marker CRP as well as the pro-inflammatory cytokines IL-6 and TNF-α and the anti-inflammatory cytokine TGF-β1 were measured in 142 healthy adults (57 young, 24.47 ± 4.48 years; 85 older, 63.66 ± 7.32 years) who performed tests of explicit memory (Verbal Learning and Memory Test, VLMT; Wechsler Memory Scale, Logical Memory, WMS) with an additional delayed recall test after 24 h. Hippocampal volumetry and hippocampal subfield segmentation were performed using FreeSurfer, based on T1-weighted and high-resolution T2-weighted MR images. When investigating the relationship between memory performance, hippocampal structure, and plasma cytokine levels, we found that TGF-β1 concentrations were positively correlated with the volumes of the hippocampal CA4-dentate gyrus region in older adults. These volumes were in turn positively associated with better performance in the WMS, particularly in the delayed memory test. Our results support the notion that endogenous anti-inflammatory mechanisms may act as protective factors in neurocognitive aging.
Collapse
Affiliation(s)
- Matthias Raschick
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Anni Richter
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Larissa Fischer
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Lea Knopf
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Annika Schult
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Gusalija Behnisch
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Karina Guttek
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Emrah Düzel
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Ildiko Rita Dunay
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Institute for Inflammation and Neurodegeneration, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Constanze I Seidenbecher
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Björn H Schott
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
- Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
| |
Collapse
|
9
|
Gao Y, Syed M, Zhao X. Mechanisms underlying the effect of voluntary running on adult hippocampal neurogenesis. Hippocampus 2023; 33:373-390. [PMID: 36892196 PMCID: PMC10566571 DOI: 10.1002/hipo.23520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 03/10/2023]
Abstract
Adult hippocampal neurogenesis is important for preserving learning and memory-related cognitive functions. Physical exercise, especially voluntary running, is one of the strongest stimuli to promote neurogenesis and has beneficial effects on cognitive functions. Voluntary running promotes exit of neural stem cells (NSCs) from the quiescent stage, proliferation of NSCs and progenitors, survival of newborn cells, morphological development of immature neuron, and integration of new neurons into the hippocampal circuitry. However, the detailed mechanisms driving these changes remain unclear. In this review, we will summarize current knowledge with respect to molecular mechanisms underlying voluntary running-induced neurogenesis, highlighting recent genome-wide gene expression analyses. In addition, we will discuss new approaches and future directions for dissecting the complex cellular mechanisms driving change in adult-born new neurons in response to physical exercise.
Collapse
Affiliation(s)
- Yu Gao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Moosa Syed
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
10
|
Chang C, Bai W, Li J, Huo S, Wang T, Shao J. Effects of Subchronic Propofol Administration on the Proliferation and Differentiation of Neural Stem Cells in Rat Hippocampus. CURRENT THERAPEUTIC RESEARCH 2023; 98:100691. [PMID: 36798524 PMCID: PMC9925857 DOI: 10.1016/j.curtheres.2023.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
Background Although controversial, experimental data suggest the use of propofol may be associated with neurotoxicity. The mechanisms responsible for propofol neurotoxicity in animals are not yet clear. Objective This study aimed to determine the effects of propofol on the proliferation of neural stem cells in rat hippocampus and the mechanisms underlying these effects. Methods Forty-five adult male Sprague-Dawley rats were randomly divided into 5 groups: Control (N group), intralipid (V group), 30 mg/kg propofol (Prop30 group), 60 mg/kg propofol (Prop60 group), and 120 mg/kg propofol (Prop120 group). The rats in all groups received 5, once daily intraperitoneal injections. For each of the 5 days, the N group received 6 mL/kg normal saline, the V group received 6 mL/kg fat emulsion, the Prop30 group received 30 mg/kg propofol, the Prop60 group received 60 mg/kg propofol, and the Prop120 group received 120 mg/kg propofol. Memory function was scored daily using the Morris water maze test. Immunofluorescence staining was used to histologically monitor the proliferation and differentiation of the rats' hippocampal neural stem cells, and real time quantitative polymerase chain reaction and Western blotting were used to determine the expression of Notch3, Hes1, and Hes5. Results Compared with the N group, the Prop120 group exhibited reduced learning and memory, whereas there were no significant differences for the Prop60 group. The number of β-tubulin III+ cells increased in the Prop60 group, but decreased in the Prop120 group. Compared with the N group, the relative expression of Notch3 and Hes5 increased significantly in the Prop60 group, whereas this expression decreased in the Prop120 group. Conclusions These data demonstrate that repeated, subchronic (5 days) intraperitoneal injections of 60 mg/kg propofol can effectively promote rat hippocampal neural stem cells proliferation and differentiation, and that this is likely mediated by its effects on the Notch3-Hes5 pathway.
Collapse
Affiliation(s)
- Cheng Chang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China,Department of anesthesiology, The first people's hospital of huaihua, huaihua, Hunan Province, China
| | - Wenya Bai
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Junjie Li
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Siying Huo
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Tinghua Wang
- Experimental Animal Center, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jianlin Shao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China,Address correspondence to: Jian-Lin Shao, PhD, Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Rd, Kunming, Yunnan 650032, P.R. China.
| |
Collapse
|
11
|
Liu C, Liu J, Gong H, Liu T, Li X, Fan X. Implication of Hippocampal Neurogenesis in Autism Spectrum Disorder: Pathogenesis and Therapeutic Implications. Curr Neuropharmacol 2023; 21:2266-2282. [PMID: 36545727 PMCID: PMC10556385 DOI: 10.2174/1570159x21666221220155455] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) is a cluster of heterogeneous neurodevelopmental conditions with atypical social communication and repetitive sensory-motor behaviors. The formation of new neurons from neural precursors in the hippocampus has been unequivocally demonstrated in the dentate gyrus of rodents and non-human primates. Accumulating evidence sheds light on how the deficits in the hippocampal neurogenesis may underlie some of the abnormal behavioral phenotypes in ASD. In this review, we describe the current evidence concerning pre-clinical and clinical studies supporting the significant role of hippocampal neurogenesis in ASD pathogenesis, discuss the possibility of improving hippocampal neurogenesis as a new strategy for treating ASD, and highlight the prospect of emerging pro-neurogenic therapies for ASD.
Collapse
Affiliation(s)
- Chuanqi Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiayin Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hong Gong
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tianyao Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xin Li
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Third Military Medical University (Army Medical University), Shigatse, China
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|