1
|
Lee MM, Stoodley CJ. Neural bases of reading fluency: A systematic review and meta-analysis. Neuropsychologia 2024; 202:108947. [PMID: 38964441 DOI: 10.1016/j.neuropsychologia.2024.108947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
Reading fluency, the ability to read quickly and accurately, is a critical marker of successful reading and is notoriously difficult to improve in reading disabled populations. Despite its importance to functional literacy, fluency is a relatively under-studied aspect of reading, and the neural correlates of reading fluency are not well understood. Here, we review the literature of the neural correlates of reading fluency as well as rapid automatized naming (RAN), a task that is robustly related to reading fluency. In a qualitative review of the neuroimaging literature, we evaluated structural and functional MRI studies of reading fluency in readers from a range of skill levels. This was followed by a quantitative activation likelihood estimate (ALE) meta-analysis of fMRI studies of reading speed and RAN measures. We anticipated that reading speed, relative to untimed reading and reading-related tasks, would harness ventral reading pathways that are thought to enable the fast, visual recognition of words. The qualitative review showed that speeded reading taps the entire canonical reading network. The meta-analysis indicated a stronger role of the ventral reading pathway in rapid reading and rapid naming. Both reviews identified regions outside the canonical reading network that contribute to reading fluency, such as the bilateral insula and superior parietal lobule. We suggest that fluent reading engages both domain-specific reading pathways as well as domain-general regions that support overall task performance and discuss future avenues of research to expand our understanding of the neural bases of fluent reading.
Collapse
Affiliation(s)
- Marissa M Lee
- Department of Neuroscience, American University, USA; Center for Applied Brain and Cognitive Sciences, Tufts University, USA
| | - Catherine J Stoodley
- Department of Neuroscience, American University, USA; Developing Brain Institute, Children's National Hospital, USA; Departments of Neurology and Pediatrics, The George Washington University School of Medicine and Health Sciences, USA.
| |
Collapse
|
2
|
Graves WW, Levinson HJ, Staples R, Boukrina O, Rothlein D, Purcell J. An inclusive multivariate approach to neural localization of language components. Brain Struct Funct 2024; 229:1243-1263. [PMID: 38693340 PMCID: PMC11147878 DOI: 10.1007/s00429-024-02800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
To determine how language is implemented in the brain, it is important to know which brain areas are primarily engaged in language processing and which are not. Existing protocols for localizing language are typically univariate, treating each small unit of brain volume as independent. One prominent example that focuses on the overall language network in functional magnetic resonance imaging (fMRI) uses a contrast between neural responses to sentences and sets of pseudowords (pronounceable nonwords). This contrast reliably activates peri-sylvian language areas but is less sensitive to extra-sylvian areas that are also known to support aspects of language such as word meanings (semantics). In this study, we assess areas where a multivariate, pattern-based approach shows high reproducibility across multiple measurements and participants, identifying these areas as multivariate regions of interest (mROI). We then perform a representational similarity analysis (RSA) of an fMRI dataset where participants made familiarity judgments on written words. We also compare those results to univariate regions of interest (uROI) taken from previous sentences > pseudowords contrasts. RSA with word stimuli defined in terms of their semantic distance showed greater correspondence with neural patterns in mROI than uROI. This was confirmed in two independent datasets, one involving single-word recognition, and the other focused on the meaning of noun-noun phrases by contrasting meaningful phrases > pseudowords. In all cases, areas of spatial overlap between mROI and uROI showed the greatest neural association. This suggests that ROIs defined in terms of multivariate reproducibility can help localize components of language such as semantics. The multivariate approach can also be extended to focus on other aspects of language such as phonology, and can be used along with the univariate approach for inclusively mapping language cortex.
Collapse
Affiliation(s)
- William W Graves
- Department of Psychology, Rutgers University, Smith Hall, Room 301, 101 Warren Street, Newark, NJ, 07102, USA.
| | - Hillary J Levinson
- Department of Psychology, Rutgers University, Smith Hall, Room 301, 101 Warren Street, Newark, NJ, 07102, USA
| | - Ryan Staples
- Georgetown University Medical Center, Washington, DC, USA
| | | | | | | |
Collapse
|
3
|
Martin KC, DeMarco AT, Dyslin SM, Turkeltaub PE. Rapid auditory and phonemic processing relies on the left planum temporale. RESEARCH SQUARE 2024:rs.3.rs-4189759. [PMID: 38645022 PMCID: PMC11030499 DOI: 10.21203/rs.3.rs-4189759/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
After initial bilateral acoustic processing of the speech signal, much of the subsequent language processing is left-lateralized. The reason for this lateralization remains an open question. Prevailing hypotheses describe a left hemisphere (LH) advantage for rapidly unfolding information-such as the segmental (e.g., phonetic and phonemic) components of speech. Here we investigated whether and where damage to the LH predicted impaired performance on judging the directionality of frequency modulated (FM) sweep stimuli that changed within short (25ms) or longer (250ms) temporal windows. Performance was significantly lower for stroke survivors (n = 50; 18 female) than controls (n = 61; 34 female) on FM Sweeps judgments, particularly on the short sweeps. Support vector regression lesion-symptom mapping (SVR-LSM) revealed that part of the left planum temporale (PT) was related to worse performance on judging the short FM sweeps, controlling for performance on the long sweeps. We then investigated whether damage to this particular area related to diminished performance on two levels of linguistic processing that theoretically depend on rapid auditory processing: stop consonant identification and pseudoword repetition. We separated stroke participants into subgroups based on whether their LH lesion included the part of the left PT that related to diminished short sweeps judgments. Participants with PT lesions (PT lesion+, n = 24) performed significantly worse than those without (PT lesion-, n = 26) on stop consonant identification and pseudoword repetition, controlling for lesion size and hearing ability. Interestingly, PT lesions impacted pseudoword repetition more than real word repetition (PT lesion-by-repetition trial type interaction), which is of interest because pseudowords rely solely on sound perception and sequencing, whereas words can also rely on lexical-semantic knowledge. We conclude that the left PT is a critical region for processing auditory information in short temporal windows, and it may also be an essential transfer point in auditory-to-linguistic processing.
Collapse
Affiliation(s)
| | - Andrew T DeMarco
- Georgetown University Medical Center, MedStar National Rehabilitation Hospital
| | | | - Peter E Turkeltaub
- Georgetown University Medical Center, MedStar National Rehabilitation Hospital
| |
Collapse
|
4
|
Harrington RM, Kristinsson S, Wilmskoetter J, Busby N, den Ouden D, Rorden C, Fridriksson J, Bonilha L. Dissociating reading and auditory comprehension in persons with aphasia. Brain Commun 2024; 6:fcae102. [PMID: 38585671 PMCID: PMC10998352 DOI: 10.1093/braincomms/fcae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/10/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
Language comprehension is often affected in individuals with post-stroke aphasia. However, deficits in auditory comprehension are not fully correlated with deficits in reading comprehension and the mechanisms underlying this dissociation remain unclear. This distinction is important for understanding language mechanisms, predicting long-term impairments and future development of treatment interventions. Using comprehensive auditory and reading measures from a large cohort of individuals with aphasia, we evaluated the relationship between aphasia type and reading comprehension impairments, the relationship between auditory versus reading comprehension deficits and the crucial neuroanatomy supporting the dissociation between post-stroke reading and auditory deficits. Scores from the Western Aphasia Battery-Revised from 70 participants with aphasia after a left-hemisphere stroke were utilized to evaluate both reading and auditory comprehension of linguistically equivalent stimuli. Repeated-measures and univariate ANOVA were used to assess the relationship between auditory comprehension and aphasia types and correlations were employed to test the relationship between reading and auditory comprehension deficits. Lesion-symptom mapping was used to determine the dissociation of crucial brain structures supporting reading comprehension deficits controlling for auditory deficits and vice versa. Participants with Broca's or global aphasia had the worst performance on reading comprehension. Auditory comprehension explained 26% of the variance in reading comprehension for sentence completion and 44% for following sequential commands. Controlling for auditory comprehension, worse reading comprehension performance was independently associated with damage to the inferior temporal gyrus, fusiform gyrus, posterior inferior temporal gyrus, inferior occipital gyrus, lingual gyrus and posterior thalamic radiation. Auditory and reading comprehension are only partly correlated in aphasia. Reading is an integral part of daily life and directly associated with quality of life and functional outcomes. This study demonstrated that reading performance is directly related to lesioned areas in the boundaries between visual association regions and ventral stream language areas. This behavioural and neuroanatomical dissociation provides information about the neurobiology of language and mechanisms for potential future treatment interventions.
Collapse
Affiliation(s)
- Rachael M Harrington
- Department of Communication Sciences and Disorders and Center for Research on the Challenges of Acquiring Language and Literacy, Georgia State University, Atlanta, GA 30310, USA
| | - Sigfus Kristinsson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Janina Wilmskoetter
- Department of Health and Rehabilitation Sciences, Medical University of South Carolina, Charleston, SC 29464, USA
| | - Natalie Busby
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Dirk den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Leonardo Bonilha
- School of Medicine Columbia, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
5
|
Luo Y, Wang K, Jiao S, Zeng J, Han Z. Distinct parallel activation and interaction between dorsal and ventral pathways during phonological and semantic processing: A cTBS-fMRI study. Hum Brain Mapp 2024; 45:e26569. [PMID: 38224540 PMCID: PMC10785560 DOI: 10.1002/hbm.26569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 01/17/2024] Open
Abstract
Successful visual word recognition requires the integration of phonological and semantic information, which is supported by the dorsal and ventral pathways in the brain. However, the functional specialization or interaction of these pathways during phonological and semantic processing remains unclear. Previous research has been limited by its dependence on correlational functional magnetic resonance imaging (fMRI) results or causal validation using patient populations, which are susceptible to confounds such as plasticity and lesion characteristics. To address this, the present study employed continuous theta-burst stimulation combined with fMRI in a within-subject design to assess rapid adaptation in regional activity and functional connectivity of the dorsal and ventral pathways during phonological and semantic tasks. This assessment followed the precise inhibition of the left inferior parietal lobule and anterior temporal lobe in the dorsal and ventral pathways, respectively. Our results reveal that both the dorsal and ventral pathways were activated during phonological and semantic processing, while the adaptation activation and interactive network were modulated by the task type and inhibited region. The two pathways exhibited interconnectivity in phonological processing, and disruption of either pathway led to rapid adaptation across both pathways. In contrast, only the ventral pathway exhibited connectivity in semantic processing, and disruption of this pathway alone resulted in adaptive effects primarily in the ventral pathway. These findings provide essential evidence supporting the interactive theory, phonological information processing in particular, potentially providing meaningful implications for clinical populations.
Collapse
Affiliation(s)
- Yudan Luo
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Ke Wang
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
- School of System ScienceBeijing Normal UniversityBeijingChina
| | - Saiyi Jiao
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Jiahong Zeng
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Zaizhu Han
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| |
Collapse
|
6
|
Reyes-Aguilar A, Licea-Haquet G, Arce BI, Giordano M. Contribution and functional connectivity between cerebrum and cerebellum on sub-lexical and lexical-semantic processing of verbs. PLoS One 2023; 18:e0291558. [PMID: 37708205 PMCID: PMC10501569 DOI: 10.1371/journal.pone.0291558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
Language comprehension involves both sub-lexical (e.g., phonological) and lexical-semantic processing. We conducted a task using functional magnetic resonance imaging (fMRI) to compare the processing of verbs in these two domains. Additionally, we examined the representation of concrete-motor and abstract-non-motor concepts by including two semantic categories of verbs: motor and mental. The findings indicate that sub-lexical processing during the reading of pseudo-verbs primarily involves the left dorsal stream of the perisylvian network, while lexical-semantic representation during the reading of verbs predominantly engages the ventral stream. According to the embodied or grounded cognition approach, modality-specific mechanisms (such as sensory-motor systems) and the well-established multimodal left perisylvian network contribute to the semantic representation of both concrete and abstract verbs. Our study identified the visual system as a preferential modality-specific system for abstract-mental verbs, which exhibited functional connectivity with the right crus I/lobule VI of the cerebellum. Taken together, these results confirm the dissociation between sub-lexical and lexical-semantic processing and provide neurobiological evidence of functional coupling between specific visual modality regions and the right cerebellum, forming a network that supports the semantic representation of abstract concepts. Further, the results shed light on the underlying mechanisms of semantic processing and contribute to our understanding of how the brain processes abstract concepts.
Collapse
Affiliation(s)
- Azalea Reyes-Aguilar
- Department of Psychobiology and Neuroscience, Faculty of Psychology, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Giovanna Licea-Haquet
- Department of Behavioral and Cognitive Neurobiology, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
| | - Brenda I. Arce
- Department of Psychobiology and Neuroscience, Faculty of Psychology, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Magda Giordano
- Department of Behavioral and Cognitive Neurobiology, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
| |
Collapse
|
7
|
Zhang K, Sun X, Yu C, Eggleston RL, Marks RA, Nickerson N, Caruso VC, Hu X, Tardif T, Chou T, Booth JR, Kovelman I. Phonological and morphological literacy skills in English and Chinese: A cross-linguistic neuroimaging comparison of Chinese-English bilingual and monolingual English children. Hum Brain Mapp 2023; 44:4812-4829. [PMID: 37483170 PMCID: PMC10400794 DOI: 10.1002/hbm.26419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 06/20/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
Over the course of literacy development, children learn to recognize word sounds and meanings in print. Yet, they do so differently across alphabetic and character-based orthographies such as English and Chinese. To uncover cross-linguistic influences on children's literacy, we asked young Chinese-English simultaneous bilinguals and English monolinguals (N = 119, ages 5-10) to complete phonological and morphological awareness (MA) literacy tasks. Children completed the tasks in the auditory modality in each of their languages during functional near-infrared spectroscopy neuroimaging. Cross-linguistically, comparisons between bilinguals' two languages revealed that the task that was more central to reading in a given orthography, such as phonological awareness (PA) in English and MA in Chinese, elicited less activation in the left inferior frontal and parietal regions. Group comparisons between bilinguals and monolinguals in English, their shared language of academic instruction, revealed that the left inferior frontal was less active during phonology but more active during morphology in bilinguals relative to monolinguals. MA skills are generally considered to have greater language specificity than PA skills. Bilingual literacy training in a skill that is maximally similar across languages, such as PA, may therefore yield greater automaticity for this skill, as reflected in the lower activation in bilinguals relative to monolinguals. This interpretation is supported by negative correlations between proficiency and brain activation. Together, these findings suggest that both the structural characteristics and literacy experiences with a given language can exert specific influences on bilingual and monolingual children's emerging brain networks for learning to read.
Collapse
Affiliation(s)
- Kehui Zhang
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
| | - Xin Sun
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
- Department of PsychologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Chi‐Lin Yu
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
| | | | - Rebecca A. Marks
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
- Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Nia Nickerson
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
| | | | - Xiao‐Su Hu
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
| | - Twila Tardif
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
| | - Tai‐Li Chou
- Department of PsychologyNational Taiwan UniversityTaipeiTaiwan
| | - James R. Booth
- Department of Psychology and Human DevelopmentVanderbilt UniversityNashvilleTennesseeUSA
| | - Ioulia Kovelman
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
8
|
de Carvalho Rodrigues J, Pioli Dos Santos D, de Bitencourt Fél D, de Salles JF. Word Reading and Spelling Processing and Acquired Dyslexia post Unilateral Stroke. JOURNAL OF PSYCHOLINGUISTIC RESEARCH 2023; 52:1017-1035. [PMID: 37022628 DOI: 10.1007/s10936-023-09951-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
This study investigates the performance of adults with cerebrovascular lesion in the right hemisphere (RHL) or left hemisphere (LHL) in word reading (TLPP) and spelling (TEPP) tasks based on the dual-route models. A total of 85 adults were assessed, divided into three groups: 10 with RHL, 15 with LHL, and 60 neurologically healthy ones. The performance of the three groups was compared in terms of the characteristics of the words (regularity, frequency, and length) and pseudowords (length), error types, and psycholinguistic effects. A cluster analysis was performed to investigate the profiles of the reading. The LHL group showed lower scores in reading and spelling tasks of words and pseudowords, as well as a higher frequency of errors. Four LHL cases were found to have an acquired dyslexia profile. This study highlights that the tasks developed in Brazil are in accordance with theoretical models of written language, and the results point to the heterogeneous performance of the cases with acquired dyslexia.
Collapse
Affiliation(s)
- Jaqueline de Carvalho Rodrigues
- MSc and PhD in Psychology, Professora do Departamento de Psicologia da Pontifícia Universidade Católica do Rio de Janeiro - PUCRio, Rua Marquês de São Vicente, 225, Gávea, Rio de Janeiro, Brazil.
| | - Daniele Pioli Dos Santos
- Psychologist, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Débora de Bitencourt Fél
- Psychologist, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Jerusa Fumagalli de Salles
- MSc and PhD in Psychology, Professora Associada na Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
9
|
Lu D, Wang X, Wei Y, Cui Y, Wang Y. Neural pathways of attitudes toward foreign languages predict academic performance. Front Psychol 2023; 14:1181989. [PMID: 37564316 PMCID: PMC10410274 DOI: 10.3389/fpsyg.2023.1181989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Learning attitude is thought to impact students' academic achievement and success, but the underlying neurocognitive mechanisms of learning attitudes remain unclear. The purpose of the present study was to investigate the neural markers linked to attitudes toward foreign languages and how they contribute to foreign-language performance. Forty-one Chinese speakers who hold differentiated foreign language (English) attitudes were asked to complete an English semantic judgment task during a functional magnetic resonance imaging (fMRI) experiment. Multimethod brain imaging analyses showed that, compared with the positive attitude group (PAG), the negative attitude group (NAG) showed increased brain activation in the left STG and functional connectivity between the left STG and the right precentral gyrus (PCG), as well as changed functional segregation and integration of brain networks under the English reading task, after controlling for English reading scores. Mediation analysis further revealed that left STG activity and STG-PCG connectivity mediated the relationships between English attitudes and English reading performance. Taken together, these findings suggest that objective neural markers related to subjective foreign language attitudes (FLAs) exist and that attitude-related neural pathways play important roles in determining students' academic performance. Our findings provide new insights into the neurobiological mechanisms by which attitudes regulate academic performance.
Collapse
Affiliation(s)
- Di Lu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Xin Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yaozhen Wei
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yue Cui
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yapeng Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
10
|
Li H, Yuan B, Luo YJ, Liu J. Reading anxiety modulates the functional connectivity of the reading-related network during adult reading. BRAIN AND LANGUAGE 2023; 242:105278. [PMID: 37209490 DOI: 10.1016/j.bandl.2023.105278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/22/2023]
Abstract
Researchers have studied cognitive and linguistic skills in predicting reading abilities, but the impact of affective factors such as anxiety on reading at the neurobiological level is not well understood. Here, we used functional magnetic resonance imaging to investigate the neural correlates of reading anxiety in adult readers performing a semantic judgment task. The results showed that reading anxiety was significantly correlated with response time but not with accuracy. Neurobiologically, functional connectivity strength rather than activation level of semantic-related areas significantly predicted reading anxiety. Activation of regions (i.e., the right putamen and right precentral gyrus) external to the semantic-related areas positively correlated with reading anxiety levels. These findings suggest that reading anxiety influences adult reading by modulating functional connections of semantic-related areas and brain activation of semantic-unrelated areas. This study provides insights into the neural mechanisms underlying reading anxiety experienced by adult readers.
Collapse
Affiliation(s)
- Hehui Li
- Center for Brain Disorders and Cognitive Sciences, School of Psychology, Shenzhen University, Shenzhen, China
| | - Binke Yuan
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Yue-Jia Luo
- Center for Brain Disorders and Cognitive Sciences, School of Psychology, Shenzhen University, Shenzhen, China
| | - Jie Liu
- Center for Brain Disorders and Cognitive Sciences, School of Psychology, Shenzhen University, Shenzhen, China.
| |
Collapse
|
11
|
Xu L, Wei H, Sun Z, Chu T, Li M, Liu R, Jiang L, Liang Z. Dynamic alterations of spontaneous neural activity in post-stroke aphasia: a resting-state functional magnetic resonance imaging study. Front Neurosci 2023; 17:1177930. [PMID: 37250389 PMCID: PMC10213748 DOI: 10.3389/fnins.2023.1177930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/20/2023] [Indexed: 05/31/2023] Open
Abstract
Background and purpose The dynamic alterations in spontaneous neural activity of the brain during the acute phase of post-stroke aphasia (PSA) remain unclear. Therefore, in this study, dynamic amplitude of low-frequency fluctuation (dALFF) was applied to explore abnormal temporal variability in local functional activity of the brain during acute PSA. Materials and methods Resting-state functional magnetic resonance imaging (rs-fMRI) data from 26 patients with PSA and 25 healthy controls (HCs) were acquired. The sliding window method was used to assess dALFF, with the k-means clustering method used to identify dALFF states. The two-sample t-test was applied to compare differences in dALFF variability and state metrics between the PSA and HC groups. Results (1) In the PSA group, greater variance of dALFF in the cerebellar network (CBN) and left fronto-temporo-parietal network (FTPN) was observed. (2) Three dALFF states were identified among all subjects. States 1 and 2 were identified in the PSA patients, and the two dALFF states shared a similar proportion. Moreover, the number of transitions between the two dALFF states was higher in the patients compared with that in HCs. Conclusion The results of this study provide valuable insights into brain dysfunction that occurs during the acute phase (6.00 ± 3.52 days) of PSA. The observed increase in variability of local functional activities in CBN and left FTPN may be related to the spontaneous functional recovery of language during acute PSA, and it also suggests that cerebellum plays an important role in language.
Collapse
Affiliation(s)
- Luyao Xu
- Department of Neurology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Hongchun Wei
- Department of Neurology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Zhongwen Sun
- Department of Neurology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Tongpeng Chu
- Department of Radiology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Min Li
- Department of Neurology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Ruhui Liu
- Department of Neurology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Li Jiang
- Department of Neurology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Zhigang Liang
- Department of Neurology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| |
Collapse
|
12
|
Levy DF, Silva AB, Scott TL, Liu JR, Harper S, Zhao L, Hullett PW, Kurteff G, Wilson SM, Leonard MK, Chang EF. Apraxia of speech with phonological alexia and agraphia following resection of the left middle precentral gyrus: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2023; 5:CASE22504. [PMID: 37014023 PMCID: PMC10550577 DOI: 10.3171/case22504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/23/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Apraxia of speech is a disorder of speech-motor planning in which articulation is effortful and error-prone despite normal strength of the articulators. Phonological alexia and agraphia are disorders of reading and writing disproportionately affecting unfamiliar words. These disorders are almost always accompanied by aphasia. OBSERVATIONS A 36-year-old woman underwent resection of a grade IV astrocytoma based in the left middle precentral gyrus, including a cortical site associated with speech arrest during electrocortical stimulation mapping. Following surgery, she exhibited moderate apraxia of speech and difficulty with reading and spelling, both of which improved but persisted 6 months after surgery. A battery of speech and language assessments was administered, revealing preserved comprehension, naming, cognition, and orofacial praxis, with largely isolated deficits in speech-motor planning and the spelling and reading of nonwords. LESSONS This case describes a specific constellation of speech-motor and written language symptoms-apraxia of speech, phonological agraphia, and phonological alexia in the absence of aphasia-which the authors theorize may be attributable to disruption of a single process of "motor-phonological sequencing." The middle precentral gyrus may play an important role in the planning of motorically complex phonological sequences for production, independent of output modality.
Collapse
Affiliation(s)
- Deborah F. Levy
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| | - Alexander B. Silva
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
- University of California Berkeley - University of California San Francisco Graduate Program in Bioengineering, Berkeley, California
- Medical Scientist Training Program, University of California, San Francisco, California
| | - Terri L. Scott
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| | - Jessie R. Liu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
- University of California Berkeley - University of California San Francisco Graduate Program in Bioengineering, Berkeley, California
| | - Sarah Harper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| | - Lingyun Zhao
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| | - Patrick W. Hullett
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| | - Garret Kurteff
- Department of Speech, Language, and Hearing Sciences, University of Texas Austin, Austin, Texas; and
| | - Stephen M. Wilson
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, Tennessee
| | - Matthew K. Leonard
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| | - Edward F. Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| |
Collapse
|
13
|
Werth R. Dyslexia: Causes and Concomitant Impairments. Brain Sci 2023; 13:brainsci13030472. [PMID: 36979282 PMCID: PMC10046374 DOI: 10.3390/brainsci13030472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/07/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
In recent decades, theories have been presented to explain the nature of dyslexia, but the causes of dyslexia remained unclear. Although the investigation of the causes of dyslexia presupposes a clear understanding of the concept of cause, such an understanding is missing. The present paper proposes the absence of at least one necessary condition or the absence of all sufficient conditions as causes for impaired reading. The causes of impaired reading include: an incorrect fixation location, too short a fixation time, the attempt to recognize too many letters simultaneously, too large saccade amplitudes, and too short verbal reaction times. It is assumed that a longer required fixation time in dyslexic readers results from a functional impairment of areas V1, V2, and V3 that require more time to complete temporal summation. These areas and areas that receive input from them, such as the fusiform gyrus, are assumed to be impaired in their ability to simultaneously process a string of letters. When these impairments are compensated by a new reading strategy, reading ability improves immediately.
Collapse
Affiliation(s)
- Reinhard Werth
- Institute for Social Pediatrics and Adolescent Medicine, Ludwig-Maximilians-University of Munich, Haydnstr. 5, D-80336 München, Germany
| |
Collapse
|
14
|
Beeson PM, Rising K, Sachs A, Rapcsak SZ. Common predictors of spoken and written language performance in aphasia, alexia, and agraphia. Front Hum Neurosci 2022; 16:1025468. [PMID: 36419644 PMCID: PMC9677348 DOI: 10.3389/fnhum.2022.1025468] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/28/2022] [Indexed: 09/01/2024] Open
Abstract
Language performance requires support from central cognitive/linguistic abilities as well as the more peripheral sensorimotor skills to plan and implement spoken and written communication. Both output modalities are vulnerable to impairment following damage to the language-dominant hemisphere, but much of the research to date has focused exclusively on spoken language. In this study we aimed to examine an integrated model of language processing that includes the common cognitive processes that support spoken and written language, as well as modality-specific skills. To do so, we evaluated spoken and written language performance from 87 individuals with acquired language impairment resulting from damage to left perisylvian cortical regions that collectively constitute the dorsal language pathway. Comprehensive behavioral assessment served to characterize the status of central and peripheral components of language processing in relation to neurotypical controls (n = 38). Performance data entered into principal components analyses (with or without control scores) consistently yielded a strong five-factor solution. In line with a primary systems framework, three central cognitive factors emerged: semantics, phonology, and orthography that were distinguished from peripheral processes supporting speech production and allographic skill for handwriting. The central phonology construct reflected performance on phonological awareness and manipulation tasks and showed the greatest deficit of all the derived factors. Importantly, this phonological construct was orthogonal to the speech production factor that reflected repetition of words/non-words. When entered into regression analyses, semantics and phonological skill were common predictors of language performance across spoken and written modalities. The speech production factor was also a strong, distinct predictor of spoken naming and oral reading, in contrast to allographic skills which only predicted written output. As expected, visual orthographic processing contributed more to written than spoken language tasks and reading/spelling performance was strongly reliant on phonological and semantic abilities. Despite the heterogeneity of this cohort regarding aphasia type and severity, the marked impairment of phonological skill was a unifying feature. These findings prompt greater attention to clinical assessment and potential treatment of underlying phonological skill in individuals with left perisylvian damage.
Collapse
Affiliation(s)
- Pélagie M. Beeson
- Department of Speech, Language, and Hearing Sciences, The University of Arizona, Tucson, AZ, United States
- Department of Neurology, The University of Arizona, Tucson, AZ, United States
| | - Kindle Rising
- Department of Speech, Language, and Hearing Sciences, The University of Arizona, Tucson, AZ, United States
| | - Alyssa Sachs
- Department of Speech, Language, and Hearing Sciences, The University of Arizona, Tucson, AZ, United States
| | - Steven Z. Rapcsak
- Department of Speech, Language, and Hearing Sciences, The University of Arizona, Tucson, AZ, United States
- Department of Neurology, The University of Arizona, Tucson, AZ, United States
- Banner Alzheimer’s Institute, Tucson, AZ, United States
| |
Collapse
|
15
|
Pillay SB, Gross WL, Heffernan J, Book DS, Binder JR. Semantic network activation facilitates oral word reading in chronic aphasia. BRAIN AND LANGUAGE 2022; 233:105164. [PMID: 35933744 PMCID: PMC9948519 DOI: 10.1016/j.bandl.2022.105164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 03/22/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
People with aphasia often show partial impairments on a given task. This trial-to-trial variability offers a potential window into understanding how damaged language networks function. We test the hypothesis that successful word reading in participants with phonological system damage reflects semantic system recruitment. Residual semantic and phonological networks were defined with fMRI in 21 stroke participants with phonological damage using semantic- and rhyme-matching tasks. Participants performed an oral word reading task, and activation was compared between correct and incorrect trials within the semantic and phonological networks. The results showed a significant interaction between hemisphere, network activation, and reading success. Activation in the left hemisphere semantic network was higher when participants successfully read words. Residual phonological regions showed no difference in activation between correct and incorrect trials on the word reading task. The results provide evidence that semantic processing supports successful phonological retrieval in participants with phonological impairment.
Collapse
Affiliation(s)
- Sara B Pillay
- Department of Neurology and the Center for Imaging Research, Medical College of Wisconsin, Milwaukee, WI 53226, United States.
| | - William L Gross
- Department of Neurology and the Center for Imaging Research, Medical College of Wisconsin, Milwaukee, WI 53226, United States; Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Joseph Heffernan
- Department of Neurology and the Center for Imaging Research, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Diane S Book
- Department of Neurology and the Center for Imaging Research, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Jeffrey R Binder
- Department of Neurology and the Center for Imaging Research, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| |
Collapse
|
16
|
Woolnough O, Donos C, Curtis A, Rollo PS, Roccaforte ZJ, Dehaene S, Fischer-Baum S, Tandon N. A Spatiotemporal Map of Reading Aloud. J Neurosci 2022; 42:5438-5450. [PMID: 35641189 PMCID: PMC9270918 DOI: 10.1523/jneurosci.2324-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 01/09/2023] Open
Abstract
Reading words aloud is a fundamental aspect of literacy. The rapid rate at which multiple distributed neural substrates are engaged in this process can only be probed via techniques with high spatiotemporal resolution. We probed this with direct intracranial recordings covering most of the left hemisphere in 46 humans (26 male, 20 female) as they read aloud regular, exception and pseudo-words. We used this to create a spatiotemporal map of word processing and to derive how broadband γ activity varies with multiple word attributes critical to reading speed: lexicality, word frequency, and orthographic neighborhood. We found that lexicality is encoded earliest in mid-fusiform (mFus) cortex, and precentral sulcus, and is represented reliably enough to allow single-trial lexicality decoding. Word frequency is first represented in mFus and later in the inferior frontal gyrus (IFG) and inferior parietal sulcus (IPS), while orthographic neighborhood sensitivity resides solely in IPS. We thus isolate the neural correlates of the distributed reading network involving mFus, IFG, IPS, precentral sulcus, and motor cortex and provide direct evidence for parallel processes via the lexical route from mFus to IFG, and the sublexical route from IPS and precentral sulcus to anterior IFG.SIGNIFICANCE STATEMENT Reading aloud depends on multiple complex cerebral computations: mapping from a written letter string on a page to a sequence of spoken sound representations. Here, we used direct intracranial recordings in a large cohort while they read aloud known and novel words, to track, across space and time, the progression of neural representations of behaviorally relevant factors that govern reading speed. We find, concordant with cognitive models of reading, that known and novel words are differentially processed through a lexical route, sensitive to frequency of occurrence of known words in natural language, and a sublexical route, performing letter-by-letter construction of novel words.
Collapse
Affiliation(s)
- Oscar Woolnough
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, Texas 77030
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Cristian Donos
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, Texas 77030
- Faculty of Physics, University of Bucharest, Bucharest, 050663, Romania
| | - Aidan Curtis
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, Texas 77030
| | - Patrick S Rollo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, Texas 77030
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Zachary J Roccaforte
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, Texas 77030
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit CEA, Institut National de la Santé et de la Recherche Médicale, NeuroSpin Center, Université Paris-Sud and Université Paris-Saclay, Gif-sur-Yvette, 91191, France
- Collège de France, Paris, 75005, France
| | - Simon Fischer-Baum
- Department of Psychological Sciences, Rice University, Houston, Texas 77005
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, Texas 77030
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, Texas 77030
- Memorial Hermann Hospital, Texas Medical Center, Houston, Texas 77030
| |
Collapse
|
17
|
Meng D, Wang S, Wong PCM, Feng G. Generalizable predictive modeling of semantic processing ability from functional brain connectivity. Hum Brain Mapp 2022; 43:4274-4292. [PMID: 35611721 PMCID: PMC9435002 DOI: 10.1002/hbm.25953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/11/2022] [Accepted: 05/06/2022] [Indexed: 11/08/2022] Open
Abstract
Semantic processing (SP) is one of the critical abilities of humans for representing and manipulating conceptual and meaningful information. Neuroimaging studies of SP typically collapse data from many subjects, but its neural organization and behavioral performance vary between individuals. It is not yet understood whether and how the individual variabilities in neural network organizations contribute to the individual differences in SP behaviors. We aim to identify the neural signatures underlying SP variabilities by analyzing functional connectivity (FC) patterns based on a large‐sample Human Connectome Project (HCP) dataset and rigorous predictive modeling. We used a two‐stage predictive modeling approach to build an internally cross‐validated model and to test the model's generalizability with unseen data from different HCP samples and other out‐of‐sample datasets. FC patterns within a putative semantic brain network were significantly predictive of individual SP scores summarized from five SP‐related behavioral tests. This cross‐validated model can be used to predict unseen HCP data. The model generalizability was enhanced in the language task compared with other tasks used during scanning and was better for females than males. The model constructed from the HCP dataset can be partially generalized to two independent cohorts that participated in different semantic tasks. FCs connecting to the Perisylvian language network show the most reliable contributions to predictive modeling and the out‐of‐sample generalization. These findings contribute to our understanding of the neural sources of individual differences in SP, which potentially lay the foundation for personalized education for healthy individuals and intervention for SP and language deficits patients.
Collapse
Affiliation(s)
- Danting Meng
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Suiping Wang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
| | - Patrick C M Wong
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Hong Kong SAR, China.,Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Gangyi Feng
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Hong Kong SAR, China.,Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
18
|
Na Y, Jung J, Tench CR, Auer DP, Pyun SB. Language systems from lesion-symptom mapping in aphasia: A meta-analysis of voxel-based lesion mapping studies. Neuroimage Clin 2022; 35:103038. [PMID: 35569227 PMCID: PMC9112051 DOI: 10.1016/j.nicl.2022.103038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/30/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022]
Abstract
Meta-analysis of 2,007 individuals with aphasia from 25 voxel-based lesion mapping studies. Distinctive patterns of lesions in aphasia are associated with different language functions. The patterns of lesion in aphasia support the dual pathway model of language processing.
Background Aphasia is one of the most common causes of post-stroke disabilities. As the symptoms and impact of post-stroke aphasia are heterogeneous, it is important to understand how topographical lesion heterogeneity in patients with aphasia is associated with different domains of language impairments. Here, we aim to provide a comprehensive overview of neuroanatomical basis in post-stroke aphasia through coordinate based meta-analysis of voxel-based lesion-symptom mapping studies. Methods We performed a meta-analysis of lesion-symptom mapping studies in post-stroke aphasia. We obtained coordinate-based structural neuroimaging data for 2,007 individuals with aphasia from 25 studies that met predefined inclusion criteria. Results Overall, our results revealed that the distinctive patterns of lesions in aphasia are associated with different language functions and tasks. Damage to the insular-motor areas impaired speech with preserved comprehension and a similar pattern was observed when the lesion covered the insular-motor and inferior parietal lobule. Lesions in the frontal area severely impaired speaking with relatively good comprehension. The repetition-selective deficits only arise from lesions involving the posterior superior temporal gyrus. Damage in the anterior-to-posterior temporal cortex was associated with semantic deficits. Conclusion The association patterns of lesion topography and specific language deficits provide key insights into the specific underlying language pathways. Our meta-analysis results strongly support the dual pathway model of language processing, capturing the link between the different symptom complexes of aphasias and the different underlying location of damage.
Collapse
Affiliation(s)
- Yoonhye Na
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea; Brain Convergence Research Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - JeYoung Jung
- School of Psychology, University of Nottingham, Nottingham, UK
| | - Christopher R Tench
- Division of Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Division of Clinical Neurosciences, Clinical Neurology, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Dorothee P Auer
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK; Division of Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Neuroradiology, Nottingham University Hospitals Trust, Nottingham, UK.
| | - Sung-Bom Pyun
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea; Brain Convergence Research Center, Korea University College of Medicine, Seoul, Republic of Korea; Department of Physical Medicine and Rehabilitation, Korea University Anam Hospital, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Eckert MA, Vaden KI, Iuricich F. Cortical asymmetries at different spatial hierarchies relate to phonological processing ability. PLoS Biol 2022; 20:e3001591. [PMID: 35381012 PMCID: PMC8982829 DOI: 10.1371/journal.pbio.3001591] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/03/2022] [Indexed: 11/22/2022] Open
Abstract
The ability to map speech sounds to corresponding letters is critical for establishing proficient reading. People vary in this phonological processing ability, which has been hypothesized to result from variation in hemispheric asymmetries within brain regions that support language. A cerebral lateralization hypothesis predicts that more asymmetric brain structures facilitate the development of foundational reading skills like phonological processing. That is, structural asymmetries are predicted to linearly increase with ability. In contrast, a canalization hypothesis predicts that asymmetries constrain behavioral performance within a normal range. That is, structural asymmetries are predicted to quadratically relate to phonological processing, with average phonological processing occurring in people with the most asymmetric structures. These predictions were examined in relatively large samples of children (N = 424) and adults (N = 300), using a topological asymmetry analysis of T1-weighted brain images and a decoding measure of phonological processing. There was limited evidence of structural asymmetry and phonological decoding associations in classic language-related brain regions. However, and in modest support of the cerebral lateralization hypothesis, small to medium effect sizes were observed where phonological decoding accuracy increased with the magnitude of the largest structural asymmetry across left hemisphere cortical regions, but not right hemisphere cortical regions, for both the adult and pediatric samples. In support of the canalization hypothesis, small to medium effect sizes were observed where phonological decoding in the normal range was associated with increased asymmetries in specific cortical regions for both the adult and pediatric samples, which included performance monitoring and motor planning brain regions that contribute to oral and written language functions. Thus, the relevance of each hypothesis to phonological decoding may depend on the scale of brain organization.
Collapse
Affiliation(s)
- Mark A. Eckert
- Hearing Research Program, Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Kenneth I. Vaden
- Hearing Research Program, Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Federico Iuricich
- Visual Computing Division, School of Computing, Clemson University, Clemson, South Carolina, United States of America
| | | |
Collapse
|
20
|
Ng S, Moritz-Gasser S, Lemaitre AL, Duffau H, Herbet G. White matter disconnectivity fingerprints causally linked to dissociated forms of alexia. Commun Biol 2021; 4:1413. [PMID: 34931059 PMCID: PMC8688436 DOI: 10.1038/s42003-021-02943-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022] Open
Abstract
For over 150 years, the study of patients with acquired alexia has fueled research aimed at disentangling the neural system critical for reading. An unreached goal, however, relates to the determination of the fiber pathways that root the different visual and linguistic processes needed for accurate word reading. In a unique series of neurosurgical patients with a tumor close to the visual word form area, we combine direct electrostimulation and population-based streamline tractography to map the disconnectivity fingerprints characterizing dissociated forms of alexia. Comprehensive analyses of disconnectivity matrices establish similarities and dissimilarities in the disconnection patterns associated with pure, phonological and lexical-semantic alexia. While disconnections of the inferior longitudinal and posterior arcuate fasciculi are common to all alexia subtypes, disconnections of the long arcuate and vertical occipital fasciculi are specific to phonological and pure alexia, respectively. These findings provide a strong anatomical background for cognitive and neurocomputational models of reading.
Collapse
Affiliation(s)
- Sam Ng
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France. .,Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.
| | - Sylvie Moritz-Gasser
- grid.414130.30000 0001 2151 3479Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France ,grid.461890.20000 0004 0383 2080Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France ,grid.121334.60000 0001 2097 0141Department of Speech-Language Pathology, University of Montpellier, Montpellier, France
| | - Anne-Laure Lemaitre
- grid.414130.30000 0001 2151 3479Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France ,grid.461890.20000 0004 0383 2080Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Hugues Duffau
- grid.414130.30000 0001 2151 3479Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France ,grid.461890.20000 0004 0383 2080Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Guillaume Herbet
- grid.414130.30000 0001 2151 3479Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France ,grid.461890.20000 0004 0383 2080Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France ,grid.121334.60000 0001 2097 0141Department of Speech-Language Pathology, University of Montpellier, Montpellier, France
| |
Collapse
|
21
|
Sperber C. The strange role of brain lesion size in cognitive neuropsychology. Cortex 2021; 146:216-226. [PMID: 34902680 DOI: 10.1016/j.cortex.2021.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/11/2021] [Accepted: 11/03/2021] [Indexed: 11/18/2022]
Abstract
The size of brain lesions is a variable that is frequently considered in cognitive neuropsychology. In particular, lesion-deficit inference studies often control for lesion size, and the association of lesion size with post-stroke cognitive deficits and its predictive value are studied. In the present article, the role of lesion size in cognitive deficits and its computational or design-wise consideration is discussed and questioned. First, I argue that the commonly discussed role or effect of lesion size in cognitive deficits eludes us. A generally valid understanding of the causal relation of lesion size, lesion location, and cognitive deficits is unachievable. Second, founded on the theory of causal inference, I argue that lesion size control is no generally appropriate covariate control. Instead, it is identified as a procedure with only situational benefits, which is supported by empirical data. This theoretical background is used to suggest possible research practices in lesion-deficit inference, post-stroke outcome prediction, and behavioural studies. Last, control for lesion size is put into a bigger historical context - it is identified to relate to a long-known association problem in neuropsychology, which was previously discussed from the perspectives of a mislocalisation in lesion-deficit mapping and the symptom complex approach.
Collapse
Affiliation(s)
- Christoph Sperber
- Centre of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
22
|
Lorca-Puls DL, Gajardo-Vidal A, Oberhuber M, Prejawa S, Hope TMH, Leff AP, Green DW, Price CJ. Brain regions that support accurate speech production after damage to Broca's area. Brain Commun 2021; 3:fcab230. [PMID: 34671727 PMCID: PMC8523882 DOI: 10.1093/braincomms/fcab230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Broca’s area in the posterior half of the left inferior frontal gyrus has traditionally been considered an important node in the speech production network. Nevertheless, recovery of speech production has been reported, to different degrees, within a few months of damage to Broca’s area. Importantly, contemporary evidence suggests that, within Broca’s area, its posterior part (i.e. pars opercularis) plays a more prominent role in speech production than its anterior part (i.e. pars triangularis). In this study, we therefore investigated the brain activation patterns that underlie accurate speech production following stroke damage to the opercular part of Broca’s area. By combining functional MRI and 13 tasks that place varying demands on speech production, brain activation was compared in (i) seven patients of interest with damage to the opercular part of Broca’s area; (ii) 55 neurologically intact controls; and (iii) 28 patient controls with left-hemisphere damage that spared Broca’s area. When producing accurate overt speech responses, the patients with damage to the left pars opercularis activated a substantial portion of the normal bilaterally distributed system. Within this system, there was a lesion-site-dependent effect in a specific part of the right cerebellar Crus I where activation was significantly higher in the patients with damage to the left pars opercularis compared to both neurologically intact and patient controls. In addition, activation in the right pars opercularis was significantly higher in the patients with damage to the left pars opercularis relative to neurologically intact controls but not patient controls (after adjusting for differences in lesion size). By further examining how right Crus I and right pars opercularis responded across a range of conditions in the neurologically intact controls, we suggest that these regions play distinct roles in domain-general cognitive control. Finally, we show that enhanced activation in the right pars opercularis cannot be explained by release from an inhibitory relationship with the left pars opercularis (i.e. dis-inhibition) because right pars opercularis activation was positively related to left pars opercularis activation in neurologically intact controls. Our findings motivate and guide future studies to investigate (i) how exactly right Crus I and right pars opercularis support accurate speech production after damage to the opercular part of Broca’s area and (ii) whether non-invasive neurostimulation to one or both of these regions boosts speech production recovery after damage to the opercular part of Broca’s area.
Collapse
Affiliation(s)
- Diego L Lorca-Puls
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Andrea Gajardo-Vidal
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | | | - Marion Oberhuber
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Susan Prejawa
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Thomas M H Hope
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Alexander P Leff
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - David W Green
- Department of Experimental Psychology, University College London, London, UK
| | - Cathy J Price
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
23
|
Werth R. Is Developmental Dyslexia Due to a Visual and Not a Phonological Impairment? Brain Sci 2021; 11:1313. [PMID: 34679378 PMCID: PMC8534212 DOI: 10.3390/brainsci11101313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
It is a widely held belief that developmental dyslexia (DD) is a phonological disorder in which readers have difficulty associating graphemes with their corresponding phonemes. In contrast, the magnocellular theory of dyslexia assumes that DD is a visual disorder caused by dysfunctional magnocellular neural pathways. The review explores arguments for and against these theories. Recent results have shown that DD is caused by (1) a reduced ability to simultaneously recognize sequences of letters that make up words, (2) longer fixation times required to simultaneously recognize strings of letters, and (3) amplitudes of saccades that do not match the number of simultaneously recognized letters. It was shown that pseudowords that could not be recognized simultaneously were recognized almost without errors when the fixation time was extended. However, there is an individual maximum number of letters that each reader with DD can recognize simultaneously. Findings on the neurobiological basis of temporal summation have shown that a necessary prolongation of fixation times is due to impaired processing mechanisms of the visual system, presumably involving magnocells and parvocells. An area in the mid-fusiform gyrus also appears to play a significant role in the ability to simultaneously recognize words and pseudowords. The results also contradict the assumption that DD is due to a lack of eye movement control. The present research does not support the assumption that DD is caused by a phonological disorder but shows that DD is due to a visual processing dysfunction.
Collapse
Affiliation(s)
- Reinhard Werth
- Institute for Social Pediatrics and Adolescent Medicine, University of Munich, Haydnstrasse 5, D-80336 Munich, Germany
| |
Collapse
|
24
|
Dickens JV, DeMarco AT, van der Stelt CM, Snider SF, Lacey EH, Medaglia JD, Friedman RB, Turkeltaub PE. Two types of phonological reading impairment in stroke aphasia. Brain Commun 2021; 3:fcab194. [PMID: 34522884 PMCID: PMC8432944 DOI: 10.1093/braincomms/fcab194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 11/12/2022] Open
Abstract
Alexia is common in the context of aphasia. It is widely agreed that damage to phonological and semantic systems not specific to reading causes co-morbid alexia and aphasia. Studies of alexia to date have only examined phonology and semantics as singular processes or axes of impairment, typically in the context of stereotyped alexia syndromes. However, phonology, in particular, is known to rely on subprocesses, including sensory-phonological processing, motor-phonological processing, and sensory-motor integration. Moreover, many people with stroke aphasia demonstrate mild or mixed patterns of reading impairment that do not fit neatly with one syndrome. This cross-sectional study tested whether the hallmark symptom of phonological reading impairment, the lexicality effect, emerges from damage to a specific subprocess of phonology in stroke patients not selected for alexia syndromes. Participants were 30 subjects with left-hemispheric stroke and 37 age- and education-matched controls. A logistic mixed-effects model tested whether post-stroke impairments in sensory phonology, motor phonology, or sensory-motor integration modulated the effect of item lexicality on patient accuracy in reading aloud. Support vector regression voxel-based lesion-symptom mapping localized brain regions necessary for reading and non-orthographic phonological processing. Additionally, a novel support vector regression structural connectome-symptom mapping method identified the contribution of both lesioned and spared but disconnected, brain regions to reading accuracy and non-orthographic phonological processing. Specifically, we derived whole-brain structural connectomes using constrained spherical deconvolution-based probabilistic tractography and identified lesioned connections based on comparisons between patients and controls. Logistic mixed-effects regression revealed that only greater motor-phonological impairment related to lower accuracy reading aloud pseudowords versus words. Impaired sensory-motor integration was related to lower overall accuracy in reading aloud. No relationship was identified between sensory-phonological impairment and reading accuracy. Voxel-based and structural connectome lesion-symptom mapping revealed that lesioned and disconnected left ventral precentral gyrus related to both greater motor-phonological impairment and lower sublexical reading accuracy. In contrast, lesioned and disconnected left temporoparietal cortex is related to both impaired sensory-motor integration and reduced overall reading accuracy. These results clarify that at least two dissociable phonological processes contribute to the pattern of reading impairment in aphasia. First, impaired sensory-motor integration, caused by lesions disrupting the left temporoparietal cortex and its structural connections, non-selectively reduces accuracy in reading aloud. Second, impaired motor-phonological processing, caused at least partially by lesions disrupting left ventral premotor cortex and structural connections, selectively reduces sublexical reading accuracy. These results motivate a revised cognitive model of reading aloud that incorporates a sensory-motor phonological circuit.
Collapse
Affiliation(s)
- Jonathan Vivian Dickens
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Andrew T DeMarco
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center, Washington, DC 20007, USA.,Department of Rehabilitation Medicine, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Candace M van der Stelt
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Sarah F Snider
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Elizabeth H Lacey
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC 20007, USA
| | - John D Medaglia
- Drexel University, Philadelphia, PA 19104, USA.,University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rhonda B Friedman
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Peter E Turkeltaub
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center, Washington, DC 20007, USA.,Department of Rehabilitation Medicine, Georgetown University Medical Center, Washington, DC 20007, USA.,Research Division, MedStar National Rehabilitation Hospital, Washington, DC 20001, USA
| |
Collapse
|
25
|
Liu Y, Shi G, Li M, Xing H, Song Y, Xiao L, Guan Y, Han Z. Early Top-Down Modulation in Visual Word Form Processing: Evidence From an Intracranial SEEG Study. J Neurosci 2021; 41:6102-6115. [PMID: 34011525 PMCID: PMC8276739 DOI: 10.1523/jneurosci.2288-20.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 05/04/2021] [Accepted: 05/09/2021] [Indexed: 11/21/2022] Open
Abstract
Visual word recognition, at a minimum, involves the processing of word form and lexical information. Opinions diverge on the spatiotemporal distribution of and interaction between the two types of information. Feedforward theory argues that they are processed sequentially, whereas interactive theory advocates that lexical information is processed fast and modulates early word form processing. To distinguish between the two theories, we applied stereoelectroencephalography (SEEG) to 33 human adults with epilepsy (25 males and eight females) during visual lexical decisions. The stimuli included real words (RWs), pseudowords (PWs) with legal radical positions, nonwords (NWs) with illegal radical positions, and stroked-changed words (SWs) in Chinese. Word form and lexical processing were measured by the word form effect (PW versus NW) and lexical effect (RW versus PW), respectively. Gamma-band (60 ∼ 140 Hz) SEEG activity was treated as an electrophysiological measure. A word form effect was found in eight left brain regions (i.e., the inferior parietal lobe, insula, fusiform, inferior temporal, middle temporal, middle occipital, precentral and postcentral gyri) from 50 ms poststimulus onset, whereas a lexical effect was observed in five left brain regions (i.e., the calcarine, middle temporal, superior temporal, precentral, and postcentral gyri) from 100 ms poststimulus onset. The two effects overlapped in the precentral (300 ∼ 500 ms) and postcentral (100 ∼ 200 ms and 250 ∼ 600 ms) gyri. Moreover, high-level regions provide early feedback to word form regions. These results demonstrate that lexical processing occurs early and modulates word form recognition, providing vital supportive evidence for interactive theory.SIGNIFICANCE STATEMENT A pivotal unresolved dispute in the field of word processing is whether word form recognition is obligatorily modulated by high-level lexical top-down information. To address this issue, we applied intracranial SEEG to 33 adults with epilepsy to precisely delineate the spatiotemporal dynamics between processing word form and lexical information during visual word recognition. We observed that lexical processing occurred from 100 ms poststimulus presentation and even spatiotemporally overlapped with word form processing. Moreover, the high-order regions provided feedback to the word form regions in the early stage of word recognition. These results revealed the crucial role of high-level lexical information in word form recognition, deepening our understanding of the functional coupling among brain regions in word processing networks.
Collapse
Affiliation(s)
- Yi Liu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Gaofeng Shi
- Faculty of International Education of Chinese Language, Beijing Language and Culture University, Beijing 100083, China
| | - Mingyang Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Hongbing Xing
- Faculty of International Education of Chinese Language, Beijing Language and Culture University, Beijing 100083, China
| | - Yan Song
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Luchuan Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yuguang Guan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Zaizhu Han
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
26
|
Kujala T, Sihvonen AJ, Thiede A, Palo-Oja P, Virtala P, Numminen J, Laasonen M. Voxel and surface based whole brain analysis shows reading skill associated grey matter abnormalities in dyslexia. Sci Rep 2021; 11:10862. [PMID: 34035329 PMCID: PMC8149879 DOI: 10.1038/s41598-021-89317-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/01/2021] [Indexed: 01/18/2023] Open
Abstract
Developmental dyslexia (DD) is the most prevalent neurodevelopmental disorder with a substantial negative influence on the individual's academic achievement and career. Research on its neuroanatomical origins has continued for half a century, yielding, however, inconsistent results, lowered total brain volume being the most consistent finding. We set out to evaluate the grey matter (GM) volume and cortical abnormalities in adult dyslexic individuals, employing a combination of whole-brain voxel- and surface-based morphometry following current recommendations on analysis approaches, coupled with rigorous neuropsychological testing. Whilst controlling for age, sex, total intracranial volume, and performance IQ, we found both decreased GM volume and cortical thickness in the left insula in participants with DD. Moreover, they had decreased GM volume in left superior temporal gyrus, putamen, globus pallidus, and parahippocampal gyrus. Higher GM volumes and cortical thickness in these areas correlated with better reading and phonological skills, deficits of which are pivotal to DD. Crucially, total brain volume did not influence our results, since it did not differ between the groups. Our findings demonstrating abnormalities in brain areas in individuals with DD, which previously were associated with phonological processing, are compatible with the leading hypotheses on the neurocognitive origins of DD.
Collapse
Affiliation(s)
- Teija Kujala
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3 B, P.O. Box 21, 00014, Helsinki, Finland.
| | - Aleksi J Sihvonen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3 B, P.O. Box 21, 00014, Helsinki, Finland.,Department of Neurosciences, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anja Thiede
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3 B, P.O. Box 21, 00014, Helsinki, Finland
| | - Peter Palo-Oja
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3 B, P.O. Box 21, 00014, Helsinki, Finland
| | - Paula Virtala
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3 B, P.O. Box 21, 00014, Helsinki, Finland
| | - Jussi Numminen
- Department of Radiology, Töölö Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | - Marja Laasonen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Phoniatrics, Helsinki University Hospital, Helsinki, Finland.,School of Humanities, Philosophical Faculty, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
27
|
Dvorak EL, Gadson DS, Lacey EH, DeMarco AT, Turkeltaub PE. Domains of Health-Related Quality of Life Are Associated With Specific Deficits and Lesion Locations in Chronic Aphasia. Neurorehabil Neural Repair 2021; 35:634-643. [PMID: 34018866 DOI: 10.1177/15459683211017507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Health-related quality of life (HRQL) in stroke survivors is related to numerous factors, but more research is needed to delineate factors related to HRQL in people with aphasia. OBJECTIVE To examine the relationship between HRQL and demographic factors, impairment-based measures, and lesion characteristics in chronic aphasia. METHODS A total of 41 left-hemisphere stroke survivors with aphasia underwent cognitive testing and magnetic resonance imaging. To address relationships with demographic and impairment-based measures, test scores were entered into a principal component analysis (PCA) and multiple linear regression was performed for overall and domain (physical, communication, psychosocial) scores of the Stroke and Aphasia Quality of Life Scale (SAQOL-39g). Independent variables included factor scores from the PCA, motricity, lesion volume, depressed mood, and demographic variables. To address relationships with lesion location, multivariate support vector regression lesion-symptom mapping (SVR-LSM) was used to localize lesions associated with SAQOL-39g scores. RESULTS The PCA yielded 3 factors, which were labeled Language Production, Nonlinguistic Cognition, and Language Comprehension. Multiple linear regression revealed that depression symptoms predicted lower SAQOL-39g average and domain scores. Lower motricity scores predicted lower SAQOL-39g average and physical scores, and lower Language Production factor scores predicted lower communication scores. SVR-LSM demonstrated that basal ganglia lesions were associated with lower physical scores, and inferior frontal lesions were associated with lower psychosocial scores. CONCLUSIONS HRQL in chronic left-hemisphere stroke survivors with aphasia relates to lesion location, depression symptoms, and impairment-based measures. This information may help identify individuals at risk for specific aspects of low HRQL and facilitate targeted interventions to improve well-being.
Collapse
Affiliation(s)
- Elizabeth L Dvorak
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington DC, USA
| | - Davetrina S Gadson
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington DC, USA
| | - Elizabeth H Lacey
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington DC, USA.,Research Division, MedStar National Rehabilitation Hospital, Washington DC, USA
| | - Andrew T DeMarco
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington DC, USA
| | - Peter E Turkeltaub
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington DC, USA.,Research Division, MedStar National Rehabilitation Hospital, Washington DC, USA
| |
Collapse
|
28
|
Qu J, Hu L, Liu X, Dong J, Yang R, Mei L. The contributions of the left hippocampus and bilateral inferior parietal lobule to form-meaning associative learning. Psychophysiology 2021; 58:e13834. [PMID: 33949705 DOI: 10.1111/psyp.13834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 11/26/2022]
Abstract
Existing studies have identified crucial roles for the hippocampus and a distributed set of cortical regions (e.g., the inferior parietal cortex) in learning novel words. Nevertheless, researchers have not clearly determined how the hippocampus and cortical regions dynamically interact during novel word learning, especially during form-meaning associative learning. As a method to address this question, we used an online learning paradigm and representational similarity analysis to explore the contributions of the hippocampus and neocortex to form-meaning associative learning. Twenty-nine native Chinese college students were recruited to learn 30 form-meaning pairs, which were repeated 7 times during fMRI scan. Form-meaning associative learning elicited activations in a wide neural network including regions required for word processing (i.e., the bilateral inferior frontal gyrus and the occipitotemporal cortex), regions required for encoding (i.e., the bilateral parahippocampus and hippocampus), and regions required for cognitive control (i.e., the anterior cingulate cortex and dorsolateral prefrontal cortex). More importantly, our study revealed the differential roles of the left hippocampus and bilateral inferior parietal lobule (IPL) in form-meaning associative learning. Specifically, higher pattern similarity in the bilateral IPL in the early learning phase (repetitions 1 to 3) was related to better learning performance, while higher pattern similarity in the left hippocampus in the late learning phase (repetitions 5 to 7) was associated with better learning performance. These findings indicate that the hippocampus and cortical regions (e.g., the IPL) contribute to form-meaning learning in different stages.
Collapse
Affiliation(s)
- Jing Qu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Liyuan Hu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Xiaoyu Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Jie Dong
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Rui Yang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Leilei Mei
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| |
Collapse
|
29
|
Graessner A, Zaccarella E, Friederici AD, Obrig H, Hartwigsen G. Dissociable contributions of frontal and temporal brain regions to basic semantic composition. Brain Commun 2021; 3:fcab090. [PMID: 34159319 PMCID: PMC8212833 DOI: 10.1093/braincomms/fcab090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/16/2021] [Accepted: 04/08/2021] [Indexed: 11/26/2022] Open
Abstract
Semantic composition is the ability to combine single words to form complex meanings and is an essential component for successful communication. Evidence from neuroimaging studies suggests that semantic composition engages a widely distributed left-hemispheric network, including the anterior temporal lobe, the inferior frontal gyrus and the angular gyrus. To date, the functional relevance of these regions remains unclear. Here, we investigate the impact of lesions to key regions in the semantic network on basic semantic composition. We conducted a multivariate lesion-behaviour mapping study in 36 native German speaking participants with chronic lesions to the language network after left-hemispheric stroke. During the experiment, participants performed a plausibility judgement task on auditorily presented adjective-noun phrases that were either meaningful (‘anxious horse’), anomalous (‘anxious salad’) or had the noun replaced by a pseudoword (‘anxious gufel’), as well as a single-word control condition (‘horse’). We observed that reduced accuracy for anomalous phrases is associated with lesions in left anterior inferior frontal gyrus, whereas increased reaction times for anomalous phrases correlates with lesions in anterior-to-mid temporal lobe. These results indicate that anterior inferior frontal gyrus is relevant for accurate semantic decisions, while anterior-to-mid temporal lobe lesions lead to slowing of the decision for anomalous two-word phrases. These differential effects of lesion location support the notion that anterior inferior frontal gyrus affords executive control for decisions on semantic composition while anterior-to-mid temporal lobe lesions slow the semantic processing of the individual constituents of the phrase.
Collapse
Affiliation(s)
- Astrid Graessner
- Lise-Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany.,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Emiliano Zaccarella
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Hellmuth Obrig
- Clinic for Cognitive Neurology, University Leipzig, 04103 Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Gesa Hartwigsen
- Lise-Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany.,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| |
Collapse
|
30
|
Rethinking causality and data complexity in brain lesion-behaviour inference and its implications for lesion-behaviour modelling. Cortex 2020; 126:49-62. [DOI: 10.1016/j.cortex.2020.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/30/2019] [Accepted: 01/10/2020] [Indexed: 01/04/2023]
|
31
|
Graves WW, Coulanges L, Levinson H, Boukrina O, Conant LL. Neural Effects of Gender and Age Interact in Reading. Front Neurosci 2019; 13:1115. [PMID: 31680843 PMCID: PMC6812500 DOI: 10.3389/fnins.2019.01115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/02/2019] [Indexed: 12/22/2022] Open
Abstract
There has been an enduring fascination with the possibility of gender differences in the brain basis of language, yet the evidence has been largely equivocal. Evidence does exist, however, for women being at greater risk than men for developing psychomotor slowing and even Alzheimer disease with advancing age, although this may in part at least be due to women living longer. We examined whether gender, age, or their interaction influenced language-related or more general processes in reading. Reading consists of elements related to language, such as the processing of word sound patterns (phonology) and meanings (semantics), along with the lead-in processes of visual perception and orthographic (visual word form) processing that are specific to reading. To test for any influence of gender and age on either semantic processing or orthography-phonology mapping, we tested for an interaction of these factors on differences between meaningful words and meaningless but pronounceable non-words. We also tested for effects of gender and age on how the number of letters in a word modulates neural activity for reading. This lead-in process presumably relates most to orthography. Behaviorally, reading accuracy declined with age for both men and women, but the decline was steeper for men. Neurally, interactions between gender and age were found exclusively in medial orbitofrontal cortex (mOFC). These factors influenced the word-non-word contrast, but not the parametric effect of number of letters. Men showed increasing activation with age for non-words compared to words. Women showed only slightly decreasing activation with age for novel letter strings. Overall, we found interactive effects of gender and age in the mOFC on the left primarily for novel letter strings, but no such interaction for a contrast that emphasized visual form processing. Thus the interaction of gender with age in the mOFC may relate most to orthography-phonology conversion for unfamiliar letter strings. More generally, this suggests that efforts to investigate effects of gender on language-related tasks may benefit from taking into account age and the type of cognitive process being highlighted.
Collapse
Affiliation(s)
- William W. Graves
- Department of Psychology, Rutgers University–Newark, Newark, NJ, United States
| | - Linsah Coulanges
- Department of Psychology, Rutgers University–Newark, Newark, NJ, United States
| | - Hillary Levinson
- Department of Psychology, Rutgers University–Newark, Newark, NJ, United States
| | - Olga Boukrina
- Center for Stroke Rehabilitation Research, Kessler Foundation, West Orange, NJ, United States
| | - Lisa L. Conant
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|