1
|
Xu C, Wang N, Ma T, Pei S, Wang M, Yu J, Zhangsun D, Zhu X, Luo S. The α3β4 nAChR tissue distribution identified by fluorescent α-conotoxin [D11A]LvIA. Int J Biol Macromol 2024; 281:136220. [PMID: 39362420 DOI: 10.1016/j.ijbiomac.2024.136220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
α3β4, a vital subtype of neuronal nicotinic acetylcholine receptors (nAChRs), is widely distributed in the brain, ganglia, and adrenal glands, associated with addiction and neurological diseases. However, the lack of specific imaging tools for α3β4 nAChRs has hindered the investigation of their tissue distribution and functions. [D11A]LvIA, a peptide derived from marine cone snails, demonstrates high affinity and potency for α3β4 nAChRs, making it a valuable pharmacological tool for studying this receptor subtype. In this study, three fluorescent conjugates of [D11A]LvIA were synthesized using 6-TAMRA-SE (R), Cy3-NHS-ester (Cy3), and BODIPY-FL NHS ester (BDP) dyes. The electrophysiological activities were assessed in Xenopus laevis oocytes by two-electrodes voltage clamp (TEVC). [D11A]LvIA-Cy3 and [D11A]LvIA-BDP show improved selectivity and affinity, with IC50 values of 512.70 nM and 343.50 nM, respectively, and [D11A]LvIA-Cy3 exhibits better stability in cerebrospinal fluid (CSF). Utilizing [D11A]LvIA-Cy3, we successfully visualized the distribution of α3β4 nAChRs in rat trigeminal ganglia, retina, adrenal glands, and various brain regions. This novel fluorescent peptide provides a significant pharmacological tool for the exploration and visualization in-situ distribution of α3β4 nAChRs in different tissues and also assists in clarifying the function.
Collapse
Affiliation(s)
- Chenxing Xu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Nan Wang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Tao Ma
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Shengrong Pei
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Meiting Wang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Jinpeng Yu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Dongting Zhangsun
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Xiaopeng Zhu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Sulan Luo
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Duratkar A, Patel R, Jain NS. Neuronal nicotinic acetylcholine receptor of the central amygdala modulates the ethanol-induced tolerance to anxiolysis and withdrawal-induced anxiety in male rats. Behav Pharmacol 2024; 35:132-146. [PMID: 38451025 DOI: 10.1097/fbp.0000000000000770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The nicotine acetylcholinergic receptor (nAchR) in the central nucleus of the amygdala (CeA) is known to modulate anxiety traits as well as ethanol-induced behavioral effects. Therefore, the present study investigated the role of CeA nAChR in the tolerance to ethanol anxiolysis and withdrawal-induced anxiety-related effects in rats on elevated plus maze (EPM). To develop ethanol dependence, rats were given free access to an ethanol-containing liquid diet for 10 days. To assess the development of tolerance, separate groups of rats were challenged with ethanol (2 g/kg, i.p.) on days 1, 3, 5, 7 and 10 during the period of ethanol exposure, followed by an EPM assessment. Moreover, expression of ethanol withdrawal was induced after switching ethanol-dependent rats to a liquid diet on day 11, and withdrawal-induced anxiety-like behavior was noted at different post-withdrawal time points using the EPM test. The ethanol-dependent rats were pretreated with intra-CeA (i.CeA) (bilateral) injections of nicotine (0.25 µg/rat) or mecamylamine (MEC) (5 ng/rat) before the challenge dose of ethanol on subthreshold tolerance on the 5th day or on peak tolerance day, that is, 7th or 10th, and before assessment of postwithdrawal anxiety on the 11th day on EPM. Bilateral i.CeA preadministration of nicotine before the challenge dose of ethanol on days 5, 7 and 10 exhibited enhanced tolerance, while injection of MEC, completely mitigated the tolerance to the ethanol-induced antianxiety effect. On the other hand, ethanol-withdrawn rats pretreated i.CeA with nicotine exacerbated while pretreatment with MEC, alleviated the ethanol withdrawal-induced anxiety on all time points. Thus, the present investigation indicates that stimulation of nAChR in CeA negatively modulates the ethanol-induced chronic behavioral effects on anxiety in rats. It is proposed that nAChR antagonists might be useful in the treatment of alcohol use disorder and ethanol withdrawal-related anxiety-like behavior.
Collapse
Affiliation(s)
- Antariksha Duratkar
- Department of Pharmacology, J.L. Chaturvedi College of Pharmacy, Nagpur, Maharashtra
| | - Richa Patel
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Nishant Sudhir Jain
- Department of Pharmacology, J.L. Chaturvedi College of Pharmacy, Nagpur, Maharashtra
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| |
Collapse
|
3
|
Costas-Ferreira C, Silva ACDJ, Hage-Melim LIDS, Faro LRF. Role of voltage-dependent calcium channels on the striatal in vivo dopamine release induced by the organophosphorus pesticide glyphosate. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104285. [PMID: 37783442 DOI: 10.1016/j.etap.2023.104285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
In the present study, we investigated the role of voltage-sensitive calcium channels (VSCCs) on the striatal dopamine release induced by the pesticide glyphosate (GLY) using selective VSCC inhibitors. The dopamine levels were measured by in vivo cerebral microdialysis coupled to HPLC-ED. Nicardipine (L-type VSCC antagonist) or ω-conotoxin MVIIC (non-selective P/Q-type antagonist) had no effect on dopamine release induced by 5 mM GLY. In contrast, flunarizine (T-type antagonist) or ω-conotoxin GVIA (neuronal N-type antagonist) significantly reduced GLY-stimulated dopamine release. These results suggest that GLY-induced dopamine release depends on extracellular calcium and its influx through the T- and N-type VSCCs. These findings were corroborated by molecular docking, which allowed us to establish a correlation between the effect of GLY on blocked VSCC with the observed dopamine release. We propose new molecular targets of GLY in the dorsal striatum, which could have important implications for the assessment of pesticide risks in non-target organisms.
Collapse
Affiliation(s)
- Carmen Costas-Ferreira
- Department of Functional Biology and Health sciences, Faculty of Biology, University of Vigo, Spain
| | | | | | - Lilian R Ferreira Faro
- Department of Functional Biology and Health sciences, Faculty of Biology, University of Vigo, Spain.
| |
Collapse
|
4
|
Correa BH, Moreira CR, Hildebrand ME, Vieira LB. The Role of Voltage-Gated Calcium Channels in Basal Ganglia Neurodegenerative Disorders. Curr Neuropharmacol 2023; 21:183-201. [PMID: 35339179 PMCID: PMC10190140 DOI: 10.2174/1570159x20666220327211156] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/11/2022] [Accepted: 03/14/2022] [Indexed: 11/22/2022] Open
Abstract
Calcium (Ca2+) plays a central role in regulating many cellular processes and influences cell survival. Several mechanisms can disrupt Ca2+ homeostasis to trigger cell death, including oxidative stress, mitochondrial damage, excitotoxicity, neuroinflammation, autophagy, and apoptosis. Voltage-gated Ca2+ channels (VGCCs) act as the main source of Ca2+ entry into electrically excitable cells, such as neurons, and they are also expressed in glial cells such as astrocytes and oligodendrocytes. The dysregulation of VGCC activity has been reported in both Parkinson's disease (PD) and Huntington's (HD). PD and HD are progressive neurodegenerative disorders (NDs) of the basal ganglia characterized by motor impairment as well as cognitive and psychiatric dysfunctions. This review will examine the putative role of neuronal VGCCs in the pathogenesis and treatment of central movement disorders, focusing on PD and HD. The link between basal ganglia disorders and VGCC physiology will provide a framework for understanding the neurodegenerative processes that occur in PD and HD, as well as a possible path towards identifying new therapeutic targets for the treatment of these debilitating disorders.
Collapse
Affiliation(s)
- Bernardo H.M. Correa
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Roberto Moreira
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Luciene Bruno Vieira
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
5
|
Vallés AS, Barrantes FJ. Interactions between the Nicotinic and Endocannabinoid Receptors at the Plasma Membrane. MEMBRANES 2022; 12:812. [PMID: 36005727 PMCID: PMC9414690 DOI: 10.3390/membranes12080812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/08/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Compartmentalization, together with transbilayer and lateral asymmetries, provide the structural foundation for functional specializations at the cell surface, including the active role of the lipid microenvironment in the modulation of membrane-bound proteins. The chemical synapse, the site where neurotransmitter-coded signals are decoded by neurotransmitter receptors, adds another layer of complexity to the plasma membrane architectural intricacy, mainly due to the need to accommodate a sizeable number of molecules in a minute subcellular compartment with dimensions barely reaching the micrometer. In this review, we discuss how nature has developed suitable adjustments to accommodate different types of membrane-bound receptors and scaffolding proteins via membrane microdomains, and how this "effort-sharing" mechanism has evolved to optimize crosstalk, separation, or coupling, where/when appropriate. We focus on a fast ligand-gated neurotransmitter receptor, the nicotinic acetylcholine receptor, and a second-messenger G-protein coupled receptor, the cannabinoid receptor, as a paradigmatic example.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), Bahía Blanca 8000, Argentina
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Institute of Biomedical Research (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AFF, Argentina
| |
Collapse
|
6
|
Davison A, Lux UT, Brandstätter JH, Babai N. T-Type Ca 2+ Channels Boost Neurotransmission in Mammalian Cone Photoreceptors. J Neurosci 2022; 42:6325-6343. [PMID: 35803735 PMCID: PMC9398539 DOI: 10.1523/jneurosci.1878-21.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
It is a commonly accepted view that light stimulation of mammalian photoreceptors causes a graded change in membrane potential instead of developing a spike. The presynaptic Ca2+ channels serve as a crucial link for the coding of membrane potential variations into neurotransmitter release. Cav1.4 L-type Ca2+ channels are expressed in photoreceptor terminals, but the complete pool of Ca2+ channels in cone photoreceptors appears to be more diverse. Here, we discovered, employing whole-cell patch-clamp recording from cone photoreceptor terminals in both sexes of mice, that their Ca2+ currents are composed of low- (T-type Ca2+ channels) and high- (L-type Ca2+ channels) voltage-activated components. Furthermore, Ca2+ channels exerted self-generated spike behavior in dark membrane potentials, and spikes were generated in response to light/dark transition. The application of fast and slow Ca2+ chelators revealed that T-type Ca2+ channels are located close to the release machinery. Furthermore, capacitance measurements indicated that they are involved in evoked vesicle release. Additionally, RT-PCR experiments showed the presence of Cav3.2 T-type Ca2+ channels in cone photoreceptors but not in rod photoreceptors. Altogether, we found several crucial functions of T-type Ca2+ channels, which increase the functional repertoire of cone photoreceptors. Namely, they extend cone photoreceptor light-responsive membrane potential range, amplify dark responses, generate spikes, increase intracellular Ca2+ levels, and boost synaptic transmission.SIGNIFICANCE STATEMENT Photoreceptors provide the first synapse for coding light information. The key elements in synaptic transmission are the voltage-sensitive Ca2+ channels. Here, we provide evidence that mouse cone photoreceptors express low-voltage-activated Cav3.2 T-type Ca2+ channels in addition to high-voltage-activated L-type Ca2+ channels. The presence of T-type Ca2+ channels in cone photoreceptors appears to extend their light-responsive membrane potential range, amplify dark response, generate spikes, increase intracellular Ca2+ levels, and boost synaptic transmission. By these functions, Cav3.2 T-type Ca2+ channels increase the functional repertoire of cone photoreceptors.
Collapse
Affiliation(s)
- Adam Davison
- Department of Biology, Animal Physiology/Neurobiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Uwe Thorsten Lux
- Department of Biology, Animal Physiology/Neurobiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Johann Helmut Brandstätter
- Department of Biology, Animal Physiology/Neurobiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Norbert Babai
- Department of Biology, Animal Physiology/Neurobiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
7
|
Hall J, Bray NJ. Schizophrenia Genomics: Convergence on Synaptic Development, Adult Synaptic Plasticity, or Both? Biol Psychiatry 2022; 91:709-717. [PMID: 34974922 PMCID: PMC8929434 DOI: 10.1016/j.biopsych.2021.10.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/19/2022]
Abstract
Large-scale genomic studies of schizophrenia have identified hundreds of genetic loci conferring risk to the disorder. This progress offers an important route toward defining the biological basis of the condition and potentially developing new treatments. In this review, we discuss insights from recent genome-wide association study, copy number variant, and exome sequencing analyses of schizophrenia, together with functional genomics data from the pre- and postnatal brain, in relation to synaptic development and function. These data provide strong support for the view that synaptic dysfunction within glutamatergic and GABAergic (gamma-aminobutyric acidergic) neurons of the cerebral cortex, hippocampus, and other limbic structures is a central component of schizophrenia pathophysiology. Implicated genes and functional genomic data suggest that disturbances in synaptic connectivity associated with susceptibility to schizophrenia begin in utero but continue throughout development, with some alleles conferring risk to the disorder through direct effects on synaptic function in adulthood. This model implies that novel interventions for schizophrenia could include broad preventive approaches aimed at enhancing synaptic health during development as well as more targeted treatments aimed at correcting synaptic function in affected adults.
Collapse
Affiliation(s)
- Jeremy Hall
- MRC Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom; Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.
| | | |
Collapse
|
8
|
Papazoglou A, Arshaad MI, Henseler C, Daubner J, Broich K, Hescheler J, Ehninger D, Haenisch B, Weiergräber M. Ca v3 T-Type Voltage-Gated Ca 2+ Channels and the Amyloidogenic Environment: Pathophysiology and Implications on Pharmacotherapy and Pharmacovigilance. Int J Mol Sci 2022; 23:3457. [PMID: 35408817 PMCID: PMC8998330 DOI: 10.3390/ijms23073457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/07/2022] Open
Abstract
Voltage-gated Ca2+ channels (VGCCs) were reported to play a crucial role in neurotransmitter release, dendritic resonance phenomena and integration, and the regulation of gene expression. In the septohippocampal system, high- and low-voltage-activated (HVA, LVA) Ca2+ channels were shown to be involved in theta genesis, learning, and memory processes. In particular, HVA Cav2.3 R-type and LVA Cav3 T-type Ca2+ channels are expressed in the medial septum-diagonal band of Broca (MS-DBB), hippocampal interneurons, and pyramidal cells, and ablation of both channels was proven to severely modulate theta activity. Importantly, Cav3 Ca2+ channels contribute to rebound burst firing in septal interneurons. Consequently, functional impairment of T-type Ca2+ channels, e.g., in null mutant mouse models, caused tonic disinhibition of the septohippocampal pathway and subsequent enhancement of hippocampal theta activity. In addition, impairment of GABA A/B receptor transcription, trafficking, and membrane translocation was observed within the septohippocampal system. Given the recent findings that amyloid precursor protein (APP) forms complexes with GABA B receptors (GBRs), it is hypothesized that T-type Ca2+ current reduction, decrease in GABA receptors, and APP destabilization generate complex functional interdependence that can constitute a sophisticated proamyloidogenic environment, which could be of potential relevance in the etiopathogenesis of Alzheimer's disease (AD). The age-related downregulation of T-type Ca2+ channels in humans goes together with increased Aβ levels that could further inhibit T-type channels and aggravate the proamyloidogenic environment. The mechanistic model presented here sheds new light on recent reports about the potential risks of T-type Ca2+ channel blockers (CCBs) in dementia, as observed upon antiepileptic drug application in the elderly.
Collapse
Affiliation(s)
- Anna Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
| | - Muhammad Imran Arshaad
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
| | - Christina Henseler
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
| | - Johanna Daubner
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (K.B.); (B.H.)
| | - Jürgen Hescheler
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany;
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany
| | - Dan Ehninger
- Translational Biogerontology, German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany;
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Britta Haenisch
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (K.B.); (B.H.)
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
- Center for Translational Medicine, Medical Faculty, University of Bonn, 53113 Bonn, Germany
| | - Marco Weiergräber
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (K.B.); (B.H.)
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany;
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany
| |
Collapse
|
9
|
Steinecke A, Bolton MM, Taniguchi H. Neuromodulatory control of inhibitory network arborization in the developing postnatal neocortex. SCIENCE ADVANCES 2022; 8:eabe7192. [PMID: 35263136 PMCID: PMC8906727 DOI: 10.1126/sciadv.abe7192] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Interregional neuronal communication is pivotal to instructing and adjusting cortical circuit assembly. Subcortical neuromodulatory systems project long-range axons to the cortex and affect cortical processing. However, their roles and signaling mechanisms in cortical wiring remain poorly understood. Here, we explored whether and how the cholinergic system regulates inhibitory axonal ramification of neocortical chandelier cells (ChCs), which control spike generation by innervating axon initial segments of pyramidal neurons. We found that acetylcholine (ACh) signaling through nicotinic ACh receptors (nAChRs) and downstream T-type voltage-dependent calcium (Ca2+) channels cell-autonomously controls axonal arborization in developing ChCs through regulating filopodia initiation. This signaling axis shapes the basal Ca2+ level range in varicosities where filopodia originate. Furthermore, the normal development of ChC axonal arbors requires proper levels of activity in subcortical cholinergic neurons. Thus, the cholinergic system regulates inhibitory network arborization in the developing neocortex and may tune cortical circuit properties depending on early-life experiences.
Collapse
Affiliation(s)
- André Steinecke
- Development and Function of Inhibitory Neural Circuits, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - McLean M. Bolton
- Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Hiroki Taniguchi
- Development and Function of Inhibitory Neural Circuits, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| |
Collapse
|
10
|
Vallés AS, Barrantes FJ. Dysregulation of Neuronal Nicotinic Acetylcholine Receptor-Cholesterol Crosstalk in Autism Spectrum Disorder. Front Mol Neurosci 2021; 14:744597. [PMID: 34803605 PMCID: PMC8604044 DOI: 10.3389/fnmol.2021.744597] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is a set of complex neurodevelopmental diseases that include impaired social interaction, delayed and disordered language, repetitive or stereotypic behavior, restricted range of interests, and altered sensory processing. The underlying causes of the core symptoms remain unclear, as are the factors that trigger their onset. Given the complexity and heterogeneity of the clinical phenotypes, a constellation of genetic, epigenetic, environmental, and immunological factors may be involved. The lack of appropriate biomarkers for the evaluation of neurodevelopmental disorders makes it difficult to assess the contribution of early alterations in neurochemical processes and neuroanatomical and neurodevelopmental factors to ASD. Abnormalities in the cholinergic system in various regions of the brain and cerebellum are observed in ASD, and recently altered cholesterol metabolism has been implicated at the initial stages of the disease. Given the multiple effects of the neutral lipid cholesterol on the paradigm rapid ligand-gated ion channel, the nicotinic acetylcholine receptor, we explore in this review the possibility that the dysregulation of nicotinic receptor-cholesterol crosstalk plays a role in some of the neurological alterations observed in ASD.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), Buenos Aires, Argentina
| | - Francisco J Barrantes
- Instituto de Investigaciones Biomédicas (BIOMED), UCA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
11
|
Pimpinella D, Mastrorilli V, Giorgi C, Coemans S, Lecca S, Lalive AL, Ostermann H, Fuchs EC, Monyer H, Mele A, Cherubini E, Griguoli M. Septal cholinergic input to CA2 hippocampal region controls social novelty discrimination via nicotinic receptor-mediated disinhibition. eLife 2021; 10:65580. [PMID: 34696824 PMCID: PMC8547952 DOI: 10.7554/elife.65580] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 09/30/2021] [Indexed: 12/03/2022] Open
Abstract
Acetylcholine (ACh), released in the hippocampus from fibers originating in the medial septum/diagonal band of Broca (MSDB) complex, is crucial for learning and memory. The CA2 region of the hippocampus has received increasing attention in the context of social memory. However, the contribution of ACh to this process remains unclear. Here, we show that in mice, ACh controls social memory. Specifically, MSDB cholinergic neurons inhibition impairs social novelty discrimination, meaning the propensity of a mouse to interact with a novel rather than a familiar conspecific. This effect is mimicked by a selective antagonist of nicotinic AChRs delivered in CA2. Ex vivo recordings from hippocampal slices provide insight into the underlying mechanism, as activation of nAChRs by nicotine increases the excitatory drive to CA2 principal cells via disinhibition. In line with this observation, optogenetic activation of cholinergic neurons in MSDB increases the firing of CA2 principal cells in vivo. These results point to nAChRs as essential players in social novelty discrimination by controlling inhibition in the CA2 region.
Collapse
Affiliation(s)
- Domenico Pimpinella
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Rome, Italy
| | - Valentina Mastrorilli
- Department of Biology and Biotechnology 'C. Darwin', Center for Research in Neurobiology 'D. Bovet', Sapienza University of Rome, Rome, Italy
| | - Corinna Giorgi
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Rome, Italy.,Institute of Molecular Biology and Pathology of the National Council of Research (IBPM-CNR), Roma, Italy
| | - Silke Coemans
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Rome, Italy
| | - Salvatore Lecca
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Arnaud L Lalive
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Hannah Ostermann
- Department of Clinical Neurobiology of the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elke C Fuchs
- Department of Clinical Neurobiology of the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology of the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrea Mele
- Department of Biology and Biotechnology 'C. Darwin', Center for Research in Neurobiology 'D. Bovet', Sapienza University of Rome, Rome, Italy
| | - Enrico Cherubini
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Rome, Italy
| | - Marilena Griguoli
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Rome, Italy.,Institute of Neuroscience of the National Research Council (IN-CNR), Pisa, Italy
| |
Collapse
|
12
|
Ogando MB, Pedroncini O, Federman N, Romano SA, Brum LA, Lanuza GM, Refojo D, Marin-Burgin A. Cholinergic modulation of dentate gyrus processing through dynamic reconfiguration of inhibitory circuits. Cell Rep 2021; 36:109572. [PMID: 34433032 DOI: 10.1016/j.celrep.2021.109572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 06/28/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022] Open
Abstract
The dentate gyrus (DG) of the hippocampus plays a key role in memory formation, and it is known to be modulated by septal projections. By performing electrophysiology and optogenetics, we evaluated the role of cholinergic modulation in the processing of afferent inputs in the DG. We show that mature granule cells (GCs), but not adult-born immature neurons, have increased responses to afferent perforant path stimuli upon cholinergic modulation. This is due to a highly precise reconfiguration of inhibitory circuits, differentially affecting Parvalbumin and Somatostatin interneurons, resulting in a nicotinic-dependent perisomatic disinhibition of GCs. This circuit reorganization provides a mechanism by which mature GCs could escape the strong inhibition they receive, creating a window of opportunity for plasticity. Indeed, coincident activation of perforant path inputs with optogenetic release of acetylcholine produces a long-term potentiated response in GCs, essential for memory formation.
Collapse
Affiliation(s)
- Mora B Ogando
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society Godoy Cruz 2390, C1425FQD Buenos Aires, Argentina.
| | - Olivia Pedroncini
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society Godoy Cruz 2390, C1425FQD Buenos Aires, Argentina
| | - Noel Federman
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society Godoy Cruz 2390, C1425FQD Buenos Aires, Argentina
| | - Sebastián A Romano
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society Godoy Cruz 2390, C1425FQD Buenos Aires, Argentina
| | - Luciano A Brum
- Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Guillermo M Lanuza
- Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Damian Refojo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society Godoy Cruz 2390, C1425FQD Buenos Aires, Argentina
| | - Antonia Marin-Burgin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society Godoy Cruz 2390, C1425FQD Buenos Aires, Argentina.
| |
Collapse
|
13
|
Yao Y, Xu Y, Cai Z, Liu Q, Ma Y, Li AN, Payne TJ, Li MD. Determination of shared genetic etiology and possible causal relations between tobacco smoking and depression. Psychol Med 2021; 51:1870-1879. [PMID: 32249730 DOI: 10.1017/s003329172000063x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUNDS Cigarette smoking is strongly associated with major depressive disorder (MDD). However, any genetic etiology of such comorbidity and causal relations is poorly understood, especially at the genome-wide level. METHODS In the present in silico research, we analyzed summary data from the genome-wide association study of the Psychiatric Genetic Consortium for MDD (n = 191 005) and UK Biobank for smoking (n = 337 030) by using various biostatistical methods including Bayesian colocalization analysis, LD score regression, variant effect size correlation analysis, and Mendelian randomization (MR). RESULTS By adopting a gene prioritization approach, we identified 43 genes shared by MDD and smoking, which were significantly enriched in membrane potential, gamma-aminobutyric acid receptor activity, and retrograde endocannabinoid signaling pathways, indicating that the comorbid mechanisms are involved in the neurotransmitter system. According to linkage disequilibrium score regression, we found a strong positive correlation between MDD and current smoking (rg = 0.365; p = 7.23 × 10-25) and a negative correlation between MDD and former smoking (rg = -0.298; p = 1.59 × 10-24). MR analysis suggested that genetic liability for depression increased smoking. CONCLUSIONS These findings inform the concomitant conditions of MDD and smoking and support the use of self-medication with smoking to counteract depression.
Collapse
Affiliation(s)
- Yinghao Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhen Cai
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunlong Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Andria N Li
- College of Arts and Sciences, University of Virginia, VA, USA
| | - Thomas J Payne
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Pancotti L, Topolnik L. Cholinergic Modulation of Dendritic Signaling in Hippocampal GABAergic Inhibitory Interneurons. Neuroscience 2021; 489:44-56. [PMID: 34129910 DOI: 10.1016/j.neuroscience.2021.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022]
Abstract
Dendrites represent the "reception hub" of the neuron as they collect thousands of different inputs and send a coherent response to the cell body. A considerable portion of these signals, especially in vivo, arises from neuromodulatory sources, which affect dendritic computations and cellular activity. In this context, acetylcholine (ACh) exerts a coordinating role of different brain structures, contributing to goal-driven behaviors and sleep-wake cycles. Specifically, cholinergic neurons from the medial septum-diagonal band of Broca complex send numerous projections to glutamatergic principal cells and GABAergic inhibitory neurons in the hippocampus, differentially entraining them during network oscillations. Interneurons display abundant expression of cholinergic receptors and marked responses to stimulation by ACh. Nonetheless, the precise localization of ACh inputs is largely unknown, and evidence for cholinergic modulation of interneuronal dendritic signaling remains elusive. In this article, we review evidence that suggests modulatory effects of ACh on dendritic computations in three hippocampal interneuron subtypes: fast-spiking parvalbumin-positive (PV+) cells, somatostatin-expressing (SOM+) oriens lacunosum moleculare cells and vasoactive intestinal polypeptide-expressing (VIP+) interneuron-selective interneurons. We consider the distribution of cholinergic receptors on these interneurons, including information about their specific somatodendritic location, and discuss how the action of these receptors can modulate dendritic Ca2+ signaling and activity of interneurons. The implications of ACh-dependent Ca2+ signaling for dendritic plasticity are also discussed. We propose that cholinergic modulation can shape the dendritic integration and plasticity in interneurons in a cell type-specific manner, and the elucidation of these mechanisms will be required to understand the contribution of each cell type to large-scale network activity.
Collapse
Affiliation(s)
- Luca Pancotti
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Canada; Neuroscience Axis, CRCHUQ, Laval University, Canada
| | - Lisa Topolnik
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Canada; Neuroscience Axis, CRCHUQ, Laval University, Canada.
| |
Collapse
|
15
|
Robert V, Therreau L, Davatolhagh MF, Bernardo-Garcia FJ, Clements KN, Chevaleyre V, Piskorowski RA. The mechanisms shaping CA2 pyramidal neuron action potential bursting induced by muscarinic acetylcholine receptor activation. J Gen Physiol 2021; 152:133812. [PMID: 32069351 PMCID: PMC7141590 DOI: 10.1085/jgp.201912462] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/18/2019] [Accepted: 01/13/2020] [Indexed: 01/04/2023] Open
Abstract
Recent studies have revealed that hippocampal area CA2 plays an important role in hippocampal network function. Disruption of this region has been implicated in neuropsychiatric disorders. It is well appreciated that cholinergic input to the hippocampus plays an important role in learning and memory. While the effect of elevated cholinergic tone has been well studied in areas CA1 and CA3, it remains unclear how changes in cholinergic tone impact synaptic transmission and the intrinsic properties of neurons in area CA2. In this study, we applied the cholinergic agonist carbachol and performed on-cell, whole-cell, and extracellular recordings in area CA2. We observed that under conditions of high cholinergic tone, CA2 pyramidal neurons depolarized and rhythmically fired bursts of action potentials. This depolarization depended on the activation of M1 and M3 cholinergic receptors. Furthermore, we examined how the intrinsic properties and action-potential firing were altered in CA2 pyramidal neurons treated with 10 µM carbachol. While this intrinsic burst firing persisted in the absence of synaptic transmission, bursts were shaped by synaptic inputs in the intact network. We found that both excitatory and inhibitory synaptic transmission were reduced upon carbachol treatment. Finally, we examined the contribution of different channels to the cholinergic-induced changes in neuronal properties. We found that a conductance from Kv7 channels partially contributed to carbachol-induced changes in resting membrane potential and membrane resistance. We also found that D-type potassium currents contributed to controlling several properties of the bursts, including firing rate and burst kinetics. Furthermore, we determined that T-type calcium channels and small conductance calcium-activated potassium channels play a role in regulating bursting activity.
Collapse
Affiliation(s)
- Vincent Robert
- Université Paris Descartes, Inserm UMR1266, Institute of Psychiatry and Neuroscience of Paris, Team Synaptic Plasticity and Neural Networks, Paris, France
| | - Ludivine Therreau
- Université Paris Descartes, Inserm UMR1266, Institute of Psychiatry and Neuroscience of Paris, Team Synaptic Plasticity and Neural Networks, Paris, France
| | - M Felicia Davatolhagh
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - F Javier Bernardo-Garcia
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA
| | | | - Vivien Chevaleyre
- Université Paris Descartes, Inserm UMR1266, Institute of Psychiatry and Neuroscience of Paris, Team Synaptic Plasticity and Neural Networks, Paris, France
| | - Rebecca A Piskorowski
- Université Paris Descartes, Inserm UMR1266, Institute of Psychiatry and Neuroscience of Paris, Team Synaptic Plasticity and Neural Networks, Paris, France
| |
Collapse
|
16
|
Lu Y, Li M, Lee GY, Zhao N, Chen Z, Edwards A, Zhang K. Seeking the exclusive binding region of phenylalkylamine derivatives on human T-type calcium channels via homology modeling and molecular dynamics simulation approach. Pharmacol Res Perspect 2021; 9:e00783. [PMID: 33984189 PMCID: PMC8118199 DOI: 10.1002/prp2.783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022] Open
Abstract
Pharmaceutical features of phenylalkylamine derivatives (PAAs) binding to calcium channels have been studied extensively in the past decades. Only a few PAAs have the binding specificity on calcium channels, for example, NNC 55‐0396. Here, we created the homology models of human Cav3.2, Cav3.3 and use them as a receptor on the rigid docking tests. The nonspecific calcium channel blocker mibefradil showed inconsistent docking preference across four domains; however, NNC 55‐0396 had a unique binding pattern on domain II specifically. The subsequent molecular dynamics (MD) simulations identified that Cav3.1, Cav3.2, and Cav3.3 share domain II when Ca2+ appearing in the neighbor region of selective filters (SFs). Moreover, free‐energy perturbation analysis suggests single mutation of lysine at P‐loop domain III, or threonine at the P‐loop domain II largely reduced the total amount of hydration‐free energy in the system. All these findings suggest that P‐loop and segment six domain II in the T‐type calcium channels (TCCs) are crucial for attracting the PAAs with specificity as the antagonist.
Collapse
Affiliation(s)
- You Lu
- Department of Physics and Computer Science, Xavier University of Louisiana, New Orleans, LA, USA.,Bioinformatics Core of Xavier NIH RCMI Center of Cancer Research, Xavier University of Louisiana, New Orleans, LA, USA
| | - Ming Li
- Department of Physiology SL-39, Tulane University, New Orleans, LA, USA
| | - Gi Young Lee
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Na Zhao
- Key Laboratory in Software Engineering of Yunnan Province, School of Software, Yunnan University, Kunming, China
| | - Zhong Chen
- Department of Physics and Computer Science, Xavier University of Louisiana, New Orleans, LA, USA.,Bioinformatics Core of Xavier NIH RCMI Center of Cancer Research, Xavier University of Louisiana, New Orleans, LA, USA
| | - Andrea Edwards
- Department of Physics and Computer Science, Xavier University of Louisiana, New Orleans, LA, USA
| | - Kun Zhang
- Department of Physics and Computer Science, Xavier University of Louisiana, New Orleans, LA, USA.,Bioinformatics Core of Xavier NIH RCMI Center of Cancer Research, Xavier University of Louisiana, New Orleans, LA, USA
| |
Collapse
|
17
|
Wang Y, Tan B, Wang Y, Chen Z. Cholinergic Signaling, Neural Excitability, and Epilepsy. Molecules 2021; 26:molecules26082258. [PMID: 33924731 PMCID: PMC8070422 DOI: 10.3390/molecules26082258] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is a common brain disorder characterized by recurrent epileptic seizures with neuronal hyperexcitability. Apart from the classical imbalance between excitatory glutamatergic transmission and inhibitory γ-aminobutyric acidergic transmission, cumulative evidence suggest that cholinergic signaling is crucially involved in the modulation of neural excitability and epilepsy. In this review, we briefly describe the distribution of cholinergic neurons, muscarinic, and nicotinic receptors in the central nervous system and their relationship with neural excitability. Then, we summarize the findings from experimental and clinical research on the role of cholinergic signaling in epilepsy. Furthermore, we provide some perspectives on future investigation to reveal the precise role of the cholinergic system in epilepsy.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.W.); (B.T.)
| | - Bei Tan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.W.); (B.T.)
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.W.); (B.T.)
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Correspondence: (Y.W.); (Z.C.); Tel.: +86-5718-661-8660 (Z.C.)
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.W.); (B.T.)
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Correspondence: (Y.W.); (Z.C.); Tel.: +86-5718-661-8660 (Z.C.)
| |
Collapse
|
18
|
Arshaad MI, Siwek ME, Henseler C, Daubner J, Ehninger D, Hescheler J, Sachinidis A, Broich K, Papazoglou A, Weiergräber M. Enhanced hippocampal type II theta activity AND altered theta architecture in mice lacking the Ca v3.2 T-type voltage-gated calcium channel. Sci Rep 2021; 11:1099. [PMID: 33441788 PMCID: PMC7806756 DOI: 10.1038/s41598-020-79763-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022] Open
Abstract
T-type Ca2+ channels are assumed to contribute to hippocampal theta oscillations. We used implantable video-EEG radiotelemetry and qPCR to unravel the role of Cav3.2 Ca2+ channels in hippocampal theta genesis. Frequency analysis of spontaneous long-term recordings in controls and Cav3.2-/- mice revealed robust increase in relative power in the theta (4-8 Hz) and theta-alpha (4-12 Hz) ranges, which was most prominent during the inactive stages of the dark cycles. Urethane injection experiments also showed enhanced type II theta activity and altered theta architecture following Cav3.2 ablation. Next, gene candidates from hippocampal transcriptome analysis of control and Cav3.2-/- mice were evaluated using qPCR. Dynein light chain Tctex-Type 1 (Dynlt1b) was significantly reduced in Cav3.2-/- mice. Furthermore, a significant reduction of GABA A receptor δ subunits and GABA B1 receptor subunits was observed in the septohippocampal GABAergic system. Our results demonstrate that ablation of Cav3.2 significantly alters type II theta activity and theta architecture. Transcriptional changes in synaptic transporter proteins and GABA receptors might be functionally linked to the electrophysiological phenotype.
Collapse
Affiliation(s)
- Muhammad Imran Arshaad
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Magdalena Elisabeth Siwek
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Christina Henseler
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Johanna Daubner
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Dan Ehninger
- Molecular and Cellular Cognition, German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Sigmund-Freud-Str. 27, 53127, Bonn, Germany
| | - Jürgen Hescheler
- Institute of Neurophysiology, University of Cologne, Faculty of Medicine, Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Agapios Sachinidis
- Institute of Neurophysiology, University of Cologne, Faculty of Medicine, Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Anna Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Marco Weiergräber
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany.
| |
Collapse
|
19
|
Dolphin AC. Functions of Presynaptic Voltage-gated Calcium Channels. FUNCTION (OXFORD, ENGLAND) 2020; 2:zqaa027. [PMID: 33313507 PMCID: PMC7709543 DOI: 10.1093/function/zqaa027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 01/06/2023]
Abstract
Voltage-gated calcium channels are the principal conduits for depolarization-mediated Ca2+ entry into excitable cells. In this review, the biophysical properties of the relevant members of this family of channels, those that are present in presynaptic terminals, will be discussed in relation to their function in mediating neurotransmitter release. Voltage-gated calcium channels have properties that ensure they are specialized for particular roles, for example, differences in their activation voltage threshold, their various kinetic properties, and their voltage-dependence of inactivation. All these attributes play into the ability of the various voltage-gated calcium channels to participate in different patterns of presynaptic vesicular release. These include synaptic transmission resulting from single action potentials, and longer-term changes mediated by bursts or trains of action potentials, as well as release resulting from graded changes in membrane potential in specialized sensory synapses.
Collapse
Affiliation(s)
- Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, WC1E 6BT, UK,Address correspondence to A.C.D. (e-mail: )
| |
Collapse
|
20
|
Yabuki Y. [Role of T-type Calcium Channels in Regulating Neuronal Function]. YAKUGAKU ZASSHI 2020; 140:1207-1212. [PMID: 32999199 DOI: 10.1248/yakushi.20-00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
T-type calcium channels are low-threshold voltage-gated calcium channel and characterized by unique electrophysiological properties such as fast inactivation and slow deactivation kinetics. All subtypes of T-type calcium channel (Cav3.1, 3.2 and 3.3) are widely expressed in the central nerve system, and they have an important role in homeostasis of sleep, pain response, and development of epilepsy. Recently, several reports suggest that T-type calcium channels may mediate neuronal plasticity in the mouse brain. We succeeded to develop T-type calcium channel enhancer ethyl 8'-methyl-2',4-dioxo-2-(piperidin-1-yl)-2'H-spiro[cyclopentane-1,3'-imidazo[1,2-a]pyridine]-2-ene-3-carboxylate (SAK3) which enhances Cav3.1 and 3.3 currents in each-channel expressed neuro2A cells. SAK3 can promote acetylcholine (ACh) release in the mouse hippocampus via enhancing T-type calcium channel. In this review, we have introduced the role of T-type calcium channel, especially Cav3.1 channel in the mouse hippocampus based on our previous data using SAK3 and Cav3.1 knockout mice.
Collapse
Affiliation(s)
- Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
21
|
Kim JH, Won J, Oh SB. Expression of Ca V3.1 T-type Calcium Channels in Acutely Isolated Adult Rat Odontoblasts. Arch Oral Biol 2020; 118:104864. [PMID: 32847753 DOI: 10.1016/j.archoralbio.2020.104864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/20/2020] [Accepted: 07/30/2020] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Odontoblasts, which consist the outermost compartment of the dental pulp, are primarily engaged in dentin formation. Earlier evidence suggests that voltage-gated calcium channels, such as the high voltage-activated L-type calcium channels, serve as a calcium entry route to mediate dentin formation in odontoblasts. However, the involvement of other voltage-gated calcium channels in regulating intracellular Ca2+ remain unanswered. DESIGN The expression of voltage-gated calcium channel subtypes of the P/Q- (CaV2.1), N-(CaV2.2), R- (CaV2.3), and T- (CaV3.1-3.3) type were screened in adult rat odontoblasts by single cell RT-PCR. Among these candidates, immunopositivity against CaV3.1 was examined in the odontoblastic layer in teeth sections and dissociated odontoblasts. To confirm the functional expression of CaV3.1 in odontoblasts, intracellular Ca2+ increase in response to membrane depolarization was monitored with Fura-2-based ratiometric calcium imaging. RESULTS Among the candidate calcium channels, we found that mRNA for CaV3.1 is mainly detected in odontoblasts, with its expression being detected in the odontoblastic layer and dissociated odontoblasts. High extracellular K+-induced membrane depolarization was inhibited by pharmacological blockers for T-type calcium channels such as amiloride or ML218. CONCLUSION Our results demonstrate that among P/Q-, N-, R-, and T-type calcium channels, CaV3.1 is mainly expressed in odontoblasts to mediate intracellular Ca2+ signaling in response to membrane depolarization. These findings suggest that CaV3.1 may facilitate intracellular Ca2+ dynamics especially in the range of subliminal depolarizations near resting membrane potentials where other high voltage-gated calcium channels such as the L-type are likely to be inactive.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jonghwa Won
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seog Bae Oh
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea; Dental Research Institute and Department of Neurobiology & Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
22
|
|
23
|
Robles-Gómez AA, Vega AV, Florán B, Barral J. Differential calcium channel-mediated dopaminergic modulation in the subthalamonigral synapse. Synapse 2020; 74:e22149. [PMID: 31975491 DOI: 10.1002/syn.22149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/09/2019] [Accepted: 01/18/2020] [Indexed: 11/09/2022]
Abstract
Dopamine (DA) modulates basal ganglia (BG) activity for initiation and execution of goal-directed movements and habits. While most studies are aimed to striatal function, the cellular and molecular mechanisms underlying dopaminergic regulation in other nuclei of the BG are not well understood. Therefore, we set to analyze the dopaminergic modulation occurring in subthalamo-nigral synapse, in both pars compacta (SNc) and pars reticulata (SNr) neurons, because these synapses are important for the integration of information previously processed in striatum and globus pallidus. In this study, electrophysiological and pharmacological evidence of dopaminergic modulation on glutamate release through calcium channels is presented. Using paired pulse ratio (PPR) measurements and selective blockers of these ionic channels, together with agonists and antagonists of DA D2 -like receptors, we found that blockade of the CaV 3 family occludes the presynaptic inhibition produced by the activation of DA receptors pharmacologically profiled as D3 -type in the STh-SNc synapses. On the contrast, the blockade of CaV 2 channels, but not CaV 3, occlude with the effect of the D3 agonist, PD 128907, in the STh-SNr synapse. The functional role of this differential distribution of calcium channels that modulate the release of glutamate in the SN implies a fine adjustment of firing for both classes of neurons. Dopaminergic neurons of the SNc establish a DA tone within the SN based on the excitatory/inhibitory inputs; such tone may contribute to processing information from subthalamic nucleus and could also be involved in pathological DA depletion that drives hyperexcitation of SNr neurons.
Collapse
Affiliation(s)
| | - Ana V Vega
- Carrera de Médico Cirujano, FES Iztacala, UNAM, Mexico City, Mexico
| | - Benjamín Florán
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, Mexico City, Mexico
| | - Jaime Barral
- Neurociencias, FES Iztacala, UNAM, Tlalnepantla de Baz, Mexico
| |
Collapse
|
24
|
Djemil S, Chen X, Zhang Z, Lee J, Rauf M, Pak DTS, Dzakpasu R. Activation of nicotinic acetylcholine receptors induces potentiation and synchronization within in vitro hippocampal networks. J Neurochem 2019; 153:468-484. [PMID: 31821553 DOI: 10.1111/jnc.14938] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 01/08/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are known to play a role in cognitive functions of the hippocampus, such as memory consolidation. Given that they conduct Ca2+ and are capable of regulating the release of glutamate and γ-aminobutyric acid (GABA) within the hippocampus, thereby shifting the excitatory-inhibitory ratio, we hypothesized that the activation of nAChRs will result in the potentiation of hippocampal networks and alter synchronization. We used nicotine as a tool to investigate the impact of activation of nAChRs on neuronal network dynamics in primary embryonic rat hippocampal cultures prepared from timed-pregnant Sprague-Dawley rats. We perturbed cultured hippocampal networks with increasing concentrations of bath-applied nicotine and performed network extracellular recordings of action potentials using a microelectrode array. We found that nicotine modulated network dynamics in a concentration-dependent manner; it enhanced firing of action potentials as well as facilitated bursting activity. In addition, we used pharmacological agents to determine the contributions of discrete nAChR subtypes to the observed network dynamics. We found that β4-containing nAChRs are necessary for the observed increases in spiking, bursting, and synchrony, while the activation of α7 nAChRs augments nicotine-mediated network potentiation but is not necessary for its manifestation. We also observed that antagonists of N-methyl-D-aspartate receptors (NMDARs) and group I metabotropic glutamate receptors (mGluRs) partially blocked the effects of nicotine. Furthermore, nicotine exposure promoted autophosphorylation of Ca2+ /calmodulin-dependent kinase II (CaMKII) and serine 831 phosphorylation of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunit GluA1. These results suggest that nicotinic receptors induce potentiation and synchronization of hippocampal networks and glutamatergic synaptic transmission. Findings from this work highlight the impact of cholinergic signaling in generating network-wide potentiation in the form of enhanced spiking and bursting dynamics that coincide with molecular correlates of memory such as increased phosphorylation of CaMKII and GluA1. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Sarra Djemil
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - Xin Chen
- Department of Physics, Georgetown University, Washington, DC, USA
| | - Ziyue Zhang
- Department of Physics, Georgetown University, Washington, DC, USA
| | - Jisoo Lee
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - Mikael Rauf
- Department of Human Science, Georgetown University Medical Center, Washington, DC, USA
| | - Daniel T S Pak
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Rhonda Dzakpasu
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA.,Department of Physics, Georgetown University, Washington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
25
|
Fukunaga K, Izumi H, Yabuki Y, Shinoda Y, Shioda N, Han F. Alzheimer's disease therapeutic candidate SAK3 is an enhancer of T-type calcium channels. J Pharmacol Sci 2019; 139:51-58. [DOI: 10.1016/j.jphs.2018.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 12/27/2022] Open
|
26
|
Palacios-Filardo J, Mellor JR. Neuromodulation of hippocampal long-term synaptic plasticity. Curr Opin Neurobiol 2018; 54:37-43. [PMID: 30212713 PMCID: PMC6367596 DOI: 10.1016/j.conb.2018.08.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/26/2018] [Accepted: 08/15/2018] [Indexed: 12/31/2022]
Abstract
Acetylcholine, noradrenaline, dopamine and serotonin all facilitate long-term synaptic plasticity. Neuromodulators facilitate long-term synaptic plasticity by common and divergent mechanisms. Common mechanisms include NMDA receptor facilitation by potassium channel inhibition, gliotransmission and disinhibition. Divergent mechanisms include diversity of disinhibition and temporal and spatial neuromodulator release.
Multiple neuromodulators including acetylcholine, noradrenaline, dopamine and serotonin are released in response to uncertainty to focus attention on events where the predicted outcome does not match observed reality. In these situations, internal representations need to be updated, a process that requires long-term synaptic plasticity. Through a variety of common and divergent mechanisms, it is recently shown that all these neuromodulators facilitate the induction and/or expression of long-term synaptic plasticity within the hippocampus. Under physiological conditions, this may be critical for suprathreshold induction of plasticity endowing neuromodulators with a gating function and providing a mechanism by which neuromodulators enable the targeted updating of memory with relevant information to improve the accuracy of future predictions.
Collapse
Affiliation(s)
- Jon Palacios-Filardo
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Jack R Mellor
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
27
|
Pelkey KA, Chittajallu R, Craig MT, Tricoire L, Wester JC, McBain CJ. Hippocampal GABAergic Inhibitory Interneurons. Physiol Rev 2017; 97:1619-1747. [PMID: 28954853 DOI: 10.1152/physrev.00007.2017] [Citation(s) in RCA: 538] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/16/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
In the hippocampus GABAergic local circuit inhibitory interneurons represent only ~10-15% of the total neuronal population; however, their remarkable anatomical and physiological diversity allows them to regulate virtually all aspects of cellular and circuit function. Here we provide an overview of the current state of the field of interneuron research, focusing largely on the hippocampus. We discuss recent advances related to the various cell types, including their development and maturation, expression of subtype-specific voltage- and ligand-gated channels, and their roles in network oscillations. We also discuss recent technological advances and approaches that have permitted high-resolution, subtype-specific examination of their roles in numerous neural circuit disorders and the emerging therapeutic strategies to ameliorate such pathophysiological conditions. The ultimate goal of this review is not only to provide a touchstone for the current state of the field, but to help pave the way for future research by highlighting where gaps in our knowledge exist and how a complete appreciation of their roles will aid in future therapeutic strategies.
Collapse
Affiliation(s)
- Kenneth A Pelkey
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ramesh Chittajallu
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Michael T Craig
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ludovic Tricoire
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Jason C Wester
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Chris J McBain
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
28
|
Abd Rashid N, Hapidin H, Abdullah H, Ismail Z, Long I. Nicotine-prevented learning and memory impairment in REM sleep-deprived rat is modulated by DREAM protein in the hippocampus. Brain Behav 2017. [PMID: 28638710 PMCID: PMC5474708 DOI: 10.1002/brb3.704] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION REM sleep deprivation is associated with impairment in learning and memory, and nicotine treatment has been shown to attenuate this effect. Recent studies have demonstrated the importance of DREAM protein in learning and memory processes. This study investigates the association of DREAM protein in REM sleep-deprived rats hippocampus upon nicotine treatment. METHODS Male Sprague Dawley rats were subjected to normal condition, REM sleep deprivation and control wide platform condition for 72 hr. During this procedure, saline or nicotine (1 mg/kg) was given subcutaneously twice a day. Then, Morris water maze (MWM) test was used to assess learning and memory performance of the rats. The rats were sacrificed and the brain was harvested for immunohistochemistry and Western blot analysis. RESULTS MWM test found that REM sleep deprivation significantly impaired learning and memory performance without defect in locomotor function associated with a significant increase in hippocampus DREAM protein expression in CA1, CA2, CA3, and DG regions and the mean relative level of DREAM protein compared to other experimental groups. Treatment with acute nicotine significantly prevented these effects and decreased expression of DREAM protein in all the hippocampus regions but only slightly reduce the mean relative level of DREAM protein. CONCLUSION This study suggests that changes in DREAM protein expression in CA1, CA2, CA3, and DG regions of rat's hippocampus and mean relative level of DREAM protein may involve in the mechanism of nicotine treatment-prevented REM sleep deprivation-induced learning and memory impairment in rats.
Collapse
Affiliation(s)
- Norlinda Abd Rashid
- BRAINetwork Centre for Neurocognitive Sciences School of Health Sciences University Sains Malaysia Kubang Kerian Kelantan Malaysia
| | - Hermizi Hapidin
- School of Health Sciences University Sains Malaysia Kubang Kerian Kelantan Malaysia
| | - Hasmah Abdullah
- School of Health Sciences University Sains Malaysia Kubang Kerian Kelantan Malaysia
| | - Zalina Ismail
- BRAINetwork Centre for Neurocognitive Sciences School of Health Sciences University Sains Malaysia Kubang Kerian Kelantan Malaysia
| | - Idris Long
- BRAINetwork Centre for Neurocognitive Sciences School of Health Sciences University Sains Malaysia Kubang Kerian Kelantan Malaysia
| |
Collapse
|
29
|
Betterton RT, Broad LM, Tsaneva‐Atanasova K, Mellor JR. Acetylcholine modulates gamma frequency oscillations in the hippocampus by activation of muscarinic M1 receptors. Eur J Neurosci 2017; 45:1570-1585. [PMID: 28406538 PMCID: PMC5518221 DOI: 10.1111/ejn.13582] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 04/04/2017] [Accepted: 04/07/2017] [Indexed: 12/21/2022]
Abstract
Modulation of gamma oscillations is important for the processing of information and the disruption of gamma oscillations is a prominent feature of schizophrenia and Alzheimer's disease. Gamma oscillations are generated by the interaction of excitatory and inhibitory neurons where their precise frequency and amplitude are controlled by the balance of excitation and inhibition. Acetylcholine enhances the intrinsic excitability of pyramidal neurons and suppresses both excitatory and inhibitory synaptic transmission, but the net modulatory effect on gamma oscillations is not known. Here, we find that the power, but not frequency, of optogenetically induced gamma oscillations in the CA3 region of mouse hippocampal slices is enhanced by low concentrations of the broad‐spectrum cholinergic agonist carbachol but reduced at higher concentrations. This bidirectional modulation of gamma oscillations is replicated within a mathematical model by neuronal depolarisation, but not by reducing synaptic conductances, mimicking the effects of muscarinic M1 receptor activation. The predicted role for M1 receptors was supported experimentally; bidirectional modulation of gamma oscillations by acetylcholine was replicated by a selective M1 receptor agonist and prevented by genetic deletion of M1 receptors. These results reveal that acetylcholine release in CA3 of the hippocampus modulates gamma oscillation power but not frequency in a bidirectional and dose‐dependent manner by acting primarily through muscarinic M1 receptors.
Collapse
Affiliation(s)
- Ruth T. Betterton
- Centre for Synaptic PlasticitySchool of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolBS8 1TDUK
| | | | - Krasimira Tsaneva‐Atanasova
- Department of MathematicsCollege of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterEX4 4QFUK
| | - Jack R. Mellor
- Centre for Synaptic PlasticitySchool of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolBS8 1TDUK
| |
Collapse
|
30
|
Yabuki Y, Matsuo K, Izumi H, Haga H, Yoshida T, Wakamori M, Kakei A, Sakimura K, Fukuda T, Fukunaga K. Pharmacological properties of SAK3, a novel T-type voltage-gated Ca 2+ channel enhancer. Neuropharmacology 2017; 117:1-13. [PMID: 28093211 DOI: 10.1016/j.neuropharm.2017.01.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 12/27/2016] [Accepted: 01/12/2017] [Indexed: 11/30/2022]
Abstract
T-type voltage-gated Ca2+ channels (T-VGCCs) function in the pathophysiology of epilepsy, pain and sleep. However, their role in cognitive function remains unclear. We previously reported that the cognitive enhancer ST101, which stimulates T-VGCCs in rat cortical slices, was a potential Alzheimer's disease therapeutic. Here, we introduce a more potent T-VGCC enhancer, SAK3 (ethyl 8'-methyl-2',4-dioxo-2-(piperidin-1-yl)-2'H-spiro[cyclopentane-1,3'-imidazo [1,2-a]pyridin]-2-ene-3-carboxylate), and characterize its pharmacological properties in brain. Based on whole cell patch-clamp analysis, SAK3 (0.01-10 nM) significantly enhanced Cav3.1 currents in neuro2A cells ectopically expressing Cav3.1. SAK3 (0.1-10 nM nM) also enhanced Cav3.3 but not Cav3.2 currents in the transfected cells. Notably, Cav3.1 and Cav3.3 T-VGCCs were localized in cholinergic neurve systems in hippocampus and in the medial septum. Indeed, acute oral administration of SAK3 (0.5 mg/kg, p.o.), but not ST101 (0.5 mg/kg, p.o.) significantly enhanced acetylcholine (ACh) release in the hippocampal CA1 region of naïve mice. Moreover, acute SAK3 (0.5 mg/kg, p.o.) administration significantly enhanced hippocampal ACh levels in olfactory-bulbectomized (OBX) mice, rescuing impaired memory-related behaviors. Treatment of OBX mice with the T-VGCC-specific blocker NNC 55-0396 (12.5 mg/kg, i.p.) antagonized both enhanced ACh release and memory improvements elicited by SAK3 administration. We also observed that SAK3-induced ACh releases were significantly blocked in the hippocampus from Cav3.1 knockout (KO) mice. These findings suggest overall that T-VGCCs play a key role in cognition by enhancing hippocampal ACh release and that the cognitive enhancer SAK3 could be a candidate therapeutic in Alzheimer's disease.
Collapse
Affiliation(s)
- Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kazuya Matsuo
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hisanao Izumi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hidaka Haga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takashi Yoshida
- Department of Oral Biology, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Minoru Wakamori
- Department of Oral Biology, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Akikazu Kakei
- Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, Nagano, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
31
|
Prince LY, Bacon TJ, Tigaret CM, Mellor JR. Neuromodulation of the Feedforward Dentate Gyrus-CA3 Microcircuit. Front Synaptic Neurosci 2016; 8:32. [PMID: 27799909 PMCID: PMC5065980 DOI: 10.3389/fnsyn.2016.00032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/20/2016] [Indexed: 12/16/2022] Open
Abstract
The feedforward dentate gyrus-CA3 microcircuit in the hippocampus is thought to activate ensembles of CA3 pyramidal cells and interneurons to encode and retrieve episodic memories. The creation of these CA3 ensembles depends on neuromodulatory input and synaptic plasticity within this microcircuit. Here we review the mechanisms by which the neuromodulators aceylcholine, noradrenaline, dopamine, and serotonin reconfigure this microcircuit and thereby infer the net effect of these modulators on the processes of episodic memory encoding and retrieval.
Collapse
Affiliation(s)
- Luke Y Prince
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol Bristol, UK
| | - Travis J Bacon
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol Bristol, UK
| | - Cezar M Tigaret
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol Bristol, UK
| | - Jack R Mellor
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol Bristol, UK
| |
Collapse
|
32
|
Abstract
The role of T-type calcium currents is rarely considered in the extensive literature covering the mechanisms of long-term synaptic plasticity. This situation reflects the lack of suitable T-type channel antagonists that till recently has hampered investigations of the functional roles of these channels. However, with the development of new pharmacological and genetic tools, a clear involvement of T-type channels in synaptic plasticity is starting to emerge. Here, we review a number of studies showing that T-type channels participate to numerous homo- and hetero-synaptic plasticity mechanisms that involve different molecular partners and both pre- and post-synaptic modifications. The existence of T-channel dependent and independent plasticity at the same synapse strongly suggests a subcellular localization of these channels and their partners that allows specific interactions. Moreover, we illustrate the functional importance of T-channel dependent synaptic plasticity in neocortex and thalamus.
Collapse
Affiliation(s)
- Nathalie Leresche
- a Sorbonne Universités, Université Pierre et Marie Curie (UPMC) UM119, CNRS UMR8246, INSERM U1130, Neuroscience Paris Seine (NPS) , Paris , France
| | - Régis C Lambert
- a Sorbonne Universités, Université Pierre et Marie Curie (UPMC) UM119, CNRS UMR8246, INSERM U1130, Neuroscience Paris Seine (NPS) , Paris , France
| |
Collapse
|
33
|
Aguado C, García-Madrona S, Gil-Minguez M, Luján R. Ontogenic Changes and Differential Localization of T-type Ca(2+) Channel Subunits Cav3.1 and Cav3.2 in Mouse Hippocampus and Cerebellum. Front Neuroanat 2016; 10:83. [PMID: 27616982 PMCID: PMC4999439 DOI: 10.3389/fnana.2016.00083] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/11/2016] [Indexed: 12/31/2022] Open
Abstract
T-type calcium (Ca(2+)) channels play a central role in regulating membrane excitability in the brain. Although the contributions of T-type current to neuron output is often proposed to reflect a differential distribution of T-type channel subtypes to somato-dendritic compartments, their precise subcellular distributions in central neurons are not fully determined. Using histoblot and high-resolution immunoelectron microscopic techniques, we have investigated the expression, regional distribution and subcellular localization of T-type Cav3.1 and Cav3.2 channel subunits in the adult brain, as well as the ontogeny of expression during postnatal development. Histoblot analysis showed that Cav3.1 and Cav3.2 proteins were widely expressed in the brain, with mostly non-overlapping patterns. Cav3.1 showed the highest expression level in the molecular layer (ml) of the cerebellum (Cb), and Cav3.2 in the hippocampus (Hp) and the ml of Cb. During development, levels of Cav3.1 and Cav3.2 increased with age, although there were marked region- and developmental stage-specific differences in their expression. At the cellular and subcellular level, immunoelectron microscopy showed that labeling for Cav3.1 was present in somato-dendritic domains of hippocampal interneurons and Purkinje cells (PCs), while Cav3.2 was present in somato-dendritic domains of CA1 pyramidal cells, hippocampal interneurons and PCs. Most of the immunoparticles for Cav3.1 and Cav3.2 were either associated with the plasma membrane or the intracellular membranes, with notable differences depending on the compartment. Thus, Cav3.1 was mainly located in the plasma membrane of interneurons, whereas Cav3.2 was mainly located in the plasma membrane of dendritic spines and had a major intracellular distribution in dendritic shafts. In PCs, Cav3.1 and Cav3.2 showed similar distribution patterns. In addition to its main postsynaptic distribution, Cav3.2 but not Cav3.1 was also detected in axon terminals establishing excitatory synapses. These results shed new light on the subcellular localization of T-type channel subunits and provide evidence for the non-uniform distribution of Cav3.1 and Cav3.2 subunits over the plasma membrane of central neurons, which may account for the functional heterogeneity of T-type mediated current.
Collapse
Affiliation(s)
- Carolina Aguado
- Synaptic Structure Laboratory, Department Ciencias Médicas, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina, Universidad Castilla-La Mancha Albacete, Spain
| | - Sebastián García-Madrona
- Synaptic Structure Laboratory, Department Ciencias Médicas, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina, Universidad Castilla-La Mancha Albacete, Spain
| | - Mercedes Gil-Minguez
- Synaptic Structure Laboratory, Department Ciencias Médicas, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina, Universidad Castilla-La Mancha Albacete, Spain
| | - Rafael Luján
- Synaptic Structure Laboratory, Department Ciencias Médicas, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina, Universidad Castilla-La Mancha Albacete, Spain
| |
Collapse
|
34
|
Growth differentiation factor-15 promotes glutamate release in medial prefrontal cortex of mice through upregulation of T-type calcium channels. Sci Rep 2016; 6:28653. [PMID: 27353765 PMCID: PMC4926092 DOI: 10.1038/srep28653] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/07/2016] [Indexed: 01/01/2023] Open
Abstract
Growth differentiation factor-15 (GDF-15) has been implicated in ischemic brain injury and synapse development, but its involvement in modulating neuronal excitability and synaptic transmission remain poorly understood. In this study, we investigated the effects of GDF-15 on non-evoked miniature excitatory post-synaptic currents (mEPSCs) and neurotransmitter release in the medial prefrontal cortex (mPFC) in mice. Incubation of mPFC slices with GDF-15 for 60 min significantly increased the frequency of mEPSCs without effect on their amplitude. GDF-15 also significantly elevated presynaptic glutamate release, as shown by HPLC. These effects were blocked by dual TGF-β type I receptor (TβRI) and TGF-β type II receptor (TβRII) antagonists, but not by a TβRI antagonist alone. Meanwhile, GDF-15 enhanced pERK level, and inhibition of MAPK/ERK activity attenuated the GDF-15-induced increases in mEPSC and glutamate release. Blocking T-type calcium channels reduced the GDF-15 induced up-regulation of synaptic transmission. Membrane-protein extraction and use of an intracellular protein-transport inhibitor showed that GDF-15 promoted CaV3.1 and CaV3.3 α-subunit expression by trafficking to the membrane. These results confirm previous findings in cerebellar granule neurons, in which GDF-15 induces its neurobiological effects via TβRII and activation of the ERK pathway, providing novel insights into the mechanism of GDF-15 function in cortical neurons.
Collapse
|
35
|
Medial septal GABAergic projection neurons promote object exploration behavior and type 2 theta rhythm. Proc Natl Acad Sci U S A 2016; 113:6550-5. [PMID: 27208094 DOI: 10.1073/pnas.1605019113] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exploratory drive is one of the most fundamental emotions, of all organisms, that are evoked by novelty stimulation. Exploratory behavior plays a fundamental role in motivation, learning, and well-being of organisms. Diverse exploratory behaviors have been described, although their heterogeneity is not certain because of the lack of solid experimental evidence for their distinction. Here we present results demonstrating that different neural mechanisms underlie different exploratory behaviors. Localized Cav3.1 knockdown in the medial septum (MS) selectively enhanced object exploration, whereas the null mutant (KO) mice showed enhanced-object exploration as well as open-field exploration. In MS knockdown mice, only type 2 hippocampal theta rhythm was enhanced, whereas both type 1 and type 2 theta rhythm were enhanced in KO mice. This selective effect was accompanied by markedly increased excitability of septo-hippocampal GABAergic projection neurons in the MS lacking T-type Ca(2+) channels. Furthermore, optogenetic activation of the septo-hippocampal GABAergic pathway in WT mice also selectively enhanced object exploration behavior and type 2 theta rhythm, whereas inhibition of the same pathway decreased the behavior and the rhythm. These findings define object exploration distinguished from open-field exploration and reveal a critical role of T-type Ca(2+) channels in the medial septal GABAergic projection neurons in this behavior.
Collapse
|
36
|
Abstract
A central theme in the quest to unravel the genetic basis of epilepsy has been the effort to elucidate the roles played by inherited defects in ion channels. The ubiquitous expression of voltage-gated calcium channels (VGCCs) throughout the central nervous system (CNS), along with their involvement in fundamental processes, such as neuronal excitability and synaptic transmission, has made them attractive candidates. Recent insights provided by the identification of mutations in the P/Q-type calcium channel in humans and rodents with epilepsy and the finding of thalamic T-type calcium channel dysfunction in the absence of seizures have raised expectations of a causal role of calcium channels in the polygenic inheritance of idiopathic epilepsy. In this review, we consider how genetic variation in neuronal VGCCs may influence the development of epilepsy.
Collapse
Affiliation(s)
- Sanjeev Rajakulendran
- UCL-Institute of Neurology, MRC Centre for Neuromuscular Diseases, Queen Square, London WC1N 3BG, United Kingdom
| | - Michael G Hanna
- UCL-Institute of Neurology, MRC Centre for Neuromuscular Diseases, Queen Square, London WC1N 3BG, United Kingdom
| |
Collapse
|
37
|
Frolov RV, Weckström M. Harnessing the Flow of Excitation: TRP, Voltage-Gated Na(+), and Voltage-Gated Ca(2+) Channels in Contemporary Medicine. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 103:25-95. [PMID: 26920687 DOI: 10.1016/bs.apcsb.2015.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cellular signaling in both excitable and nonexcitable cells involves several classes of ion channels. Some of them are of minor importance, with very specialized roles in physiology, but here we concentrate on three major channel classes: TRP (transient receptor potential channels), voltage-gated sodium channels (Nav), and voltage-gated calcium channels (Cav). Here, we first propose a conceptual framework binding together all three classes of ion channels, a "flow-of-excitation model" that takes into account the inputs mediated by TRP and other similar channels, the outputs invariably provided by Cav channels, and the regenerative transmission of signals in the neural networks, for which Nav channels are responsible. We use this framework to examine the function, structure, and pharmacology of these channel classes both at cellular and also at whole-body physiological level. Building on that basis we go through the pathologies arising from the direct or indirect malfunction of the channels, utilizing ion channel defects, the channelopathies. The pharmacological interventions affecting these channels are numerous. Part of those are well-established treatments, like treatment of hypertension or some forms of epilepsy, but many other are deeply problematic due to poor drug specificity, ion channel diversity, and widespread expression of the channels in tissues other than those actually targeted.
Collapse
Affiliation(s)
- Roman V Frolov
- Division of Biophysics, Department of Physics, University of Oulu, Oulun Yliopisto, Finland.
| | - Matti Weckström
- Division of Biophysics, Department of Physics, University of Oulu, Oulun Yliopisto, Finland
| |
Collapse
|
38
|
Takeda K, Yamaguchi Y, Hino M, Kato F. Potentiation of Acetylcholine-Mediated Facilitation of Inhibitory Synaptic Transmission by an Azaindolizione Derivative, ZSET1446 (ST101), in the Rat Hippocampus. ACTA ACUST UNITED AC 2015; 356:445-55. [DOI: 10.1124/jpet.115.229021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/16/2015] [Indexed: 11/22/2022]
|
39
|
Campos LMG, Osório EC, Santos GLDS, Nogueira MI, Cruz-Rizzolo RJ, Pinato L. Temporal changes in calcium-binding proteins in the medial geniculate nucleus of the monkey Sapajus apella. J Chem Neuroanat 2015. [PMID: 26222835 DOI: 10.1016/j.jchemneu.2015.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The subdivisions of the medial geniculate complex can be distinguished based on the immunostaining of calcium-binding proteins and by the properties of the neurons within each subdivision. The possibility of changes in neurochemistry in this and other central auditory areas are important aspects to understand the basis that contributing to functional variations determined by environmental cycles or the animal's cycles of activity and rest. This study investigated, for the first time, day/night differences in the amounts of parvalbumin-, calretinin- and calbindin-containing neurons in the thalamic auditory center of a non-human primate, Sapajus apella. The immunoreactivity of the PV-IR, CB-IR and CR-IR neurons demonstrated different distribution patterns among the subdivisions of the medial geniculate. Moreover, a high number of CB- and CR-IR neurons were found during day, whereas PV-IR was predominant at night. We conclude that in addition to the chemical heterogeneity of the medial geniculate nucleus with respect to the expression of calcium-binding proteins, expression also varied relative to periods of light and darkness, which may be important for a possible functional adaptation of central auditory areas to environmental changes and thus ensure the survival and development of several related functions.
Collapse
Affiliation(s)
- Leila M G Campos
- Department of Speech-Language and Hearing Therapy, São Paulo State University, Marilia, SP, Brazil; University of Marilia, Medical School, Marilia, SP, Brazil
| | - Elaine C Osório
- Department of Speech-Language and Hearing Therapy, São Paulo State University, Marilia, SP, Brazil
| | | | - Maria Inês Nogueira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | | | - Luciana Pinato
- Department of Speech-Language and Hearing Therapy, São Paulo State University, Marilia, SP, Brazil.
| |
Collapse
|
40
|
Septo-hippocampal signal processing: breaking the code. PROGRESS IN BRAIN RESEARCH 2015; 219:103-20. [PMID: 26072236 DOI: 10.1016/bs.pbr.2015.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The septo-hippocampal connections appear to be a key element in the neuromodulatory cholinergic control of the hippocampal neurons. The cholinergic neuromodulation is well established in shifting behavioral states of the brain. The pacemaker role of medial septum in the limbic theta rhythm is demonstrated by lesions and pharmacological manipulations of GABAergic neurons, yet the link between the activity of different septal neuronal classes and limbic theta rhythm is not fully understood. We know even less about the information transfer between the medial septum and hippocampus--is there a particular kind of processed information that septo-hippocampal pathways transmit? This review encompasses fundamental findings together with the latest data of septo-hippocampal signal processing to tackle the frontiers of our understanding about the functional significance of medial septum to the hippocampal formation.
Collapse
|
41
|
Wang Y, Wang Z, Wang J, Wang Y, Henderson Z, Wang X, Zhang X, Song J, Lu C. The modulation of nicotinic acetylcholine receptors on the neuronal network oscillations in rat hippocampal CA3 area. Sci Rep 2015; 5:9493. [PMID: 25810076 PMCID: PMC4374140 DOI: 10.1038/srep09493] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/05/2015] [Indexed: 11/28/2022] Open
Abstract
γ oscillations are associated with higher brain functions such as memory, perception and consciousness. Disruption of γ oscillations occur in various neuro-psychological disorders such as schizophrenia. Nicotinic acetylcholine receptors (nAChR) are highly expressed in the hippocampus, however, little is known about the role on hippocampal persistent γ oscillation. This study examined the effects of nicotine and selective nAChR agonists and antagonists on kainate-induced persistent γ oscillation in rat hippocampal slices. Nicotine enhanced γ oscillation at concentrations of 0.1–10 μM, but reduced it at a higher concentration of 100 μM. The enhancement on γ oscillation can be best mimicked by co-application of α4β2- and α7- nAChR agonist and reduced by a combination of nAChR antagonists, DhβE and MLA. However, these nAChR antagonists failed to block the suppressing role of nicotine on γ. Furthermore, we found that the NMDA receptor antagonist D-AP5 completely blocked the effect of nicotine. These results demonstrate that nicotine modulates γ oscillations via α7 and α4β2 nAChR as well as NMDA activation, suggesting that nAChR activation may have a therapeutic role for the clinical disorder such as schizophrenia, which is known to have impaired γ oscillation and hypo-NMDA receptor function.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Henan Province, Henan PR. China
| | - Zhan Wang
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Henan Province, Henan PR. China
| | - Jiangang Wang
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Henan Province, Henan PR. China
| | - Yali Wang
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Henan Province, Henan PR. China
| | - Zaineb Henderson
- Institute of Membrane and System Biology, University of Leeds, Leeds, England
| | - Xiaofang Wang
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Henan Province, Henan PR. China
| | - Xi Zhang
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Henan Province, Henan PR. China
| | - Jinggui Song
- Psychiatric Hospital of Henan Province, 2nd Affiliated Hospital of Xinxiang Medical University
| | - Chengbiao Lu
- 1] Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Henan Province, Henan PR. China [2] Psychiatric Hospital of Henan Province, 2nd Affiliated Hospital of Xinxiang Medical University
| |
Collapse
|
42
|
Brimblecombe KR, Gracie CJ, Platt NJ, Cragg SJ. Gating of dopamine transmission by calcium and axonal N-, Q-, T- and L-type voltage-gated calcium channels differs between striatal domains. J Physiol 2015; 593:929-46. [PMID: 25533038 DOI: 10.1113/jphysiol.2014.285890] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/17/2014] [Indexed: 01/05/2023] Open
Abstract
KEY POINTS The voltage-gated Ca(2+) channels (VGCCs) that catalyse striatal dopamine transmission are critical to dopamine function and might prime subpopulations of neurons for parkinsonian degeneration. However, the VGCCs that operate on mesostriatal axons are incompletely defined; previous studies encompassed channels on striatal cholinergic interneurons that strongly influence dopamine transmission. We define that multiple types of axonal VGCCs operate that extend beyond classic presynaptic N/P/Q channels to include T- and L-types. We reveal differences in VGCC function between mouse axon types that in humans are vulnerable versus resistant to Parkinson's disease. We show for the first time that this is underpinned by different sensitivity of dopamine transmission to extracellular Ca(2+) and by different spatiotemporal intracellular Ca(2+) microdomains. These data define key principles of how Ca(2+) and VGCCs govern dopamine transmission in the healthy brain and reveal differences between neuron types that might contribute to vulnerability in disease. ABSTRACT The axonal voltage-gated Ca(2+) channels (VGCCs) that catalyse dopamine (DA) transmission are incompletely defined. Yet, they are critical to DA function and might prime subpopulations of DA neurons for parkinsonian degeneration. Previous studies of VGCCs will have encompassed those on striatal cholinergic interneurons, which strongly influence DA transmission. We identify which VGCCs on DA axons govern DA transmission, we determine their dynamic properties and reveal an underlying basis for differences between the caudate putamen (CPu) and nucleus accumbens (NAc). We detected DA release evoked electrically during nicotinic receptor blockade or optogenetically by light activation of channel rhodopsin-expressing DA axons in mouse striatal slices. Subtype-specific VGCC blockers indicated that N-, Q-, T- and L-VGCCs govern DA release in CPu, but in NAc, T and L-channels are relatively silent. The roles of the most dominant channels were inversely frequency-dependent, due to low-pass filtering of DA release by Ca(2+)-dependent relationships between initial release probability and short-term plasticity. Ca(2+) concentration-response curves revealed that differences between CPu and NAc were due to greater underlying Ca(2+) sensitivity of DA transmission from CPu axons. Functions for 'silent' L- and T-channels in NAc could be unmasked by elevating extracellular [Ca(2+)]. Furthermore, we identified a greater coupling between BAPTA-sensitive, fast Ca(2+) transients and DA transmission in CPu axons, and evidence for endogenous fast buffering of Ca(2+) in NAc. These data reveal that a range of VGCCs operate dynamically on DA axons, depending on local driving forces. Furthermore, they reveal dramatic differences in Ca(2+) handling between axonal subpopulations that show different vulnerability to parkinsonian degeneration.
Collapse
Affiliation(s)
- Katherine R Brimblecombe
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
43
|
Brimblecombe KR, Cragg SJ. Ni(2+) affects dopamine uptake which limits suitability as inhibitor of T-type voltage-gated Ca(2+) channels. ACS Chem Neurosci 2015; 6:124-9. [PMID: 25434848 DOI: 10.1021/cn500274g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Neuronal T-type voltage-gated Ca(2+) channels are reported to have physiological roles that include regulation of burst firing, Ca(2+) oscillations, and neurotransmitter release. These roles are often exposed experimentally by blocking T-type channels with micromolar Ni(2+). We used Ni(2+) to explore the role of axonal T-type channels in dopamine (DA) release in mouse striatum, but identified significant off-target effects on DA uptake. Ni(2+) (100 μM) reversibly increased electrically evoked DA release and markedly extended its extracellular lifetime, detected using fast-scan cyclic voltammetry. Prior inhibition of the DA transporter (DAT) by cocaine (5 μM) occluded the facilitatory action of Ni(2+) on DA release and conversely, allowed Ni(2+) to inhibit release, presumably through T-channel inhibition. Ni(2+) further prolonged the timecourse of DA clearance suggesting further inhibition of DA uptake. In summary, Ni(2+) has major effects on DA transmission besides those due to T-channels that likely involve inhibition of the DAT.
Collapse
Affiliation(s)
- Katherine R. Brimblecombe
- Department of Physiology,
Anatomy and Genetics, and ‡Oxford Parkinson’s Disease Centre, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Stephanie J. Cragg
- Department of Physiology,
Anatomy and Genetics, and ‡Oxford Parkinson’s Disease Centre, University of Oxford, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
44
|
Yu H, Seo JB, Jung SR, Koh DS, Hille B. Noradrenaline upregulates T-type calcium channels in rat pinealocytes. J Physiol 2015; 593:887-904. [PMID: 25504572 DOI: 10.1113/jphysiol.2014.284208] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/03/2014] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS The mammalian pineal gland is a neuroendocrine organ that responds to circadian and seasonal rhythms. Its major function is to secrete melatonin as a hormonal night signal in response to nocturnal delivery of noradrenaline from sympathetic neurons. Culturing rat pinealocytes in noradrenaline for 24 h induced a low-voltage activated transient Ca(2+) current whose pharmacology and kinetics corresponded to a CaV3.1 T-type channel. The upregulation of the T-type Ca(2+) current is initiated by β-adrenergic receptors, cyclic AMP and cyclic AMP-dependent protein kinase. Messenger RNA for CaV3.1 T-type channels is significantly elevated by noradrenaline at 8 h and 24 h. The noradrenaline-induced T-type channel mediated an increased Ca(2+) entry and supported modest transient electrical responses to depolarizing stimuli, revealing the potential for circadian regulation of pinealocyte electrical excitability and Ca(2+) signalling. ABSTRACT Our basic hypothesis is that mammalian pinealocytes have cycling electrical excitability and Ca(2+) signalling that may contribute to the circadian rhythm of pineal melatonin secretion. This study asked whether the functional expression of voltage-gated Ca(2+) channels (CaV channels) in rat pinealocytes is changed by culturing them in noradrenaline (NA) as a surrogate for the night signal. Channel activity was assayed as ionic currents under patch clamp and as optical signals from a Ca(2+)-sensitive dye. Channel mRNAs were assayed by quantitative polymerase chain reaction. Cultured without NA, pinealocytes showed only non-inactivating L-type dihydropyridine-sensitive Ca(2+) current. After 24 h in NA, additional low-voltage activated transient Ca(2+) current developed whose pharmacology and kinetics corresponded to a T-type CaV3.1 channel. This change was initiated by β-adrenergic receptors, cyclic AMP and protein kinase A as revealed by pharmacological experiments. mRNA for CaV3.1 T-type channels became significantly elevated, but mRNA for another T-type channel and for the major L-type channel did not change. After only 8 h of NA treatment, the CaV3.1 mRNA was already elevated, but the transient Ca(2+) current was not. Even a 16 h wait without NA following the 8 h NA treatment induced little additional transient current. However, these cells were somehow primed to make transient current as a second NA exposure for only 60 min sufficed to induce large T-type currents. The NA-induced T-type channel mediated an increased Ca(2+) entry during short depolarizations and supported modest transient electrical responses to depolarizing stimuli. Such experiments reveal the potential for circadian regulation of excitability.
Collapse
Affiliation(s)
- Haijie Yu
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | | | | | | | | |
Collapse
|
45
|
Giovannini MG, Lana D, Pepeu G. The integrated role of ACh, ERK and mTOR in the mechanisms of hippocampal inhibitory avoidance memory. Neurobiol Learn Mem 2015; 119:18-33. [PMID: 25595880 DOI: 10.1016/j.nlm.2014.12.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 11/28/2022]
Abstract
The purpose of this review is to summarize the present knowledge on the interplay among the cholinergic system, Extracellular signal-Regulated Kinase (ERK) and Mammalian Target of Rapamycin (mTOR) pathways in the development of short and long term memories during the acquisition and recall of the step-down inhibitory avoidance in the hippocampus. The step-down inhibitory avoidance is a form of associative learning that is acquired in a relatively simple one-trial test through several sensorial inputs. Inhibitory avoidance depends on the integrated activity of hippocampal CA1 and other brain areas. Recall can be performed at different times after acquisition, thus allowing for the study of both short and long term memory. Among the many neurotransmitter systems involved, the cholinergic neurons that originate in the basal forebrain and project to the hippocampus are of crucial importance in inhibitory avoidance processes. Acetylcholine released from cholinergic fibers during acquisition and/or recall of behavioural tasks activates muscarinic and nicotinic acetylcholine receptors and brings about a long-lasting potentiation of the postsynaptic membrane followed by downstream activation of intracellular pathway (ERK, among others) that create conditions favourable for neuronal plasticity. ERK appears to be salient not only in long term memory, but also in the molecular mechanisms underlying short term memory formation in the hippocampus. Since ERK can function as a biochemical coincidence detector in response to extracellular signals in neurons, the activation of ERK-dependent downstream effectors is determined, in part, by the duration of ERK phosphorylation itself. Long term memories require protein synthesis, that in the synapto-dendritic compartment represents a direct mechanism that can produce rapid changes in protein content in response to synaptic activity. mTOR in the brain regulates protein translation in response to neuronal activity, thereby modulating synaptic plasticity and long term memory formation. Some studies demonstrate a complex interplay among the cholinergic system, ERK and mTOR. It has been shown that co-activation of muscarinic acetylcholine receptors and β-adrenergic receptors facilitates the conversion of short term to long term synaptic plasticity through an ERK- and mTOR-dependent mechanism which requires translation initiation. It seems therefore that the complex interplay among the cholinergic system, ERK and mTOR is crucial in the development of new inhibitory avoidance memories in the hippocampus.
Collapse
Affiliation(s)
- Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| | - Giancarlo Pepeu
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| |
Collapse
|
46
|
Gray DT, Engle JR, Recanzone GH. Age-related neurochemical changes in the rhesus macaque cochlear nucleus. J Comp Neurol 2014; 522:1527-41. [PMID: 24127432 DOI: 10.1002/cne.23479] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/28/2013] [Accepted: 09/25/2013] [Indexed: 11/07/2022]
Abstract
Neurochemical changes in the expression of various proteins within the central auditory system have been associated with natural aging. These changes may compensate in part for the loss of auditory sensitivity arising from two phenomena of the aging auditory system: cochlear histopathologies and increased excitability of central auditory neurons. Recent studies in the macaque monkey have revealed age-related changes in the density of nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase (NADPHd) and parvalbumin (PV)-positive cells within the inferior colliculus and superior olivary complex. The cochlear nucleus (CN), which is the first central auditory nucleus, remains unstudied. Since the CN participates in the generation of the auditory brainstem response (ABR) and receives direct innervation from the cochlea, it serves as an ideal nucleus to compare the relationship between these neurochemical changes and the physiological and peripheral changes of the aging auditory system. We used stereological sampling to calculate the densities of NADPHd and PV reactive neurons within the three subdivisions of the CN in middle-aged and aged rhesus macaques. Regression analyses of these values with ABR properties and cochlear histopathologies revealed relationships between these cell types and the changing characteristics of the aging auditory system. Our results indicate that NADPHd expression does change with age in a specific subdivision of the CN, but PV does not. Conversely, PV expression correlated with ABR amplitudes and outer hair cell loss in the cochlea, but NADPHd did not. These results indicate that NADPHd and PV may take part in distinct compensatory efforts of the aging auditory system.
Collapse
Affiliation(s)
- Daniel T Gray
- Center for Neuroscience, University of California at Davis, Davis, CA, 95616
| | | | | |
Collapse
|
47
|
Molas S, Gener T, Güell J, Martín M, Ballesteros-Yáñez I, Sanchez-Vives MV, Dierssen M. Hippocampal changes produced by overexpression of the human CHRNA5/A3/B4 gene cluster may underlie cognitive deficits rescued by nicotine in transgenic mice. Acta Neuropathol Commun 2014; 2:147. [PMID: 25384568 PMCID: PMC4236452 DOI: 10.1186/s40478-014-0147-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/02/2014] [Indexed: 11/10/2022] Open
Abstract
Addiction involves long-lasting maladaptive changes including development of disruptive drug-stimuli associations. Nicotine-induced neuroplasticity underlies the development of tobacco addiction but also, in regions such as the hippocampus, the ability of this drug to enhance cognitive capabilities. Here, we propose that the genetic locus of susceptibility to nicotine addiction, the CHRNA5/A3/B4 gene cluster, encoding the α5, α3 and β4 subunits of the nicotinic acetylcholine receptors (nAChRs), may influence nicotine-induced neuroadaptations. We have used transgenic mice overexpressing the human cluster (TgCHRNA5/A3/B4) to investigate hippocampal structure and function in genetically susceptible individuals. TgCHRNA5/A3/B4 mice presented a marked reduction in the dendrite complexity of CA1 hippocampal pyramidal neurons along with an increased dendritic spine density. In addition, TgCHRNA5/A3/B4 exhibited increased VGLUT1/VGAT ratio in the CA1 region, suggesting an excitatory/inhibitory imbalance. These hippocampal alterations were accompanied by a significant impairment in short-term novelty recognition memory. Interestingly, chronic infusion of nicotine (3.25 mg/kg/d for 7 d) was able to rescue the reduced dendritic complexity, the excitatory/inhibitory imbalance and the cognitive impairment in TgCHRNA5/A3/B4. Our results suggest that chronic nicotine treatment may represent a compensatory strategy in individuals with altered expression of the CHRNA5/A3/B4 region.
Collapse
|
48
|
McQuiston AR. Acetylcholine release and inhibitory interneuron activity in hippocampal CA1. Front Synaptic Neurosci 2014; 6:20. [PMID: 25278874 PMCID: PMC4165287 DOI: 10.3389/fnsyn.2014.00020] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/29/2014] [Indexed: 11/17/2022] Open
Abstract
Acetylcholine release in the central nervous system (CNS) has an important role in attention, recall, and memory formation. One region influenced by acetylcholine is the hippocampus, which receives inputs from the medial septum and diagonal band of Broca complex (MS/DBB). Release of acetylcholine from the MS/DBB can directly affect several elements of the hippocampus including glutamatergic and GABAergic neurons, presynaptic terminals, postsynaptic receptors, and astrocytes. A significant portion of acetylcholine's effect likely results from the modulation of GABAergic inhibitory interneurons, which have crucial roles in controlling excitatory inputs, synaptic integration, rhythmic coordination of principal neurons, and outputs in the hippocampus. Acetylcholine affects interneuron function in large part by altering their membrane potential via muscarinic and nicotinic receptor activation. This minireview describes recent data from mouse hippocampus that investigated changes in CA1 interneuron membrane potentials following acetylcholine release. The interneuron subtypes affected, the receptor subtypes activated, and the potential outcome on hippocampal CA1 network function is discussed.
Collapse
Affiliation(s)
- A Rory McQuiston
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Richmond, VA, USA
| |
Collapse
|
49
|
Alger BE, Nagode DA, Tang AH. Muscarinic cholinergic receptors modulate inhibitory synaptic rhythms in hippocampus and neocortex. Front Synaptic Neurosci 2014; 6:18. [PMID: 25249974 PMCID: PMC4155787 DOI: 10.3389/fnsyn.2014.00018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/29/2014] [Indexed: 01/08/2023] Open
Abstract
Activation of muscarinic acetylcholine (ACh) receptors (mAChRs) powerfully affects many neuronal properties as well as numerous cognitive behaviors. Small neuronal circuits constitute an intermediate level of organization between neurons and behaviors, and mAChRs affect interactions among cells that compose these circuits. Circuit activity is often assessed by extracellular recordings of the local field potentials (LFPs), which are analogous to in vivo EEGs, generated by coordinated neuronal interactions. Coherent forms of physiologically relevant circuit activity manifest themselves as rhythmic oscillations in the LFPs. Frequencies of rhythmic oscillations that are most closely associated with animal behavior are in the range of 4–80 Hz, which is subdivided into theta (4–14 Hz), beta (15–29 Hz) and gamma (30–80 Hz) bands. Activation of mAChRs triggers rhythmic oscillations in these bands in the hippocampus and neocortex. Inhibitory responses mediated by GABAergic interneurons constitute a prominent feature of these oscillations, and indeed, appear to be their major underlying factor in many cases. An important issue is which interneurons are involved in rhythm generation. Besides affecting cellular and network properties directly, mAChRs can cause the mobilization of endogenous cannabinoids (endocannabinoids, eCBs) that, by acting on the principal cannabinoid receptor of the brain, CB1R, regulate the release of certain neurotransmitters, including GABA. CB1Rs are heavily expressed on only a subset of interneurons and, at lower density, on glutamatergic neurons. Exogenous cannabinoids typically disrupt oscillations in the theta (θ) and gamma (γ) ranges, which probably contributes to the behavioral effects of these drugs. It is important to understand how neuronal circuit activity is affected by mAChR-driven eCBs, as this information will provide deeper insight into the actions of ACh itself, as well as into the effects of eCBs and exogenous cannabinoids in animal behavior. After covering some basic aspects of the mAChR system, this review will focus on recent findings concerning the mechanisms and circuitry that generate θ and γ rhythms in hippocampus and neocortex. The ability of optogenetic methods to probe the many roles of ACh in rhythm generation is highlighted.
Collapse
Affiliation(s)
- Bradley E Alger
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD, USA ; Department of Psychiatry, University of Maryland School of Medicine Baltimore, MD, USA ; Program in Neuroscience, Graduate School, University of Maryland Baltimore Baltimore, MD, USA
| | - Daniel A Nagode
- Department of Biology, University of Maryland College Park College Park, MD, USA
| | - Ai-Hui Tang
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD, USA
| |
Collapse
|
50
|
Acetylcholine controls GABA-, glutamate-, and glycine-dependent giant depolarizing potentials that govern spontaneous motoneuron activity at the onset of synaptogenesis in the mouse embryonic spinal cord. J Neurosci 2014; 34:6389-404. [PMID: 24790209 DOI: 10.1523/jneurosci.2664-13.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A remarkable feature of early neuronal networks is their endogenous ability to generate spontaneous rhythmic electrical activity independently of any external stimuli. In the mouse embryonic SC, this activity starts at an embryonic age of ∼ 12 d and is characterized by bursts of action potentials recurring every 2-3 min. Although these bursts have been extensively studied using extracellular recordings and are known to play an important role in motoneuron (MN) maturation, the mechanisms driving MN activity at the onset of synaptogenesis are still poorly understood. Because only cholinergic antagonists are known to abolish early spontaneous activity, it has long been assumed that spinal cord (SC) activity relies on a core network of MNs synchronized via direct cholinergic collaterals. Using a combination of whole-cell patch-clamp recordings and extracellular recordings in E12.5 isolated mouse SC preparations, we found that spontaneous MN activity is driven by recurrent giant depolarizing potentials. Our analysis reveals that these giant depolarizing potentials are mediated by the activation of GABA, glutamate, and glycine receptors. We did not detect direct nAChR activation evoked by ACh application on MNs, indicating that cholinergic inputs between MNs are not functional at this age. However, we obtained evidence that the cholinergic dependency of early SC activity reflects a presynaptic facilitation of GABA and glutamate synaptic release via nicotinic AChRs. Our study demonstrates that, even in its earliest form, the activity of spinal MNs relies on a refined poly-synaptic network and involves a tight presynaptic cholinergic regulation of both GABAergic and glutamatergic inputs.
Collapse
|