1
|
Wang W, Min J, Luo Q, Gu X, Li M, Liu X. Lysine Acetyltransferase TIP60 Restricts Nerve Injury by Activating IKKβ/SNAP23 Axis-Mediated Autophagosome-Lysosome Fusion in Alzheimer's Disease. CNS Neurosci Ther 2024; 30:e70095. [PMID: 39500626 PMCID: PMC11537769 DOI: 10.1111/cns.70095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/17/2024] [Accepted: 10/07/2024] [Indexed: 11/09/2024] Open
Abstract
OBJECTIVE The hyperphosphorylation of Tau protein is considered an important cause of neuronal degeneration in Alzheimer's disease (AD). The disruption of neuronal histone acetylation homeostasis mediated by Tip60 HAT is a common early event in neurodegenerative diseases, but the deeper regulatory mechanism on β-amyloid peptide (Aβ)-induced neurotoxicity and autophagic function in AD is still unclear. METHODS AD models were established both in APP/PS1 mice and Aβ1-42-treated SH-SY5Y cells. The Morris water maze test (MWM) was performed to examine mouse cognitive function. Neurological damage in the hippocampus was observed by hematoxylin-eosin (H&E), Nissl's, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and NeuN staining. Autophagosome-lysosome fusion was detected by immunohistochemistry, immunofluorescence, and Lyso-Tracker Red staining. Cell viability and apoptosis were evaluated by CCK-8 assay and flow cytometry. The molecular interactions were verified by co-immunoprecipitation (Co-IP), dual luciferase assays, and ChIP detections. The RNA and autophagy-lysosome-related proteins were assessed by Western blot and RT-qPCR. RESULTS TIP60 overexpression improved cognitive deficits and neurological damage and restored the impairment of autophagy-lysosomes fusion in vivo. Similarly, the upregulation of TIP60 in Aβ1-42-treated SH-SY5Y cells suppressed neuronal apoptosis and tau phosphorylation through the activating autophagy-lysosome pathway. Mechanistically, TIP60 activated IKKβ transcription by promoting SOX4 acetylation, thus leading to the translocation of SNAP23 to STX17-contained autophagosomes. Moreover, the protective roles of TIP60 in neuron damage were abolished by the inhibition of SOX4/IKKβ signaling. CONCLUSION Collectively, our results highlighted the potential of the TIP60 target for AD and provided new insights into the mechanisms underlying neuroprotection in this disorder.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neurology, The 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxi ProvinceP.R. China
- Institute of NeuroscienceNanchang UniversityNanchangJiangxi ProvinceP.R. China
- Jiangxi Provincial Clinical Medical Research Center for Neurological DisordersNanchangJiangxi ProvinceP.R. China
| | - Jun Min
- Department of Neurology, The 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxi ProvinceP.R. China
- Institute of NeuroscienceNanchang UniversityNanchangJiangxi ProvinceP.R. China
- Jiangxi Provincial Clinical Medical Research Center for Neurological DisordersNanchangJiangxi ProvinceP.R. China
| | - Qinghua Luo
- Department of Neurology, The 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxi ProvinceP.R. China
- Institute of NeuroscienceNanchang UniversityNanchangJiangxi ProvinceP.R. China
- Jiangxi Provincial Clinical Medical Research Center for Neurological DisordersNanchangJiangxi ProvinceP.R. China
| | - Xunhu Gu
- Department of Neurology, The 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxi ProvinceP.R. China
- Institute of NeuroscienceNanchang UniversityNanchangJiangxi ProvinceP.R. China
- Jiangxi Provincial Clinical Medical Research Center for Neurological DisordersNanchangJiangxi ProvinceP.R. China
| | - Min Li
- Department of Neurology, The 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxi ProvinceP.R. China
- Institute of NeuroscienceNanchang UniversityNanchangJiangxi ProvinceP.R. China
- Jiangxi Provincial Clinical Medical Research Center for Neurological DisordersNanchangJiangxi ProvinceP.R. China
| | - Xu Liu
- Department of Neurology, The 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxi ProvinceP.R. China
- Institute of NeuroscienceNanchang UniversityNanchangJiangxi ProvinceP.R. China
- Jiangxi Provincial Clinical Medical Research Center for Neurological DisordersNanchangJiangxi ProvinceP.R. China
| |
Collapse
|
2
|
Osaki T, Delepine C, Osako Y, Kranz D, Levin A, Nelson C, Fagiolini M, Sur M. Early differential impact of MeCP2 mutations on functional networks in Rett syndrome patient-derived human cerebral organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.10.607464. [PMID: 39149328 PMCID: PMC11326256 DOI: 10.1101/2024.08.10.607464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Human cerebral organoids derived from induced pluripotent stem cells can recapture early developmental processes and reveal changes involving neurodevelopmental disorders. Mutations in the X-linked methyl-CpG binding protein 2 (MECP2) gene are associated with Rett syndrome, and disease severity varies depending on the location and type of mutation. Here, we focused on neuronal activity in Rett syndrome patient-derived organoids, analyzing two types of MeCP2 mutations - a missense mutation (R306C) and a truncating mutation (V247X) - using calcium imaging with three-photon microscopy. Compared to isogenic controls, we found abnormal neuronal activity in Rett organoids and altered network function based on graph theoretic analyses, with V247X mutations impacting functional responses and connectivity more severely than R306C mutations. These changes paralleled EEG data obtained from patients with comparable mutations. Labeling DLX promoter-driven inhibitory neurons demonstrated differences in activity and functional connectivity of inhibitory and excitatory neurons in the two types of mutation. Transcriptomic analyses revealed HDAC2-associated impairment in R306C organoids and decreased GABAA receptor expression in excitatory neurons in V247X organoids. These findings demonstrate mutation-specific mechanisms of vulnerability in Rett syndrome and suggest targeted strategies for their treatment.
Collapse
Affiliation(s)
- Tatsuya Osaki
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chloe Delepine
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yuma Osako
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Devorah Kranz
- Boston Children’s Hospital, Brookline, MA 02445, USA
- Harvard University, Cambridge, MA 02139, USA
| | - April Levin
- Boston Children’s Hospital, Brookline, MA 02445, USA
| | - Charles Nelson
- Boston Children’s Hospital, Brookline, MA 02445, USA
- Harvard University, Cambridge, MA 02139, USA
| | - Michela Fagiolini
- Boston Children’s Hospital, Brookline, MA 02445, USA
- Harvard University, Cambridge, MA 02139, USA
| | - Mriganka Sur
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Basavarajappa BS, Subbanna S. Unlocking the epigenetic symphony: histone acetylation's impact on neurobehavioral change in neurodegenerative disorders. Epigenomics 2024; 16:331-358. [PMID: 38321930 PMCID: PMC10910622 DOI: 10.2217/epi-2023-0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
Recent genomics and epigenetic advances have empowered the exploration of DNA/RNA methylation and histone modifications crucial for gene expression in response to stress, aging and disease. Interest in understanding neuronal plasticity's epigenetic mechanisms, influencing brain rewiring amid development, aging and neurodegenerative disorders, continues to grow. Histone acetylation dysregulation, a commonality in diverse brain disorders, has become a therapeutic focus. Histone acetyltransferases and histone deacetylases have emerged as promising targets for neurodegenerative disorder treatment. This review delves into histone acetylation regulation, potential therapies and future perspectives for disorders like Alzheimer's, Parkinson's and Huntington's. Exploring genetic-environmental interplay through models and studies reveals molecular changes, behavioral insights and early intervention possibilities targeting the epigenome in at-risk individuals.
Collapse
Affiliation(s)
- Balapal S Basavarajappa
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, NY 10032, USA
- Department of Psychiatry, Columbia University Irving Medical Center, NY 10032, USA
- Department of Psychiatry, New York University Langone Medical Center, NY 10016, USA
| | - Shivakumar Subbanna
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| |
Collapse
|
4
|
Feng Q, Lu Y, Zhang R, Li Y, Zhao Z, Zhou H. Identification of differentially expressed exosome proteins in serum as potential biomarkers for cognitive impairments in cerebral small vessel disease. Neurosci Lett 2024; 822:137631. [PMID: 38211879 DOI: 10.1016/j.neulet.2024.137631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND Cognitive impairment arising from cerebral small vessel disease (CSVD) represents a critical subtype of vascular cognitive impairments (VCI) and is the primary cause of vascular dementia. However, identifying reliable clinical and laboratory indicators for this disease remain elusive. We hypothesize that plasma exosome proteins hold the potential to serve as biomarkers for the onset of cognitive dysfunction associated with cerebrovascular diseases. METHODS We employed TMT-based proteomics to discern variations in serum exosome proteomes between individuals with cognitive impairments due to CSVD and healthy volunteers. RESULTS Each group comprised 18 subjects, and through differential expression analysis, we identified 22 down-regulated and 8 up-regulated proteins between the two groups. Our research revealed 30 differentially expressed plasma exosome proteins, including histone, proteasome, clusterin and coagulation factor XIII, in individuals with cognitive impairments caused by CSVD. CONCLUSION The 30 differentially expressed plasma exosome proteins identified in our study are promising as biomarkers for diagnosing cognitive impairments resulting from CSVD. These findings may help us better understand the underlying pathological mechanisms involved in the diseases.
Collapse
Affiliation(s)
- Qian Feng
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yanjing Lu
- Department of Neurology, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Ruyang Zhang
- Department of Neurology, Suzhou Wuzhong People's Hospital, Suzhou, China
| | - Yifan Li
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Zhong Zhao
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.
| | - Hua Zhou
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.
| |
Collapse
|
5
|
Armour EM, Thomas CM, Greco G, Bhatnagar A, Elefant F. Experience-dependent Tip60 nucleocytoplasmic transport is regulated by its NLS/NES sequences for neuroplasticity gene control. Mol Cell Neurosci 2023; 127:103888. [PMID: 37598897 PMCID: PMC11337217 DOI: 10.1016/j.mcn.2023.103888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023] Open
Abstract
Nucleocytoplasmic transport (NCT) in neurons is critical for enabling proteins to enter the nucleus and regulate plasticity genes in response to environmental cues. Such experience-dependent (ED) neural plasticity is central for establishing memory formation and cognitive function and can influence the severity of neurodegenerative disorders like Alzheimer's disease (AD). ED neural plasticity is driven by histone acetylation (HA) mediated epigenetic mechanisms that regulate dynamic activity-dependent gene transcription profiles in response to neuronal stimulation. Yet, how histone acetyltransferases (HATs) respond to extracellular cues in the in vivo brain to drive HA-mediated activity-dependent gene control remains unclear. We previously demonstrated that extracellular stimulation of rat hippocampal neurons in vitro triggers Tip60 HAT nuclear import with concomitant synaptic gene induction. Here, we focus on investigating Tip60 HAT subcellular localization and NCT specifically in neuronal activity-dependent gene control by using the learning and memory mushroom body (MB) region of the Drosophila brain as a powerful in vivo cognitive model system. We used immunohistochemistry (IHC) to compare the subcellular localization of Tip60 HAT in the Drosophila brain under normal conditions and in response to stimulation of fly brain neurons in vivo either by genetically inducing potassium channels activation or by exposure to natural positive ED conditions. Furthermore, we found that both inducible and ED condition-mediated neural induction triggered Tip60 nuclear import with concomitant induction of previously identified Tip60 target genes and that Tip60 levels in both the nucleus and cytoplasm were significantly decreased in our well-characterized Drosophila AD model. Mutagenesis of a putative nuclear localization signal (NLS) sequence and nuclear export signal (NES) sequence that we identified in the Drosophila Tip60 protein revealed that both are functionally required for appropriate Tip60 subcellular localization. Our results support a model by which neuronal stimulation triggers Tip60 NCT via its NLS and NES sequences to promote induction of activity-dependent neuroplasticity gene transcription and that this process may be disrupted in AD.
Collapse
Affiliation(s)
- Ellen M Armour
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
| | - Christina M Thomas
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
| | - Gabrielle Greco
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
| | - Akanksha Bhatnagar
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
| | - Felice Elefant
- Department of Biology, Drexel University, Philadelphia, PA, United States of America.
| |
Collapse
|
6
|
Bahia RK, Hao X, Hassam R, Cseh O, Bozek DA, Luchman HA, Weiss S. Epigenetic and molecular coordination between HDAC2 and SMAD3-SKI regulates essential brain tumour stem cell characteristics. Nat Commun 2023; 14:5051. [PMID: 37598220 PMCID: PMC10439933 DOI: 10.1038/s41467-023-40776-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 08/10/2023] [Indexed: 08/21/2023] Open
Abstract
Histone deacetylases are important epigenetic regulators that have been reported to play essential roles in cancer stem cell functions and are promising therapeutic targets in many cancers including glioblastoma. However, the functionally relevant roles of specific histone deacetylases, in the maintenance of key self-renewal and growth characteristics of brain tumour stem cell (BTSC) sub-populations of glioblastoma, remain to be fully resolved. Here, using pharmacological inhibition and genetic loss and gain of function approaches, we identify HDAC2 as the most relevant histone deacetylase for re-organization of chromatin accessibility resulting in maintenance of BTSC growth and self-renewal properties. Furthermore, its specific interaction with the transforming growth factor-β pathway related proteins, SMAD3 and SKI, is crucial for the maintenance of tumorigenic potential in BTSCs in vitro and in orthotopic xenograft models. Inhibition of HDAC2 activity and disruption of the coordinated mechanisms regulated by the HDAC2-SMAD3-SKI axis are thus promising therapeutic approaches for targeting BTSCs.
Collapse
Affiliation(s)
- Ravinder K Bahia
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Xiaoguang Hao
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Rozina Hassam
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Orsolya Cseh
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Danielle A Bozek
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - H Artee Luchman
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada.
| | - Samuel Weiss
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
7
|
Bhatnagar A, Parmar V, Barbieri N, Bearoff F, Elefant F, Kortagere S. Novel EAAT2 activators improve motor and cognitive impairment in a transgenic model of Huntington's disease. Front Behav Neurosci 2023; 17:1176777. [PMID: 37351153 PMCID: PMC10282606 DOI: 10.3389/fnbeh.2023.1176777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023] Open
Abstract
Introduction Glutamate excitotoxicity is causal in striatal neurodegeneration underlying motor dysfunction and cognitive deficits in Huntington's disease (HD). Excitatory amino acid transporter 2 (EAAT2), the predominant glutamate transporter accounting for >90% of glutamate transport, plays a key role in preventing excitotoxicity by clearing excess glutamate from the intrasynaptic cleft. Accordingly, EAAT2 has emerged as a promising therapeutic target for prevention of neuronal excitotoxicity underlying HD and other neurodegenerative diseases. Methods We have previously designed novel EAAT2 positive allosteric modulator GT951, GTS467, and GTS551, with low nanomolar efficacy in glutamate uptake and favorable pharmacokinetic properties. In this study, we test the neuroprotective abilities of these novel EAAT2 activators in vivo using the robust Drosophila HD transgenic model expressing human huntingtin gene with expanded repeats (Htt128Q). Results All three compounds significantly restored motor function impaired under HD pathology over a wide dose range. Additionally, treatment with all three compounds significantly improved HD-associated olfactory associative learning and short-term memory defects, while GT951 and GTS551 also improved middle-term memory in low-performing group. Similarly, treatment with GT951 and GTS551 partially protected against early mortality observed in our HD model. Further, treatment with all three EAAT2 activators induced epigenetic expression of EAAT2 Drosophila homolog and several cognition-associated genes. Conclusion Together, these results highlight the efficacy of GT951, GTS467 and GTS551 in treating motor and cognitive impairments under HD pathology and support their development for treatment of HD.
Collapse
Affiliation(s)
- Akanksha Bhatnagar
- Department of Biology, Papadakis Integrated Sciences Building, Drexel University, Philadelphia, PA, United States
| | - Visha Parmar
- Department of Biology, Papadakis Integrated Sciences Building, Drexel University, Philadelphia, PA, United States
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Nicholas Barbieri
- Department of Biology, Papadakis Integrated Sciences Building, Drexel University, Philadelphia, PA, United States
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Frank Bearoff
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Felice Elefant
- Department of Biology, Papadakis Integrated Sciences Building, Drexel University, Philadelphia, PA, United States
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
8
|
Bhatnagar A, Krick K, Karisetty BC, Armour EM, Heller EA, Elefant F. Tip60's Novel RNA-Binding Function Modulates Alternative Splicing of Pre-mRNA Targets Implicated in Alzheimer's Disease. J Neurosci 2023; 43:2398-2423. [PMID: 36849418 PMCID: PMC10072303 DOI: 10.1523/jneurosci.2331-22.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
The severity of Alzheimer's disease (AD) progression involves a complex interplay of genetics, age, and environmental factors orchestrated by histone acetyltransferase (HAT)-mediated neuroepigenetic mechanisms. While disruption of Tip60 HAT action in neural gene control is implicated in AD, alternative mechanisms underlying Tip60 function remain unexplored. Here, we report a novel RNA binding function for Tip60 in addition to its HAT function. We show that Tip60 preferentially interacts with pre-mRNAs emanating from its chromatin neural gene targets in the Drosophila brain and this RNA binding function is conserved in human hippocampus and disrupted in Drosophila brains that model AD pathology and in AD patient hippocampus of either sex. Since RNA splicing occurs co-transcriptionally and alternative splicing (AS) defects are implicated in AD, we investigated whether Tip60-RNA targeting modulates splicing decisions and whether this function is altered in AD. Replicate multivariate analysis of transcript splicing (rMATS) analysis of RNA-Seq datasets from wild-type and AD fly brains revealed a multitude of mammalian-like AS defects. Strikingly, over half of these altered RNAs are identified as bona-fide Tip60-RNA targets that are enriched for in the AD-gene curated database, with some of these AS alterations prevented against by increasing Tip60 in the fly brain. Further, human orthologs of several Tip60-modulated splicing genes in Drosophila are well characterized aberrantly spliced genes in human AD brains, implicating disruption of Tip60's splicing function in AD pathogenesis. Our results support a novel RNA interaction and splicing regulatory function for Tip60 that may underly AS impairments that hallmark AD etiology.SIGNIFICANCE STATEMENT Alzheimer's disease (AD) has recently emerged as a hotbed for RNA alternative splicing (AS) defects that alter protein function in the brain yet causes remain unclear. Although recent findings suggest convergence of epigenetics with co-transcriptional AS, whether epigenetic dysregulation in AD pathology underlies AS defects remains unknown. Here, we identify a novel RNA interaction and splicing regulatory function for Tip60 histone acetyltransferase (HAT) that is disrupted in Drosophila brains modeling AD pathology and in human AD hippocampus. Importantly, mammalian orthologs of several Tip60-modulated splicing genes in Drosophila are well characterized aberrantly spliced genes in human AD brain. We propose that Tip60-mediated AS modulation is a conserved critical posttranscriptional step that may underlie AS defects now characterized as hallmarks of AD.
Collapse
Affiliation(s)
- Akanksha Bhatnagar
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104
| | - Keegan Krick
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | | - Ellen M Armour
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104
| | - Elizabeth A Heller
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Felice Elefant
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104
| |
Collapse
|
9
|
Kakoty V, Kc S, Kumari S, Yang CH, Dubey SK, Sahebkar A, Kesharwani P, Taliyan R. Brain insulin resistance linked Alzheimer's and Parkinson's disease pathology: An undying implication of epigenetic and autophagy modulation. Inflammopharmacology 2023; 31:699-716. [PMID: 36952096 DOI: 10.1007/s10787-023-01187-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/25/2023] [Indexed: 03/24/2023]
Abstract
In metabolic syndrome, dysregulated signalling activity of the insulin receptor pathway in the brain due to persistent insulin resistance (IR) condition in the periphery may lead to brain IR (BIR) development. BIR causes an upsurge in the activity of glycogen synthase kinase-3 beta, increased amyloid beta (Aβ) accumulation, hyperphosphorylation of tau, aggravated formation of Aβ oligomers and simultaneously neurofibrillary tangle formation, all of which are believed to be direct contributors in Alzheimer's Disease (AD) pathology. Likewise, for Parkinson's Disease (PD), BIR is associated with alpha-synuclein alterations, dopamine loss in brain areas which ultimately succumbs towards the appearance of classical motor symptoms corresponding to the typical PD phenotype. Modulation of the autophagy process for clearing misfolded proteins and alteration in histone proteins to alleviate disease progression in BIR-linked AD and PD have recently evolved as a research hotspot, as the majority of the autophagy-related proteins are believed to be regulated by histone posttranslational modifications. Hence, this review will provide a timely update on the possible mechanism(s) converging towards BIR induce AD and PD. Further, emphasis on the potential epigenetic regulation of autophagy that can be effectively targeted for devising a complete therapeutic cure for BIR-induced AD and PD will also be reviewed.
Collapse
Affiliation(s)
- Violina Kakoty
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India, Jalandhar-Delhi G.T Road, Phagwara
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani, Rajasthan, India
| | - Sarathlal Kc
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani, Rajasthan, India
- Department of Non-Communicable Disease, Translational Health Science and Technology Institute, Faridabad, India
| | - Shobha Kumari
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani, Rajasthan, India
| | - Chih-Hao Yang
- Department of Pharmacology, Taipei Medical University, Taipei, Taiwan
| | - Sunil Kumar Dubey
- Medical Research, R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani, Rajasthan, India.
| |
Collapse
|
10
|
Lazarev VF, Dutysheva EA, Kanunikov IE, Guzhova IV, Margulis BA. Protein Interactome of Amyloid-β as a Therapeutic Target. Pharmaceuticals (Basel) 2023; 16:312. [PMID: 37259455 PMCID: PMC9965366 DOI: 10.3390/ph16020312] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 04/12/2024] Open
Abstract
The amyloid concept of Alzheimer's disease (AD) assumes the β-amyloid peptide (Aβ) as the main pathogenic factor, which injures neural and other brain cells, causing their malfunction and death. Although Aβ has been documented to exert its cytotoxic effect in a solitary manner, there is much evidence to claim that its toxicity can be modulated by other proteins. The list of such Aβ co-factors or interactors includes tau, APOE, transthyretin, and others. These molecules interact with the peptide and affect the ability of Aβ to form oligomers or aggregates, modulating its toxicity. Thus, the list of potential substances able to reduce the harmful effects of the peptide should include ones that can prevent the pathogenic interactions by specifically binding Aβ and/or its partners. In the present review, we discuss the data on Aβ-based complexes in AD pathogenesis and on the compounds directly targeting Aβ or the destructors of its complexes with other polypeptides.
Collapse
Affiliation(s)
- Vladimir F. Lazarev
- Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Elizaveta A. Dutysheva
- Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Igor E. Kanunikov
- Biological Faculty, St. Petersburg State University, 199034 Saint Petersburg, Russia
| | - Irina V. Guzhova
- Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Boris A. Margulis
- Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| |
Collapse
|
11
|
Tominaga K, Sakashita E, Kasashima K, Kuroiwa K, Nagao Y, Iwamori N, Endo H. Tip60/KAT5 Histone Acetyltransferase Is Required for Maintenance and Neurogenesis of Embryonic Neural Stem Cells. Int J Mol Sci 2023; 24:ijms24032113. [PMID: 36768434 PMCID: PMC9916716 DOI: 10.3390/ijms24032113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Epigenetic regulation via epigenetic factors in collaboration with tissue-specific transcription factors is curtail for establishing functional organ systems during development. Brain development is tightly regulated by epigenetic factors, which are coordinately activated or inactivated during processes, and their dysregulation is linked to brain abnormalities and intellectual disability. However, the precise mechanism of epigenetic regulation in brain development and neurogenesis remains largely unknown. Here, we show that Tip60/KAT5 deletion in neural stem/progenitor cells (NSCs) in mice results in multiple abnormalities of brain development. Tip60-deficient embryonic brain led to microcephaly, and proliferating cells in the developing brain were reduced by Tip60 deficiency. In addition, neural differentiation and neuronal migration were severely affected in Tip60-deficient brains. Following neurogenesis in developing brains, gliogenesis started from the earlier stage of development in Tip60-deficient brains, indicating that Tip60 is involved in switching from neurogenesis to gliogenesis during brain development. It was also confirmed in vitro that poor neurosphere formation, proliferation defects, neural differentiation defects, and accelerated astrocytic differentiation in mutant NSCs are derived from Tip60-deficient embryonic brains. This study uncovers the critical role of Tip60 in brain development and NSC maintenance and function in vivo and in vitro.
Collapse
Affiliation(s)
- Kaoru Tominaga
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
- Correspondence: (K.T.); (N.I.)
| | - Eiji Sakashita
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
| | - Katsumi Kasashima
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
| | - Kenji Kuroiwa
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
| | - Yasumitsu Nagao
- Center for Experimental Medicine, Jichi Medical University, Tochigi 321-0498, Japan
| | - Naoki Iwamori
- Department of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence: (K.T.); (N.I.)
| | - Hitoshi Endo
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
| |
Collapse
|
12
|
Kocpinar EF, Baltaci NG, Akkemik E, Budak H. Depletion of Tip60/Kat5 affects the hepatic antioxidant system in mice. J Cell Biochem 2023; 124:103-117. [PMID: 36377816 DOI: 10.1002/jcb.30348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/05/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022]
Abstract
Tat-interactive protein 60 kDa (TIP60, also known as lysine acetyltransferase 5 [KAT5]) is a member of the MYST protein family with histone acetyltransferase activity. Recent studies have reported that TIP60 has multiple functions in many signal transduction mechanisms, especially p53-mediated apoptosis. Although the activation of apoptosis signaling pathways requires the presence of cellular reactive oxygen species (ROS) at a certain level, an imbalance between the production and consumption of ROS in cells results in oxidative stress (OS). In this study, we investigated for the first time how the absence of the Tip60 gene in the liver affects gene expression, enzyme activity, and protein expression of the hepatic antioxidant members localized in the cytoplasm, including superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), and glutathione S-transferase (GST). First, we successfully generated liver-specific Tip60 knockout mice (mutants) using Cre/LoxP recombination. The reduced glutathione level and nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) expression, a marker of OS, increased significantly in the Tip60 mutant liver. Gene expression, activity, and protein expression of the enzymatic antioxidant system, including SOD, CAT, GR, GPx, and GST were investigated in mutants and control groups. Despite a significant correlation between the gene, enzyme activity, and protein content for CAT and GR, this was not true for SOD and GPx. The overall results suggest that TIP60 acts on the hepatic antioxidant system both at the gene and protein levels, but the actual effect of the deletion of Tip60 is observed at the protein level, especially for SOD and GPx.
Collapse
Affiliation(s)
- Enver Fehim Kocpinar
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, Erzurum, Türkiye.,Department of Medical Laboratory Techniques, Vocational School of Health Services, Muş Alparslan University, Mus, Türkiye
| | - Nurdan Gonul Baltaci
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, Erzurum, Türkiye
| | - Ebru Akkemik
- Department of Engineering, Food Engineering, Siirt University, Siirt, Türkiye
| | - Harun Budak
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, Erzurum, Türkiye.,Department of Genes and Behavior, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
13
|
Zhao J, Huai J. Role of primary aging hallmarks in Alzheimer´s disease. Theranostics 2023; 13:197-230. [PMID: 36593969 PMCID: PMC9800733 DOI: 10.7150/thno.79535] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, which severely threatens the health of the elderly and causes significant economic and social burdens. The causes of AD are complex and include heritable but mostly aging-related factors. The primary aging hallmarks include genomic instability, telomere wear, epigenetic changes, and loss of protein stability, which play a dominant role in the aging process. Although AD is closely associated with the aging process, the underlying mechanisms involved in AD pathogenesis have not been well characterized. This review summarizes the available literature about primary aging hallmarks and their roles in AD pathogenesis. By analyzing published literature, we attempted to uncover the possible mechanisms of aberrant epigenetic markers with related enzymes, transcription factors, and loss of proteostasis in AD. In particular, the importance of oxidative stress-induced DNA methylation and DNA methylation-directed histone modifications and proteostasis are highlighted. A molecular network of gene regulatory elements that undergoes a dynamic change with age may underlie age-dependent AD pathogenesis, and can be used as a new drug target to treat AD.
Collapse
|
14
|
Ortiz-Rodríguez MA, Martínez-Salazar MF, Antunez-Bautista PK, Jiménez-Osorio AS. Strategies for the study of neuroepigenetics and aging with a translational approach. AGING AND HEALTH RESEARCH 2023. [DOI: 10.1016/j.ahr.2023.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
15
|
Janas JA, Zhang L, Luu JH, Demeter J, Meng L, Marro SG, Mall M, Mooney NA, Schaukowitch K, Ng YH, Yang N, Huang Y, Neumayer G, Gozani O, Elias JE, Jackson PK, Wernig M. Tip60-mediated H2A.Z acetylation promotes neuronal fate specification and bivalent gene activation. Mol Cell 2022; 82:4627-4646.e14. [PMID: 36417913 PMCID: PMC9779922 DOI: 10.1016/j.molcel.2022.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/28/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022]
Abstract
Cell lineage specification is accomplished by a concerted action of chromatin remodeling and tissue-specific transcription factors. However, the mechanisms that induce and maintain appropriate lineage-specific gene expression remain elusive. Here, we used an unbiased proteomics approach to characterize chromatin regulators that mediate the induction of neuronal cell fate. We found that Tip60 acetyltransferase is essential to establish neuronal cell identity partly via acetylation of the histone variant H2A.Z. Despite its tight correlation with gene expression and active chromatin, loss of H2A.Z acetylation had little effect on chromatin accessibility or transcription. Instead, loss of Tip60 and acetyl-H2A.Z interfered with H3K4me3 deposition and activation of a unique subset of silent, lineage-restricted genes characterized by a bivalent chromatin configuration at their promoters. Altogether, our results illuminate the mechanisms underlying bivalent chromatin activation and reveal that H2A.Z acetylation regulates neuronal fate specification by establishing epigenetic competence for bivalent gene activation and cell lineage transition.
Collapse
Affiliation(s)
- Justyna A Janas
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lichao Zhang
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jacklyn H Luu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Janos Demeter
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lingjun Meng
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Samuele G Marro
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Moritz Mall
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nancie A Mooney
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Katie Schaukowitch
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yi Han Ng
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nan Yang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yuhao Huang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gernot Neumayer
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Joshua E Elias
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peter K Jackson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marius Wernig
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
16
|
HDAC10 Inhibits Cervical Cancer Progression through Downregulating the HDAC10-microRNA-223-EPB41L3 Axis. JOURNAL OF ONCOLOGY 2022; 2022:8092751. [PMID: 35075362 PMCID: PMC8783137 DOI: 10.1155/2022/8092751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/26/2021] [Accepted: 12/04/2021] [Indexed: 11/25/2022]
Abstract
Background Although the tumorigenesis of cervical cancer (CC) has been widely investigated and recognized, the study of the systematic impact of histone deacetylase 10 (HDAC10), microRNA, and downstream molecular mechanisms in CC is still limited. Herein, cervical cancer, precancer lesions, and normal cervical tissues were collected to test the expression level of HDAC10, miR-223, and EPB41L3. The mechanism of HDAC10, miR-223, and EPB41L3 was interpreted in cervical cancer cells after HDAC10, miR-223, or EPB41L3 expression was altered. Results HDAC10 was poorly expressed in cervical cancer and precancer lesions, while miR-223 was highly expressed in cervical cancer. HDAC10 bound to miR-223, and miR-223 targeted EPB41L3. HDAC10 depressed the invasion property and tumorigenesis of cervical cancer via downregulating miR-223 and subsequently targeting EPB41L3. Conclusion The study clarifies that HDAC10 inhibits cervical cancer by downregulating miR-223 and subsequently targeting EPB41L3 expression, which might provide a new insight for management upon cervical cancer and precancer lesions.
Collapse
|
17
|
Kumar R, Jain V, Kushwah N, Dheer A, Mishra KP, Prasad D, Singh SB. HDAC inhibition prevents hypobaric hypoxia-induced spatial memory impairment through PΙ3K/GSK3β/CREB pathway. J Cell Physiol 2021; 236:6754-6771. [PMID: 33788269 DOI: 10.1002/jcp.30337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
Hypobaric hypoxia at higher altitudes usually impairs cognitive function. Previous studies suggested that epigenetic modifications are the culprits for this condition. Here, we set out to determine how hypobaric hypoxia mediates epigenetic modifications and how this condition worsens neurodegeneration and memory loss in rats. In the current study, different duration of hypobaric hypoxia exposure showed a discrete pattern of histone acetyltransferases and histone deacetylases (HDACs) gene expression in the hippocampus when compared with control rat brains. The level of acetylation sites in histone H2A, H3 and H4 was significantly decreased under hypobaric hypoxia exposure compared to the control rat's hippocampus. Additionally, inhibiting the HDAC family with sodium butyrate administration (1.2 g/kg body weight) attenuated neurodegeneration and memory loss in hypobaric hypoxia-exposed rats. Moreover, histone acetylation increased at the promoter regions of brain-derived neurotrophic factor (BDNF); thereby its protein expression was enhanced significantly in hypobaric hypoxia exposed rats treated with HDAC inhibitor compared with hypoxic rats. Thus, BDNF expression upregulated cAMP-response element binding protein (CREB) phosphorylation by stimulation of PI3K/GSK3β/CREB axis, which counteracts hypobaric hypoxia-induced spatial memory impairment. In conclusion, these results suggested that sodium butyrate is a novel therapeutic agent for the treatment of spatial memory loss associated with hypobaric hypoxia, and also further studies are warranted to explore specific HDAC inhibitors in this condition.
Collapse
Affiliation(s)
- Rahul Kumar
- Neurobiology Division, Defence Institute of Physiology and Allied Science (DIPAS), DRDO, Timarpur, New Delhi, India
| | - Vishal Jain
- Neurophysiology Division, Defence Institute of Physiology and Allied Science (DIPAS), DRDO, Timarpur, New Delhi, India
| | - Neetu Kushwah
- Neurobiology Division, Defence Institute of Physiology and Allied Science (DIPAS), DRDO, Timarpur, New Delhi, India
| | - Aastha Dheer
- Neurobiology Division, Defence Institute of Physiology and Allied Science (DIPAS), DRDO, Timarpur, New Delhi, India
| | | | - Dipti Prasad
- Neurobiology Division, Defence Institute of Physiology and Allied Science (DIPAS), DRDO, Timarpur, New Delhi, India
| | - Shashi Bala Singh
- National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| |
Collapse
|
18
|
Abstract
Neuroepigenetics, a new branch of epigenetics, plays an important role in the regulation of gene expression. Neuroepigenetics is associated with holistic neuronal function and helps in formation and maintenance of memory and learning processes. This includes neurodevelopment and neurodegenerative defects in which histone modification enzymes appear to play a crucial role. These modifications, carried out by acetyltransferases and deacetylases, regulate biologic and cellular processes such as apoptosis and autophagy, inflammatory response, mitochondrial dysfunction, cell-cycle progression and oxidative stress. Alterations in acetylation status of histone as well as non-histone substrates lead to transcriptional deregulation. Histone deacetylase decreases acetylation status and causes transcriptional repression of regulatory genes involved in neural plasticity, synaptogenesis, synaptic and neural plasticity, cognition and memory, and neural differentiation. Transcriptional deactivation in the brain results in development of neurodevelopmental and neurodegenerative disorders. Mounting evidence implicates histone deacetylase inhibitors as potential therapeutic targets to combat neurologic disorders. Recent studies have targeted naturally-occurring biomolecules and micro-RNAs to improve cognitive defects and memory. Multi-target drug ligands targeting HDAC have been developed and used in cell-culture and animal-models of neurologic disorders to ameliorate synaptic and cognitive dysfunction. Herein, we focus on the implications of histone deacetylase enzymes in neuropathology, their regulation of brain function and plausible involvement in the pathogenesis of neurologic defects.
Collapse
|
19
|
Beaver M, Karisetty BC, Zhang H, Bhatnagar A, Armour E, Parmar V, Brown R, Xiang M, Elefant F. Chromatin and transcriptomic profiling uncover dysregulation of the Tip60 HAT/HDAC2 epigenomic landscape in the neurodegenerative brain. Epigenetics 2021; 17:786-807. [PMID: 34369292 PMCID: PMC9336495 DOI: 10.1080/15592294.2021.1959742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Disruption of histone acetylation-mediated gene control is a critical step in Alzheimer’s Disease (AD), yet chromatin analysis of antagonistic histone acetyltransferases (HATs) and histone deacetylases (HDACs) causing these alterations remains uncharacterized. We report the first Tip60 HAT versus HDAC2 chromatin (ChIP-seq) and transcriptional (RNA-seq) profiling study in Drosophila melanogaster brains that model early human AD. We find Tip60 and HDAC2 predominantly recruited to identical neuronal genes. Moreover, AD brains exhibit robust genome-wide early alterations that include enhanced HDAC2 and reduced Tip60 binding and transcriptional dysregulation. Orthologous human genes to co-Tip60/HDAC2 D. melanogaster neural targets exhibit conserved disruption patterns in AD patient hippocampi. Notably, we discovered distinct transcription factor binding sites close or within Tip60/HDAC2 co-peaks in neuronal genes, implicating them in coenzyme recruitment. Increased Tip60 protects against transcriptional dysregulation and enhanced HDAC2 enrichment genome-wide. We advocate Tip60 HAT/HDAC2 mediated epigenetic neuronal gene disruption as a genome-wide initial causal event in AD.
Collapse
Affiliation(s)
- Mariah Beaver
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | | | - Haolin Zhang
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Akanksha Bhatnagar
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Ellen Armour
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Visha Parmar
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Reshma Brown
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Merry Xiang
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Felice Elefant
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
Frankowski H, Yeboah F, Berry BJ, Kinoshita C, Lee M, Evitts K, Davis J, Kinoshita Y, Morrison RS, Young JE. Knock-Down of HDAC2 in Human Induced Pluripotent Stem Cell Derived Neurons Improves Neuronal Mitochondrial Dynamics, Neuronal Maturation and Reduces Amyloid Beta Peptides. Int J Mol Sci 2021; 22:ijms22052526. [PMID: 33802405 PMCID: PMC7959288 DOI: 10.3390/ijms22052526] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylase 2 (HDAC2) is a major HDAC protein in the adult brain and has been shown to regulate many neuronal genes. The aberrant expression of HDAC2 and subsequent dysregulation of neuronal gene expression is implicated in neurodegeneration and brain aging. Human induced pluripotent stem cell-derived neurons (hiPSC-Ns) are widely used models for studying neurodegenerative disease mechanisms, but the role of HDAC2 in hiPSC-N differentiation and maturation has not been explored. In this study, we show that levels of HDAC2 progressively decrease as hiPSCs are differentiated towards neurons. This suppression of HDAC2 inversely corresponds to an increase in neuron-specific isoforms of Endophilin-B1, a multifunctional protein involved in mitochondrial dynamics. Expression of neuron-specific isoforms of Endophilin-B1 is accompanied by concomitant expression of a neuron-specific alternative splicing factor, SRRM4. Manipulation of HDAC2 and Endophilin-B1 using lentiviral approaches shows that the knock-down of HDAC2 or the overexpression of a neuron-specific Endophilin-B1 isoform promotes mitochondrial elongation and protects against cytotoxic stress in hiPSC-Ns, while HDAC2 knock-down specifically influences genes regulating mitochondrial dynamics and synaptogenesis. Furthermore, HDAC2 knock-down promotes enhanced mitochondrial respiration and reduces levels of neurotoxic amyloid beta peptides. Collectively, our study demonstrates a role for HDAC2 in hiPSC-neuronal differentiation, highlights neuron-specific isoforms of Endophilin-B1 as a marker of differentiating hiPSC-Ns and demonstrates that HDAC2 regulates key neuronal and mitochondrial pathways in hiPSC-Ns.
Collapse
Affiliation(s)
- Harald Frankowski
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (H.F.); (F.Y.); (B.J.B.); (C.K.); (M.L.); (K.E.); (J.D.); (Y.K.)
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Fred Yeboah
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (H.F.); (F.Y.); (B.J.B.); (C.K.); (M.L.); (K.E.); (J.D.); (Y.K.)
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA
| | - Bonnie J. Berry
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (H.F.); (F.Y.); (B.J.B.); (C.K.); (M.L.); (K.E.); (J.D.); (Y.K.)
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Chizuru Kinoshita
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (H.F.); (F.Y.); (B.J.B.); (C.K.); (M.L.); (K.E.); (J.D.); (Y.K.)
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Michelle Lee
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (H.F.); (F.Y.); (B.J.B.); (C.K.); (M.L.); (K.E.); (J.D.); (Y.K.)
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Kira Evitts
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (H.F.); (F.Y.); (B.J.B.); (C.K.); (M.L.); (K.E.); (J.D.); (Y.K.)
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Joshua Davis
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (H.F.); (F.Y.); (B.J.B.); (C.K.); (M.L.); (K.E.); (J.D.); (Y.K.)
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Yoshito Kinoshita
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (H.F.); (F.Y.); (B.J.B.); (C.K.); (M.L.); (K.E.); (J.D.); (Y.K.)
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Richard S. Morrison
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA;
| | - Jessica E. Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (H.F.); (F.Y.); (B.J.B.); (C.K.); (M.L.); (K.E.); (J.D.); (Y.K.)
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Correspondence:
| |
Collapse
|
21
|
Son SM, Park SJ, Fernandez-Estevez M, Rubinsztein DC. Autophagy regulation by acetylation-implications for neurodegenerative diseases. Exp Mol Med 2021; 53:30-41. [PMID: 33483607 PMCID: PMC8080689 DOI: 10.1038/s12276-021-00556-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/27/2020] [Indexed: 01/30/2023] Open
Abstract
Posttranslational modifications of proteins, such as acetylation, are essential for the regulation of diverse physiological processes, including metabolism, development and aging. Autophagy is an evolutionarily conserved catabolic process that involves the highly regulated sequestration of intracytoplasmic contents in double-membrane vesicles called autophagosomes, which are subsequently degraded after fusing with lysosomes. The roles and mechanisms of acetylation in autophagy control have emerged only in the last few years. In this review, we describe key molecular mechanisms by which previously identified acetyltransferases and deacetylases regulate autophagy. We highlight how p300 acetyltransferase controls mTORC1 activity to regulate autophagy under starvation and refeeding conditions in many cell types. Finally, we discuss how altered acetylation may impact various neurodegenerative diseases in which many of the causative proteins are autophagy substrates. These studies highlight some of the complexities that may need to be considered by anyone aiming to perturb acetylation under these conditions.
Collapse
Affiliation(s)
- Sung Min Son
- grid.5335.00000000121885934Department of Medical Genetics, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - So Jung Park
- grid.5335.00000000121885934Department of Medical Genetics, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Marian Fernandez-Estevez
- grid.5335.00000000121885934Department of Medical Genetics, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - David C. Rubinsztein
- grid.5335.00000000121885934Department of Medical Genetics, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| |
Collapse
|
22
|
Li Y, Eshein A, Virk RKA, Eid A, Wu W, Frederick J, VanDerway D, Gladstein S, Huang K, Shim AR, Anthony NM, Bauer GM, Zhou X, Agrawal V, Pujadas EM, Jain S, Esteve G, Chandler JE, Nguyen TQ, Bleher R, de Pablo JJ, Szleifer I, Dravid VP, Almassalha LM, Backman V. Nanoscale chromatin imaging and analysis platform bridges 4D chromatin organization with molecular function. SCIENCE ADVANCES 2021; 7:eabe4310. [PMID: 33523864 PMCID: PMC7775763 DOI: 10.1126/sciadv.abe4310] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/09/2020] [Indexed: 05/10/2023]
Abstract
Extending across multiple length scales, dynamic chromatin structure is linked to transcription through the regulation of genome organization. However, no individual technique can fully elucidate this structure and its relation to molecular function at all length and time scales at both a single-cell level and a population level. Here, we present a multitechnique nanoscale chromatin imaging and analysis (nano-ChIA) platform that consolidates electron tomography of the primary chromatin fiber, optical super-resolution imaging of transcription processes, and label-free nano-sensing of chromatin packing and its dynamics in live cells. Using nano-ChIA, we observed that chromatin is localized into spatially separable packing domains, with an average diameter of around 200 nanometers, sub-megabase genomic size, and an internal fractal structure. The chromatin packing behavior of these domains exhibits a complex bidirectional relationship with active gene transcription. Furthermore, we found that properties of PDs are correlated among progenitor and progeny cells across cell division.
Collapse
Affiliation(s)
- Yue Li
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Adam Eshein
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Ranya K A Virk
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Aya Eid
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Wenli Wu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Jane Frederick
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - David VanDerway
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Scott Gladstein
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Kai Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Anne R Shim
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Nicholas M Anthony
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Greta M Bauer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Xiang Zhou
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Vasundhara Agrawal
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Emily M Pujadas
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Surbhi Jain
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - George Esteve
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - John E Chandler
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - The-Quyen Nguyen
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Reiner Bleher
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Luay M Almassalha
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
23
|
Kessissoglou IA, Langui D, Hasan A, Maral M, Dutta SB, Hiesinger PR, Hassan BA. The Drosophila amyloid precursor protein homologue mediates neuronal survival and neuroglial interactions. PLoS Biol 2020; 18:e3000703. [PMID: 33290404 PMCID: PMC7723294 DOI: 10.1371/journal.pbio.3000703] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022] Open
Abstract
The amyloid precursor protein (APP) is a structurally and functionally conserved transmembrane protein whose physiological role in adult brain function and health is still unclear. Because mutations in APP cause familial Alzheimer's disease (fAD), most research focuses on this aspect of APP biology. We investigated the physiological function of APP in the adult brain using the fruit fly Drosophila melanogaster, which harbors a single APP homologue called APP Like (APPL). Previous studies have provided evidence for the implication of APPL in neuronal wiring and axonal growth through the Wnt signaling pathway during development. However, like APP, APPL continues to be expressed in all neurons of the adult brain where its functions and their molecular and cellular underpinnings are unknown. We report that APPL loss of function (LOF) results in the dysregulation of endolysosomal function in neurons, with a notable enlargement of early endosomal compartments followed by neuronal cell death and the accumulation of dead neurons in the brain during a critical period at a young age. These defects can be rescued by reduction in the levels of the early endosomal regulator Rab5, indicating a causal role of endosomal function for cell death. Finally, we show that the secreted extracellular domain of APPL interacts with glia and regulates the size of their endosomes, the expression of the Draper engulfment receptor, and the clearance of neuronal debris in an axotomy model. We propose that APP proteins represent a novel family of neuroglial signaling factors required for adult brain homeostasis.
Collapse
Affiliation(s)
- Irini A. Kessissoglou
- Paris Brain Institute, Hôpital Pitié-Salpêtrière, Inserm U 1127, CNRS UMR, Sorbonne Université, Paris, France
| | - Dominique Langui
- Paris Brain Institute, Hôpital Pitié-Salpêtrière, Inserm U 1127, CNRS UMR, Sorbonne Université, Paris, France
| | - Amr Hasan
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Maral Maral
- Paris Brain Institute, Hôpital Pitié-Salpêtrière, Inserm U 1127, CNRS UMR, Sorbonne Université, Paris, France
| | - Suchetana B. Dutta
- Paris Brain Institute, Hôpital Pitié-Salpêtrière, Inserm U 1127, CNRS UMR, Sorbonne Université, Paris, France
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Peter Robin Hiesinger
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Bassem A. Hassan
- Paris Brain Institute, Hôpital Pitié-Salpêtrière, Inserm U 1127, CNRS UMR, Sorbonne Université, Paris, France
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
24
|
Li Z, Rasmussen LJ. TIP60 in aging and neurodegeneration. Ageing Res Rev 2020; 64:101195. [PMID: 33091598 DOI: 10.1016/j.arr.2020.101195] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/29/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
Epigenetic modification of chromatin, including histone methylation and acetylation, plays critical roles in eukaryotic cells and has a significant impact on chromatin structure/accessibility, gene regulation and, susceptibility to aging, neurodegenerative disease, cancer, and other age-related diseases. This article reviews the current advances on TIP60/KAT5, a major histone acetyltransferase with diverse functions in eukaryotes, with emphasis on its regulation of autophagy, proteasome-dependent protein turnover, RNA transcription, DNA repair, circadian rhythms, learning and memory, and other neurological functions implicated in aging and neurodegeneration. Moreover, the promising therapeutic potential of TIP60 is discussed to target Alzheimer's disease and other neurological diseases.
Collapse
|
25
|
Karisetty BC, Bhatnagar A, Armour EM, Beaver M, Zhang H, Elefant F. Amyloid-β Peptide Impact on Synaptic Function and Neuroepigenetic Gene Control Reveal New Therapeutic Strategies for Alzheimer's Disease. Front Mol Neurosci 2020; 13:577622. [PMID: 33304239 PMCID: PMC7693454 DOI: 10.3389/fnmol.2020.577622] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/22/2020] [Indexed: 01/17/2023] Open
Abstract
Amyloid-β (Aβ) peptides can form protease-resistant aggregates within and outside of neurons. Accumulation of these aggregates is a hallmark of Alzheimer's disease (AD) neuropathology and contributes to devastating cognitive deficits associated with this disorder. The primary etiological factor for Aβ aggregation is either an increase in Aβ production or a decrease in its clearance. Aβ is produced by the sequential activity of β- and γ-secretase on the amyloid precursor protein (APP) and the clearance is mediated by chaperone-mediated mechanisms. The Aβ aggregates vary from soluble monomers and oligomers to insoluble senile plaques. While excess intraneuronal oligomers can transduce neurotoxic signals into neurons causing cellular defects like oxidative stress and neuroepigenetic mediated transcriptional dysregulation, extracellular senile plaques cause neurodegeneration by impairing neural membrane permeabilization and cell signaling pathways. Paradoxically, senile plaque formation is hypothesized to be an adaptive mechanism to sequester excess toxic soluble oligomers while leaving native functional Aβ levels intact. This hypothesis is strengthened by the absence of positive outcomes and side effects from immunotherapy clinical trials aimed at complete Aβ clearance, and support beneficial physiological roles for native Aβ in cellular function. Aβ has been shown to modulate synaptic transmission, consolidate memory, and protect against excitotoxicity. We discuss the current understanding of beneficial and detrimental roles for Aβ in synaptic function and epigenetic gene control and the future promising prospects of early therapeutic interventions aimed at mediating Aβ induced neuroepigenetic and synaptic dysfunctions to delay AD onset.
Collapse
Affiliation(s)
| | | | | | | | | | - Felice Elefant
- Department of Biology, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
26
|
Zhang H, Karisetty BC, Bhatnagar A, Armour EM, Beaver M, Roach TV, Mortazavi S, Mandloi S, Elefant F. Tip60 protects against amyloid-β-induced transcriptomic alterations via different modes of action in early versus late stages of neurodegeneration. Mol Cell Neurosci 2020; 109:103570. [PMID: 33160016 DOI: 10.1016/j.mcn.2020.103570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/24/2020] [Accepted: 10/31/2020] [Indexed: 10/23/2022] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder hallmarked by amyloid-β (Aβ) plaque accumulation, neuronal cell death, and cognitive deficits that worsen during disease progression. Histone acetylation dysregulation, caused by an imbalance between reduced histone acetyltransferases (HAT) Tip60 and increased histone deacetylase 2 (HDAC2) levels, can directly contribute to AD pathology. However, whether such AD-associated neuroepigenetic alterations occur in response to Aβ peptide production and can be protected against by increasing Tip60 levels over the course of neurodegenerative progression remains unknown. Here we profile Tip60 HAT/HDAC2 dynamics and transcriptome-wide changes across early and late stage AD pathology in the Drosophila brain produced solely by human amyloid-β42. We show that early Aβ42 induction leads to disruption of Tip60 HAT/HDAC2 balance during early neurodegenerative stages preceding Aβ plaque accumulation that persists into late AD stages. Correlative transcriptome-wide studies reveal alterations in biological processes we classified as transient (early-stage only), late-onset (late-stage only), and constant (both). Increasing Tip60 HAT levels in the Aβ42 fly brain protects against AD functional pathologies that include Aβ plaque accumulation, neural cell death, cognitive deficits, and shorter life-span. Strikingly, Tip60 protects against Aβ42-induced transcriptomic alterations via distinct mechanisms during early and late stages of neurodegeneration. Our findings reveal distinct modes of neuroepigenetic gene changes and Tip60 neuroprotection in early versus late stages in AD that can serve as early biomarkers for AD, and support the therapeutic potential of Tip60 over the course of AD progression.
Collapse
Affiliation(s)
- Haolin Zhang
- Department of Biology, Drexel University, Philadelphia, PA, United States
| | | | - Akanksha Bhatnagar
- Department of Biology, Drexel University, Philadelphia, PA, United States
| | - Ellen M Armour
- Department of Biology, Drexel University, Philadelphia, PA, United States
| | - Mariah Beaver
- Department of Biology, Drexel University, Philadelphia, PA, United States
| | - Tiffany V Roach
- Department of Biology, Drexel University, Philadelphia, PA, United States
| | - Sina Mortazavi
- Department of Biology, Drexel University, Philadelphia, PA, United States
| | - Shreya Mandloi
- Department of Biology, Drexel University, Philadelphia, PA, United States
| | - Felice Elefant
- Department of Biology, Drexel University, Philadelphia, PA, United States.
| |
Collapse
|
27
|
Walden EA, Fong RY, Pham TT, Knill H, Laframboise SJ, Huard S, Harper ME, Baetz K. Phenomic screen identifies a role for the yeast lysine acetyltransferase NuA4 in the control of Bcy1 subcellular localization, glycogen biosynthesis, and mitochondrial morphology. PLoS Genet 2020; 16:e1009220. [PMID: 33253187 PMCID: PMC7728387 DOI: 10.1371/journal.pgen.1009220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 12/10/2020] [Accepted: 10/22/2020] [Indexed: 11/30/2022] Open
Abstract
Cellular metabolism is tightly regulated by many signaling pathways and processes, including lysine acetylation of proteins. While lysine acetylation of metabolic enzymes can directly influence enzyme activity, there is growing evidence that lysine acetylation can also impact protein localization. As the Saccharomyces cerevisiae lysine acetyltransferase complex NuA4 has been implicated in a variety of metabolic processes, we have explored whether NuA4 controls the localization and/or protein levels of metabolic proteins. We performed a high-throughput microscopy screen of over 360 GFP-tagged metabolic proteins and identified 23 proteins whose localization and/or abundance changed upon deletion of the NuA4 scaffolding subunit, EAF1. Within this, three proteins were required for glycogen synthesis and 14 proteins were associated with the mitochondria. We determined that in eaf1Δ cells the transcription of glycogen biosynthesis genes is upregulated resulting in increased proteins and glycogen production. Further, in the absence of EAF1, mitochondria are highly fused, increasing in volume approximately 3-fold, and are chaotically distributed but remain functional. Both the increased glycogen synthesis and mitochondrial elongation in eaf1Δ cells are dependent on Bcy1, the yeast regulatory subunit of PKA. Surprisingly, in the absence of EAF1, Bcy1 localization changes from being nuclear to cytoplasmic and PKA activity is altered. We found that NuA4-dependent localization of Bcy1 is dependent on a lysine residue at position 313 of Bcy1. However, the glycogen accumulation and mitochondrial elongation phenotypes of eaf1Δ, while dependent on Bcy1, were not fully dependent on Bcy1-K313 acetylation state and subcellular localization of Bcy1. As NuA4 is highly conserved with the human Tip60 complex, our work may inform human disease biology, revealing new avenues to investigate the role of Tip60 in metabolic diseases.
Collapse
Affiliation(s)
- Elizabeth A. Walden
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Roger Y. Fong
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Trang T. Pham
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Hana Knill
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Sarah Jane Laframboise
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Sylvain Huard
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Kristin Baetz
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| |
Collapse
|
28
|
Beaver M, Bhatnagar A, Panikker P, Zhang H, Snook R, Parmar V, Vijayakumar G, Betini N, Akhter S, Elefant F. Disruption of Tip60 HAT mediated neural histone acetylation homeostasis is an early common event in neurodegenerative diseases. Sci Rep 2020; 10:18265. [PMID: 33106538 PMCID: PMC7588445 DOI: 10.1038/s41598-020-75035-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Epigenetic dysregulation is a common mechanism shared by molecularly and clinically heterogenous neurodegenerative diseases (NDs). Histone acetylation homeostasis, maintained by the antagonistic activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs), is necessary for appropriate gene expression and neuronal function. Disruption of neural acetylation homeostasis has been implicated in multiple types of NDs including Alzheimer's disease (AD), yet mechanisms underlying alterations remain unclear. We show that like AD, disruption of Tip60 HAT/HDAC2 balance with concomitant epigenetic repression of common Tip60 target neuroplasticity genes occurs early in multiple types of Drosophila ND models such as Parkinson's Disease (PD), Huntington's Disease (HD) and Amyotrophic Lateral Sclerosis (ALS). Repressed neuroplasticity genes show reduced enrichment of Tip60 and epigentic acetylation signatures at all gene loci examined with certain genes showing inappropriate HDAC2 repressor enrichment. Functional neuronal consequences for these disease conditions are reminiscent of human pathology and include locomotion, synapse morphology, and short-term memory deficits. Increasing Tip60 HAT levels specifically in the mushroom body learning and memory center in the Drosophila brain protects against locomotion and short-term memory function deficits in multiple NDs. Together, our results support a model by which Tip60 protects against neurological impairments in different NDs via similar modes of action.
Collapse
Affiliation(s)
- Mariah Beaver
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Akanksha Bhatnagar
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Priyalakshmi Panikker
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Haolin Zhang
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Renee Snook
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Visha Parmar
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Gayathri Vijayakumar
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Niteesha Betini
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Sunya Akhter
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Felice Elefant
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA.
| |
Collapse
|
29
|
Burns AM, Gräff J. Cognitive epigenetic priming: leveraging histone acetylation for memory amelioration. Curr Opin Neurobiol 2020; 67:75-84. [PMID: 33120188 DOI: 10.1016/j.conb.2020.08.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022]
Abstract
Multiple studies have found that increasing histone acetylation by means of histone deacetylase inhibitor (HDACi) treatment can ameliorate memory and rescue cognitive impairments, but their mode of action is not fully understood. In particular, it is unclear how HDACis, applied systemically and devoid of genomic target selectivity, would specifically improve memory-related molecular processes. One theory for such specificity is called cognitive epigenetic priming (CEP), according to which HDACis promote memory by facilitating the expression of neuroplasticity-related genes that have been stimulated by learning itself. In this review, we summarize the experimental evidence in support of CEP, describe newly discovered off-target effects of HDACis and highlight similarities between drug-induced and naturally occurring CEP. Understanding the underlying mechanisms of CEP is important in light of the preclinical premise of HDACis as cognitive enhancers.
Collapse
Affiliation(s)
- Allison M Burns
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Johannes Gräff
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale Lausanne (EPFL), 1015, Lausanne, Switzerland.
| |
Collapse
|
30
|
Hao Y, Guo M, Feng Y, Dong Q, Cui M. Lysophospholipids and Their G-Coupled Protein Signaling in Alzheimer's Disease: From Physiological Performance to Pathological Impairment. Front Mol Neurosci 2020; 13:58. [PMID: 32351364 PMCID: PMC7174595 DOI: 10.3389/fnmol.2020.00058] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/24/2020] [Indexed: 12/21/2022] Open
Abstract
Lysophospholipids (LPLs) are bioactive signaling lipids that are generated from phospholipase-mediated hydrolyzation of membrane phospholipids (PLs) and sphingolipids (SLs). Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are two of the best-characterized LPLs which mediate a variety of cellular physiological responses via specific G-protein coupled receptor (GPCR) mediated signaling pathways. Considerable evidence now demonstrates the crucial role of LPA and S1P in neurodegenerative diseases, especially in Alzheimer’s disease (AD). Dysfunction of LPA and S1P metabolism can lead to aberrant accumulation of amyloid-β (Aβ) peptides, the formation of neurofibrillary tangles (NFTs), neuroinflammation and ultimately neuronal death. Summarizing LPA and S1P signaling profile may aid in profound health and pathological processes. In the current review, we will introduce the metabolism as well as the physiological roles of LPA and S1P in maintaining the normal functions of the nervous system. Given these pivotal functions, we will further discuss the role of dysregulation of LPA and S1P in promoting AD pathogenesis.
Collapse
Affiliation(s)
- Yining Hao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Guo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiwei Feng
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Genetic Dissection of Alzheimer's Disease Using Drosophila Models. Int J Mol Sci 2020; 21:ijms21030884. [PMID: 32019113 PMCID: PMC7037931 DOI: 10.3390/ijms21030884] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/26/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD), a main cause of dementia, is the most common neurodegenerative disease that is related to abnormal accumulation of the amyloid β (Aβ) protein. Despite decades of intensive research, the mechanisms underlying AD remain elusive, and the only available treatment remains symptomatic. Molecular understanding of the pathogenesis and progression of AD is necessary to develop disease-modifying treatment. Drosophila, as the most advanced genetic model, has been used to explore the molecular mechanisms of AD in the last few decades. Here, we introduce Drosophila AD models based on human Aβ and summarize the results of their genetic dissection. We also discuss the utility of functional genomics using the Drosophila system in the search for AD-associated molecular mechanisms in the post-genomic era.
Collapse
|
32
|
Karnay A, Karisetty BC, Beaver M, Elefant F. Hippocampal stimulation promotes intracellular Tip60 dynamics with concomitant genome reorganization and synaptic gene activation. Mol Cell Neurosci 2019; 101:103412. [PMID: 31682915 DOI: 10.1016/j.mcn.2019.103412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/07/2019] [Accepted: 09/17/2019] [Indexed: 11/17/2022] Open
Abstract
Genomic reorganizations mediating the engagement of target genes to transcription factories (TFs), characterized as specialized nuclear subcompartments enriched in hyperphosphorylated RNA polymerase II (RNAPII) and transcriptional regulators, act as an important layer of control in coordinating efficient gene transcription. However, their presence in hippocampal neurons and potential role in activity-dependent coregulation of genes within the brain remains unclear. Here, we investigate whether the well-characterized role for the histone acetyltransferase (HAT) Tip60 in mediating epigenetic control of inducible neuroplasticity genes involves TF associated chromatin reorganization in the hippocampus. We show that Tip60 shuttles into the nucleus following extracellular stimulation of rat hippocampal neurons with concomitant enhancement of Tip60 binding and activation of specific synaptic plasticity genes. Multicolor three-dimensional (3D) DNA fluorescent in situ hybridization (DNA-FISH) reveals that hippocampal stimulation mobilizes these same synaptic plasticity genes and Tip60 to RNAPII-rich TFs. Our data support a model by which external hippocampal stimulation promotes intracellular Tip60 HAT dynamics with concomitant TF associated genome reorganization to initiate Tip60mediated synaptic gene activation.
Collapse
Affiliation(s)
- Ashley Karnay
- Department of Biology, Drexel University, Philadelphia, PA, USA; Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | - Mariah Beaver
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Felice Elefant
- Department of Biology, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Chrysin suppress immune responses and protects from experimental autoimmune encephalomyelitis in mice. J Neuroimmunol 2019; 335:577007. [DOI: 10.1016/j.jneuroim.2019.577007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/24/2019] [Accepted: 07/15/2019] [Indexed: 01/24/2023]
|
34
|
Blocking H2A.Z Incorporation via Tip60 Inhibition Promotes Systems Consolidation of Fear Memory in Mice. eNeuro 2018; 5:eN-CFN-0378-18. [PMID: 30417078 PMCID: PMC6223110 DOI: 10.1523/eneuro.0378-18.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/12/2018] [Indexed: 01/08/2023] Open
Abstract
Memory formation is a protracted process that initially involves the hippocampus and becomes increasingly dependent on the cortex over time, but the mechanisms of this transfer are unclear. We recently showed that hippocampal depletion of the histone variant H2A.Z enhances both recent and remote memories, but the use of virally mediated depletion reduced H2A.Z levels throughout testing, making its temporally specific function unclear. Given the lack of drugs that target histone variants, we tested existing drugs for efficacy against H2A.Z based on their targeting of known H2A.Z regulators. The Tip60 (part of H2A.Z deposition complex) inhibitor Nu9056 reduced H2A.Z binding, whereas the histone deacetylase (HDAC) inhibitor Trichostatin-A increased H2A.Z acetylation without influencing total H2A.Z in cultured hippocampal neurons. Tip60 (but not HDAC) inhibition 23 h after learning enhanced remote (tested at 7 d) and not recent (tested at 24 h) contextual fear memory in mice. In contrast, Tip60 inhibition 30 d after learning impaired recall of remote memory after 1 h, but protected the memory from further decline 24 h later. These data provide the first evidence of a delayed postlearning role for histone variants in supporting memory transfer during systems consolidation.
Collapse
|