1
|
Chaya T, Maeda Y, Tsutsumi R, Ando M, Ma Y, Kajimura N, Tanaka T, Furukawa T. Ccrk-Mak/Ick signaling is a ciliary transport regulator essential for retinal photoreceptor survival. Life Sci Alliance 2024; 7:e202402880. [PMID: 39293864 PMCID: PMC11412320 DOI: 10.26508/lsa.202402880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/20/2024] Open
Abstract
Primary cilia are microtubule-based sensory organelles whose dysfunction causes ciliopathies in humans. The formation, function, and maintenance of primary cilia depend crucially on intraflagellar transport (IFT); however, the regulatory mechanisms of IFT at ciliary tips are poorly understood. Here, we identified that the ciliopathy kinase Mak is a ciliary tip-localized IFT regulator that cooperatively acts with the ciliopathy kinase Ick, an IFT regulator. Simultaneous disruption of Mak and Ick resulted in loss of photoreceptor ciliary axonemes and severe retinal degeneration. Gene delivery of Ick and pharmacological inhibition of FGF receptors, Ick negative regulators, ameliorated retinal degeneration in Mak -/- mice. We also identified that Ccrk kinase is an upstream activator of Mak and Ick in retinal photoreceptor cells. Furthermore, the overexpression of Mak, Ick, and Ccrk and pharmacological inhibition of FGF receptors suppressed ciliopathy-related phenotypes caused by cytoplasmic dynein inhibition in cultured cells. Collectively, our results show that the Ccrk-Mak/Ick axis is an IFT regulator essential for retinal photoreceptor maintenance and present activation of Ick as a potential therapeutic approach for retinitis pigmentosa caused by MAK mutations.
Collapse
Affiliation(s)
- Taro Chaya
- https://ror.org/035t8zc32 Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yamato Maeda
- https://ror.org/035t8zc32 Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Ryotaro Tsutsumi
- https://ror.org/035t8zc32 Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Makoto Ando
- https://ror.org/035t8zc32 Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yujie Ma
- https://ror.org/035t8zc32 Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Naoko Kajimura
- https://ror.org/035t8zc32 Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Japan
| | - Teruyuki Tanaka
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahisa Furukawa
- https://ror.org/035t8zc32 Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Varner LR, Chaya T, Maeda Y, Tsutsumi R, Zhou S, Tsujii T, Okuzaki D, Furukawa T. The deubiquitinase Otud7b suppresses cone photoreceptor degeneration in mouse models of retinal degenerative diseases. iScience 2024; 27:109380. [PMID: 38510130 PMCID: PMC10951987 DOI: 10.1016/j.isci.2024.109380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/15/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
Primary and secondary cone photoreceptor death in retinal degenerative diseases, including age-related macular degeneration (AMD) and retinitis pigmentosa (RP), leads to severe visual impairment and blindness. Although the cone photoreceptor protection in retinal degenerative diseases is crucial for maintaining vision, the underlying molecular mechanisms are unclear. Here, we found that the deubiquitinase Otud7b/Cezanne is predominantly expressed in photoreceptor cells in the retina. We analyzed Otud7b-/- mice, which were subjected to light-induced damage, a dry AMD model, or were mated with an RP mouse model, and observed increased cone photoreceptor degeneration. Using RNA-sequencing and bioinformatics analysis followed by a luciferase reporter assay, we found that Otud7b downregulates NF-κB activity. Furthermore, inhibition of NF-κB attenuated cone photoreceptor degeneration in the light-exposed Otud7b-/- retina and stress-induced neuronal cell death resulting from Otud7b deficiency. Together, our findings suggest that Otud7b protects cone photoreceptors in retinal degenerative diseases by modulating NF-κB activity.
Collapse
Affiliation(s)
- Leah Rie Varner
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Taro Chaya
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Yamato Maeda
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Ryotaro Tsutsumi
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Shanshan Zhou
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Toshinori Tsujii
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
3
|
He Y, Zhang X, Pan W, Zhang J, Zhu W, Zhang J, Shi J. Ciliogenesis-associated Kinase 1 Promotes Breast Cancer Cell Proliferation and Chemoresistance via Phosphorylating ERK1. Int J Biol Sci 2024; 20:2403-2421. [PMID: 38725848 PMCID: PMC11077371 DOI: 10.7150/ijbs.87442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 03/03/2024] [Indexed: 05/12/2024] Open
Abstract
Ciliogenesis-associated kinase 1 (CILK1) plays a key role in the ciliogenesis and ciliopathies. It remains totally unclear whether CILK1 is involved in tumor progression and therapy resistance. Here, we report that the aberrant high-expression of CILK1 in breast cancer is required for tumor cell proliferation and chemoresistance. Two compounds, CILK1-C30 and CILK1-C28, were identified with selective inhibitory effects towards the Tyr-159/Thr-157 dual-phosphorylation of CILK1, pharmacological inhibition of CILK1 significantly suppressed tumor cell proliferation and overcame chemoresistance in multiple experimental models. Large-scale screen of CILK1 substrates confirmed that the kinase directly phosphorylates ERK1, which is responsible for CILK1-mediated oncogenic function. CILK1 is also indicated to be responsible for the chemoresistance of small-cell lung cancer cells. Our data highlight the importance of CILK1 in cancer, implicating that targeting CILK1/ERK1 might offer therapeutic benefit to cancer patients.
Collapse
Affiliation(s)
- Yanling He
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xinyuan Zhang
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Weijun Pan
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Jiebiao Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Weiliang Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Shi
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, Guangdong, China
| |
Collapse
|
4
|
Yoshimoto T, Chaya T, Varner LR, Ando M, Tsujii T, Motooka D, Kimura K, Furukawa T. The Rax homeoprotein in Müller glial cells is required for homeostasis maintenance of the postnatal mouse retina. J Biol Chem 2023; 299:105461. [PMID: 37977220 PMCID: PMC10714373 DOI: 10.1016/j.jbc.2023.105461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/25/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023] Open
Abstract
Müller glial cells, which are the most predominant glial subtype in the retina, play multiple important roles, including the maintenance of structural integrity, homeostasis, and physiological functions of the retina. We have previously found that the Rax homeoprotein is expressed in postnatal and mature Müller glial cells in the mouse retina. However, the function of Rax in postnatal and mature Müller glial cells remains to be elucidated. In the current study, we first investigated Rax function in retinal development using retroviral lineage analysis and found that Rax controls the specification of late-born retinal cell types, including Müller glial cells in the postnatal retina. We next generated Rax tamoxifen-induced conditional KO (Rax iCKO) mice, where Rax can be depleted in mTFP-labeled Müller glial cells upon tamoxifen treatment, by crossing Raxflox/flox mice with Rlbp1-CreERT2 mice, which we have produced. Immunohistochemical analysis showed a characteristic of reactive gliosis and enhanced gliosis of Müller glial cells in Rax iCKO retinas under normal and stress conditions, respectively. We performed RNA-seq analysis on mTFP-positive cells purified from the Rax iCKO retina and found significantly reduced expression of suppressor of cytokinesignaling-3 (Socs3). Reporter gene assays showed that Rax directly transactivates the Socs3 promoter. We observed decreased expression of Socs3 in Müller glial cells of Rax iCKO retinas by immunostaining. Taken together, the present results suggest that Rax suppresses inflammation in Müller glial cells by transactivating Socs3. This study sheds light on the transcriptional regulatory mechanisms underlying retinal Müller glial cell homeostasis.
Collapse
Affiliation(s)
- Takuya Yoshimoto
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan; Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Taro Chaya
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Leah R Varner
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Makoto Ando
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Toshinori Tsujii
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kazuhiro Kimura
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
5
|
Yan L, Yin H, Mi Y, Wu Y, Zheng Y. Deficiency of Wdr60 and Wdr34 cause distinct neural tube malformation phenotypes in early embryos. Front Cell Dev Biol 2023; 11:1084245. [PMID: 37228654 PMCID: PMC10203710 DOI: 10.3389/fcell.2023.1084245] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Cilia are specialized organelles that extend from plasma membrane, functioning as antennas for signal transduction and are involved in embryonic morphogenesis. Dysfunction of cilia lead to many developmental defects, including neural tube defects (NTDs). Heterodimer WDR60-WDR34 (WD repeat domain 60 and 34) are intermediate chains of motor protein dynein-2, which play important roles in ciliary retrograde transport. It has been reported that disruption of Wdr34 in mouse model results in NTDs and defects of Sonic Hedgehog (SHH) signaling. However, no Wdr60 deficiency mouse model has been reported yet. In this study, piggyBac (PB) transposon is used to interfere Wdr60 and Wdr34 expression respectively to establish Wdr60 PB/PB and Wdr34 PB/PB mouse models. We found that the expression of Wdr60 or Wdr34 is significantly decreased in the homozygote mice. Wdr60 homozygote mice die around E13.5 to E14.5, while Wdr34 homozygote mice die around E10.5 to E11.5. WDR60 is highly expressed in the head region at E10.5 and Wdr60 PB/PB embryos have head malformation. RNAseq and qRT-PCR experiments revealed that Sonic Hedgehog signaling is also downregulated in Wdr60 PB/PB head tissue, demonstrating that WDR60 is also required for promoting SHH signaling. Further experiments on mouse embryos also revealed that the expression levels of planar cell polarity (PCP) components such as CELSR1 and downstream signal molecule c-Jun were downregulated in WDR34 homozygotes compared to wildtype littermates. Coincidently, we observed much higher ratio of open cranial and caudal neural tube in Wdr34 PB/PB mice. CO-IP experiment showed that WDR60 and WDR34 both interact with IFT88, but only WDR34 interacts with IFT140. Taken together, WDR60 and WDR34 play overlapped and distinct functions in modulating neural tube development.
Collapse
Affiliation(s)
- Lu Yan
- Obstetrics and Gynecology Hospital, The Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
- Department of Cellular and Developmental Biology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Hailing Yin
- Obstetrics and Gynecology Hospital, The Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
- Obstetrics Department of the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yiwei Mi
- Department of Cellular and Developmental Biology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yu Wu
- Department of Cellular and Developmental Biology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yufang Zheng
- Obstetrics and Gynecology Hospital, The Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
- Department of Cellular and Developmental Biology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Mul W, Mitra A, Peterman EJG. Mechanisms of Regulation in Intraflagellar Transport. Cells 2022; 11:2737. [PMID: 36078145 PMCID: PMC9454703 DOI: 10.3390/cells11172737] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
Cilia are eukaryotic organelles essential for movement, signaling or sensing. Primary cilia act as antennae to sense a cell's environment and are involved in a wide range of signaling pathways essential for development. Motile cilia drive cell locomotion or liquid flow around the cell. Proper functioning of both types of cilia requires a highly orchestrated bi-directional transport system, intraflagellar transport (IFT), which is driven by motor proteins, kinesin-2 and IFT dynein. In this review, we explore how IFT is regulated in cilia, focusing from three different perspectives on the issue. First, we reflect on how the motor track, the microtubule-based axoneme, affects IFT. Second, we focus on the motor proteins, considering the role motor action, cooperation and motor-train interaction plays in the regulation of IFT. Third, we discuss the role of kinases in the regulation of the motor proteins. Our goal is to provide mechanistic insights in IFT regulation in cilia and to suggest directions of future research.
Collapse
Affiliation(s)
| | | | - Erwin J. G. Peterman
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
7
|
Satoda Y, Noguchi T, Fujii T, Taniguchi A, Katoh Y, Nakayama K. BROMI/TBC1D32 together with CCRK/CDK20 and FAM149B1/JBTS36 contributes to intraflagellar transport turnaround involving ICK/CILK1. Mol Biol Cell 2022; 33:ar79. [PMID: 35609210 PMCID: PMC9582636 DOI: 10.1091/mbc.e22-03-0089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Primary cilia are antenna-like organelles that contain specific proteins, and are crucial for tissue morphogenesis. Anterograde and retrograde trafficking of ciliary proteins are mediated by the intraflagellar transport (IFT) machinery. BROMI/TBC1D32 interacts with CCRK/CDK20, which phosphorylates and activates the intestinal cell kinase (ICK)/CILK1 kinase, to regulate the change in direction of the IFT machinery at the ciliary tip. Mutations in BROMI, CCRK, and ICK in humans cause ciliopathies, and mice defective in these genes are also known to demonstrate ciliopathy phenotypes. We show here that BROMI interacts not only with CCRK but also with CFAP20, an evolutionarily conserved ciliary protein, and with FAM149B1/ Joubert syndrome (JBTS)36, a protein in which mutations cause JBTS. In addition, we show that FAM149B1 interacts directly with CCRK as well as with BROMI. Ciliary defects observed in CCRK-knockout (KO), BROMI-KO, and FAM149B1-KO cells, including abnormally long cilia and accumulation of the IFT machinery and ICK at the ciliary tip, resembled one another, and BROMI mutants that are defective in binding to CCRK and CFAP20 were unable to rescue the ciliary defects of BROMI-KO cells. These data indicate that CCRK, BROMI, FAM149B1, and probably CFAP20 altogether regulate the IFT turnaround process under the control of ICK.
Collapse
Affiliation(s)
- Yuuki Satoda
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tatsuro Noguchi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Taiju Fujii
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Aoi Taniguchi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
8
|
Zhang Y, Zhang S, Zhou H, Ma X, Wu L, Tian M, Li S, Qian X, Gao X, Chai R. Dync1li1 is required for the survival of mammalian cochlear hair cells by regulating the transportation of autophagosomes. PLoS Genet 2022; 18:e1010232. [PMID: 35727824 PMCID: PMC9249241 DOI: 10.1371/journal.pgen.1010232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 07/01/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
Dync1li1, a subunit of cytoplasmic dynein 1, is reported to play important roles in intracellular retrograde transport in many tissues. However, the roles of Dync1li1 in the mammalian cochlea remain uninvestigated. Here we first studied the expression pattern of Dync1li1 in the mouse cochlea and found that Dync1li1 is highly expressed in hair cells (HCs) in both neonatal and adult mice cochlea. Next, we used Dync1li1 knockout (KO) mice to investigate its effects on hearing and found that deletion of Dync1li1 leads to early onset of progressive HC loss via apoptosis and to subsequent hearing loss. Further studies revealed that loss of Dync1li1 destabilizes dynein and alters the normal function of dynein. In addition, Dync1li1 KO results in a thinner Golgi apparatus and the accumulation of LC3+ autophagic vacuoles, which triggers HC apoptosis. We also knocked down Dync1li1 in the OC1 cells and found that the number of autophagosomes were significantly increased while the number of autolysosomes were decreased, which suggested that Dync1li1 knockdown leads to impaired transportation of autophagosomes to lysosomes and therefore the accumulation of autophagosomes results in HC apoptosis. Our findings demonstrate that Dync1li1 plays important roles in HC survival through the regulation of autophagosome transportation. Hearing loss is one of the most common sensorial disorders globally. The main reason of hearing loss is the irreversible loss or malfunction of cochlear hair cells. Identifying new hearing loss-related genes and investigating their roles and mechanisms in HC survival are important for the prevention and treatment of hereditary hearing loss. Cytoplasmic dynein 1 is reported to play important roles in in ciliogenesis and protein transport in the mouse photoreceptors. Here, we described the expression pattern of Dyncili1 (a subunit of cytoplasmic dynein 1) in the mouse cochlea and used knockout mice to investigate its specific role in the hair cell of cochlea.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Shasha Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- * E-mail: (SZ); (XQ); (XG); (RC)
| | - Han Zhou
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
| | - Xiangyu Ma
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Leilei Wu
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Mengyao Tian
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Siyu Li
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
| | - Xiaoyun Qian
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
- * E-mail: (SZ); (XQ); (XG); (RC)
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
- * E-mail: (SZ); (XQ); (XG); (RC)
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
- * E-mail: (SZ); (XQ); (XG); (RC)
| |
Collapse
|
9
|
Tsutsumi R, Chaya T, Tsujii T, Furukawa T. The carboxyl-terminal region of SDCCAG8 comprises a functional module essential for cilia formation as well as organ development and homeostasis. J Biol Chem 2022; 298:101686. [PMID: 35131266 PMCID: PMC8902618 DOI: 10.1016/j.jbc.2022.101686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023] Open
Abstract
In humans, ciliary dysfunction causes ciliopathies, which present as multiple organ defects, including developmental and sensory abnormalities. Sdccag8 is a centrosomal/basal body protein essential for proper cilia formation. Gene mutations in SDCCAG8 have been found in patients with ciliopathies manifesting a broad spectrum of symptoms, including hypogonadism. Among these mutations, several that are predicted to truncate the SDCCAG8 carboxyl (C) terminus are also associated with such symptoms; however, the underlying mechanisms are poorly understood. In the present study, we identified the Sdccag8 C-terminal region (Sdccag8-C) as a module that interacts with the ciliopathy proteins, Ick/Cilk1 and Mak, which were shown to be essential for the regulation of ciliary protein trafficking and cilia length in mammals in our previous studies. We found that Sdccag8-C is essential for Sdccag8 localization to centrosomes and cilia formation in cultured cells. We then generated a mouse mutant in which Sdccag8-C was truncated (Sdccag8ΔC/ΔC mice) using a CRISPR-mediated stop codon knock-in strategy. In Sdccag8ΔC/ΔC mice, we observed abnormalities in cilia formation and ciliopathy-like organ phenotypes, including cleft palate, polydactyly, retinal degeneration, and cystic kidney, which partially overlapped with those previously observed in Ick- and Mak-deficient mice. Furthermore, Sdccag8ΔC/ΔC mice exhibited a defect in spermatogenesis, which was a previously uncharacterized phenotype of Sdccag8 dysfunction. Together, these results shed light on the molecular and pathological mechanisms underlying ciliopathies observed in patients with SDCCAG8 mutations and may advance our understanding of protein–protein interaction networks involved in cilia development.
Collapse
|
10
|
Chen BJ, Qian XQ, Yang XY, Jiang T, Wang YM, Lyu JH, Chi FL, Chen P, Ren DD. Rab11a Regulates the Development of Cilia and Establishment of Planar Cell Polarity in Mammalian Vestibular Hair Cells. Front Mol Neurosci 2021; 14:762916. [PMID: 34867187 PMCID: PMC8640494 DOI: 10.3389/fnmol.2021.762916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Vestibular organs have unique planar cell polarity (Figure 1A), and their normal development and function are dependent on the regular polarity of cilia (Figure 1B) requires. Rab11a is a small G protein that participates in the transportation of intracellular and extracellular materials required for polarity formation; however, our understanding of the mechanisms of the actions of Rab11a in vestibular organs is limited. Here, we showed that the general shape of the utricle was abnormal in Rab11a CKO/CKO mice. These mice also showed abnormal morphology of the stereocilia bundles, which were reduced in both length and number, as well as disturbed tissue-level polarity. Rab11a affected the distribution of polarity proteins in the vestibular organs, indicating that the normal development of cilia requires Rab11a and intraflagellar transportation. Furthermore, small G protein migration works together with intraflagellar transportation in the normal development of cilia. FIGURE 1Morphological changes of stereocilia in the extrastriolar hair cells from Rab11a single or Rab11a/IFT88 double-mutant utricles. (A) Medial view of a mouse left inner ear with its five vestibular sensory organs (gray). Enlarged are the utricle showing their subdivisions, LPR (yellow line), and striola (blue). LES, lateral extrastriola; MES, medial extrastriola; LPR, line of polarity reversal. (B) Schematic view of vestibular hair cell. Kinocilium is marked with ace-tubulin. Basal body is marked with γ-tubulin. (C,C1,D,D1) Normal appearance of the stereocilia of extrastriolar hair cells of wild-type controls. (E,E1,F,F1) Altered morphology in Rab11a CKO/CKO animals. (G,G1,H,H1) The changes in the stereocilia morphology were more severe in Rab11a CKO/CKO /IFT 88 CKO/+ mice. (I-L) Higher magnification of confocal images of hair cells. (M-P) Scanning electron microscopy images of hair cells from wild-type controls and Rab11a mutants. (I,M) Morphology of normal. hair cells of wild-type controls. (J,N) The number of stereocilia on a single hair cell was deceased in the Rab11a mutant. (K,O) Stereocilia were shorter in mutants compared to the wild-type controls. (L,P) The staircase-like hair bundle architecture of hair cells was lost in Rab11a mutant mice. (Q) The percentage of hair cells with abnormal development of static cilia bundles in the extrastriola region was counted as a percentage of the total (n = 5). The percentage of abnormal hair cells was higher in Rab11a CKO/CKO , IFT88 CKO/+ mice compared to Rab11a CKO/CKO . The abnormal ratios of single and double knockout hair cells were 42.1 ± 5.7 and 71.5 ± 10.4, respectively. In (A-J), for all primary panels, hair cell stereociliary bundles were marked with phalloidin (green), the actin-rich cuticular plate of hair cells was labeled with β-spectrin (red), while the basal body of the hair cell was labeled with γ-tubulin (blue). Scale bars: 10 μm (C-H1), 5 μm (J-N). *P < 0.05.
Collapse
Affiliation(s)
- Bin-Jun Chen
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,Shanghai Auditory Medical Center, Shanghai, China
| | - Xiao-Qing Qian
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,Shanghai Auditory Medical Center, Shanghai, China
| | - Xiao-Yu Yang
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,Shanghai Auditory Medical Center, Shanghai, China
| | - Tao Jiang
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,Shanghai Auditory Medical Center, Shanghai, China
| | - Yan-Mei Wang
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,Shanghai Auditory Medical Center, Shanghai, China
| | - Ji-Han Lyu
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,Shanghai Auditory Medical Center, Shanghai, China
| | - Fang-Lu Chi
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,Shanghai Auditory Medical Center, Shanghai, China
| | - Ping Chen
- Department of Cell Biology, Emory University, Atlanta, GA, United States.,Department of Otolaryngology, Emory University, Atlanta, GA, United States
| | - Dong-Dong Ren
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,Shanghai Auditory Medical Center, Shanghai, China
| |
Collapse
|
11
|
Trigila AP, Pisciottano F, Franchini LF. Hearing loss genes reveal patterns of adaptive evolution at the coding and non-coding levels in mammals. BMC Biol 2021; 19:244. [PMID: 34784928 PMCID: PMC8594068 DOI: 10.1186/s12915-021-01170-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 10/21/2021] [Indexed: 11/26/2022] Open
Abstract
Background Mammals possess unique hearing capacities that differ significantly from those of the rest of the amniotes. In order to gain insights into the evolution of the mammalian inner ear, we aim to identify the set of genetic changes and the evolutionary forces that underlie this process. We hypothesize that genes that impair hearing when mutated in humans or in mice (hearing loss (HL) genes) must play important roles in the development and physiology of the inner ear and may have been targets of selective forces across the evolution of mammals. Additionally, we investigated if these HL genes underwent a human-specific evolutionary process that could underlie the evolution of phenotypic traits that characterize human hearing. Results We compiled a dataset of HL genes including non-syndromic deafness genes identified by genetic screenings in humans and mice. We found that many genes including those required for the normal function of the inner ear such as LOXHD1, TMC1, OTOF, CDH23, and PCDH15 show strong signatures of positive selection. We also found numerous noncoding accelerated regions in HL genes, and among them, we identified active transcriptional enhancers through functional enhancer assays in transgenic zebrafish. Conclusions Our results indicate that the key inner ear genes and regulatory regions underwent adaptive evolution in the basal branch of mammals and along the human-specific branch, suggesting that they could have played an important role in the functional remodeling of the cochlea. Altogether, our data suggest that morphological and functional evolution could be attained through molecular changes affecting both coding and noncoding regulatory regions. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01170-6.
Collapse
Affiliation(s)
- Anabella P Trigila
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina
| | - Francisco Pisciottano
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina.,Current address: Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina
| | - Lucía F Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Noguchi T, Nakamura K, Satoda Y, Katoh Y, Nakayama K. CCRK/CDK20 regulates ciliary retrograde protein trafficking via interacting with BROMI/TBC1D32. PLoS One 2021; 16:e0258497. [PMID: 34624068 PMCID: PMC8500422 DOI: 10.1371/journal.pone.0258497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/28/2021] [Indexed: 01/02/2023] Open
Abstract
CCRK/CDK20 was reported to interact with BROMI/TBC1D32 and regulate ciliary Hedgehog signaling. In various organisms, mutations in the orthologs of CCRK and those of the kinase ICK/CILK1, which is phosphorylated by CCRK, are known to result in cilia elongation. Furthermore, we recently showed that ICK regulates retrograde ciliary protein trafficking and/or the turnaround event at the ciliary tips, and that its mutations result in the elimination of intraflagellar transport (IFT) proteins that have overaccumulated at the bulged ciliary tips as extracellular vesicles, in addition to cilia elongation. However, how these proteins cooperate to regulate ciliary protein trafficking has remained unclear. We here show that the phenotypes of CCRK-knockout (KO) cells closely resemble those of ICK-KO cells; namely, the overaccumulation of IFT proteins at the bulged ciliary tips, which appear to be eliminated as extracellular vesicles, and the enrichment of GPR161 and Smoothened on the ciliary membrane. The abnormal phenotypes of CCRK-KO cells were rescued by the exogenous expression of wild-type CCRK but not its kinase-dead mutant or a mutant defective in BROMI binding. These results together indicate that CCRK regulates the turnaround process at the ciliary tips in concert with BROMI and probably via activating ICK.
Collapse
Affiliation(s)
- Tatsuro Noguchi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kentaro Nakamura
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yuuki Satoda
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
13
|
Abraham SP, Nita A, Krejci P, Bosakova M. Cilia kinases in skeletal development and homeostasis. Dev Dyn 2021; 251:577-608. [PMID: 34582081 DOI: 10.1002/dvdy.426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 11/08/2022] Open
Abstract
Primary cilia are dynamic compartments that regulate multiple aspects of cellular signaling. The production, maintenance, and function of cilia involve more than 1000 genes in mammals, and their mutations disrupt the ciliary signaling which manifests in a plethora of pathological conditions-the ciliopathies. Skeletal ciliopathies are genetic disorders affecting the development and homeostasis of the skeleton, and encompass a broad spectrum of pathologies ranging from isolated polydactyly to lethal syndromic dysplasias. The recent advances in forward genetics allowed for the identification of novel regulators of skeletogenesis, and revealed a growing list of ciliary proteins that are critical for signaling pathways implicated in bone physiology. Among these, a group of protein kinases involved in cilia assembly, maintenance, signaling, and disassembly has emerged. In this review, we summarize the functions of cilia kinases in skeletal development and disease, and discuss the available and upcoming treatment options.
Collapse
Affiliation(s)
- Sara P Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
14
|
Chaya T, Ishikane H, Varner LR, Sugita Y, Maeda Y, Tsutsumi R, Motooka D, Okuzaki D, Furukawa T. Deficiency of the neurodevelopmental disorder-associated gene Cyfip2 alters the retinal ganglion cell properties and visual acuity. Hum Mol Genet 2021; 31:535-547. [PMID: 34508581 PMCID: PMC8863419 DOI: 10.1093/hmg/ddab268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/28/2022] Open
Abstract
Intellectual disability (ID) is a neurodevelopmental disorder affecting approximately 0.5–3% of the population in the developed world. Individuals with ID exhibit deficits in intelligence, impaired adaptive behavior and often visual impairments. Cytoplasmic fragile X mental retardation 1 (FMR1)-interacting protein 2 (CYFIP2) is an interacting partner of the FMR protein, whose loss results in fragile X syndrome, the most common inherited cause of ID. Recently, CYFIP2 variants have been found in patients with early-onset epileptic encephalopathy, developmental delay and ID. Such individuals often exhibit visual impairments; however, the underlying mechanism is poorly understood. In the present study, we investigated the role of Cyfip2 in retinal and visual functions by generating and analyzing Cyfip2 conditional knockout (CKO) mice. While we found no major differences in the layer structures and cell compositions between the control and Cyfip2 CKO retinas, a subset of genes associated with the transporter and channel activities was differentially expressed in Cyfip2 CKO retinas than in the controls. Multi-electrode array recordings showed more sustained and stronger responses to positive flashes of the ON ganglion cells in the Cyfip2 CKO retina than in the controls, although electroretinogram analysis revealed that Cyfip2 deficiency unaffected the photoreceptor and ON bipolar cell functions. Furthermore, analysis of initial and late phase optokinetic responses demonstrated that Cyfip2 deficiency impaired the visual function at the organismal level. Together, our results shed light on the molecular mechanism underlying the visual impairments observed in individuals with CYFIP2 variants and, more generally, in patients with neurodevelopmental disorders, including ID.
Collapse
Affiliation(s)
- Taro Chaya
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Hiroshi Ishikane
- Department of Psychology, Faculty of Human Sciences, Senshu University, Kawasaki, Japan
| | - Leah R Varner
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yuko Sugita
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yamato Maeda
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Ryotaro Tsutsumi
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| |
Collapse
|
15
|
Antony D, Brunner HG, Schmidts M. Ciliary Dyneins and Dynein Related Ciliopathies. Cells 2021; 10:cells10081885. [PMID: 34440654 PMCID: PMC8391580 DOI: 10.3390/cells10081885] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
Although ubiquitously present, the relevance of cilia for vertebrate development and health has long been underrated. However, the aberration or dysfunction of ciliary structures or components results in a large heterogeneous group of disorders in mammals, termed ciliopathies. The majority of human ciliopathy cases are caused by malfunction of the ciliary dynein motor activity, powering retrograde intraflagellar transport (enabled by the cytoplasmic dynein-2 complex) or axonemal movement (axonemal dynein complexes). Despite a partially shared evolutionary developmental path and shared ciliary localization, the cytoplasmic dynein-2 and axonemal dynein functions are markedly different: while cytoplasmic dynein-2 complex dysfunction results in an ultra-rare syndromal skeleto-renal phenotype with a high lethality, axonemal dynein dysfunction is associated with a motile cilia dysfunction disorder, primary ciliary dyskinesia (PCD) or Kartagener syndrome, causing recurrent airway infection, degenerative lung disease, laterality defects, and infertility. In this review, we provide an overview of ciliary dynein complex compositions, their functions, clinical disease hallmarks of ciliary dynein disorders, presumed underlying pathomechanisms, and novel developments in the field.
Collapse
Affiliation(s)
- Dinu Antony
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Mathildenstrasse 1, 79106 Freiburg, Germany;
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands;
- Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands
| | - Han G. Brunner
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands;
- Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands
| | - Miriam Schmidts
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Mathildenstrasse 1, 79106 Freiburg, Germany;
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands;
- Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands
- Correspondence: ; Tel.: +49-761-44391; Fax: +49-761-44710
| |
Collapse
|
16
|
Nita A, Abraham SP, Krejci P, Bosakova M. Oncogenic FGFR Fusions Produce Centrosome and Cilia Defects by Ectopic Signaling. Cells 2021; 10:1445. [PMID: 34207779 PMCID: PMC8227969 DOI: 10.3390/cells10061445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
A single primary cilium projects from most vertebrate cells to guide cell fate decisions. A growing list of signaling molecules is found to function through cilia and control ciliogenesis, including the fibroblast growth factor receptors (FGFR). Aberrant FGFR activity produces abnormal cilia with deregulated signaling, which contributes to pathogenesis of the FGFR-mediated genetic disorders. FGFR lesions are also found in cancer, raising a possibility of cilia involvement in the neoplastic transformation and tumor progression. Here, we focus on FGFR gene fusions, and discuss the possible mechanisms by which they function as oncogenic drivers. We show that a substantial portion of the FGFR fusion partners are proteins associated with the centrosome cycle, including organization of the mitotic spindle and ciliogenesis. The functions of centrosome proteins are often lost with the gene fusion, leading to haploinsufficiency that induces cilia loss and deregulated cell division. We speculate that this complements the ectopic FGFR activity and drives the FGFR fusion cancers.
Collapse
Affiliation(s)
- Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
| | - Sara P. Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
- Institute of Animal Physiology and Genetics of the CAS, 60200 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
- Institute of Animal Physiology and Genetics of the CAS, 60200 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| |
Collapse
|
17
|
Chaya T, Furukawa T. Post-translational modification enzymes as key regulators of ciliary protein trafficking. J Biochem 2021; 169:633-642. [PMID: 33681987 PMCID: PMC8423421 DOI: 10.1093/jb/mvab024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Primary cilia are evolutionarily conserved microtubule-based organelles that protrude from the surface of almost all cell types and decode a variety of extracellular stimuli. Ciliary dysfunction causes human diseases named ciliopathies, which span a wide range of symptoms, such as developmental and sensory abnormalities. The assembly, disassembly, maintenance and function of cilia rely on protein transport systems including intraflagellar transport (IFT) and lipidated protein intraflagellar targeting (LIFT). IFT is coordinated by three multisubunit protein complexes with molecular motors along the ciliary axoneme, while LIFT is mediated by specific chaperones that directly recognize lipid chains. Recently, it has become clear that several post-translational modification enzymes play crucial roles in the regulation of IFT and LIFT. Here, we review our current understanding of the roles of these post-translational modification enzymes in the regulation of ciliary protein trafficking as well as their regulatory mechanisms, physiological significance and involvement in human diseases.
Collapse
Affiliation(s)
- Taro Chaya
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
18
|
Moon KH, Ma JH, Min H, Koo H, Kim H, Ko HW, Bok J. Dysregulation of sonic hedgehog signaling causes hearing loss in ciliopathy mouse models. eLife 2020; 9:56551. [PMID: 33382037 PMCID: PMC7806262 DOI: 10.7554/elife.56551] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Defective primary cilia cause a range of diseases known as ciliopathies, including hearing loss. The etiology of hearing loss in ciliopathies, however, remains unclear. We analyzed cochleae from three ciliopathy mouse models exhibiting different ciliogenesis defects: Intraflagellar transport 88 (Ift88), Tbc1d32 (a.k.a. bromi), and Cilk1 (a.k.a. Ick) mutants. These mutants showed multiple developmental defects including shortened cochlear duct and abnormal apical patterning of the organ of Corti. Although ciliogenic defects in cochlear hair cells such as misalignment of the kinocilium are often associated with the planar cell polarity pathway, our results showed that inner ear defects in these mutants are primarily due to loss of sonic hedgehog signaling. Furthermore, an inner ear-specific deletion of Cilk1 elicits low-frequency hearing loss attributable to cellular changes in apical cochlear identity that is dedicated to low-frequency sound detection. This type of hearing loss may account for hearing deficits in some patients with ciliopathies.
Collapse
Affiliation(s)
- Kyeong-Hye Moon
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea.,BK21 PLUS project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji-Hyun Ma
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyehyun Min
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heiyeun Koo
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea.,BK21 PLUS project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - HongKyung Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyuk Wan Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea.,BK21 PLUS project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
19
|
Nakamura K, Noguchi T, Takahara M, Omori Y, Furukawa T, Katoh Y, Nakayama K. Anterograde trafficking of ciliary MAP kinase-like ICK/CILK1 by the intraflagellar transport machinery is required for intraciliary retrograde protein trafficking. J Biol Chem 2020; 295:13363-13376. [PMID: 32732286 PMCID: PMC7504932 DOI: 10.1074/jbc.ra120.014142] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/01/2020] [Indexed: 12/14/2022] Open
Abstract
ICK (also known as CILK1) is a mitogen-activated protein kinase-like kinase localized at the ciliary tip. Its deficiency is known to result in the elongation of cilia and causes ciliopathies in humans. However, little is known about how ICK is transported to the ciliary tip. We here show that the C-terminal noncatalytic region of ICK interacts with the intraflagellar transport (IFT)-B complex of the IFT machinery and participates in its transport to the ciliary tip. Furthermore, total internal reflection fluorescence microscopy demonstrated that ICK undergoes bidirectional movement within cilia, similarly to IFT particles. Analysis of ICK knockout cells demonstrated that ICK deficiency severely impairs the retrograde trafficking of IFT particles and ciliary G protein-coupled receptors. In addition, we found that in ICK knockout cells, ciliary proteins are accumulated at the bulged ciliary tip, which appeared to be torn off and released into the environment as an extracellular vesicle. The exogenous expression of various ICK constructs in ICK knockout cells indicated that the IFT-dependent transport of ICK, as well as its kinase activity and phosphorylation at the canonical TDY motif, is essential for ICK function. Thus, we unequivocally show that ICK transported to the ciliary tip is required for retrograde ciliary protein trafficking and consequently for normal ciliary function.
Collapse
Affiliation(s)
- Kentaro Nakamura
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Tatsuro Noguchi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Mariko Takahara
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yoshihiro Omori
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan.
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|
20
|
Chaya T, Tsutsumi R, Varner LR, Maeda Y, Yoshida S, Furukawa T. Cul3-Klhl18 ubiquitin ligase modulates rod transducin translocation during light-dark adaptation. EMBO J 2019; 38:e101409. [PMID: 31696965 DOI: 10.15252/embj.2018101409] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 01/02/2023] Open
Abstract
Adaptation is a general feature of sensory systems. In rod photoreceptors, light-dependent transducin translocation and Ca2+ homeostasis are involved in light/dark adaptation and prevention of cell damage by light. However, the underlying regulatory mechanisms remain unclear. Here, we identify mammalian Cul3-Klhl18 ubiquitin ligase as a transducin translocation modulator during light/dark adaptation. Under dark conditions, Klhl18-/- mice exhibited decreased rod light responses and subcellular localization of the transducin α-subunit (Tα), similar to that observed in light-adapted Klhl18+/+ mice. Cul3-Klhl18 promoted ubiquitination and degradation of Unc119, a rod Tα-interacting protein. Unc119 overexpression phenocopied Tα mislocalization observed in Klhl18-/- mice. Klhl18 weakly recognized casein kinase-2-phosphorylated Unc119 protein, which is dephosphorylated by Ca2+ -dependent phosphatase calcineurin. Calcineurin inhibition increased Unc119 expression and Tα mislocalization in rods. These results suggest that Cul3-Klhl18 modulates rod Tα translocation during light/dark adaptation through Unc119 ubiquitination, which is affected by phosphorylation. Notably, inactivation of the Cul3-Klhl18 ligase and calcineurin inhibitors FK506 and cyclosporine A that are known immunosuppressant drugs repressed light-induced photoreceptor damage, suggesting potential therapeutic targets.
Collapse
Affiliation(s)
- Taro Chaya
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Ryotaro Tsutsumi
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Leah Rie Varner
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yamato Maeda
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Satoyo Yoshida
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| |
Collapse
|
21
|
Fu Z, Gailey CD, Wang EJ, Brautigan DL. Ciliogenesis associated kinase 1: targets and functions in various organ systems. FEBS Lett 2019; 593:2990-3002. [PMID: 31506943 DOI: 10.1002/1873-3468.13600] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/22/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022]
Abstract
Ciliogenesis associated kinase 1 (CILK1) was previously known as intestinal cell kinase because it was cloned from that origin. However, CILK1 is now recognized as a widely expressed and highly conserved serine/threonine protein kinase. Mutations in the human CILK1 gene have been associated with ciliopathies, a group of human genetic disorders with defects in the primary cilium. In mice, both Cilk1 knock-out and Cilk1 knock-in mutations have recapitulated human ciliopathies. Thus, CILK1 has a fundamental role in the function of the cilium. Several candidate substrates have been proposed for CILK1 and the challenge is to relate these to the mutant phenotypes. In this review, we summarize what is known about CILK1 functions and targets, and discuss gaps in current knowledge that motivate further experimentation to fully understand the role of CILK1 in organ development in humans.
Collapse
Affiliation(s)
- Zheng Fu
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Casey D Gailey
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Eric J Wang
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - David L Brautigan
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
22
|
Kunova Bosakova M, Nita A, Gregor T, Varecha M, Gudernova I, Fafilek B, Barta T, Basheer N, Abraham SP, Balek L, Tomanova M, Fialova Kucerova J, Bosak J, Potesil D, Zieba J, Song J, Konik P, Park S, Duran I, Zdrahal Z, Smajs D, Jansen G, Fu Z, Ko HW, Hampl A, Trantirek L, Krakow D, Krejci P. Fibroblast growth factor receptor influences primary cilium length through an interaction with intestinal cell kinase. Proc Natl Acad Sci U S A 2019; 116:4316-4325. [PMID: 30782830 PMCID: PMC6410813 DOI: 10.1073/pnas.1800338116] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vertebrate primary cilium is a Hedgehog signaling center but the extent of its involvement in other signaling systems is less well understood. This report delineates a mechanism by which fibroblast growth factor (FGF) controls primary cilia. Employing proteomic approaches to characterize proteins associated with the FGF-receptor, FGFR3, we identified the serine/threonine kinase intestinal cell kinase (ICK) as an FGFR interactor. ICK is involved in ciliogenesis and participates in control of ciliary length. FGF signaling partially abolished ICK's kinase activity, through FGFR-mediated ICK phosphorylation at conserved residue Tyr15, which interfered with optimal ATP binding. Activation of the FGF signaling pathway affected both primary cilia length and function in a manner consistent with cilia effects caused by inhibition of ICK activity. Moreover, knockdown and knockout of ICK rescued the FGF-mediated effect on cilia. We provide conclusive evidence that FGF signaling controls cilia via interaction with ICK.
Collapse
MESH Headings
- Animals
- CRISPR-Cas Systems
- Cilia/metabolism
- Fibroblast Growth Factors/metabolism
- HEK293 Cells
- Hedgehog Proteins/metabolism
- Humans
- Mice
- Mice, Knockout
- Models, Animal
- Molecular Docking Simulation
- NIH 3T3 Cells
- Phosphorylation
- Protein Interaction Domains and Motifs
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proteomics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Signal Transduction
Collapse
Affiliation(s)
| | - Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Tomas Gregor
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Miroslav Varecha
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| | - Iva Gudernova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Bohumil Fafilek
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| | - Tomas Barta
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Neha Basheer
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Sara P Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Lukas Balek
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Marketa Tomanova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Jana Fialova Kucerova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Juraj Bosak
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - David Potesil
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Jennifer Zieba
- Department of Orthopaedic Surgery, David Geffen School of Medicine University of California, Los Angeles, CA 90095
| | - Jieun Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, 03722 Seoul, Korea
| | - Peter Konik
- Institute of Chemistry and Biochemistry, Faculty of Science, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Sohyun Park
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Ivan Duran
- Department of Orthopaedic Surgery, David Geffen School of Medicine University of California, Los Angeles, CA 90095
| | - Zbynek Zdrahal
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - David Smajs
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Gert Jansen
- Department of Cell Biology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Zheng Fu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Hyuk Wan Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, 03722 Seoul, Korea
| | - Ales Hampl
- International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Lukas Trantirek
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Deborah Krakow
- Department of Orthopaedic Surgery, David Geffen School of Medicine University of California, Los Angeles, CA 90095;
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic;
- International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| |
Collapse
|
23
|
Enriched expression of the ciliopathy gene Ick in cell proliferating regions of adult mice. Gene Expr Patterns 2018; 29:18-23. [DOI: 10.1016/j.gep.2018.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 01/27/2023]
|
24
|
Honda A, Kita T, Seshadri SV, Misaki K, Ahmed Z, Ladbury JE, Richardson GP, Yonemura S, Ladher RK. FGFR1-mediated protocadherin-15 loading mediates cargo specificity during intraflagellar transport in inner ear hair-cell kinocilia. Proc Natl Acad Sci U S A 2018; 115:8388-8393. [PMID: 30061390 PMCID: PMC6099903 DOI: 10.1073/pnas.1719861115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The mechanosensory hair cells of the inner ear are required for hearing and balance and have a distinctive apical structure, the hair bundle, that converts mechanical stimuli into electrical signals. This structure comprises a single cilium, the kinocilium, lying adjacent to an ensemble of actin-based projections known as stereocilia. Hair bundle polarity depends on kinociliary protocadherin-15 (Pcdh15) localization. Protocadherin-15 is found only in hair-cell kinocilia, and is not localized to the primary cilia of adjacent supporting cells. Thus, Pcdh15 must be specifically targeted and trafficked into the hair-cell kinocilium. Here we show that kinocilial Pcdh15 trafficking relies on cell type-specific coupling to the generic intraflagellar transport (IFT) transport mechanism. We uncover a role for fibroblast growth factor receptor 1 (FGFR1) in loading Pcdh15 onto kinociliary transport particles in hair cells. We find that on activation, FGFR1 binds and phosphorylates Pcdh15. Moreover, we find a previously uncharacterized role for clathrin in coupling this kinocilia-specific cargo with the anterograde IFT-B complex through the adaptor, DAB2. Our results identify a modified ciliary transport pathway used for Pcdh15 transport into the cilium of the inner ear hair cell and coordinated by FGFR1 activity.
Collapse
Affiliation(s)
- Akira Honda
- Laboratory for Sensory Development, RIKEN Center for Developmental Biology, 650-0047 Kobe, Japan
| | - Tomoko Kita
- Laboratory for Sensory Development, RIKEN Center for Developmental Biology, 650-0047 Kobe, Japan
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University Hospital, 606-8507 Kyoto, Japan
| | | | - Kazuyo Misaki
- Ultrastructural Research Team, RIKEN Center for Life Science Technologies, 650-0047 Kobe, Japan
- Department of Cell Biology, Tokushima University, 770-8503 Tokushima, Japan
| | - Zamal Ahmed
- School of Molecular and Cellular Biology, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - John E Ladbury
- School of Molecular and Cellular Biology, University of Leeds, LS2 9JT Leeds, United Kingdom
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Center for Biomolecular Structure and Function, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Guy P Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, BN1 9QG Brighton, United Kingdom
| | - Shigenobu Yonemura
- Ultrastructural Research Team, RIKEN Center for Life Science Technologies, 650-0047 Kobe, Japan
- Department of Cell Biology, Tokushima University, 770-8503 Tokushima, Japan
| | - Raj K Ladher
- Laboratory for Sensory Development, RIKEN Center for Developmental Biology, 650-0047 Kobe, Japan;
- National Centre for Biological Sciences, 560-065 Bangalore, India
| |
Collapse
|