1
|
Alexander JM, Vazquez-Ramirez L, Lin C, Antonoudiou P, Maguire J, Wagner F, Jacob MH. Inhibition of GSK3α,β rescues cognitive phenotypes in a preclinical mouse model of CTNNB1 syndrome. EMBO Mol Med 2024; 16:2109-2131. [PMID: 39103699 PMCID: PMC11393422 DOI: 10.1038/s44321-024-00110-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024] Open
Abstract
CTNNB1 syndrome is a rare monogenetic disorder caused by CTNNB1 de novo pathogenic heterozygous loss-of-function variants that result in cognitive and motor disabilities. Treatment is currently lacking; our study addresses this critical need. CTNNB1 encodes β-catenin which is essential for normal brain function via its dual roles in cadherin-based synaptic adhesion complexes and canonical Wnt signal transduction. We have generated a Ctnnb1 germline heterozygous mouse line that displays cognitive and motor deficits, resembling key features of CTNNB1 syndrome in humans. Compared with wild-type littermates, Ctnnb1 heterozygous mice also exhibit decreases in brain β-catenin, β-catenin association with N-cadherin, Wnt target gene expression, and Na/K ATPases, key regulators of changes in ion gradients during high activity. Consistently, hippocampal neuron functional properties and excitability are altered. Most important, we identify a highly selective inhibitor of glycogen synthase kinase (GSK)3α,β that significantly normalizes the phenotypes to closely meet wild-type littermate levels. Our data provide new insights into brain molecular and functional changes, and the first evidence for an efficacious treatment with therapeutic potential for individuals with CTNNB1 syndrome.
Collapse
Affiliation(s)
- Jonathan M Alexander
- Tufts University School of Biomedical Sciences, Department of Neuroscience, Boston, MA, 02111, USA
| | - Leeanne Vazquez-Ramirez
- Tufts University School of Biomedical Sciences, Department of Neuroscience, Boston, MA, 02111, USA
| | - Crystal Lin
- Tufts University School of Biomedical Sciences, Department of Neuroscience, Boston, MA, 02111, USA
| | - Pantelis Antonoudiou
- Tufts University School of Biomedical Sciences, Department of Neuroscience, Boston, MA, 02111, USA
| | - Jamie Maguire
- Tufts University School of Biomedical Sciences, Department of Neuroscience, Boston, MA, 02111, USA
| | - Florence Wagner
- The Broad Institute of MIT and Harvard, Center for the Development of Therapeutics, Cambridge, MA, 02142, USA
- Photys Therapeutics, Waltham, MA, USA
| | - Michele H Jacob
- Tufts University School of Biomedical Sciences, Department of Neuroscience, Boston, MA, 02111, USA.
| |
Collapse
|
2
|
McGhee CA, Honari H, Siqueiros-Sanchez M, Serur Y, van Staalduinen EK, Stevenson D, Bruno JL, Raman MM, Green T. Influences of RASopathies on Neuroanatomical Variation in Children. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:858-870. [PMID: 38621478 PMCID: PMC11381177 DOI: 10.1016/j.bpsc.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/09/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND RASopathies are a group of disorders characterized by pathogenic mutations in the Ras/mitogen-activated protein kinase (Ras/MAPK) signaling pathway. Distinct pathogenic variants in genes encoding proteins in the Ras/MAPK pathway cause Noonan syndrome (NS) and neurofibromatosis type 1 (NF1), which are associated with increased risk for autism spectrum disorder and attention-deficit/hyperactivity disorder. METHODS This study examined the effect of RASopathies (NS and NF1) on human neuroanatomy, specifically on surface area (SA), cortical thickness (CT), and subcortical volumes. Using vertex-based analysis for cortical measures and Desikan region of interest parcellation for subcortical volumes, we compared structural T1-weighted images of children with RASopathies (n = 91, mean age = 8.81 years, SD = 2.12) to those of sex- and age-matched typically developing children (n = 74, mean age = 9.07 years, SD = 1.77). RESULTS Compared with typically developing children, RASopathies had convergent effects on SA and CT, exhibiting increased SA in the precentral gyrus, decreased SA in occipital regions, and thinner CT in the precentral gyrus. RASopathies exhibited divergent effects on subcortical volumes, with syndrome-specific influences from NS and NF1. Overall, children with NS showed decreased volumes in striatal and thalamic structures, and children with NF1 displayed increased volumes in the hippocampus, amygdala, and thalamus. CONCLUSIONS Our study reveals the converging and diverging neuroanatomical effects of RASopathies on human neurodevelopment. The convergence of cortical effects on SA and CT indicates a shared influence of Ras/MAPK hyperactivation on the human brain. Therefore, considering these measures as objective outcome indicators for targeted treatments is imperative.
Collapse
Affiliation(s)
- Chloe Alexa McGhee
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California.
| | - Hamed Honari
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California
| | | | - Yaffa Serur
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California
| | - Eric K van Staalduinen
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California
| | - David Stevenson
- Division of Medical Genetics, Stanford University, Stanford, California
| | - Jennifer L Bruno
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California
| | - Mira Michelle Raman
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California
| | - Tamar Green
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California
| |
Collapse
|
3
|
Mattioni L, Barbieri A, Grigoli A, Balasco L, Bozzi Y, Provenzano G. Alterations of Perineuronal Net Expression and Abnormal Social Behavior and Whisker-dependent Texture Discrimination in Mice Lacking the Autism Candidate Gene Engrailed 2. Neuroscience 2024; 546:63-74. [PMID: 38537894 DOI: 10.1016/j.neuroscience.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024]
Abstract
GABAergic interneurons and perineuronal nets (PNNs) are important regulators of plasticity throughout life and their dysfunction has been implicated in the pathogenesis of several neuropsychiatric conditions, including autism spectrum disorders (ASD). PNNs are condensed portions of the extracellular matrix (ECM) that are crucial for neural development and proper formation of synaptic connections. We previously showed a reduced expression of GABAergic interneuron markers in the hippocampus and somatosensory cortex of adult mice lacking the Engrailed2 gene (En2-/- mice), a mouse model of ASD. Since alterations in PNNs have been proposed as a possible pathogenic mechanism in ASD, we hypothesized that the PNN dysfunction may contribute to the neural and behavioral abnormalities of En2-/- mice. Here, we show an increase in the PNN fluorescence intensity, evaluated by Wisteria floribunda agglutinin, in brain regions involved in social behavior and somatosensory processing. In addition, we found that En2-/- mice exhibit altered texture discrimination through whiskers and display a marked decrease in the preference for social novelty. Our results raise the possibility that altered expression of PNNs, together with defects of GABAergic interneurons, might contribute to the pathogenesis of social and sensory behavioral abnormalities.
Collapse
Affiliation(s)
- Lorenzo Mattioni
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy.
| | - Anna Barbieri
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Andrea Grigoli
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Luigi Balasco
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, 38068 Rovereto, Trento, Italy
| | - Yuri Bozzi
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, 38068 Rovereto, Trento, Italy; CNR Neuroscience Institute, via Moruzzi 1, 56124 Pisa, Italy
| | - Giovanni Provenzano
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy.
| |
Collapse
|
4
|
Senner CE, Dong Z, Prater M, Branco MR, Watson ED. One-carbon metabolism is required for epigenetic stability in the mouse placenta. Front Cell Dev Biol 2023; 11:1209928. [PMID: 37440923 PMCID: PMC10333575 DOI: 10.3389/fcell.2023.1209928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/02/2023] [Indexed: 07/15/2023] Open
Abstract
One-carbon metabolism, including the folate cycle, has a crucial role in fetal development though its molecular function is complex and unclear. The hypomorphic Mtrr gt allele is known to disrupt one-carbon metabolism, and thus methyl group availability, leading to several developmental phenotypes (e.g., neural tube closure defects, fetal growth anomalies). Remarkably, previous studies showed that some of the phenotypes were transgenerationally inherited. Here, we explored the genome-wide epigenetic impact of one-carbon metabolism in placentas associated with fetal growth phenotypes and determined whether specific DNA methylation changes were inherited. Firstly, methylome analysis of Mtrr gt/gt homozygous placentas revealed genome-wide epigenetic instability. Several differentially methylated regions (DMRs) were identified including at the Cxcl1 gene promoter and at the En2 gene locus, which may have phenotypic implications. Importantly, we discovered hypomethylation and ectopic expression of a subset of ERV elements throughout the genome of Mtrr gt/gt placentas with broad implications for genomic stability. Next, we determined that known spermatozoan DMRs in Mtrr gt/gt males were reprogrammed in the placenta with little evidence of direct or transgenerational germline DMR inheritance. However, some spermatozoan DMRs were associated with placental gene misexpression despite normalisation of DNA methylation, suggesting the inheritance of an alternative epigenetic mechanism. Integration of published wildtype histone ChIP-seq datasets with Mtrr gt/gt spermatozoan methylome and placental transcriptome datasets point towards H3K4me3 deposition at key loci. These data suggest that histone modifications might play a role in epigenetic inheritance in this context. Overall, this study sheds light on the mechanistic complexities of one-carbon metabolism in development and epigenetic inheritance.
Collapse
Affiliation(s)
- Claire E. Senner
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Ziqi Dong
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Malwina Prater
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Miguel R. Branco
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Erica D. Watson
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Pangrazzi L, Genovesi S, Balasco L, Cerilli E, Robol C, Zunino G, Piazza S, Provenzano G, Bozzi Y. Immune dysfunction in the cerebellum of mice lacking the autism candidate gene Engrailed 2. J Neuroimmunol 2022; 367:577870. [DOI: 10.1016/j.jneuroim.2022.577870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/15/2022]
|
6
|
Balasco L, Pagani M, Pangrazzi L, Chelini G, Ciancone Chama AG, Shlosman E, Mattioni L, Galbusera A, Iurilli G, Provenzano G, Gozzi A, Bozzi Y. Abnormal Whisker-Dependent Behaviors and Altered Cortico-Hippocampal Connectivity in Shank3b-/- Mice. Cereb Cortex 2021; 32:3042-3056. [PMID: 34791077 PMCID: PMC9290535 DOI: 10.1093/cercor/bhab399] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/12/2022] Open
Abstract
Abnormal tactile response is an integral feature of Autism Spectrum Disorders (ASDs), and hypo-responsiveness to tactile stimuli is often associated with the severity of ASDs core symptoms. Patients with Phelan-McDermid syndrome (PMS), caused by mutations in the SHANK3 gene, show ASD-like symptoms associated with aberrant tactile responses. The neural underpinnings of these abnormalities are still poorly understood. Here we investigated, in Shank3b−/− adult mice, the neural substrates of whisker-guided behaviors, a key component of rodents’ interaction with the surrounding environment. We assessed whisker-dependent behaviors in Shank3b−/− adult mice and age-matched controls, using the textured novel object recognition (tNORT) and whisker nuisance (WN) test. Shank3b−/− mice showed deficits in whisker-dependent texture discrimination in tNORT and behavioral hypo-responsiveness to repetitive whisker stimulation in WN. Sensory hypo-responsiveness was accompanied by a significantly reduced activation of the primary somatosensory cortex (S1) and hippocampus, as measured by c-fos mRNA induction, a proxy of neuronal activity following whisker stimulation. Moreover, resting-state fMRI showed a significantly reduced S1-hippocampal connectivity in Shank3b mutants, in the absence of altered connectivity between S1 and other somatosensory areas. Impaired crosstalk between hippocampus and S1 might underlie Shank3b−/− hypo-reactivity to whisker-dependent cues, highlighting a potentially generalizable somatosensory dysfunction in ASD.
Collapse
Affiliation(s)
- Luigi Balasco
- CIMeC - Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, TN, Italy
| | - Marco Pagani
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, 38068 Rovereto, TN, Italy
| | - Luca Pangrazzi
- CIMeC - Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, TN, Italy
| | - Gabriele Chelini
- CIMeC - Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, TN, Italy
| | | | - Evgenia Shlosman
- CIMeC - Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, TN, Italy
| | - Lorenzo Mattioni
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Alberto Galbusera
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, 38068 Rovereto, TN, Italy
| | - Giuliano Iurilli
- Systems Neurobiology Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, 38068 Rovereto, TN, Italy
| | - Giovanni Provenzano
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, 38068 Rovereto, TN, Italy
| | - Yuri Bozzi
- CIMeC - Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, TN, Italy.,CNR Neuroscience Institute, 56124 Pisa, Italy
| |
Collapse
|
7
|
Longo F, Klann E. Reciprocal control of translation and transcription in autism spectrum disorder. EMBO Rep 2021; 22:e52110. [PMID: 33977633 DOI: 10.15252/embr.202052110] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/20/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication and the presence of restricted patterns of interest and repetitive behaviors. ASD is genetically heterogeneous and is believed to be caused by both inheritable and de novo gene variations. Studies have revealed an extremely complex genetic landscape of ASD, favoring the idea that mutations in different clusters of genes interfere with interconnected downstream signaling pathways and circuitry, resulting in aberrant behavior. In this review, we describe a select group of candidate genes that represent both syndromic and non-syndromic forms of ASD and encode proteins that are important in transcriptional and translational regulation. We focus on the interplay between dysregulated translation and transcription in ASD with the hypothesis that dysregulation of each synthetic process triggers a feedback loop to act on the other, which ultimately exacerbates ASD pathophysiology. Finally, we summarize findings from interdisciplinary studies that pave the way for the investigation of the cooperative impact of different genes and pathways underlying the development of ASD.
Collapse
Affiliation(s)
- Francesco Longo
- Center for Neural Science, New York University, New York, NY, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
8
|
A Differential Effect of Lovastatin versus Simvastatin in Neurodevelopmental Disorders. eNeuro 2020; 7:ENEURO.0162-20.2020. [PMID: 32651266 PMCID: PMC7433894 DOI: 10.1523/eneuro.0162-20.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 12/30/2022] Open
|
9
|
Altered Expression of GABAergic Markers in the Forebrain of Young and Adult Engrailed-2 Knockout Mice. Genes (Basel) 2020; 11:genes11040384. [PMID: 32244845 PMCID: PMC7231099 DOI: 10.3390/genes11040384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/23/2022] Open
Abstract
Impaired function of GABAergic interneurons, and the subsequent alteration of excitation/inhibition balance, is thought to contribute to autism spectrum disorders (ASD). Altered numbers of GABAergic interneurons and reduced expression of GABA receptors has been detected in the brain of ASD subjects and mouse models of ASD. We previously showed a reduced expression of GABAergic interneuron markers parvalbumin (PV) and somatostatin (SST) in the forebrain of adult mice lacking the Engrailed2 gene (En2-/- mice). Here, we extended this analysis to postnatal day (P) 30 by using in situ hybridization, immunohistochemistry, and quantitative RT-PCR to study the expression of GABAergic interneuron markers in the hippocampus and somatosensory cortex of En2-/- and wild type (WT) mice. In addition, GABA receptor subunit mRNA expression was investigated by quantitative RT-PCR in the same brain regions of P30 and adult En2-/- and WT mice. As observed in adult animals, PV and SST expression was decreased in En2-/- forebrain of P30 mice. The expression of GABA receptor subunits (including the ASD-relevant Gabrb3) was also altered in young and adult En2-/- forebrain. Our results suggest that GABAergic neurotransmission deficits are already evident at P30, confirming that neurodevelopmental defects of GABAergic interneurons occur in the En2 mouse model of ASD.
Collapse
|
10
|
Zhang X, Piano I, Messina A, D'Antongiovanni V, Crò F, Provenzano G, Bozzi Y, Gargini C, Casarosa S. Retinal defects in mice lacking the autism-associated gene Engrailed-2. Neuroscience 2019; 408:177-190. [DOI: 10.1016/j.neuroscience.2019.03.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/26/2019] [Accepted: 03/31/2019] [Indexed: 10/27/2022]
|
11
|
Chelini G, Zerbi V, Cimino L, Grigoli A, Markicevic M, Libera F, Robbiati S, Gadler M, Bronzoni S, Miorelli S, Galbusera A, Gozzi A, Casarosa S, Provenzano G, Bozzi Y. Aberrant Somatosensory Processing and Connectivity in Mice Lacking Engrailed-2. J Neurosci 2019; 39:1525-1538. [PMID: 30593497 PMCID: PMC6381254 DOI: 10.1523/jneurosci.0612-18.2018] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 11/21/2022] Open
Abstract
Overreactivity and defensive behaviors in response to tactile stimuli are common symptoms in autism spectrum disorder (ASD) patients. Similarly, somatosensory hypersensitivity has also been described in mice lacking ASD-associated genes such as Fmr1 (fragile X mental retardation protein 1). Fmr1 knock-out mice also show reduced functional connectivity between sensory cortical areas, which may represent an endogenous biomarker for their hypersensitivity. Here, we measured whole-brain functional connectivity in Engrailed-2 knock-out (En2-/-) adult mice, which show a lower expression of Fmr1 and anatomical defects common to Fmr1 knock-outs. MRI-based resting-state functional connectivity in adult En2-/- mice revealed significantly reduced synchronization in somatosensory-auditory/associative cortices and dorsal thalamus, suggesting the presence of aberrant somatosensory processing in these mutants. Accordingly, when tested in the whisker nuisance test, En2-/- but not WT mice of both sexes showed fear behavior in response to repeated whisker stimulation. En2-/- mice undergoing this test exhibited decreased c-Fos-positive neurons (a marker of neuronal activity) in layer IV of the primary somatosensory cortex and increased immunoreactive cells in the basolateral amygdala compared with WT littermates. Conversely, when tested in a sensory maze, En2-/- and WT mice spent a comparable time in whisker-guided exploration, indicating that whisker-mediated behaviors are otherwise preserved in En2 mutants. Therefore, fearful responses to somatosensory stimuli in En2-/- mice are accompanied by reduced basal connectivity of sensory regions, reduced activation of somatosensory cortex, and increased activation of the basolateral amygdala, suggesting that impaired somatosensory processing is a common feature in mice lacking ASD-related genes.SIGNIFICANCE STATEMENT Overreactivity to tactile stimuli is a common symptom in autism spectrum disorder (ASD) patients. Recent studies performed in mice bearing ASD-related mutations confirmed these findings. Here, we evaluated the behavioral response to whisker stimulation in mice lacking the ASD-related gene Engrailed-2 (En2-/- mice). Compared with WT controls, En2-/- mice showed reduced functional connectivity in the somatosensory cortex, which was paralleled by fear behavior, reduced activation of somatosensory cortex, and increased activation of the basolateral amygdala in response to repeated whisker stimulation. These results suggest that impaired somatosensory signal processing is a common feature in mice harboring ASD-related mutations.
Collapse
Affiliation(s)
- Gabriele Chelini
- Center for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Valerio Zerbi
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, Eidgenössische Technische Hochschule (ETH) Zürich, 8057 Zurich, Switzerland
| | - Luca Cimino
- Center for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Andrea Grigoli
- Center for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Marija Markicevic
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, Eidgenössische Technische Hochschule (ETH) Zürich, 8057 Zurich, Switzerland
| | - Francesco Libera
- Center for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38068 Rovereto, Italy
| | - Sergio Robbiati
- Model Organisms Facility, Center for Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Mattia Gadler
- Center for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Silvia Bronzoni
- Center for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38068 Rovereto, Italy
| | - Silvia Miorelli
- Center for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Alberto Galbusera
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy, and
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy, and
| | - Simona Casarosa
- Center for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
- CNR Neuroscience Institute, 56124 Pisa, Italy
| | - Giovanni Provenzano
- Center for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy,
| | - Yuri Bozzi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38068 Rovereto, Italy,
- CNR Neuroscience Institute, 56124 Pisa, Italy
| |
Collapse
|
12
|
Impaired Neuronal Differentiation of Neural Stem Cells Lacking the Engrailed-2 Gene. Neuroscience 2018; 386:137-149. [DOI: 10.1016/j.neuroscience.2018.06.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/01/2018] [Accepted: 06/19/2018] [Indexed: 12/24/2022]
|
13
|
De Sanctis C, Bellenchi GC, Viggiano D. A meta-analytic approach to genes that are associated with impaired and elevated spatial memory performance. Psychiatry Res 2018; 261:508-516. [PMID: 29395873 DOI: 10.1016/j.psychres.2018.01.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 12/11/2022]
Abstract
Spatial memory deficits are a common hallmark of psychiatric conditions, possibly due to a genetic predisposition. Thus, unravelling the relationship between genes and memory might suggest novel therapeutic targets and pathogenetic pathways. Genetic deletions are known to lead to memory deficits (post-deletion "forgetfulness" genes, PDF), or, in few instances to improve spatial memory (post-deletion "hypermnesic" genes, PDH). To assess this topic, we performed a meta-analytic approach on memory behavior in knock-out mice. We screened 300 studies from PubMed and retrieved 87 genes tested for possible effects on spatial memory. This database was crossed with the Allen Brain Atlas (brain distribution) and the Enrichr (gene function) databases. The results show that PDF genes have higher expression level in several ventral brain structures, particularly the encephalic trunk and in the hypothalamus. Moreover, part of these genes are implicated in synaptic functions. Conversely, the PDH genes are associated to G-protein coupled receptors downstream signalling. Some candidate drugs were also found to interfere with some of the PDH genes, further suggesting that this approach might help in identifying drugs to improve memory performance in psychiatric conditions.
Collapse
Affiliation(s)
- Claudia De Sanctis
- IRCCS Neuromed, Pozzilli, IS 86077, Italy; Department of Medicine and Health Sciences, University of Molise, Via De Sanctis, Campobasso 86100, Italy
| | | | - Davide Viggiano
- Department of Medicine and Health Sciences, University of Molise, Via De Sanctis, Campobasso 86100, Italy.
| |
Collapse
|
14
|
Agís-Balboa RC, Pinheiro PS, Rebola N, Kerimoglu C, Benito E, Gertig M, Bahari-Javan S, Jain G, Burkhardt S, Delalle I, Jatzko A, Dettenhofer M, Zunszain PA, Schmitt A, Falkai P, Pape JC, Binder EB, Mulle C, Fischer A, Sananbenesi F. Formin 2 links neuropsychiatric phenotypes at young age to an increased risk for dementia. EMBO J 2017; 36:2815-2828. [PMID: 28768717 PMCID: PMC5623844 DOI: 10.15252/embj.201796821] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022] Open
Abstract
Age-associated memory decline is due to variable combinations of genetic and environmental risk factors. How these risk factors interact to drive disease onset is currently unknown. Here we begin to elucidate the mechanisms by which post-traumatic stress disorder (PTSD) at a young age contributes to an increased risk to develop dementia at old age. We show that the actin nucleator Formin 2 (Fmn2) is deregulated in PTSD and in Alzheimer's disease (AD) patients. Young mice lacking the Fmn2 gene exhibit PTSD-like phenotypes and corresponding impairments of synaptic plasticity, while the consolidation of new memories is unaffected. However, Fmn2 mutant mice develop accelerated age-associated memory decline that is further increased in the presence of additional risk factors and is mechanistically linked to a loss of transcriptional homeostasis. In conclusion, our data present a new approach to explore the connection between AD risk factors across life span and provide mechanistic insight to the processes by which neuropsychiatric diseases at a young age affect the risk for developing dementia.
Collapse
Affiliation(s)
- Roberto Carlos Agís-Balboa
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Paulo S Pinheiro
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
- CNRS UMR 5297, Bordeaux, France
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Nelson Rebola
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
- CNRS UMR 5297, Bordeaux, France
| | - Cemil Kerimoglu
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Eva Benito
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Michael Gertig
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Sanaz Bahari-Javan
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Gaurav Jain
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Susanne Burkhardt
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Ivana Delalle
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Alexander Jatzko
- Department of Psychosomatics, Westpfalzklinikum-Kaiserslautern, Teaching Hospital, University of Mainz, Mainz, Germany
| | - Markus Dettenhofer
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Patricia A Zunszain
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, LMU Munich, Munich, Germany
- Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, São Paulo, Brazil
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, LMU Munich, Munich, Germany
| | - Julius C Pape
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
- CNRS UMR 5297, Bordeaux, France
| | - Andre Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Farahnaz Sananbenesi
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
- Research Group for Genome Dynamics in Brain Diseases, Göttingen, Germany
| |
Collapse
|
15
|
Bozzi Y, Provenzano G, Casarosa S. Neurobiological bases of autism-epilepsy comorbidity: a focus on excitation/inhibition imbalance. Eur J Neurosci 2017; 47:534-548. [PMID: 28452083 DOI: 10.1111/ejn.13595] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/18/2017] [Accepted: 04/21/2017] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorders (ASD) and epilepsy are common neurological diseases of childhood, with an estimated incidence of approximately 0.5-1% of the worldwide population. Several genetic, neuroimaging and neuropathological studies clearly showed that both ASD and epilepsy have developmental origins and a substantial degree of heritability. Most importantly, ASD and epilepsy frequently coexist in the same individual, suggesting a common neurodevelopmental basis for these disorders. Genome-wide association studies recently allowed for the identification of a substantial number of genes involved in ASD and epilepsy, some of which are mutated in syndromes presenting both ASD and epilepsy clinical features. At the cellular level, both preclinical and clinical studies indicate that the different genetic causes of ASD and epilepsy may converge to perturb the excitation/inhibition (E/I) balance, due to the dysfunction of excitatory and inhibitory circuits in various brain regions. Metabolic and immune dysfunctions, as well as environmental causes also contribute to ASD pathogenesis. Thus, an E/I imbalance resulting from neurodevelopmental deficits of multiple origins might represent a common pathogenic mechanism for both diseases. Here, we will review the most significant studies supporting these hypotheses. A deeper understanding of the molecular and cellular determinants of autism-epilepsy comorbidity will pave the way to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yuri Bozzi
- Neurodevelopmental Disorders Research Group, Centre for Mind/Brain Sciences, University of Trento, via Sommarive 9, 38123, Povo, Trento, Italy.,CNR Neuroscience Institute, Pisa, Italy
| | - Giovanni Provenzano
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Simona Casarosa
- CNR Neuroscience Institute, Pisa, Italy.,Laboratory of Neural Development and Regeneration, Centre for Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
16
|
Provenzano G, Corradi Z, Monsorno K, Fedrizzi T, Ricceri L, Scattoni ML, Bozzi Y. Comparative Gene Expression Analysis of Two Mouse Models of Autism: Transcriptome Profiling of the BTBR and En2 (-/-) Hippocampus. Front Neurosci 2016; 10:396. [PMID: 27610074 PMCID: PMC4996997 DOI: 10.3389/fnins.2016.00396] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/12/2016] [Indexed: 02/01/2023] Open
Abstract
Autism spectrum disorders (ASD) are characterized by a high degree of genetic heterogeneity. Genomic studies identified common pathological processes underlying the heterogeneous clinical manifestations of ASD, and transcriptome analyses revealed that gene networks involved in synapse development, neuronal activity, and immune function are deregulated in ASD. Mouse models provide unique tools to investigate the neurobiological basis of ASD; however, a comprehensive approach to identify transcriptional abnormalities in different ASD models has never been performed. Here we used two well-recognized ASD mouse models, BTBR T+Itpr3tf/J (BTBR) and Engrailed-2 knockout (En2−/−), to identify conserved ASD-related molecular signatures. En2−/− mice bear a mutation within the EN2 transcription factor homeobox, while BTBR is an inbred strain with unknown genetic defects. Hippocampal RNA samples from BTBR, En2−/− and respective control (C57Bl/6J and En2+/+) adult mice were assessed for differential gene expression using microarrays. A total of 153 genes were similarly deregulated in the BTBR and En2−/− hippocampus. Mouse phenotype and gene ontology enrichment analyses were performed on BTBR and En2−/− hippocampal differentially expressed genes (DEGs). Pathways represented in both BTBR and En2−/− hippocampal DEGs included abnormal behavioral response and chemokine/MAP kinase signaling. Genes involved in abnormal function of the immune system and abnormal synaptic transmission/seizures were significantly represented among BTBR and En2−/− DEGs, respectively. Interestingly, both BTBR and En2−/− hippocampal DEGs showed a significant enrichment of ASD and schizophrenia (SCZ)-associated genes. Specific gene sets were enriched in the two models: microglial genes were significantly enriched among BTBR DEGs, whereas GABAergic/glutamatergic postsynaptic genes, FMRP-interacting genes and epilepsy-related genes were significantly enriched among En2−/− DEGs. Weighted correlation network analysis (WGCNA) performed on BTBR and En2−/− hippocampal transcriptomes together identified six modules significantly enriched in ASD-related genes. Each of these modules showed a specific enrichment profile in neuronal and glial genes, as well as in genes associated to ASD comorbidities such as epilepsy and SCZ. Our data reveal significant transcriptional similarities and differences between the BTBR and En2−/− hippocampus, indicating that transcriptome analysis of ASD mouse models may contribute to identify novel molecular targets for pharmacological studies.
Collapse
Affiliation(s)
- Giovanni Provenzano
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology, University of Trento Trento, Italy
| | - Zelia Corradi
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology, University of Trento Trento, Italy
| | - Katia Monsorno
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology, University of Trento Trento, Italy
| | - Tarcisio Fedrizzi
- Bioinformatics Core Facility, Centre for Integrative Biology, University of Trento Trento, Italy
| | - Laura Ricceri
- Neurotoxicology and Neuroendocrinology Section, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| | - Maria L Scattoni
- Neurotoxicology and Neuroendocrinology Section, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| | - Yuri Bozzi
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology, University of TrentoTrento, Italy; National Research Council Neuroscience InstitutePisa, Italy
| |
Collapse
|
17
|
Verpeut JL, DiCicco-Bloom E, Bello NT. Ketogenic diet exposure during the juvenile period increases social behaviors and forebrain neural activation in adult Engrailed 2 null mice. Physiol Behav 2016; 161:90-98. [PMID: 27080080 DOI: 10.1016/j.physbeh.2016.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/16/2016] [Accepted: 04/02/2016] [Indexed: 11/16/2022]
Abstract
Prolonged consumption of ketogenic diets (KD) has reported neuroprotective benefits. Several studies suggest KD interventions could be useful in the management of neurological and developmental disorders. Alterations in the Engrailed (En) genes, specifically Engrailed 2 (En2), have neurodevelopmental consequences and produce autism-related behaviors. The following studies used En2 knockout (KO; En2(-/-)), and wild-type (WT; En2(+/+)), male mice fed either KD (80% fat, 0.1% carbohydrates) or control diet (CD; 10% fat, 70% carbohydrates). The objective was to determine whether a KD fed from weaning at postnatal day (PND) 21 to adulthood (PND 60) would alter brain monoamines concentrations, previously found dysregulated, and improve social outcomes. In WT animals, there was an increase in hypothalamic norepinephrine content in the KD-fed group. However, regional monoamines were not altered in KO mice in KD-fed compared with CD-fed group. In order to determine the effects of juvenile exposure to KD in mice with normal blood ketone levels, separate experiments were conducted in mice removed from the KD or CD and fed standard chow for 2days (PND 62). In a three-chamber social test with a novel mouse, KO mice previously exposed to the KD displayed similar social and self-grooming behaviors compared with the WT group. Groups previously exposed to a KD, regardless of genotype, had more c-Fos-positive cells in the cingulate cortex, lateral septal nuclei, and anterior bed nucleus of the stria terminalis. In the novel object condition, KO mice previously exposed to KD had similar behavioral responses and pattern of c-Fos immunoreactivity compared with the WT group. Thus, juvenile exposure to KD resulted in short-term consequences of improving social interactions and appropriate exploratory behaviors in a mouse model that displays autism-related behaviors. Such findings further our understanding of metabolic-based therapies for neurological and developmental disorders.
Collapse
Affiliation(s)
- Jessica L Verpeut
- Department of Animal Sciences, Graduate Program in Endocrinology and Animal Biosciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Emanuel DiCicco-Bloom
- Department of Neuroscience and Cell Biology/Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Nicholas T Bello
- Department of Animal Sciences, Graduate Program in Endocrinology and Animal Biosciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
18
|
|
19
|
Pasciuto E, Borrie SC, Kanellopoulos AK, Santos AR, Cappuyns E, D'Andrea L, Pacini L, Bagni C. Autism Spectrum Disorders: Translating human deficits into mouse behavior. Neurobiol Learn Mem 2015. [PMID: 26220900 DOI: 10.1016/j.nlm.2015.07.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Autism Spectrum Disorders are a heterogeneous group of neurodevelopmental disorders, with rising incidence but little effective therapeutic intervention available. Currently two main clinical features are described to diagnose ASDs: impaired social interaction and communication, and repetitive behaviors. Much work has focused on understanding underlying causes of ASD by generating animal models of the disease, in the hope of discovering signaling pathways and cellular targets for drug intervention. Here we review how ASD behavioral phenotypes can be modeled in the mouse, the most common animal model currently in use in this field, and discuss examples of genetic mouse models of ASD with behavioral features that recapitulate various symptoms of ASD.
Collapse
Affiliation(s)
- E Pasciuto
- KU Leuven, Center for Human Genetics, Leuven Research Institute for Neuroscience and Disease (LIND), Leuven, Belgium; VIB Center for the Biology of Disease, Leuven, Belgium
| | - S C Borrie
- KU Leuven, Center for Human Genetics, Leuven Research Institute for Neuroscience and Disease (LIND), Leuven, Belgium; VIB Center for the Biology of Disease, Leuven, Belgium
| | - A K Kanellopoulos
- KU Leuven, Center for Human Genetics, Leuven Research Institute for Neuroscience and Disease (LIND), Leuven, Belgium; VIB Center for the Biology of Disease, Leuven, Belgium
| | - A R Santos
- KU Leuven, Center for Human Genetics, Leuven Research Institute for Neuroscience and Disease (LIND), Leuven, Belgium; VIB Center for the Biology of Disease, Leuven, Belgium
| | - E Cappuyns
- KU Leuven, Center for Human Genetics, Leuven Research Institute for Neuroscience and Disease (LIND), Leuven, Belgium; VIB Center for the Biology of Disease, Leuven, Belgium
| | - L D'Andrea
- University of Rome Tor Vergata, Department of Biomedicine and Prevention, Rome, Italy
| | - L Pacini
- University of Rome Tor Vergata, Department of Biomedicine and Prevention, Rome, Italy
| | - C Bagni
- KU Leuven, Center for Human Genetics, Leuven Research Institute for Neuroscience and Disease (LIND), Leuven, Belgium; VIB Center for the Biology of Disease, Leuven, Belgium; University of Rome Tor Vergata, Department of Biomedicine and Prevention, Rome, Italy.
| |
Collapse
|
20
|
Provenzano G, Pangrazzi L, Poli A, Berardi N, Bozzi Y. Immunohistochemical visualization of hippocampal neuron activity after spatial learning in a mouse model of neurodevelopmental disorders. J Vis Exp 2015:e52919. [PMID: 25992917 DOI: 10.3791/52919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Induction of phosphorylated extracellular-regulated kinase (pERK) is a reliable molecular readout of learning-dependent neuronal activation. Here, we describe a pERK immunohistochemistry protocol to study the profile of hippocampal neuron activation following exposure to a spatial learning task in a mouse model characterized by cognitive deficits of neurodevelopmental origin. Specifically, we used pERK immunostaining to study neuronal activation following Morris water maze (MWM, a classical hippocampal-dependent learning task) in Engrailed-2 knockout (En2(-/-)) mice, a model of autism spectrum disorders (ASD). As compared to wild-type (WT) controls, En2(-/-) mice showed significant spatial learning deficits in the MWM. After MWM, significant differences in the number of pERK-positive neurons were detected in specific hippocampal subfields of En2(-/-) mice, as compared to WT animals. Thus, our protocol can robustly detect differences in pERK-positive neurons associated to hippocampal-dependent learning impairment in a mouse model of ASD. More generally, our protocol can be applied to investigate the profile of hippocampal neuron activation in both genetic or pharmacological mouse models characterized by cognitive deficits.
Collapse
Affiliation(s)
| | - Luca Pangrazzi
- Centre for Integrative Biology (CIBIO), University of Trento
| | | | | | - Yuri Bozzi
- Centre for Integrative Biology (CIBIO), University of Trento; CNR Neuroscience Institute, Pisa, Italy;
| |
Collapse
|
21
|
Reduced phosphorylation of synapsin I in the hippocampus of Engrailed-2 knockout mice, a model for autism spectrum disorders. Neuroscience 2014; 286:122-30. [PMID: 25463523 DOI: 10.1016/j.neuroscience.2014.11.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 12/13/2022]
Abstract
Mice lacking the homeodomain transcription factor Engrailed-2 (En2(-/-) mice) are a well-characterized model for autism spectrum disorders (ASD). En2(-/-) mice present molecular, neuropathological and behavioral deficits related to ASD, including down-regulation of ASD-associated genes, cerebellar hypoplasia, interneuron loss, enhanced seizure susceptibility, decreased sociability and impaired cognition. Specifically, impaired spatial learning in the Morris water maze (MWM) is associated with reduced expression of neurofibromin and increased phosphorylation of extracellular-regulated kinase (ERK) in the hippocampus of En2(-/-) adult mice. In the attempt to better understand the molecular cascades underlying neurofibromin-dependent cognitive deficits in En2 mutant mice, we investigated the expression and phosphorylation of synapsin I (SynI; a major target of neurofibromin-dependent signaling) in the hippocampus of wild-type (WT) and En2(-/-) mice before and after MWM. Here we show that SynI mRNA and protein levels are down-regulated in the hippocampus of naïve and MWM-treated En2(-/-) mice, as compared to WT controls. This down-regulation is paralleled by reduced levels of SynI phosphorylation at Ser549 and Ser553 residues in the hilus of mutant mice, before and after MWM. These data indicate that in En2(-/-) hippocampus, neurofibromin-dependent pathways converging on SynI phosphorylation might underlie hippocampal-dependent learning deficits observed in En2(-/-) mice.
Collapse
|
22
|
Curatolo P, Ben-Ari Y, Bozzi Y, Catania MV, D'Angelo E, Mapelli L, Oberman LM, Rosenmund C, Cherubini E. Synapses as therapeutic targets for autism spectrum disorders: an international symposium held in pavia on july 4th, 2014. Front Cell Neurosci 2014; 8:309. [PMID: 25324723 PMCID: PMC4179609 DOI: 10.3389/fncel.2014.00309] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/12/2014] [Indexed: 11/13/2022] Open
Abstract
New progresses into the molecular and cellular mechanisms of autism spectrum disorders (ASDs) have been discussed in 1 day international symposium held in Pavia (Italy) on July 4th, 2014 entitled "synapses as therapeutic targets for autism spectrum disorders" (satellite of the FENS Forum for Neuroscience, Milan, 2014). In particular, world experts in the field have highlighted how animal models of ASDs have greatly advanced our understanding of the molecular pathways involved in synaptic dysfunction leading sometimes to "synaptic clinical trials" in children.
Collapse
Affiliation(s)
- Paolo Curatolo
- Pediatric Neurology Unit, Department of Neurosciences, Tor Vergata University , Rome , Italy
| | - Yehezkel Ben-Ari
- Institut National de la Santé et de la Recherche Médicale, Mediterranean Institute of Neurobiology (INMED) , Marseille , France
| | - Yuri Bozzi
- CNR Neuroscience Institute and Laboratory of Molecular Neuropathology, Centre for Integrative Biology (CIBIO), University of Trento , Trento , Italy
| | - Maria Vincenza Catania
- CNR, Institute of Neurological Sciences (ISN) , Catania , Italy ; Laboratory of Neurobiology, Istituto di Ricovero e Cura a Carattere Scientifico Oasi Maria SS , Troina , Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia , Pavia , Italy ; Brain Connectivity Center, Neurological Institute Istituto di Ricovero e Cura a Carattere Scientifico Mondino , Pavia , Italy
| | - Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia , Pavia , Italy
| | - Lindsay M Oberman
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University , Providence, RI , USA
| | - Christian Rosenmund
- Neuroscience Research Center and NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin , Berlin , Germany
| | - Enrico Cherubini
- International School for Advanced Studies (SISSA) , Trieste , Italy ; European Brain Research Institute (EBRI) , Rome , Italy
| |
Collapse
|