1
|
Papadopoulos S, Tinschert R, Papadopoulos I, Gerloff X, Schmitz F. Analytical Post-Embedding Immunogold-Electron Microscopy with Direct Gold-Labelled Monoclonal Primary Antibodies against RIBEYE A- and B-Domain Suggests a Refined Model of Synaptic Ribbon Assembly. Int J Mol Sci 2024; 25:7443. [PMID: 39000549 PMCID: PMC11242772 DOI: 10.3390/ijms25137443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Synaptic ribbons are the eponymous specializations of continuously active ribbon synapses. They are primarily composed of the RIBEYE protein that consists of a unique amino-terminal A-domain and carboxy-terminal B-domain that is largely identical to the ubiquitously expressed transcriptional regulator protein CtBP2. Both RIBEYE A-domain and RIBEYE B-domain are essential for the assembly of the synaptic ribbon, as shown by previous analyses of RIBEYE knockout and knockin mice and related investigations. How exactly the synaptic ribbon is assembled from RIBEYE subunits is not yet clear. To achieve further insights into the architecture of the synaptic ribbon, we performed analytical post-embedding immunogold-electron microscopy with direct gold-labelled primary antibodies against RIBEYE A-domain and RIBEYE B-domain for improved ultrastructural resolution. With direct gold-labelled monoclonal antibodies against RIBEYE A-domain and RIBEYE B-domain, we found that both domains show a very similar localization within the synaptic ribbon of mouse photoreceptor synapses, with no obvious differential gradient between the centre and surface of the synaptic ribbon. These data favour a model of the architecture of the synaptic ribbon in which the RIBEYE A-domain and RIBEYE B-domain are located similar distances from the midline of the synaptic ribbon.
Collapse
Affiliation(s)
- Stella Papadopoulos
- Institute of Anatomy, Department of Neuroanatomy, Medical School, Saarland University, 66421 Homburg, Germany; (S.P.); (R.T.)
| | - René Tinschert
- Institute of Anatomy, Department of Neuroanatomy, Medical School, Saarland University, 66421 Homburg, Germany; (S.P.); (R.T.)
| | - Iason Papadopoulos
- Mathematical Institute, University of Bonn, 53115 Bonn, Germany; (I.P.); (X.G.)
| | - Xenia Gerloff
- Mathematical Institute, University of Bonn, 53115 Bonn, Germany; (I.P.); (X.G.)
| | - Frank Schmitz
- Institute of Anatomy, Department of Neuroanatomy, Medical School, Saarland University, 66421 Homburg, Germany; (S.P.); (R.T.)
| |
Collapse
|
2
|
Zhou H, Huo Y, Yang N, Wei T. Phosphatidic acid: from biophysical properties to diverse functions. FEBS J 2024; 291:1870-1885. [PMID: 37103336 DOI: 10.1111/febs.16809] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/15/2023] [Accepted: 04/26/2023] [Indexed: 04/28/2023]
Abstract
Phosphatidic acid (PA), the simplest phospholipid, acts as a key metabolic intermediate and second messenger that impacts diverse cellular and physiological processes across species ranging from microbes to plants and mammals. The cellular levels of PA dynamically change in response to stimuli, and multiple enzymatic reactions can mediate its production and degradation. PA acts as a signalling molecule and regulates various cellular processes via its effects on membrane tethering, enzymatic activities of target proteins, and vesicular trafficking. Because of its unique physicochemical properties compared to other phospholipids, PA has emerged as a class of new lipid mediators influencing membrane structure, dynamics, and protein interactions. This review summarizes the biosynthesis, dynamics, and cellular functions and properties of PA.
Collapse
Affiliation(s)
- Hejiang Zhou
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanwu Huo
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Na Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Laboratory of Genetic and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Taotao Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Farzana F, McConville MJ, Renoir T, Li S, Nie S, Tran H, Hannan AJ, Hatters DM, Boughton BA. Longitudinal spatial mapping of lipid metabolites reveals pre-symptomatic changes in the hippocampi of Huntington's disease transgenic mice. Neurobiol Dis 2023; 176:105933. [PMID: 36436748 DOI: 10.1016/j.nbd.2022.105933] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022] Open
Abstract
In Huntington's disease (HD), a key pathological feature includes the development of inclusion-bodies of fragments of the mutant huntingtin protein in the neurons of the striatum and hippocampus. To examine the molecular changes associated with inclusion-body formation, we applied MALDI-mass spectrometry imaging and deuterium pulse labelling to determine lipid levels and synthesis rates in the hippocampus of a transgenic mouse model of HD (R6/1 line). The R6/1 HD mice lacked inclusions in the hippocampus at 6 weeks of age (pre-symptomatic), whereas inclusions were pervasive by 16 weeks of age (symptomatic). Hippocampal subfields (CA1, CA3 and DG), which formed the highest density of inclusion formation in the mouse brain showed a reduction in the relative abundance of neuron-enriched lipids that have roles in neurotransmission, synaptic plasticity, neurogenesis, and ER-stress protection. Lipids involved in the adaptive response to ER stress (phosphatidylinositol, phosphatidic acid, and ganglioside classes) displayed increased rates of synthesis in HD mice relative to WT mice at all the ages examined, including prior to the formation of the inclusion bodies. Our findings, therefore, support a role for ER stress occurring pre-symptomatically and potentially contributing to pathological mechanisms underlying HD.
Collapse
Affiliation(s)
- Farheen Farzana
- Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Victoria 3010, Australia; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Malcolm J McConville
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia; Metabolomics Australia, The University of Melbourne, Victoria 3010, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Shanshan Li
- Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Harvey Tran
- Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Victoria 3010, Australia.
| | - Danny M Hatters
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia.
| | - Berin A Boughton
- School of Biosciences, The University of Melbourne, Victoria 3010, Australia; Australian National Phenome Centre, Murdoch University, Murdoch 6150, Western Australia, Australia.
| |
Collapse
|
4
|
Barber CN, Goldschmidt HL, Lilley B, Bygrave AM, Johnson RC, Huganir RL, Zack DJ, Raben DM. Differential expression patterns of phospholipase D isoforms 1 and 2 in the mammalian brain and retina. J Lipid Res 2022; 63:100247. [PMID: 35764123 PMCID: PMC9305353 DOI: 10.1016/j.jlr.2022.100247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/10/2022] [Accepted: 06/20/2022] [Indexed: 01/16/2023] Open
Abstract
Phosphatidic acid is a key signaling molecule heavily implicated in exocytosis due to its protein-binding partners and propensity to induce negative membrane curvature. One phosphatidic acid-producing enzyme, phospholipase D (PLD), has also been implicated in neurotransmission. Unfortunately, due to the unreliability of reagents, there has been confusion in the literature regarding the expression of PLD isoforms in the mammalian brain which has hampered our understanding of their functional roles in neurons. To address this, we generated epitope-tagged PLD1 and PLD2 knockin mice using CRISPR/Cas9. Using these mice, we show that PLD1 and PLD2 are both localized at synapses by adulthood, with PLD2 expression being considerably higher in glial cells and PLD1 expression predominating in neurons. Interestingly, we observed that only PLD1 is expressed in the mouse retina, where it is found in the synaptic plexiform layers. These data provide critical information regarding the localization and potential role of PLDs in the central nervous system.
Collapse
Affiliation(s)
- Casey N Barber
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hana L Goldschmidt
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brendan Lilley
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexei M Bygrave
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard C Johnson
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard L Huganir
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Donald J Zack
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel M Raben
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Tanguy E, Wolf A, Wang Q, Chasserot-Golaz S, Ory S, Gasman S, Vitale N. Phospholipase D1-generated phosphatidic acid modulates secretory granule trafficking from biogenesis to compensatory endocytosis in neuroendocrine cells. Adv Biol Regul 2021; 83:100844. [PMID: 34876384 DOI: 10.1016/j.jbior.2021.100844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
Abstract
Calcium-regulated exocytosis is a multi-step process that allows specialized secretory cells to release informative molecules such as neurotransmitters, neuropeptides, and hormones for intercellular communication. The biogenesis of secretory vesicles from the Golgi cisternae is followed by their transport towards the cell periphery and their docking and fusion to the exocytic sites of the plasma membrane allowing release of vesicular content. Subsequent compensatory endocytosis of the protein and lipidic constituents of the vesicles maintains cell homeostasis. Despite the fact that lipids represent the majority of membrane constituents, little is known about their contribution to these processes. Using a combination of electrochemical measurement of single chromaffin cell catecholamine secretion and electron microscopy of roof-top membrane sheets associated with genetic, silencing and pharmacological approaches, we recently reported that diverse phosphatidic acid (PA) species regulates catecholamine release efficiency by controlling granule docking and fusion kinetics. The enzyme phospholipase D1 (PLD1), producing PA from phosphatidylcholine, seems to be the major responsible of these effects in this model. Here, we extended this work using spinning disk confocal microscopy showing that inhibition of PLD activity also reduced the velocity of granules undergoing a directed motion. Furthermore, a dopamine β-hydroxylase (DβH) internalization assay revealed that PA produced by PLD is required for an optimal recovery of vesicular membrane content by compensatory endocytosis. Thus, among numerous roles that have been attributed to PA our work gives core to the key regulatory role in secretion that has been proposed in different cell models. Few leads to explain these multiple functions of PA along the secretory pathway are discussed.
Collapse
Affiliation(s)
- Emeline Tanguy
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France
| | - Alexander Wolf
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France
| | - Qili Wang
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France
| | - Sylvette Chasserot-Golaz
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France
| | - Stéphane Ory
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France
| | - Stéphane Gasman
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France
| | - Nicolas Vitale
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France.
| |
Collapse
|
6
|
Thoreson WB. Transmission at rod and cone ribbon synapses in the retina. Pflugers Arch 2021; 473:1469-1491. [PMID: 33779813 DOI: 10.1007/s00424-021-02548-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/29/2022]
Abstract
Light-evoked voltage responses of rod and cone photoreceptor cells in the vertebrate retina must be converted to a train of synaptic vesicle release events for transmission to downstream neurons. This review discusses the processes, proteins, and structures that shape this critical early step in vision, focusing on studies from salamander retina with comparisons to other experimental animals. Many mechanisms are conserved across species. In cones, glutamate release is confined to ribbon release sites although rods are also capable of release at non-ribbon sites. The role of non-ribbon release in rods remains unclear. Release from synaptic ribbons in rods and cones involves at least three vesicle pools: a readily releasable pool (RRP) matching the number of membrane-associated vesicles along the ribbon base, a ribbon reserve pool matching the number of additional vesicles on the ribbon, and an enormous cytoplasmic reserve. Vesicle release increases in parallel with Ca2+ channel activity. While the opening of only a few Ca2+ channels beneath each ribbon can trigger fusion of a single vesicle, sustained release rates in darkness are governed by the rate at which the RRP can be replenished. The number of vacant release sites, their functional status, and the rate of vesicle delivery in turn govern replenishment. Along with an overview of the mechanisms of exocytosis and endocytosis, we consider specific properties of ribbon-associated proteins and pose a number of remaining questions about this first synapse in the visual system.
Collapse
Affiliation(s)
- Wallace B Thoreson
- Truhlsen Eye Institute, Departments of Ophthalmology & Visual Sciences and Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
7
|
Tanguy E, Wolf A, Montero-Hadjadje M, Gasman S, Bader MF, Vitale N. Phosphatidic acid: Mono- and poly-unsaturated forms regulate distinct stages of neuroendocrine exocytosis. Adv Biol Regul 2020; 79:100772. [PMID: 33288473 DOI: 10.1016/j.jbior.2020.100772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/16/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
Lipids have emerged as important actors in an ever-growing number of key functions in cell biology over the last few years. Among them, glycerophospholipids are major constituents of cellular membranes. Because of their amphiphilic nature, phospholipids form lipid bilayers that are particularly useful to isolate cellular content from the extracellular medium, but also to define intracellular compartments. Interestingly, phospholipids come in different flavors based on their fatty acyl chain composition. Indeed, lipidomic analyses have revealed the presence in cellular membranes of up to 50 different species of an individual class of phospholipid, opening the possibility of multiple functions for a single class of phospholipid. In this review we will focus on phosphatidic acid (PA), the simplest phospholipid, that plays both structural and signaling functions. Among the numerous roles that have been attributed to PA, a key regulatory role in secretion has been proposed in different cell models. We review here the evidences that support the idea that mono- and poly-unsaturated PA control distinct steps in hormone secretion from neuroendocrine cells.
Collapse
Affiliation(s)
- Emeline Tanguy
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France
| | - Alexander Wolf
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France
| | - Maité Montero-Hadjadje
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, 76000, Rouen, France
| | - Stéphane Gasman
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France
| | - Marie-France Bader
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France
| | - Nicolas Vitale
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France.
| |
Collapse
|
8
|
New Era of Diacylglycerol Kinase, Phosphatidic Acid and Phosphatidic Acid-Binding Protein. Int J Mol Sci 2020; 21:ijms21186794. [PMID: 32947951 PMCID: PMC7555651 DOI: 10.3390/ijms21186794] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DG) to generate phosphatidic acid (PA). Mammalian DGK consists of ten isozymes (α–κ) and governs a wide range of physiological and pathological events, including immune responses, neuronal networking, bipolar disorder, obsessive-compulsive disorder, fragile X syndrome, cancer, and type 2 diabetes. DG and PA comprise diverse molecular species that have different acyl chains at the sn-1 and sn-2 positions. Because the DGK activity is essential for phosphatidylinositol turnover, which exclusively produces 1-stearoyl-2-arachidonoyl-DG, it has been generally thought that all DGK isozymes utilize the DG species derived from the turnover. However, it was recently revealed that DGK isozymes, except for DGKε, phosphorylate diverse DG species, which are not derived from phosphatidylinositol turnover. In addition, various PA-binding proteins (PABPs), which have different selectivities for PA species, were recently found. These results suggest that DGK–PA–PABP axes can potentially construct a large and complex signaling network and play physiologically and pathologically important roles in addition to DGK-dependent attenuation of DG–DG-binding protein axes. For example, 1-stearoyl-2-docosahexaenoyl-PA produced by DGKδ interacts with and activates Praja-1, the E3 ubiquitin ligase acting on the serotonin transporter, which is a target of drugs for obsessive-compulsive and major depressive disorders, in the brain. This article reviews recent research progress on PA species produced by DGK isozymes, the selective binding of PABPs to PA species and a phosphatidylinositol turnover-independent DG supply pathway.
Collapse
|
9
|
Baneux C, Tanguy E, Thahouly T, Vitale A, Chasserot-Golaz S, Bader MF, Gasman S, Vitale N. Phosphatidic acid metabolism regulates neuroendocrine secretion but is not under the direct control of lipins. IUBMB Life 2020; 72:533-543. [PMID: 31967386 DOI: 10.1002/iub.2229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/04/2020] [Indexed: 11/11/2022]
Abstract
Phosphatidic acid (PA) produced by phospholipase D1 has been shown to contribute to secretory vesicle exocytosis in a large number of cell models. Among various hypotheses, PA may contribute to recruit and/or activate at the exocytotic site a set of proteins from the molecular machinery dedicated to secretion, but also directly influence membrane curvature thereby favoring membrane rearrangements required for membrane fusion. The release of informative molecules by regulated exocytosis is a tightly controlled process. It is thus expected that PA produced to trigger membrane fusion should be rapidly metabolized and converted in a lipid that does not present similar characteristics. PA-phosphatases of the lipin family are possible candidates as they convert PA into diacylglycerol. We show here that lipin 1 and lipin 2 are expressed in neuroendocrine cells where they are cytosolic, but also partially associated with the endoplasmic reticulum. Silencing of lipin 1 or 2 did not affect significantly either basal or evoked secretion from PC12 cells, suggesting that it is unlikely that conversion of PA into a secondary lipid by lipins might represent a regulatory step in exocytosis in neurosecretory cells. However, in agreement with a model in which PA-metabolism could contribute to prevent entering into exocytosis of additional secretory vesicles, ectopic expression of lipin1B-GFP in bovine chromaffin cells reduced the number of exocytotic events as revealed by carbon fiber amperometry recording. Furthermore, individual spike parameters reflecting fusion pore dynamics were also modified by lipin1B-GFP, suggesting that a tight control of PA levels represents an important regulatory step of the number and kinetic of exocytotic events.
Collapse
Affiliation(s)
- Claire Baneux
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Emeline Tanguy
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Tamou Thahouly
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Alessio Vitale
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Sylvette Chasserot-Golaz
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Marie-France Bader
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Stéphane Gasman
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Nicolas Vitale
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| |
Collapse
|
10
|
Moser T, Grabner CP, Schmitz F. Sensory Processing at Ribbon Synapses in the Retina and the Cochlea. Physiol Rev 2020; 100:103-144. [DOI: 10.1152/physrev.00026.2018] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years, sensory neuroscientists have made major efforts to dissect the structure and function of ribbon synapses which process sensory information in the eye and ear. This review aims to summarize our current understanding of two key aspects of ribbon synapses: 1) their mechanisms of exocytosis and endocytosis and 2) their molecular anatomy and physiology. Our comparison of ribbon synapses in the cochlea and the retina reveals convergent signaling mechanisms, as well as divergent strategies in different sensory systems.
Collapse
Affiliation(s)
- Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| | - Chad P. Grabner
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| | - Frank Schmitz
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| |
Collapse
|
11
|
Tanguy E, Wang Q, Vitale N. Role of Phospholipase D-Derived Phosphatidic Acid in Regulated Exocytosis and Neurological Disease. Handb Exp Pharmacol 2020; 259:115-130. [PMID: 30570690 DOI: 10.1007/164_2018_180] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lipids play a vital role in numerous cellular functions starting from a structural role as major constituents of membranes to acting as signaling intracellular or extracellular entities. Accordingly, it has been known for decades that lipids, especially those coming from diet, are important to maintain normal physiological functions and good health. On the other side, the exact molecular nature of these beneficial or deleterious lipids, as well as their precise mode of action, is only starting to be unraveled. This recent improvement in our knowledge is largely resulting from novel pharmacological, molecular, cellular, and genetic tools to study lipids in vitro and in vivo. Among these important lipids, phosphatidic acid plays a unique and central role in a great variety of cellular functions. This review will focus on the proposed functions of phosphatidic acid generated by phospholipase D in the last steps of regulated exocytosis with a specific emphasis on hormonal and neurotransmitter release and its potential impact on different neurological diseases.
Collapse
Affiliation(s)
- Emeline Tanguy
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, Strasbourg, France
| | - Qili Wang
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, Strasbourg, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, Strasbourg, France.
- INSERM, Paris, Cedex 13, France.
| |
Collapse
|
12
|
Yamada H, Mizuno S, Honda S, Takahashi D, Sakane F. Characterization of α-synuclein N-terminal domain as a novel cellular phosphatidic acid sensor. FEBS J 2019; 287:2212-2234. [PMID: 31722116 DOI: 10.1111/febs.15137] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/11/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022]
Abstract
Tracking the localization and dynamics of the intracellular bioactive lipid phosphatidic acid (PA) is important for understanding diverse biological phenomena. Although several PA sensors have been developed, better ones are still needed for comprehensive PA detection in cells. We recently found that α-synuclein (α-Syn) selectively and strongly bound to PA in vitro. Here, we revealed that the N-terminal region of α-Syn (α-Syn-N) specifically bound to PA, with a dissociation constant of 6.6 μm. α-Syn-N colocalized with PA-producing enzymes, diacylglycerol kinase (DGK) β at the plasma membrane (PM), myristoylated DGKζ at the Golgi apparatus, phorbol ester-stimulated DGKγ at the PM, and phospholipase D2 at the PM and Golgi but not with the phosphatidylinositol-4,5-bisphosphate-producing enzyme in COS-7 cells. However, α-Syn-N failed to colocalize with them in the presence of their inhibitors and/or their inactive mutants. These results indicate that α-Syn-N specifically binds to cellular PA and can be applied as an excellent PA sensor.
Collapse
Affiliation(s)
- Haruka Yamada
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| | - Satoru Mizuno
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| | - Shotaro Honda
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| | - Daisuke Takahashi
- Department of Pharmaceutical Health Care and Sciences, Kyushu University, Fukuoka, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| |
Collapse
|
13
|
Zhukovsky MA, Filograna A, Luini A, Corda D, Valente C. Phosphatidic acid in membrane rearrangements. FEBS Lett 2019; 593:2428-2451. [PMID: 31365767 DOI: 10.1002/1873-3468.13563] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022]
Abstract
Phosphatidic acid (PA) is the simplest cellular glycerophospholipid characterized by unique biophysical properties: a small headgroup; negative charge; and a phosphomonoester group. Upon interaction with lysine or arginine, PA charge increases from -1 to -2 and this change stabilizes protein-lipid interactions. The biochemical properties of PA also allow interactions with lipids in several subcellular compartments. Based on this feature, PA is involved in the regulation and amplification of many cellular signalling pathways and functions, as well as in membrane rearrangements. Thereby, PA can influence membrane fusion and fission through four main mechanisms: it is a substrate for enzymes producing lipids (lysophosphatidic acid and diacylglycerol) that are involved in fission or fusion; it contributes to membrane rearrangements by generating negative membrane curvature; it interacts with proteins required for membrane fusion and fission; and it activates enzymes whose products are involved in membrane rearrangements. Here, we discuss the biophysical properties of PA in the context of the above four roles of PA in membrane fusion and fission.
Collapse
Affiliation(s)
- Mikhail A Zhukovsky
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Angela Filograna
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Corda
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Carmen Valente
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
14
|
Zhukovsky MA, Filograna A, Luini A, Corda D, Valente C. The Structure and Function of Acylglycerophosphate Acyltransferase 4/ Lysophosphatidic Acid Acyltransferase Delta (AGPAT4/LPAATδ). Front Cell Dev Biol 2019; 7:147. [PMID: 31428612 PMCID: PMC6688108 DOI: 10.3389/fcell.2019.00147] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/16/2019] [Indexed: 12/27/2022] Open
Abstract
Lipid-modifying enzymes serve crucial roles in cellular processes such as signal transduction (producing lipid-derived second messengers), intracellular membrane transport (facilitating membrane remodeling needed for membrane fusion/fission), and protein clustering (organizing lipid domains as anchoring platforms). The lipid products crucial in these processes can derive from different metabolic pathways, thus it is essential to know the localization, substrate specificity, deriving products (and their function) of all lipid-modifying enzymes. Here we discuss an emerging family of these enzymes, the lysophosphatidic acid acyltransferases (LPAATs), also known as acylglycerophosphate acyltransferases (AGPATs), that produce phosphatidic acid (PA) having as substrates lysophosphatidic acid (LPA) and acyl-CoA. Eleven LPAAT/AGPAT enzymes have been identified in mice and humans based on sequence homologies, and their localization, specific substrates and functions explored. We focus on one member of the family, LPAATδ, a protein expressed mainly in brain and in muscle (though to a lesser extent in other tissues); while at the cellular level it is localized at the trans-Golgi network membranes and at the mitochondrial outer membranes. LPAATδ is a physiologically essential enzyme since mice knocked-out for Lpaatδ show severe dysfunctions including cognitive impairment, impaired force contractility and altered white adipose tissue. The LPAATδ physiological roles are related to the formation of its product PA. PA is a multifunctional lipid involved in cell signaling as well as in membrane remodeling. In particular, the LPAATδ-catalyzed conversion of LPA (inverted-cone-shaped lipid) to PA (cone-shaped lipid) is considered a mechanism of deformation of the bilayer that favors membrane fission. Indeed, LPAATδ is an essential component of the fission-inducing machinery driven by the protein BARS. In this process, a protein-tripartite complex (BARS/14-3-3γ/phosphoinositide kinase PI4KIIIβ) is recruited at the trans-Golgi network, at the sites where membrane fission is to occur; there, LPAATδ directly interacts with BARS and is activated by BARS. The resulting formation of PA is essential for membrane fission occurring at those spots. Also in mitochondria PA formation has been related to fusion/fission events. Since PA is formed by various enzymatic pathways in different cell compartments, the BARS-LPAATδ interaction indicates the relevance of lipid-modifying enzymes acting exactly where their products are needed (i.e., PA at the Golgi membranes).
Collapse
Affiliation(s)
- Mikhail A Zhukovsky
- Institute of Biochemistry and Cell Biology and Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Angela Filograna
- Institute of Biochemistry and Cell Biology and Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Alberto Luini
- Institute of Biochemistry and Cell Biology and Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Daniela Corda
- Institute of Biochemistry and Cell Biology and Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Carmen Valente
- Institute of Biochemistry and Cell Biology and Institute of Protein Biochemistry, National Research Council, Naples, Italy
| |
Collapse
|
15
|
Yu F, Xu X, Ren Z, Yang J, Kong F. Maternal high-decibel acoustic exposure elevates prenatal stress, impairing postnatal hearing thresholds associated with decreasing ribbon synapses in young rats. Reprod Toxicol 2019; 89:21-27. [PMID: 31238098 DOI: 10.1016/j.reprotox.2019.05.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/16/2019] [Accepted: 05/30/2019] [Indexed: 10/26/2022]
Abstract
Maternal stress may affect the fetal auditory system than direct sound exposure. The objective of this study was to evaluate the role of prenatal stress due to high-decibel (dB) sound exposure on postnatal hearing and cochlear structure. Pregnant rats were exposed to 95 or 65 dB noise or music for 2 h once a day from gestational day 15 until delivery. The serum corticosterone was measured in the pregnant dams and pups. On postnatal day 22, pups underwent auditory brainstem response (ABR) testing. Then, the cochleae were immediately harvested for biochemical and molecular investigations. Prenatal stress impaired reproductive parameters, increased serum corticosterone and ABR thresholds with the decrease in wave I peak amplitude and the number of pre-synaptic ribbon. Thus, prenatal stress induces postnatal hearing loss in young rats, which are related to the reduction of ribbon synapses.
Collapse
Affiliation(s)
- Fei Yu
- School of Public Health, He University, No.66 Sishui Street, Hunnan New District, Shenyang, 110163, China.
| | - Xueying Xu
- School of Public Health, He University, No.66 Sishui Street, Hunnan New District, Shenyang, 110163, China
| | - Zhongjuan Ren
- School of Public Health, He University, No.66 Sishui Street, Hunnan New District, Shenyang, 110163, China
| | - Jun Yang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, China
| | - Fanxue Kong
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Xigang District, Dalian, China.
| |
Collapse
|
16
|
Thakur R, Naik A, Panda A, Raghu P. Regulation of Membrane Turnover by Phosphatidic Acid: Cellular Functions and Disease Implications. Front Cell Dev Biol 2019; 7:83. [PMID: 31231646 PMCID: PMC6559011 DOI: 10.3389/fcell.2019.00083] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/03/2019] [Indexed: 01/23/2023] Open
Abstract
Phosphatidic acid (PA) is a simple glycerophospholipid with a well-established role as an intermediate in phospholipid biosynthesis. In addition to its role in lipid biosynthesis, PA has been proposed to act as a signaling molecule that modulates several aspects of cell biology including membrane transport. PA can be generated in eukaryotic cells by several enzymes whose activity is regulated in the context of signal transduction and enzymes that can metabolize PA thus terminating its signaling activity have also been described. Further, several studies have identified PA binding proteins and changes in their activity are proposed to be mediators of the signaling activity of this lipid. Together these enzymes and proteins constitute a PA signaling toolkit that mediates the signaling functions of PA in cells. Recently, a number of novel genetic models for the analysis of PA function in vivo and analytical methods to quantify PA levels in cells have been developed and promise to enhance our understanding of PA functions. Studies of several elements of the PA signaling toolkit in a single cell type have been performed and are presented to provide a perspective on our understanding of the biochemical and functional organization of pools of PA in a eukaryotic cell. Finally, we also provide a perspective on the potential role of PA in human disease, synthesizing studies from model organisms, human disease genetics and analysis using recently developed PLD inhibitors.
Collapse
Affiliation(s)
- Rajan Thakur
- National Centre for Biological Sciences-TIFR, Bengaluru, India
| | - Amruta Naik
- National Centre for Biological Sciences-TIFR, Bengaluru, India
| | - Aniruddha Panda
- National Centre for Biological Sciences-TIFR, Bengaluru, India
| | - Padinjat Raghu
- National Centre for Biological Sciences-TIFR, Bengaluru, India
| |
Collapse
|
17
|
Chakrabarti R, Wichmann C. Nanomachinery Organizing Release at Neuronal and Ribbon Synapses. Int J Mol Sci 2019; 20:E2147. [PMID: 31052288 PMCID: PMC6539712 DOI: 10.3390/ijms20092147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 11/17/2022] Open
Abstract
A critical aim in neuroscience is to obtain a comprehensive view of how regulated neurotransmission is achieved. Our current understanding of synapses relies mainly on data from electrophysiological recordings, imaging, and molecular biology. Based on these methodologies, proteins involved in a synaptic vesicle (SV) formation, mobility, and fusion at the active zone (AZ) membrane have been identified. In the last decade, electron tomography (ET) combined with a rapid freezing immobilization of neuronal samples opened a window for understanding the structural machinery with the highest spatial resolution in situ. ET provides significant insights into the molecular architecture of the AZ and the organelles within the presynaptic nerve terminal. The specialized sensory ribbon synapses exhibit a distinct architecture from neuronal synapses due to the presence of the electron-dense synaptic ribbon. However, both synapse types share the filamentous structures, also commonly termed as tethers that are proposed to contribute to different steps of SV recruitment and exocytosis. In this review, we discuss the emerging views on the role of filamentous structures in SV exocytosis gained from ultrastructural studies of excitatory, mainly central neuronal compared to ribbon-type synapses with a focus on inner hair cell (IHC) ribbon synapses. Moreover, we will speculate on the molecular entities that may be involved in filament formation and hence play a crucial role in the SV cycle.
Collapse
Affiliation(s)
- Rituparna Chakrabarti
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", 37099 Göttingen, Germany.
| | - Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", 37099 Göttingen, Germany.
- Collaborative Research Center 1286 "Quantitative Synaptology", 37099 Göttingen, Germany.
- Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany.
| |
Collapse
|
18
|
Tanguy E, Wang Q, Moine H, Vitale N. Phosphatidic Acid: From Pleiotropic Functions to Neuronal Pathology. Front Cell Neurosci 2019; 13:2. [PMID: 30728767 PMCID: PMC6351798 DOI: 10.3389/fncel.2019.00002] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/07/2019] [Indexed: 11/17/2022] Open
Abstract
Among the cellular lipids, phosphatidic acid (PA) is a peculiar one as it is at the same time a key building block of phospholipid synthesis and a major lipid second messenger conveying signaling information. The latter is thought to largely occur through the ability of PA to recruit and/or activate specific proteins in restricted compartments and within those only at defined submembrane areas. Furthermore, with its cone-shaped geometry PA locally changes membrane topology and may thus be a key player in membrane trafficking events, especially in membrane fusion and fission steps, where lipid remodeling is believed to be crucial. These pleiotropic cellular functions of PA, including phospholipid synthesis and homeostasis together with important signaling activity, imply that perturbations of PA metabolism could lead to serious pathological conditions. In this mini-review article, after outlining the main cellular functions of PA, we highlight the different neurological diseases that could, at least in part, be attributed to an alteration in PA synthesis and/or catabolism.
Collapse
Affiliation(s)
- Emeline Tanguy
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 Centre National de la Recherche Scientifique & Université de Strasbourg, Strasbourg, France
| | - Qili Wang
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 Centre National de la Recherche Scientifique & Université de Strasbourg, Strasbourg, France
| | - Hervé Moine
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U964, Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 Centre National de la Recherche Scientifique & Université de Strasbourg, Strasbourg, France
| |
Collapse
|
19
|
Pangrsic T, Singer JH, Koschak A. Voltage-Gated Calcium Channels: Key Players in Sensory Coding in the Retina and the Inner Ear. Physiol Rev 2019; 98:2063-2096. [PMID: 30067155 DOI: 10.1152/physrev.00030.2017] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Calcium influx through voltage-gated Ca (CaV) channels is the first step in synaptic transmission. This review concerns CaV channels at ribbon synapses in primary sense organs and their specialization for efficient coding of stimuli in the physical environment. Specifically, we describe molecular, biochemical, and biophysical properties of the CaV channels in sensory receptor cells of the retina, cochlea, and vestibular apparatus, and we consider how such properties might change over the course of development and contribute to synaptic plasticity. We pay particular attention to factors affecting the spatial arrangement of CaV channels at presynaptic, ribbon-type active zones, because the spatial relationship between CaV channels and release sites has been shown to affect synapse function critically in a number of systems. Finally, we review identified synaptopathies affecting sensory systems and arising from dysfunction of L-type, CaV1.3, and CaV1.4 channels or their protein modulatory elements.
Collapse
Affiliation(s)
- Tina Pangrsic
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| | - Joshua H Singer
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| | - Alexandra Koschak
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
20
|
Pangrsic T, Vogl C. Balancing presynaptic release and endocytic membrane retrieval at hair cell ribbon synapses. FEBS Lett 2018; 592:3633-3650. [PMID: 30251250 DOI: 10.1002/1873-3468.13258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 11/07/2022]
Abstract
The timely and reliable processing of auditory and vestibular information within the inner ear requires highly sophisticated sensory transduction pathways. On a cellular level, these demands are met by hair cells, which respond to sound waves - or alterations in body positioning - by releasing glutamate-filled synaptic vesicles (SVs) from their presynaptic active zones with unprecedented speed and exquisite temporal fidelity, thereby initiating the auditory and vestibular pathways. In order to achieve this, hair cells have developed anatomical and molecular specializations, such as the characteristic and name-giving 'synaptic ribbons' - presynaptically anchored dense bodies that tether SVs prior to release - as well as other unique or unconventional synaptic proteins. The tightly orchestrated interplay between these molecular components enables not only ultrafast exocytosis, but similarly rapid and efficient compensatory endocytosis. So far, the knowledge of how endocytosis operates at hair cell ribbon synapses is limited. In this Review, we summarize recent advances in our understanding of the SV cycle and molecular anatomy of hair cell ribbon synapses, with a focus on cochlear inner hair cells.
Collapse
Affiliation(s)
- Tina Pangrsic
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, University Medical Center Göttingen, Germany
| | - Christian Vogl
- Presynaptogenesis and Intracellular Transport in Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, University Medical Center Göttingen, Germany
| |
Collapse
|
21
|
Jean P, Lopez de la Morena D, Michanski S, Jaime Tobón LM, Chakrabarti R, Picher MM, Neef J, Jung S, Gültas M, Maxeiner S, Neef A, Wichmann C, Strenzke N, Grabner C, Moser T. The synaptic ribbon is critical for sound encoding at high rates and with temporal precision. eLife 2018; 7:29275. [PMID: 29328020 PMCID: PMC5794258 DOI: 10.7554/elife.29275] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/19/2017] [Indexed: 11/30/2022] Open
Abstract
We studied the role of the synaptic ribbon for sound encoding at the synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in mice lacking RIBEYE (RBEKO/KO). Electron and immunofluorescence microscopy revealed a lack of synaptic ribbons and an assembly of several small active zones (AZs) at each synaptic contact. Spontaneous and sound-evoked firing rates of SGNs and their compound action potential were reduced, indicating impaired transmission at ribbonless IHC-SGN synapses. The temporal precision of sound encoding was impaired and the recovery of SGN-firing from adaptation indicated slowed synaptic vesicle (SV) replenishment. Activation of Ca2+-channels was shifted to more depolarized potentials and exocytosis was reduced for weak depolarizations. Presynaptic Ca2+-signals showed a broader spread, compatible with the altered Ca2+-channel clustering observed by super-resolution immunofluorescence microscopy. We postulate that RIBEYE disruption is partially compensated by multi-AZ organization. The remaining synaptic deficit indicates ribbon function in SV-replenishment and Ca2+-channel regulation. Our sense of hearing relies on our ears quickly and tirelessly processing information in a precise manner. Sounds cause vibrations in a part of the inner ear called the cochlea. Inside the cochlea, the vibrations move hair-like structures on sensory cells that translate these movements into electrical signals. These hair cells are connected to specialized nerve cells that relay the signals to the brain, which then interprets them as sounds. Hair cells communicate with the specialized nerve cells via connections known as chemical synapses. This means that the electrical signals in the hair cell activate channel proteins that allow calcium ions to flow in. This in turn triggers membrane-bound packages called vesicles inside the hair cell to fuse with its surface membrane and release their contents to the outside. The contents, namely chemicals called neurotransmitters, then travels across the space between the cells, relaying the signal to the nerve cell. The junctions between the hair cells and the nerve cells are more specifically known as ribbon synapses. This is because they have a ribbon-like structure that appears to tether a halo of vesicles close to the active zone where neurotransmitters are released. However, the exact role of this synaptic ribbon has remained mysterious despite decades of study. The ribbon is mainly composed of a protein called Ribeye, and now Jean, Lopez de la Morena, Michanski, Jaime Tobón et al. show that mutant mice that lack this protein do not have any ribbons at their “ribbon synapses”. Hair cells without synaptic ribbons are less able to timely and reliably send signals to the nerve cells, most likely because they cannot replenish the vesicles at the synapse quickly enough. Further analysis showed that the synaptic ribbon also helps to regulate the calcium channels at the synapse, which is important for linking the electrical signals in the hair cell to the release of the neurotransmitters. Jean et al. also saw that hair cells without ribbons reorganize their synapses to form multiple active zones that could transfer neurotransmitter to the nerve cells. This could partially compensate for the loss of the ribbons, meaning the impact of their loss may have been underestimated. Future studies could explore this by eliminating the Ribeye protein only after the ribbon synapses are fully formed. These findings may help scientists to better understand deafness and other hearing disorders in humans. They will also be of interest to neuroscientists who research synapses, hearing and other sensory processes.
Collapse
Affiliation(s)
- Philippe Jean
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center, University of Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany.,InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
| | - David Lopez de la Morena
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany.,InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
| | - Susann Michanski
- Collaborative Research Center, University of Göttingen, Göttingen, Germany.,InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.,Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany.,Institute for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Lina María Jaime Tobón
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center, University of Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany.,InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Rituparna Chakrabarti
- Collaborative Research Center, University of Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany.,InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.,Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany.,Institute for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Maria Magdalena Picher
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center, University of Göttingen, Göttingen, Germany.,InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
| | - Jakob Neef
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center, University of Göttingen, Göttingen, Germany.,InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - SangYong Jung
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.,Neuro Modulation and Neuro Circuitry Group, Singapore Bioimaging Consortium (SBIC), Biomedical Sciences Institutes, Singapore, Singapore
| | - Mehmet Gültas
- Department of Breeding Informatics, Georg-August-University Göttingen, Göttingen, Germany
| | - Stephan Maxeiner
- Institute for Anatomy and Cell Biology, University of the Saarland, Homburg, Germany
| | - Andreas Neef
- Bernstein Group Biophysics of Neural Computation, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Carolin Wichmann
- Collaborative Research Center, University of Göttingen, Göttingen, Germany.,InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.,Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany.,Institute for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Nicola Strenzke
- Collaborative Research Center, University of Göttingen, Göttingen, Germany.,InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.,Auditory Systems Physiology Group, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
| | - Chad Grabner
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center, University of Göttingen, Göttingen, Germany.,InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
22
|
A Unique Homeostatic Signaling Pathway Links Synaptic Inactivity to Postsynaptic mTORC1. J Neurosci 2018; 38:2207-2225. [PMID: 29311141 DOI: 10.1523/jneurosci.1843-17.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/23/2017] [Accepted: 12/27/2017] [Indexed: 12/31/2022] Open
Abstract
mTORC1-dependent translational control plays a key role in several enduring forms of synaptic plasticity such as long term potentiation (LTP) and mGluR-dependent long term depression. Recent evidence demonstrates an additional role in regulating synaptic homeostasis in response to inactivity, where dendritic mTORC1 serves to modulate presynaptic function via retrograde signaling. Presently, it is unclear whether LTP and homeostatic plasticity use a common route to mTORC1-dependent signaling or whether each engage mTORC1 through distinct pathways. Here, we report a unique signaling pathway that specifically couples homeostatic signaling to postsynaptic mTORC1 after loss of excitatory synaptic input. We find that AMPAR blockade, but not LTP-inducing stimulation, induces phospholipase D (PLD)-dependent synthesis of the lipid second messenger phosphatidic acid (PA) in rat cultured hippocampal neurons of either sex. Pharmacological blockade of PLD1/2 or pharmacogenetic disruption of PA interactions with mTOR eliminates mTORC1 signaling and presynaptic compensation driven by AMPAR blockade, but does not alter mTORC1 activation or functional changes during chemical LTP (cLTP). Overexpression of PLD1, but not PLD2, recapitulates both functional synaptic changes as well as signature cellular adaptations associated with homeostatic plasticity. Finally, transient application of exogenous PA is sufficient to drive rapid presynaptic compensation requiring mTORC1-dependent translation of BDNF in the postsynaptic compartment. These results thus define a unique homeostatic signaling pathway coupling mTORC1 activation to changes in excitatory synaptic drive. Our results further imply that more than one canonical mTORC1 activation pathway may be relevant for the design of novel therapeutic approaches against neurodevelopmental disorders associated with mTORC1 dysregulation.SIGNIFICANCE STATEMENT Homeostatic and Hebbian forms of synaptic plasticity are thought to play complementary roles in regulating neural circuit function, but we know little about how these forms of plasticity are distinguished at the single neuron level. Here, we define a signaling pathway that uniquely links mTORC1 with homeostatic signaling in neurons.
Collapse
|
23
|
RIBEYE(B)-domain binds to lipid components of synaptic vesicles in an NAD(H)-dependent, redox-sensitive manner. Biochem J 2017; 474:1205-1220. [PMID: 28202712 DOI: 10.1042/bcj20160886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 12/26/2022]
Abstract
Synaptic ribbons are needed for fast and continuous exocytosis in ribbon synapses. RIBEYE is a main protein component of synaptic ribbons and is necessary to build the synaptic ribbon. RIBEYE consists of a unique A-domain and a carboxyterminal B-domain, which binds NAD(H). Within the presynaptic terminal, the synaptic ribbons are in physical contact with large numbers of synaptic vesicle (SV)s. How this physical contact between ribbons and synaptic vesicles is established at a molecular level is not well understood. In the present study, we demonstrate that the RIBEYE(B)-domain can directly interact with lipid components of SVs using two different sedimentation assays with liposomes of defined chemical composition. Similar binding results were obtained with a SV-containing membrane fraction. The binding of liposomes to RIBEYE(B) depends upon the presence of a small amount of lysophospholipids present in the liposomes. Interestingly, binding of liposomes to RIBEYE(B) depends on NAD(H) in a redox-sensitive manner. The binding is enhanced by NADH, the reduced form, and is inhibited by NAD+, the oxidized form. Lipid-mediated attachment of vesicles is probably part of a multi-step process that also involves additional, protein-dependent processes.
Collapse
|
24
|
Raben DM, Barber CN. Phosphatidic acid and neurotransmission. Adv Biol Regul 2016; 63:15-21. [PMID: 27671966 DOI: 10.1016/j.jbior.2016.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 12/31/2022]
Abstract
Lipids play a vital role in the health and functioning of neurons and interest in the physiological role of neuronal lipids is certainly increasing. One neuronal function in which neuronal lipids appears to play key roles in neurotransmission. Our understanding of the role of lipids in the synaptic vesicle cycle and neurotransmitter release is becoming increasingly more important. Much of the initial research in this area has highlighted the major roles played by the phosphoinositides (PtdIns), diacylglycerol (DAG), and phosphatidic acid (PtdOH). Of these, PtdOH has not received as much attention as the other lipids although its role and metabolism appears to be extremely important. This lipid has been shown to play a role in modulating both exocytosis and endocytosis although its precise role in either process is not well defined. The currently evidence suggest this lipid likely participates in key processes by altering membrane architecture necessary for membrane fusion, mediating the penetration of membrane proteins, serving as a precursor for other important SV cycling lipids, or activating essential enzymes. In this review, we address the sources of PtdOH, the enzymes involved in its production, the regulation of these enzymes, and its potential roles in neurotransmission in the central nervous system.
Collapse
Affiliation(s)
- Daniel M Raben
- The Department of Biological Chemistry, The Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
| | - Casey N Barber
- The Department of Biological Chemistry, The Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
25
|
Bullen HE, Soldati-Favre D. A central role for phosphatidic acid as a lipid mediator of regulated exocytosis in apicomplexa. FEBS Lett 2016; 590:2469-81. [PMID: 27403735 DOI: 10.1002/1873-3468.12296] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/10/2016] [Accepted: 07/11/2016] [Indexed: 11/08/2022]
Abstract
Lipids are commonly known for the structural roles they play, however, the specific contribution of different lipid classes to wide-ranging signalling pathways is progressively being unravelled. Signalling lipids and their associated effector proteins are emerging as significant contributors to a vast array of effector functions within cells, including essential processes such as membrane fusion and vesicle exocytosis. Many phospholipids have signalling capacity, however, this review will focus on phosphatidic acid (PA) and the enzymes implicated in its production from diacylglycerol (DAG) and phosphatidylcholine (PC): DGK and PLD respectively. PA is a negatively charged, cone-shaped lipid identified as a key mediator in specific membrane fusion and vesicle exocytosis events in a variety of mammalian cells, and has recently been implicated in specialised secretory organelle exocytosis in apicomplexan parasites. This review summarises the recent work implicating a role for PA regulation in exocytosis in various cell types. We will discuss how these signalling events are linked to pathogenesis in the phylum Apicomplexa.
Collapse
|
26
|
The Disease Protein Tulp1 Is Essential for Periactive Zone Endocytosis in Photoreceptor Ribbon Synapses. J Neurosci 2016; 36:2473-93. [PMID: 26911694 DOI: 10.1523/jneurosci.2275-15.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mutations in the Tulp1 gene cause severe, early-onset retinitis pigmentosa (RP14) in humans. In the retina, Tulp1 is mainly expressed in photoreceptors that use ribbon synapses to communicate with the inner retina. In the present study, we demonstrate that Tulp1 is highly enriched in the periactive zone of photoreceptor presynaptic terminals where Tulp1 colocalizes with major endocytic proteins close to the synaptic ribbon. Analyses of Tulp1 knock-out mice demonstrate that Tulp1 is essential to keep endocytic proteins enriched at the periactive zone and to maintain high levels of endocytic activity close to the synaptic ribbon. Moreover, we have discovered a novel interaction between Tulp1 and the synaptic ribbon protein RIBEYE, which is important to maintain synaptic ribbon integrity. The current findings suggest a new model for Tulp1-mediated localization of the endocytic machinery at the periactive zone of ribbon synapses and offer a new rationale and mechanism for vision loss associated with genetic defects in Tulp1.
Collapse
|
27
|
Vodicka P, Mo S, Tousley A, Green KM, Sapp E, Iuliano M, Sadri-Vakili G, Shaffer SA, Aronin N, DiFiglia M, Kegel-Gleason KB. Mass Spectrometry Analysis of Wild-Type and Knock-in Q140/Q140 Huntington's Disease Mouse Brains Reveals Changes in Glycerophospholipids Including Alterations in Phosphatidic Acid and Lyso-Phosphatidic Acid. J Huntingtons Dis 2016; 4:187-201. [PMID: 26397899 DOI: 10.3233/jhd-150149] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Huntington's disease (HD) is a neurodegenerative disease caused by a CAG expansion in the HD gene, which encodes the protein Huntingtin. Huntingtin associates with membranes and can interact directly with glycerophospholipids in membranes. OBJECTIVE We analyzed glycerophospholipid profiles from brains of 11 month old wild-type (WT) and Q140/Q140 HD knock-in mice to assess potential changes in glycerophospholipid metabolism. METHODS Polar lipids from cerebellum, cortex, and striatum were extracted and analyzed by liquid chromatography and negative ion electrospray tandem mass spectrometry analysis (LC-MS/MS). Gene products involved in polar lipid metabolism were studied using western blotting, immuno-electron microscopy and qPCR. RESULTS Significant changes in numerous species of glycerophosphate (phosphatidic acid, PA) were found in striatum, cerebellum and cortex from Q140/Q140 HD mice compared to WT mice at 11 months. Changes in specific species could also be detected for other glycerophospholipids. Increases in species of lyso-PA (LPA) were measured in striatum of Q140/Q140 HD mice compared to WT. Protein levels for c-terminal binding protein 1 (CtBP1), a regulator of PA biosynthesis, were reduced in striatal synaptosomes from HD mice compared to wild-type at 6 and 12 months. Immunoreactivity for CtBP1 was detected on membranes of synaptic vesicles in striatal axon terminals in the globus pallidus. CONCLUSIONS These novel results identify a potential site of molecular pathology caused by mutant Huntingtin that may impart early changes in HD.
Collapse
Affiliation(s)
- Petr Vodicka
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Shunyan Mo
- Proteomics and Mass Spectrometry Facility and Department of Biochemistry and Molecular Pharmacology, UMASS Medical School, Worcester, MA, USA
| | - Adelaide Tousley
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Karin M Green
- Proteomics and Mass Spectrometry Facility and Department of Biochemistry and Molecular Pharmacology, UMASS Medical School, Worcester, MA, USA
| | - Ellen Sapp
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Maria Iuliano
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | | | - Scott A Shaffer
- Proteomics and Mass Spectrometry Facility and Department of Biochemistry and Molecular Pharmacology, UMASS Medical School, Worcester, MA, USA
| | - Neil Aronin
- Departments of Medicine and Cell and Developmental Biology, UMASS Medical School, Worcester, MA, USA
| | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | | |
Collapse
|
28
|
Lv C, Stewart WJ, Akanyeti O, Frederick C, Zhu J, Santos-Sacchi J, Sheets L, Liao JC, Zenisek D. Synaptic Ribbons Require Ribeye for Electron Density, Proper Synaptic Localization, and Recruitment of Calcium Channels. Cell Rep 2016; 15:2784-95. [PMID: 27292637 DOI: 10.1016/j.celrep.2016.05.045] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 04/06/2016] [Accepted: 05/10/2016] [Indexed: 10/21/2022] Open
Abstract
Synaptic ribbons are structures made largely of the protein Ribeye that hold synaptic vesicles near release sites in non-spiking cells in some sensory systems. Here, we introduce frameshift mutations in the two zebrafish genes encoding for Ribeye and thus remove Ribeye protein from neuromast hair cells. Despite Ribeye depletion, vesicles collect around ribbon-like structures that lack electron density, which we term "ghost ribbons." Ghost ribbons are smaller in size but possess a similar number of smaller vesicles and are poorly localized to synapses and calcium channels. These hair cells exhibit enhanced exocytosis, as measured by capacitance, and recordings from afferent neurons post-synaptic to hair cells show no significant difference in spike rates. Our results suggest that Ribeye makes up most of the synaptic ribbon density in neuromast hair cells and is necessary for proper localization of calcium channels and synaptic ribbons.
Collapse
Affiliation(s)
- Caixia Lv
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - William J Stewart
- The Whitney Laboratory for Marine Bioscience and Department of Biology, University of Florida, St. Augustine, FL 32080, USA
| | - Otar Akanyeti
- The Whitney Laboratory for Marine Bioscience and Department of Biology, University of Florida, St. Augustine, FL 32080, USA
| | - Courtney Frederick
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - Jie Zhu
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - Joseph Santos-Sacchi
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT 06520-8066, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - Lavinia Sheets
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Otolaryngology, Harvard Medical School, Boston, MA 02114, USA
| | - James C Liao
- The Whitney Laboratory for Marine Bioscience and Department of Biology, University of Florida, St. Augustine, FL 32080, USA
| | - David Zenisek
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; Department of Opthalmology and Visual Sciences, Yale University School of Medicine, New Haven, CT 06520-8066, USA.
| |
Collapse
|
29
|
Rutherford MA, Moser T. The Ribbon Synapse Between Type I Spiral Ganglion Neurons and Inner Hair Cells. THE PRIMARY AUDITORY NEURONS OF THE MAMMALIAN COCHLEA 2016. [DOI: 10.1007/978-1-4939-3031-9_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Abstract
The first synapses transmitting visual information contain an unusual organelle, the ribbon, which is involved in the transport and priming of vesicles to be released at the active zone. The ribbon is one of many design features that allow efficient refilling of the active zone, which in turn enables graded changes in membrane potential to be transmitted using a continuous mode of neurotransmitter release. The ribbon also plays a key role in supplying vesicles for rapid and transient bursts of release that signal fast changes, such as the onset of light. We increasingly understand how the physiological properties of ribbon synapses determine basic transformations of the visual signal and, in particular, how the process of refilling the active zone regulates the gain and adaptive properties of the retinal circuit. The molecular basis of ribbon function is, however, far from clear.
Collapse
Affiliation(s)
- Leon Lagnado
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom;
| | - Frank Schmitz
- Department of Neuroanatomy, Institute for Anatomy and Cell Biology, Medical School Saarland University, Homburg/Saar, Germany;
| |
Collapse
|
31
|
Wichmann C, Moser T. Relating structure and function of inner hair cell ribbon synapses. Cell Tissue Res 2015; 361:95-114. [PMID: 25874597 PMCID: PMC4487357 DOI: 10.1007/s00441-014-2102-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/18/2014] [Indexed: 01/28/2023]
Abstract
In the mammalian cochlea, sound is encoded at synapses between inner hair cells (IHCs) and type I spiral ganglion neurons (SGNs). Each SGN receives input from a single IHC ribbon-type active zone (AZ) and yet SGNs indefatigably spike up to hundreds of Hz to encode acoustic stimuli with submillisecond precision. Accumulating evidence indicates a highly specialized molecular composition and structure of the presynapse, adapted to suit these high functional demands. However, we are only beginning to understand key features such as stimulus-secretion coupling, exocytosis mechanisms, exo-endocytosis coupling, modes of endocytosis and vesicle reformation, as well as replenishment of the readily releasable pool. Relating structure and function has become an important avenue in addressing these points and has been applied to normal and genetically manipulated hair cell synapses. Here, we review some of the exciting new insights gained from recent studies of the molecular anatomy and physiology of IHC ribbon synapses.
Collapse
Affiliation(s)
- C. Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University Medical Center Göttingen, Göttingen, Germany
| | - T. Moser
- Collaborative Research Center 889, University Medical Center Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, University of Göttingen, Göttingen, Germany
| |
Collapse
|
32
|
Nicolson T. Ribbon synapses in zebrafish hair cells. Hear Res 2015; 330:170-7. [PMID: 25916266 DOI: 10.1016/j.heares.2015.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/20/2015] [Accepted: 04/13/2015] [Indexed: 12/31/2022]
Abstract
The basic architecture and functionality of ribbon synapses of mechanosensitive hair cells are well conserved among vertebrates. Forward and reverse genetic methods in zebrafish (Danio rerio) have identified components that are critical for the development and function of ribbon synapses. This review will focus on the findings of these genetic approaches, and discuss some emergent concepts on the role of the ribbon body and calcium in synapse development, and how perturbations in synaptic vesicles lead to a loss of temporal fidelity at ribbon synapses. This article is part of a Special Issue entitled <Auditory Synaptology>.
Collapse
Affiliation(s)
- T Nicolson
- Oregon Hearing Research Center and Vollum Institute, 3181 SW Sam Jackson Park Road, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
33
|
Ammar MR, Kassas N, Bader MF, Vitale N. Phosphatidic acid in neuronal development: A node for membrane and cytoskeleton rearrangements. Biochimie 2014; 107 Pt A:51-7. [DOI: 10.1016/j.biochi.2014.07.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/30/2014] [Indexed: 12/22/2022]
|
34
|
Sheets L, Hagen MW, Nicolson T. Characterization of Ribeye subunits in zebrafish hair cells reveals that exogenous Ribeye B-domain and CtBP1 localize to the basal ends of synaptic ribbons. PLoS One 2014; 9:e107256. [PMID: 25208216 PMCID: PMC4160224 DOI: 10.1371/journal.pone.0107256] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/11/2014] [Indexed: 12/03/2022] Open
Abstract
Synaptic ribbons are presynaptic structures formed by the self-association of RIBEYE–the main structural component of ribbon synapses. RIBEYE consists of two domains: a unique N-terminal A-domain and a C-terminal B-domain that is identical to the transcription co-repressor C-terminal binding protein 2 (CtBP2). Previous studies in cell lines have shown that RIBEYE A-domain alone is sufficient to form ribbon-like aggregates and that both A- and B- domains form homo-and heterotypic interactions. As these interactions are likely the basis for synaptic-ribbon assembly and structural plasticity, we wanted to examine how zebrafish Ribeye A- and B- domains interact with synaptic ribbons in vivo. To that end, we characterized the localization of exogenously expressed Ribeye A- and B- domains and the closely related protein, CtBP1, in the hair cells of transgenic zebrafish larvae. Unexpectedly, exogenously expressed Ribeye A-domain showed variable patterns of localization in hair cells; one zebrafish paralog of A-domain failed to self-associate or localize to synaptic ribbons, while the other self-assembled but sometimes failed to localize to synaptic ribbons. By contrast, Ribeye B-domain/CtBP2 was robustly localized to synaptic ribbons. Moreover, both exogenously expressed B-domain/CtBP2 and CtBP1 were preferentially localized to the basal end of ribbons adjacent to the postsynaptic density. Overexpression of B-domain/CtBP2 also appeared to affect synaptic-ribbon composition; endogenous levels of ribbon-localized Ribeye were significantly reduced as hair cells matured in B-domain/CtBP2 transgenic larvae compared to wild-type. These results reveal how exogenously expressed Ribeye domains interact with synaptic ribbons, and suggest a potential organization of elements within the ribbon body.
Collapse
Affiliation(s)
- Lavinia Sheets
- Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, United States of America
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
- * E-mail:
| | - Matthew W. Hagen
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Teresa Nicolson
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| |
Collapse
|
35
|
Sakagami H, Katsumata O, Hara Y, Tamaki H, Fukaya M. Preferential localization of type I phosphatidylinositol 4-phosphate 5-kinase γ at the periactive zone of mouse photoreceptor ribbon synapses. Brain Res 2014; 1586:23-33. [PMID: 25152467 DOI: 10.1016/j.brainres.2014.08.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/12/2014] [Accepted: 08/16/2014] [Indexed: 01/22/2023]
Abstract
Type I phosphatidylinositol 4-phosphate 5 kinase γ (PIP5KIγ) constitutes a major pathway for the generation of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) that regulates a variety of neuronal functions at both presynaptic and postsynaptic compartments. In this study, we examined the expression and localization of PIP5KIγ in the adult mouse retina. RT-PCR analysis revealed that PIP5KIγ_v2 was predominantly expressed in the retina while PIP5KIγ_v3 was also expressed faintly. Immunostaining of the adult mouse retina revealed intense PIP5KIγ-immunoreactivity in the inner and outer plexiform layers in a punctate manner. In the photoreceptor ribbon synapse, PIP5KIγ was highly concentrated at the periactive zone. These findings suggest that PIP5KIγ, especially PIP5KIγ_i2, is localized at the periactive zone, a functionally suitable compartment for the endocytosis of synaptic vesicles in photoreceptor ribbon synapses.
Collapse
Affiliation(s)
- Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan.
| | - Osamu Katsumata
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Yoshinobu Hara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Hideaki Tamaki
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| |
Collapse
|
36
|
ArfGAP3 is a component of the photoreceptor synaptic ribbon complex and forms an NAD(H)-regulated, redox-sensitive complex with RIBEYE that is important for endocytosis. J Neurosci 2014; 34:5245-60. [PMID: 24719103 DOI: 10.1523/jneurosci.3837-13.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ribbon synapses are tonically active synapses in the retina and inner ear with intense vesicle traffic. How this traffic is organized and regulated is still unknown. Synaptic ribbons, large presynaptic structures associated with numerous synaptic vesicles, appear to be essential for this process. The base of the synaptic ribbon is anchored at the active zone and is a hotspot of exocytosis. The synaptic ribbon complex is also important for vesicle replenishment. RIBEYE is a unique and major component of synaptic ribbons. It consists of a unique A-domain and an NAD(H)-binding, C-terminal B-domain. In the present study, we show that the Arf-GTPase activating protein-3 (ArfGAP3), a well characterized regulator of vesicle formation at the Golgi apparatus, is also a component of the synaptic ribbon complex in photoreceptor synapses of the mouse retina and interacts with RIBEYE as shown by multiple, independent approaches. ArfGAP3 binds to RIBEYE(B)-domain in an NAD(H)-dependent manner. The interaction is redox sensitive because NADH is more efficient than the oxidized NAD(+) in promoting ArfGAP3-RIBEYE interaction. RIBEYE competes with the GTP-binding protein Arf1 for binding to ArfGAP3. Thus, binding of RIBEYE(B) to ArfGAP3 could prevent inactivation of Arf1 by ArfGAP3 and provides the synaptic ribbon with the possibility to control Arf1 function. The interaction is relevant for endocytic vesicle trafficking because overexpression of ArfGAP3 in photoreceptors strongly inhibited endocytotic uptake of FM1-43.
Collapse
|
37
|
The Coffin-Lowry syndrome-associated protein RSK2 regulates neurite outgrowth through phosphorylation of phospholipase D1 (PLD1) and synthesis of phosphatidic acid. J Neurosci 2014; 33:19470-9. [PMID: 24336713 DOI: 10.1523/jneurosci.2283-13.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
More than 80 human X-linked genes have been associated with mental retardation and deficits in learning and memory. However, most of the identified mutations induce limited morphological alterations in brain organization and the molecular bases underlying neuronal clinical features remain elusive. We show here that neurons cultured from mice lacking ribosomal S6 kinase 2 (Rsk2), a model for the Coffin-Lowry syndrome (CLS), exhibit a significant delay in growth in a similar way to that shown by neurons cultured from phospholipase D1 (Pld1) knock-out mice. We found that gene silencing of Pld1 or Rsk2 as well as acute pharmacological inhibition of PLD1 or RSK2 in PC12 cells strongly impaired neuronal growth factor (NGF)-induced neurite outgrowth. Expression of a phosphomimetic PLD1 mutant rescued the inhibition of neurite outgrowth in PC12 cells silenced for RSK2, revealing that PLD1 is a major target for RSK2 in neurite formation. NGF-triggered RSK2-dependent phosphorylation of PLD1 led to its activation and the synthesis of phosphatidic acid at sites of neurite growth. Additionally, total internal reflection fluorescence microscopy experiments revealed that RSK2 and PLD1 positively control fusion of tetanus neurotoxin insensitive vesicle-associated membrane protein (TiVAMP)/VAMP-7 vesicles at sites of neurite outgrowth. We propose that the loss of function mutations in RSK2 that leads to CLS and neuronal deficits are related to defects in neuronal growth due to impaired RSK2-dependent PLD1 activity resulting in a reduced vesicle fusion rate and membrane supply.
Collapse
|
38
|
Kantardzhieva A, Liberman MC, Sewell WF. Quantitative analysis of ribbons, vesicles, and cisterns at the cat inner hair cell synapse: correlations with spontaneous rate. J Comp Neurol 2014; 521:3260-71. [PMID: 23787810 DOI: 10.1002/cne.23345] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/26/2013] [Accepted: 04/05/2013] [Indexed: 11/09/2022]
Abstract
Cochlear hair cells form ribbon synapses with terminals of the cochlear nerve. To test the hypothesis that one function of the ribbon is to create synaptic vesicles from the cisternal structures that are abundant at the base of hair cells, we analyzed the distribution of vesicles and cisterns around ribbons from serial sections of inner hair cells in the cat, and compared data from low and high spontaneous rate (SR) synapses. Consistent with the hypothesis, we identified a "sphere of influence" of 350 nm around the ribbon, with fewer cisterns and many more synaptic vesicles. Although high- and low-SR ribbons tended to be longer and thinner than high-SR ribbons, the total volume of the two ribbon types was similar. There were almost as many vesicles docked at the active zone as attached to the ribbon. The major SR-related difference was that low-SR ribbons had more synaptic vesicles intimately associated with them. Our data suggest a trend in which low-SR synapses had more vesicles attached to the ribbon (51.3 vs. 42.8), more docked between the ribbon and the membrane (12 vs. 8.2), more docked at the active zone (56.9 vs. 44.2), and more vesicles within the "sphere of influence" (218 vs. 166). These data suggest that the structural differences between high- and low-SR synapses may be more a consequence, than a determinant, of the physiological differences.
Collapse
Affiliation(s)
- Albena Kantardzhieva
- Eaton-Peabody Laboratory, Department of Otology and Laryngology, Massachusetts Eye and Ear Infirmary and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
39
|
Fuchs M, Brandstätter JH, Regus-Leidig H. Evidence for a Clathrin-independent mode of endocytosis at a continuously active sensory synapse. Front Cell Neurosci 2014; 8:60. [PMID: 24616664 PMCID: PMC3934443 DOI: 10.3389/fncel.2014.00060] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/10/2014] [Indexed: 11/13/2022] Open
Abstract
Synaptic vesicle exocytosis at chemical synapses is followed by compensatory endocytosis. Multiple pathways including Clathrin-mediated retrieval of single vesicles, bulk retrieval of large cisternae, and kiss-and-run retrieval have been reported to contribute to vesicle recycling. Particularly at the continuously active ribbon synapses of retinal photoreceptor and bipolar cells, compensatory endocytosis plays an essential role to provide ongoing vesicle supply. Yet, little is known about the mechanisms that contribute to endocytosis at these highly complex synapses. To identify possible specializations in ribbon synaptic endocytosis during different states of activity, we exposed mice to controlled lighting conditions and compared the distribution of endocytotic proteins at rod and cone photoreceptor, and ON bipolar cell ribbon synapses with light and electron microscopy. In mouse ON bipolar cell terminals, Clathrin-mediated endocytosis seemed to be the dominant mode of endocytosis at all adaptation states analyzed. In contrast, in mouse photoreceptor terminals in addition to Clathrin-coated pits, clusters of membranously connected electron-dense vesicles appeared during prolonged darkness. These clusters labeled for Dynamin3, Endophilin1, and Synaptojanin1, but not for AP180, Clathrin LC, and hsc70. We hypothesize that rod and cone photoreceptors possess an additional Clathrin-independent mode of vesicle retrieval supporting the continuous synaptic vesicle supply during prolonged high activity.
Collapse
Affiliation(s)
- Michaela Fuchs
- Animal Physiology, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg Erlangen, Germany
| | - Johann Helmut Brandstätter
- Animal Physiology, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg Erlangen, Germany
| | - Hanna Regus-Leidig
- Animal Physiology, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg Erlangen, Germany
| |
Collapse
|
40
|
A local, periactive zone endocytic machinery at photoreceptor synapses in close vicinity to synaptic ribbons. J Neurosci 2013; 33:10278-300. [PMID: 23785143 DOI: 10.1523/jneurosci.5048-12.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Photoreceptor ribbon synapses are continuously active synapses with large active zones that contain synaptic ribbons. Synaptic ribbons are anchored to the active zones and are associated with large numbers of synaptic vesicles. The base of the ribbon that is located close to L-type voltage-gated Ca(2+) channels is a hotspot of exocytosis. The continuous exocytosis at the ribbon synapse needs to be balanced by compensatory endocytosis. Recent analyses indicated that vesicle recycling at the synaptic ribbon is also an important determinant of synaptic signaling at the photoreceptor synapse. To get insights into mechanisms of vesicle recycling at the photoreceptor ribbon synapse, we performed super-resolution structured illumination microscopy and immunogold electron microscopy to localize major components of the endocytotic membrane retrieval machinery in the photoreceptor synapse of the mouse retina. We found dynamin, syndapin, amphiphysin, and calcineurin, a regulator of activity-dependent endocytosis, to be highly enriched around the active zone and the synaptic ribbon. We present evidence for two clathrin heavy chain variants in the photoreceptor terminal; one is enriched around the synaptic ribbon, whereas the other is localized in the entry region of the terminal. The focal enrichment of endocytic proteins around the synaptic ribbon is consistent with a focal uptake of endocytic markers at that site. This endocytic activity functionally depends on dynamin. These data propose that the presynaptic periactive zone surrounding the synaptic ribbon complex is a hotspot of endocytosis in photoreceptor ribbon synapses.
Collapse
|
41
|
Disruption of the presynaptic cytomatrix protein bassoon degrades ribbon anchorage, multiquantal release, and sound encoding at the hair cell afferent synapse. J Neurosci 2013; 33:4456-67. [PMID: 23467361 DOI: 10.1523/jneurosci.3491-12.2013] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Inner hair cells (IHCs) of the cochlea use ribbon synapses to transmit auditory information faithfully to spiral ganglion neurons (SGNs). In the present study, we used genetic disruption of the presynaptic scaffold protein bassoon in mice to manipulate the morphology and function of the IHC synapse. Although partial-deletion mutants lacking functional bassoon (Bsn(ΔEx4/5)) had a near-complete loss of ribbons from the synapses (up to 88% ribbonless synapses), gene-trap mutants (Bsn(gt)) showed weak residual expression of bassoon and 56% ribbonless synapses, whereas the remaining 44% had a loosely anchored ribbon. Patch-clamp recordings and synaptic CaV1.3 immunolabeling indicated a larger number of Ca(2+) channels for Bsn(gt) IHCs compared with Bsn(ΔEx4/5) IHCs and for Bsn(gt) ribbon-occupied versus Bsn(gt) ribbonless synapses. An intermediate phenotype of Bsn(gt) IHCs was also found by membrane capacitance measurements for sustained exocytosis, but not for the size of the readily releasable vesicle pool. The frequency and amplitude of EPSCs were reduced in Bsn(ΔEx4/5) mouse SGNs, whereas their postsynaptic AMPA receptor clusters were largely unaltered. Sound coding in SGN, assessed by recordings of single auditory nerve fibers and their population responses in vivo, was similarly affected in Bsn(gt) and Bsn(ΔEx4/5) mice. Both genotypes showed impaired sound onset coding and reduced evoked and spontaneous spike rates. In summary, reduced bassoon expression or complete lack of full-length bassoon impaired sound encoding to a similar extent, which is consistent with the comparable reduction of the readily releasable vesicle pool. This suggests that the remaining loosely anchored ribbons in Bsn(gt) IHCs were functionally inadequate or that ribbon independent mechanisms dominated the coding deficit.
Collapse
|
42
|
Kim MH, Li GL, von Gersdorff H. Single Ca2+ channels and exocytosis at sensory synapses. J Physiol 2013; 591:3167-78. [PMID: 23459757 DOI: 10.1113/jphysiol.2012.249482] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Hair cell synapses in the ear and photoreceptor synapses in the eye are the first synapses in the auditory and visual system. These specialized synapses transmit a large amount of sensory information in a fast and efficient manner. Moreover, both small and large signals with widely variable kinetics must be quickly encoded and reliably transmitted to allow an animal to rapidly monitor and react to its environment. Here we briefly review some aspects of these primary synapses, which are characterized by a synaptic ribbon in their active zones of transmitter release. We propose that these synapses are themselves highly specialized for the task at hand. Photoreceptor and bipolar cell ribbon synapses in the retina appear to have versatile properties that permit both tonic and phasic transmitter release. This allows them to transmit changes of both luminance and contrast within a visual field at different ambient light levels. By contrast, hair cell ribbon synapses are specialized for a highly synchronous form of multivesicular release that may be critical for phase locking to low-frequency sound-evoked signals at both low and high sound intensities. The microarchitecture of a hair cell synapse may be such that the opening of a single Ca(2+) channel evokes the simultaneous exocytosis of multiple synaptic vesicles. Thus, the differing demands of sensory encoding in the eye and ear generate diverse designs and capabilities for their ribbon synapses.
Collapse
Affiliation(s)
- Mean-Hwan Kim
- Oregon Health Sciences University, Vollum Institute L-474, 3181 SW Sam Jackson Park Rd, Portland, OR 97239-3098, USA
| | | | | |
Collapse
|
43
|
Ali WH, Chen Q, Delgiorno KE, Su W, Hall JC, Hongu T, Tian H, Kanaho Y, Di Paolo G, Crawford HC, Frohman MA. Deficiencies of the lipid-signaling enzymes phospholipase D1 and D2 alter cytoskeletal organization, macrophage phagocytosis, and cytokine-stimulated neutrophil recruitment. PLoS One 2013; 8:e55325. [PMID: 23383154 PMCID: PMC3557251 DOI: 10.1371/journal.pone.0055325] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/21/2012] [Indexed: 01/01/2023] Open
Abstract
Cell migration and phagocytosis ensue from extracellular-initiated signaling cascades that orchestrate dynamic reorganization of the actin cytoskeleton. The reorganization is mediated by effector proteins recruited to the site of activity by locally-generated lipid second messengers. Phosphatidic acid (PA), a membrane phospholipid generated by multiple enzyme families including Phospholipase D (PLD), has been proposed to function in this role. Here, we show that macrophages prepared from mice lacking either of the classical PLD isoforms PLD1 or PLD2, or wild-type macrophages whose PLD activity has been pharmacologically inhibited, display isoform-specific actin cytoskeleton abnormalities that likely underlie decreases observed in phagocytic capacity. Unexpectedly, PA continued to be detected on the phagosome in the absence of either isoform and even when all PLD activity was eliminated. However, a disorganized phagocytic cup was observed as visualized by imaging PA, F-actin, Rac1, an organizer of the F-actin network, and DOCK2, a Rac1 activator, suggesting that PLD-mediated PA production during phagocytosis is specifically critical for the integrity of the process. The abnormal F-actin reorganization additionally impacted neutrophil migration and extravasation from the vasculature into interstitial tissues. Although both PLD1 and PLD2 were important in these processes, we also observed isoform-specific functions. PLD1-driven processes in particular were observed to be critical in transmigration of macrophages exiting the vasculature during immune responses such as those seen in acute pancreatitis or irritant-induced skin vascularization.
Collapse
Affiliation(s)
- Wahida H. Ali
- Department of Pharmacology, Stony Brook University, Stony Brook, New York, United States of America
- Center for Developmental Genetics, Stony Brook University, Stony Brook, New York, United States of America
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York, United States of America
| | - Qin Chen
- Department of Pharmacology, Stony Brook University, Stony Brook, New York, United States of America
- Center for Developmental Genetics, Stony Brook University, Stony Brook, New York, United States of America
| | - Kathleen E. Delgiorno
- Department of Pharmacology, Stony Brook University, Stony Brook, New York, United States of America
- Center for Developmental Genetics, Stony Brook University, Stony Brook, New York, United States of America
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York, United States of America
| | - Wenjuan Su
- Department of Pharmacology, Stony Brook University, Stony Brook, New York, United States of America
- Center for Developmental Genetics, Stony Brook University, Stony Brook, New York, United States of America
| | - Jason C. Hall
- Department of Pharmacology, Stony Brook University, Stony Brook, New York, United States of America
- Center for Developmental Genetics, Stony Brook University, Stony Brook, New York, United States of America
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York, United States of America
| | - Tsunaki Hongu
- Department of Physiological Chemistry, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | - Huasong Tian
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Yasunori Kanaho
- Department of Physiological Chemistry, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Howard C. Crawford
- Department of Pharmacology, Stony Brook University, Stony Brook, New York, United States of America
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York, United States of America
| | - Michael A. Frohman
- Department of Pharmacology, Stony Brook University, Stony Brook, New York, United States of America
- Center for Developmental Genetics, Stony Brook University, Stony Brook, New York, United States of America
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
44
|
Molecular anatomy and physiology of exocytosis in sensory hair cells. Cell Calcium 2012; 52:327-37. [DOI: 10.1016/j.ceca.2012.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/08/2012] [Accepted: 05/14/2012] [Indexed: 11/23/2022]
|
45
|
A 14-3-3γ dimer-based scaffold bridges CtBP1-S/BARS to PI(4)KIIIβ to regulate post-Golgi carrier formation. Nat Cell Biol 2012; 14:343-54. [PMID: 22366688 DOI: 10.1038/ncb2445] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 01/17/2012] [Indexed: 11/08/2022]
Abstract
Large pleiomorphic carriers leave the Golgi complex for the plasma membrane by en bloc extrusion of specialized tubular domains, which then undergo fission. Several components of the underlying molecular machinery have been identified, including those involved in the budding/initiation of tubular carrier precursors (for example, the phosphoinositide kinase PI(4)KIIIβ, the GTPase ARF, and FAPP2), and in the fission of these precursors (for example, PKD, CtBP1-S/BARS). However, how these proteins interact to bring about carrier formation is poorly understood. Here, we describe a protein complex that mediates carrier formation and contains budding and fission molecules, as well as other molecules, such as the adaptor protein 14-3-3γ. Specifically, we show that 14-3-3γ dimers bridge CtBP1-S/BARS with PI(4)KIIIβ, and that the resulting complex is stabilized by phosphorylation by PKD and PAK. Disrupting the association of these proteins inhibits the fission of elongating carrier precursors, indicating that this complex couples the carrier budding and fission processes.
Collapse
|