1
|
Jiang C, Zhao J, Zhang Y, Zhu X. Role of EPAC1 in chronic pain. Biochem Biophys Rep 2024; 37:101645. [PMID: 38304575 PMCID: PMC10832381 DOI: 10.1016/j.bbrep.2024.101645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
Chronic pain usually lasts over three months and commonly occurs in chronic diseases (cancer, arthritis, and diabetes), injuries (herniated discs, torn ligaments), and many major pain disorders (neuropathic pain, fibromyalgia, chronic headaches). Unfortunately, there is currently a lack of effective treatments to help people with chronic pain to achieve complete relief. Therefore,it is particularly important to understand the mechanism of chronic pain and find new therapeutic targets. The exchange protein directly activated by cyclic adenosine monophosphate(cAMP) (EPAC) has been recognized for its functions in nerve regeneration, stimulating insulin release, controlling vascular pressure, and controlling other metabolic activities. In recent years, many studies have found that the subtype of EPAC, EPAC1 is involved in the regulation of neuroinflammation and plays a crucial role in the regulation of pain, which is expected to become a new therapeutic target for chronic pain. This article reviews the major contributions of EPAC1 in chronic pain.
Collapse
Affiliation(s)
- Chenlu Jiang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Medical School of Nantong University, Nantong, 226001, China
| | - Jiacheng Zhao
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Medical School of Nantong University, Nantong, 226001, China
| | - Yihang Zhang
- Medical School of Nantong University, Nantong, 226001, China
| | - Xiang Zhu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| |
Collapse
|
2
|
Bogen O, Araldi D, Sucher A, Kober K, Ohara PT, Levine JD. Isolectin B4 (IB4)-conjugated streptavidin for the selective knockdown of proteins in IB4-positive (+) nociceptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.18.572242. [PMID: 38260446 PMCID: PMC10802253 DOI: 10.1101/2023.12.18.572242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
In vivo analysis of protein function in nociceptor subpopulations using antisense oligonucleotides and short interfering RNAs is limited by their non-selective cellular uptake. To address the need for selective transfection methods, we covalently linked isolectin B4 (IB4) to streptavidin and analyzed whether it could be used to study protein function in IB4(+)-nociceptors. Rats treated intrathecally with IB4-conjugated streptavidin complexed with biotinylated antisense oligonucleotides for protein kinase C epsilon (PKCε) mRNA were found to have: a) less PKCε in dorsal root ganglia (DRG), b) reduced PKCε expression in IB4(+) but not IB4(-) DRG neurons, and c) fewer transcripts of the PKCε gene in the DRG. This knockdown in PKCε expression in IB4(+) DRG neurons is sufficient to reverse hyperalgesic priming, a rodent model of chronic pain that is dependent on PKCε in IB4(+)-nociceptors. These results establish that IB4-streptavidin can be used to study protein function in a defined subpopulation of nociceptive C-fiber afferents.
Collapse
|
3
|
Bogen O, Araldi D, Sucher A, Kober K, Ohara PT, Levine JD. Isolectin B4 (IB4)-conjugated streptavidin for the selective knockdown of proteins in IB4-positive (+) nociceptors. Mol Pain 2024; 20:17448069241230419. [PMID: 38246917 PMCID: PMC10851726 DOI: 10.1177/17448069241230419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
In vivo analysis of protein function in nociceptor subpopulations using antisense oligonucleotides and short interfering RNAs is limited by their non-selective cellular uptake. To address the need for selective transfection methods, we covalently linked isolectin B4 (IB4) to streptavidin and analyzed whether it could be used to study protein function in IB4(+)-nociceptors. Rats treated intrathecally with IB4-conjugated streptavidin complexed with biotinylated antisense oligonucleotides for protein kinase C epsilon (PKCε) mRNA were found to have: (a) less PKCε in dorsal root ganglia (DRG), (b) reduced PKCε expression in IB4(+) but not IB4(-) DRG neurons, and (c) fewer transcripts of the PKCε gene in the DRG. This knockdown in PKCε expression in IB4(+) DRG neurons is sufficient to reverse hyperalgesic priming, a rodent model of chronic pain that is dependent on PKCε in IB4(+)-nociceptors. These results establish that IB4-streptavidin can be used to study protein function in a defined subpopulation of nociceptive C-fiber afferents.
Collapse
Affiliation(s)
- Oliver Bogen
- Department of Oral & Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California, San Francisco, CA, USA
| | - Dionéia Araldi
- Department of Oral & Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California, San Francisco, CA, USA
| | - Anatol Sucher
- School of Nursing, University of California, San Francisco, CA, USA
| | - Kord Kober
- School of Nursing, University of California, San Francisco, CA, USA
| | - Peter T Ohara
- Department of Anatomy, University of California, San Francisco, CA, USA
| | - Jon D Levine
- Department of Oral & Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California, San Francisco, CA, USA
- Division of Neuroscience, Department of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
4
|
Walters ET. Exaptation and Evolutionary Adaptation in Nociceptor Mechanisms Driving Persistent Pain. BRAIN, BEHAVIOR AND EVOLUTION 2023; 98:314-330. [PMID: 38035556 PMCID: PMC10922759 DOI: 10.1159/000535552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Several evolutionary explanations have been proposed for why chronic pain is a major clinical problem. One is that some mechanisms important for driving chronic pain, while maladaptive for modern humans, were adaptive because they enhanced survival. Evidence is reviewed for persistent nociceptor hyperactivity (PNH), known to promote chronic pain in rodents and humans, being an evolutionarily adaptive response to significant bodily injury, and primitive molecular mechanisms related to cellular injury and stress being exapted (co-opted or repurposed) to drive PNH and consequent pain. SUMMARY PNH in a snail (Aplysia californica), squid (Doryteuthis pealeii), fruit fly (Drosophila melanogaster), mice, rats, and humans has been documented as long-lasting enhancement of action potential discharge evoked by peripheral stimuli, and in some of these species as persistent extrinsically driven ongoing activity and/or intrinsic spontaneous activity (OA and SA, respectively). In mammals, OA and SA are often initiated within the protected nociceptor soma long after an inducing injury. Generation of OA or SA in nociceptor somata may be very rare in invertebrates, but prolonged afterdischarge in nociceptor somata readily occurs in sensitized Aplysia. Evidence for the adaptiveness of injury-induced PNH has come from observations of decreased survival of injured squid exposed to predators when PNH is blocked, from plausible survival benefits of chronic sensitization after severe injuries such as amputation, and from the functional coherence and intricacy of mammalian PNH mechanisms. Major contributions of cAMP-PKA signaling (with associated calcium signaling) to the maintenance of PNH both in mammals and molluscs suggest that this ancient stress signaling system was exapted early during the evolution of nociceptors to drive hyperactivity following bodily injury. Vertebrates have retained core cAMP-PKA signaling modules for PNH while adding new extracellular modulators (e.g., opioids) and cAMP-regulated ion channels (e.g., TRPV1 and Nav1.8 channels). KEY MESSAGES Evidence from multiple phyla indicates that PNH is a physiological adaptation that decreases the risk of attacks on injured animals. Core cAMP-PKA signaling modules make major contributions to the maintenance of PNH in molluscs and mammals. This conserved signaling has been linked to ancient cellular responses to stress, which may have been exapted in early nociceptors to drive protective hyperactivity that can persist while bodily functions recover after significant injury.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
5
|
Willemen HLDM, Santos Ribeiro PS, Broeks M, Meijer N, Versteeg S, Tiggeler A, de Boer TP, Małecki JM, Falnes PØ, Jans J, Eijkelkamp N. Inflammation-induced mitochondrial and metabolic disturbances in sensory neurons control the switch from acute to chronic pain. Cell Rep Med 2023; 4:101265. [PMID: 37944527 PMCID: PMC10694662 DOI: 10.1016/j.xcrm.2023.101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/24/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
Pain often persists in patients with an inflammatory disease, even when inflammation has subsided. The molecular mechanisms leading to this failure in pain resolution and the transition to chronic pain are poorly understood. Mitochondrial dysfunction in sensory neurons links to chronic pain, but its role in resolution of inflammatory pain is unclear. Transient inflammation causes neuronal plasticity, called hyperalgesic priming, which impairs resolution of pain induced by a subsequent inflammatory stimulus. We identify that hyperalgesic priming in mice increases the expression of a mitochondrial protein (ATPSc-KMT) and causes mitochondrial and metabolic disturbances in sensory neurons. Inhibition of mitochondrial respiration, knockdown of ATPSCKMT expression, or supplementation of the affected metabolite is sufficient to restore resolution of inflammatory pain and prevents chronic pain development. Thus, inflammation-induced mitochondrial-dependent disturbances in sensory neurons predispose to a failure in resolution of inflammatory pain and development of chronic pain.
Collapse
Affiliation(s)
- Hanneke L D M Willemen
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Patrícia Silva Santos Ribeiro
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Melissa Broeks
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Nils Meijer
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Sabine Versteeg
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Annefien Tiggeler
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Teun P de Boer
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 Utrecht, the Netherlands
| | - Jędrzej M Małecki
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway; CRES-O - Centre for Embryology and Healthy Development, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Pål Ø Falnes
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway; CRES-O - Centre for Embryology and Healthy Development, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Judith Jans
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Niels Eijkelkamp
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands.
| |
Collapse
|
6
|
Cui X, Qin B, Xia C, Li H, Li Z, Li Z, Nasir A, Bai Q. Transcriptome-wide analysis of trigeminal ganglion and subnucleus caudalis in a mouse model of chronic constriction injury-induced trigeminal neuralgia. Front Pharmacol 2023; 14:1230633. [PMID: 37841912 PMCID: PMC10568182 DOI: 10.3389/fphar.2023.1230633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/05/2023] [Indexed: 10/17/2023] Open
Abstract
Trigeminal neuropathic pain (TNP) induces mechanical allodynia and hyperalgesia, which are known to alter gene expression in injured dorsal root ganglia primary sensory neurons. Non-coding RNAs (ncRNAs) have been linked to TNP. However, the functional mechanism underlying TNP and the expression profile of ncRNAs in the trigeminal ganglion (TG) and trigeminal subnucleus caudalis (Sp5C) are still unknown. We used RNA sequencing and bioinformatics analysis to examine the TG and Sp5C transcriptomes after infraorbital nerve chronic constrictive injury (IoN-CCI). The robust changes in the gene expression of lncRNAs, circRNAs, and mRNAs were observed within the TG and Sp5C from mice that underwent IoN-CCI and the sham-operated mice (day 7). In total, 111,003 lncRNAs were found in TG and 107,157 in Sp5C; 369 lncRNAs were differentially expressed in TG, and 279 lncRNAs were differentially expressed in Sp5C. In addition, 13,216 circRNAs in TG and 21,658 circRNAs in Sp5C were identified, with 1,155 circRNAs and 2,097 circRNAs differentially expressed in TG and Sp5C, respectively. Furthermore, 5,205 DE mRNAs in TG and 3,934 DE mRNAs in Sp5C were differentially expressed between IoN-CCI and sham groups. The study revealed a high correlation of pain-related differentially expressed genes in the TG and Sp5C to anxiety, depression, inflammation, neuroinflammation, and apoptosis. Gene Ontology analysis revealed that binding-related molecular functions and membrane-related cell components were significantly enriched. Kyoto Encyclopedia of Genes and Genomes analysis shows the most significant enrichments in neurogenesis, nervous system development, neuron differentiation, adrenergic signaling, cAMP signaling, MAPK signaling, and PI3K-Akt signaling pathways. Furthermore, protein-protein interaction analysis showed that hub genes were implicated in neuropeptide signaling pathways. Functional analysis of DE ncRNA-targeting genes was mostly enriched with nociception-related signaling pathways underpinning TNP. Our findings suggest that ncRNAs are involved in TNP development and open new avenues for research and treatment.
Collapse
Affiliation(s)
- Xiaona Cui
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Anesthesiology, International Peace Maternity & Child Health Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Bo Qin
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chaoyun Xia
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hong Li
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhiye Li
- Department of Pharmacy, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhisong Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Abdul Nasir
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qian Bai
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
König C, Ebersberger A, Eitner A, Wetzker R, Schaible HG. Prostaglandin EP3 receptor activation is antinociceptive in sensory neurons via PI3Kγ, AMPK and GRK2. Br J Pharmacol 2023; 180:441-458. [PMID: 36245399 DOI: 10.1111/bph.15971] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/22/2022] [Accepted: 09/29/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Prostaglandin E2 is considered a major mediator of inflammatory pain, by acting on neuronal Gs protein-coupled EP2 and EP4 receptors. However, the neuronal EP3 receptor, colocalized with EP2 and EP4 receptor, is Gi protein-coupled and antagonizes the pronociceptive prostaglandin E2 effect. Here, we investigated the cellular signalling mechanisms by which the EP3 receptor reduces EP2 and EP4 receptor-evoked pronociceptive effects in sensory neurons. EXPERIMENTAL APPROACH Experiments were performed on isolated and cultured dorsal root ganglion (DRG) neurons from wild type, phosphoinositide 3-kinase γ (PI3Kγ)-/- , and PI3Kγkinase dead (KD)/KD mice. For subtype-specific stimulations, we used specific EP2, EP3, and EP4 receptor agonists from ONO Pharmaceuticals. As a functional readout, we recorded TTX-resistant sodium currents in patch-clamp experiments. Western blots were used to investigate the activation of intracellular signalling pathways. EP4 receptor internalization was measured using immunocytochemistry. KEY RESULTS Different pathways mediate the inhibition of EP2 and EP4 receptor-dependent pronociceptive effects by EP3 receptor stimulation. Inhibition of EP2 receptor-evoked pronociceptive effect critically depends on the kinase-independent function of the signalling protein PI3Kγ, and adenosine monophosphate activated protein kinase (AMPK) is involved. By contrast, inhibition of EP4 receptor-evoked pronociceptive effect is independent on PI3Kγ and mediated through activation of G protein-coupled receptor kinase 2 (GRK2), which enhances the internalization of the EP4 receptor after ligand binding. CONCLUSION AND IMPLICATIONS Activation of neuronal PI3Kγ, AMPK, and GRK2 by EP3 receptor activation limits cAMP-dependent pain generation by prostaglandin E2 . These new insights hold the potential for a novel approach in pain therapy.
Collapse
Affiliation(s)
- Christian König
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Andrea Ebersberger
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Annett Eitner
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany.,Department of Trauma, Hand and Reconstructive Surgery, Experimental Trauma Surgery, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Reinhard Wetzker
- Clinic for Anesthesiology and Intensive Care, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Hans-Georg Schaible
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
8
|
Fang ZH, Liao HL, Tang QF, Liu YJ, Zhang YY, Lin J, Yu HP, Zhou C, Li CJ, Liu F, Shen JF. Interactions Among Non-Coding RNAs and mRNAs in the Trigeminal Ganglion Associated with Neuropathic Pain. J Pain Res 2022; 15:2967-2988. [PMID: 36171980 PMCID: PMC9512292 DOI: 10.2147/jpr.s382692] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Background Recent studies have demonstrated the contribution of non-coding RNAs (ncRNAs) to neuropathic pain. However, the expression profile of ncRNAs in the trigeminal ganglion (TG) and their functional mechanism underlying trigeminal neuropathic pain are still unclear. Methods In the present study, the trigeminal neuropathic pain model induced by chronic constriction injury of the infraorbital nerve (CCI-ION) was used to study the expression profile and potential regulatory mechanism of miRNAs, lncRNAs, circRNAs, and mRNAs in the TG by RNA-sequencing (RNA-seq) and bioinformatics analysis. CCI-ION mice suffered from mechanical allodynia from 3 days to 28 days after surgery. Results The RNA-seq results discovered 67 miRNAs, 216 lncRNAs, 14 circRNAs, 595 mRNAs, and 421 genes were differentially expressed (DE) in the TG of CCI-ION mice 7 days after surgery. And 39 DEGs were known pain genes. Besides, 5 and 35 pain-related DE mRNAs could be targeted by 6 DE miRNAs and 107 DE lncRNAs, respectively. And 23 pain-related DEGs had protein–protein interactions (PPI) with each other. GO analysis indicated membrane-related cell components and binding-related molecular functions were significantly enriched. KEGG analysis showed that nociception-related signaling pathways were significantly enriched for DE ncRNAs and DEGs. Finally, the competing endogenous RNA (ceRNA) regulatory network of DE lncRNA/DE circRNA-DE miRNA-DE mRNA existed in the TG of mice with trigeminal neuropathic pain. Conclusion Our findings demonstrate ncRNAs are involved in the development of trigeminal neuropathic pain, possibly through the ceRNA mechanism, which brings a new bright into the study of trigeminal neuropathic pain and the development of novel treatments targeting ncRNAs.
Collapse
Affiliation(s)
- Zhong-Han Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Hong-Lin Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Qing-Feng Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Ya-Jing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Jiu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Hao-Peng Yu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chun-Jie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
9
|
Qian J, Lin X, Zhou Z. Skin/muscle incision and retraction regulates the persistent postoperative pain in rats by the Epac1/PKC-βII pathway. BMC Anesthesiol 2022; 22:230. [PMID: 35850627 PMCID: PMC9290233 DOI: 10.1186/s12871-022-01771-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Persistent postoperative pain causes influence the life quality of many patients. The Epac/PKC pathway has been indicated to regulate mechanical hyperalgesia. The present study used skin/muscle incision and retraction (SMIR) to induce postoperative pain in rats and evaluated the Epac/PKC pathway in postoperative pain. Mechanical allodynia was assessed by paw withdrawal threshold before and after incision. The levels of Epac, PKC, proinflammatory cytokines, and blood-nerve barrier-related proteins were assessed using Western blotting. We found that SMIR induced the activation of the Epac/PKC pathway, mechanical allodynia, and upregulation of Glut1, VEGF, and PGP9.5 proteins in dorsal root ganglia. Under the influence of agonists of Epac/PKC, normal rats showed mechanical allodynia and increased Glut1, VEGF, and PGP9.5 proteins. After inhibition of Epac1 in rats with SMIR, mechanical allodynia was alleviated, and proinflammatory cytokines and Glut1, VEGF, and PGP9.5 proteins were decreased. Moreover, dorsal root ganglia neurons showed abnormal proliferation under the activation of the Epac/PKC pathway. Using Captopril to protect vascular endothelial cells after SMIR had a positive effect on postoperative pain. In conclusion, SMIR regulates the persistent postoperative pain in rats by the Epac/PKC pathway.
Collapse
Affiliation(s)
- Jiashu Qian
- Department of Anesthesiology, Taizhou Central Hospital (Affiliated Hospital of Taizhou University), No. 999 Donghai Avenue, Jiaojiang Economic Development Zone, Taizhou City, 318000, Zhejiang Province, China
| | - Xuezheng Lin
- Department of Anesthesiology, Taizhou Central Hospital (Affiliated Hospital of Taizhou University), No. 999 Donghai Avenue, Jiaojiang Economic Development Zone, Taizhou City, 318000, Zhejiang Province, China
| | - Zhili Zhou
- Department of Anesthesiology, Taizhou Central Hospital (Affiliated Hospital of Taizhou University), No. 999 Donghai Avenue, Jiaojiang Economic Development Zone, Taizhou City, 318000, Zhejiang Province, China.
| |
Collapse
|
10
|
Huang ST, Chen BB, Song ZJ, Tang HL, Hua R, Zhang YM. Unraveling the role of Epac1-SOCS3 signaling in the development of neonatal-CRD-induced visceral hypersensitivity in rats. CNS Neurosci Ther 2022; 28:1393-1408. [PMID: 35702948 PMCID: PMC9344090 DOI: 10.1111/cns.13880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/28/2022] Open
Abstract
Aims Visceral hypersensitivity in irritable bowel syndrome (IBS) is widespread, but effective therapies for it remain elusive. As a canonical anti‐inflammatory protein, suppressor of cytokine signaling 3 (SOCS3) reportedly relays exchange protein 1 directly activated by cAMP (Epac1) signaling and inhibits the intracellular response to inflammatory cytokines. Despite the inhibitory effect of SOCS3 on the pro‐inflammatory response and neuroinflammation in PVN, the systematic investigation of Epac1‐SOCS3 signaling involved in visceral hypersensitivity remains unknown. This study aimed to explore Epac1‐SOCS3 signaling in the activity of hypothalamic paraventricular nucleus (PVN) corticotropin‐releasing factor (CRF) neurons and visceral hypersensitivity in adult rats experiencing neonatal colorectal distension (CRD). Methods Rats were subjected to neonatal CRD to simulate visceral hypersensitivity to investigate the effect of Epac1‐SOCS3 signaling on PVN CRF neurons. The expression and activity of Epac1 and SOCS3 in nociceptive hypersensitivity were determined by western blot, RT‐PCR, immunofluorescence, radioimmunoassay, electrophysiology, and pharmacology. Results In neonatal‐CRD‐induced visceral hypersensitivity model, Epac1 and SOCS3 expressions were downregulated and IL‐6 levels elevated in PVN. However, infusion of Epac agonist 8‐pCPT in PVN reduced CRF neuronal firing rates, and overexpression of SOCS3 in PVN by AAV‐SOCS3 inhibited the activation of PVN neurons, reduced visceral hypersensitivity, and precluded pain precipitation. Intervention with IL‐6 neutralizing antibody also alleviated the visceral hypersensitivity. In naïve rats, Epac antagonist ESI‐09 in PVN increased CRF neuronal firing. Consistently, genetic knockdown of Epac1 or SOCS3 in PVN potentiated the firing rate of CRF neurons, functionality of HPA axis, and sensitivity of visceral nociception. Moreover, pharmacological intervention with exogenous IL‐6 into PVN simulated the visceral hypersensitivity. Conclusions Inactivation of Epac1‐SOCS3 pathway contributed to the neuroinflammation accompanied by the sensitization of CRF neurons in PVN, precipitating visceral hypersensitivity and pain in rats experiencing neonatal CRD.
Collapse
Affiliation(s)
- Si-Ting Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
| | - Bin-Bin Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
| | - Zhi-Jing Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
| | - Hui-Li Tang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
| | - Rong Hua
- Department of Emergency, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yong-Mei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
| |
Collapse
|
11
|
Zhai R, Snyder J, Montgomery S, Sato PY. Double life: How GRK2 and β-arrestin signaling participate in diseases. Cell Signal 2022; 94:110333. [PMID: 35430346 PMCID: PMC9929935 DOI: 10.1016/j.cellsig.2022.110333] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 11/03/2022]
Abstract
G-protein coupled receptor (GPCR) kinases (GRKs) and β-arrestins play key roles in GPCR and non-GPCR cellular responses. In fact, GRKs and arrestins are involved in a plethora of pathways vital for physiological maintenance of inter- and intracellular communication. Here we review decades of research literature spanning from the discovery, identification of key structural elements, and findings supporting the diverse roles of these proteins in GPCR-mediated pathways. We then describe how GRK2 and β-arrestins partake in non-GPCR signaling and briefly summarize their involvement in various pathologies. We conclude by presenting gaps in knowledge and our prospective on the promising pharmacological potential in targeting these proteins and/or downstream signaling. Future research is warranted and paramount for untangling these novel and promising roles for GRK2 and arrestins in metabolism and disease progression.
Collapse
Affiliation(s)
| | | | | | - Priscila Y. Sato
- Corresponding author at: Drexel University College of Medicine, Department of Pharmacology and Physiology, 245 N 15th Street, NCB 8152, Philadelphia, PA 19102, USA. (P.Y. Sato)
| |
Collapse
|
12
|
Li N, Shan S, Li XQ, Chen TT, Qi M, Zhang SN, Wang ZY, Zhang LL, Wei W, Sun WY. G Protein-Coupled Receptor Kinase 2 as Novel Therapeutic Target in Fibrotic Diseases. Front Immunol 2022; 12:822345. [PMID: 35111168 PMCID: PMC8801426 DOI: 10.3389/fimmu.2021.822345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
G protein-coupled receptor kinase 2 (GRK2), an important subtype of GRKs, specifically phosphorylates agonist-activated G protein-coupled receptors (GPCRs). Besides, current research confirms that it participates in multiple regulation of diverse cells via a non-phosphorylated pathway, including interacting with various non-receptor substrates and binding partners. Fibrosis is a common pathophysiological phenomenon in the repair process of many tissues due to various pathogenic factors such as inflammation, injury, drugs, etc. The characteristics of fibrosis are the activation of fibroblasts leading to myofibroblast proliferation and differentiation, subsequent aggerate excessive deposition of extracellular matrix (ECM). Then, a positive feedback loop is occurred between tissue stiffness caused by ECM and fibroblasts, ultimately resulting in distortion of organ architecture and function. At present, GRK2, which has been described as a multifunctional protein, regulates copious signaling pathways under pathophysiological conditions correlated with fibrotic diseases. Along with GRK2-mediated regulation, there are diverse effects on the growth and apoptosis of different cells, inflammatory response and deposition of ECM, which are essential in organ fibrosis progression. This review is to highlight the relationship between GRK2 and fibrotic diseases based on recent research. It is becoming more convincing that GRK2 could be considered as a potential therapeutic target in many fibrotic diseases.
Collapse
Affiliation(s)
- Nan Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Shan Shan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Xiu-Qin Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Ting-Ting Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Meng Qi
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Sheng-Nan Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Zi-Ying Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Ling-Ling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| |
Collapse
|
13
|
Chen Y, Zhou Y, Li XC, Ma X, Mi WL, Chu YX, Wang YQ, Mao-Ying QL. Neuronal GRK2 regulates microglial activation and contributes to electroacupuncture analgesia on inflammatory pain in mice. Biol Res 2022; 55:5. [PMID: 35115050 PMCID: PMC8812183 DOI: 10.1186/s40659-022-00374-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/22/2022] [Indexed: 12/30/2022] Open
Abstract
Background G protein coupled receptor kinase 2 (GRK2) has been demonstrated to play a crucial role in the development of chronic pain. Acupuncture is an alternative therapy widely used for pain management. In this study, we investigated the role of spinal neuronal GRK2 in electroacupuncture (EA) analgesia. Methods The mice model of inflammatory pain was built by subcutaneous injection of Complete Freund’s Adjuvant (CFA) into the plantar surface of the hind paws. The mechanical allodynia of mice was examined by von Frey test. The mice were subjected to EA treatment (BL60 and ST36 acupuncture points) for 1 week. Overexpression and downregulation of spinal neuronal GRK2 were achieved by intraspinal injection of adeno associated virus (AAV) containing neuron-specific promoters, and microglial activation and neuroinflammation were evaluated by real-time PCR. Results Intraplantar injection with CFA in mice induced the decrease of GRK2 and microglial activation along with neuroinflammation in spinal cord. EA treatment increased the spinal GRK2, reduced neuroinflammation, and significantly decreased CFA-induced mechanical allodynia. The effects of EA were markedly weakened by non-cell-specific downregulation of spinal GRK2. Further, intraspinal injection of AAV containing neuron-specific promoters specifically downregulated neuronal GRK2, and weakened the regulatory effect of EA on CFA-induced mechanical allodynia and microglial activation. Meanwhile, overexpression of spinal neuronal GRK2 decreased mechanical allodynia. All these indicated that the neuronal GRK2 mediated microglial activation and neuroinflammation, and subsequently contributed to CFA-induced inflammatory pain. Conclusion The restoration of the spinal GRK2 and subsequent suppression of microglial activation and neuroinflammation might be an important mechanism for EA analgesia. Our findings further suggested that the spinal GRK2, especially neuronal GRK2, might be the potential target for EA analgesia and pain management, and we provided a new experimental basis for the EA treatment of pain. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-022-00374-6.
Collapse
Affiliation(s)
- Yu Chen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yang Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiao-Chen Li
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xue Ma
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yu-Xia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, People's Republic of China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, 200433, People's Republic of China
| | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, People's Republic of China. .,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
14
|
Tai Y, Huang B, Guo PP, Wang Z, Zhou ZW, Wang MM, Sun HF, Hu Y, Xu SL, Zhang LL, Wang QT, Wei W. TNF-α impairs EP4 signaling through the association of TRAF2-GRK2 in primary fibroblast-like synoviocytes. Acta Pharmacol Sin 2022; 43:401-416. [PMID: 33859345 PMCID: PMC8791952 DOI: 10.1038/s41401-021-00654-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/13/2021] [Indexed: 02/06/2023] Open
Abstract
Our previous study showed that chronic treatment with tumor necrosis factor-α (TNF-α) decreased cAMP concentration in fibroblast-like synoviocytes (FLSs) of collagen-induced arthritis (CIA) rats. In this study we investigated how TNF-α impairs cAMP homeostasis, particularly clarifying the potential downstream molecules of TNF-α and prostaglandin receptor 4 (EP4) signaling that would interact with each other. Using a cAMP FRET biosensor PM-ICUE3, we demonstrated that TNF-α (20 ng/mL) blocked ONO-4819-triggered EP4 signaling, but not Butaprost-triggered EP2 signaling in normal rat FLSs. We showed that TNF-α (0.02-20 ng/mL) dose-dependently reduced EP4 membrane distribution in normal rat FLS. TNF-α significantly increased TNF receptor 2 (TNFR2) expression and stimulated proliferation in human FLS (hFLS) via ecruiting TNF receptor-associated factor 2 (TRAF2) to cell membrane. More interestingly, we revealed that TRAF2 interacted with G protein-coupled receptor kinase (GRK2) in the cytoplasm of primary hFLS and helped to bring GRK2 to cell membrane in response of TNF-α stimulation, the complex of TRAF2 and GRK2 then separated on the membrane, and translocated GRK2 induced the desensitization and internalization of EP4, leading to reduced production of intracellular cAMP. Silencing of TRAF2 by siRNA substantially diminished TRAF2-GRK2 interaction, blocked the translocation of GRK2, and resulted in upregulated expression of membrane EP4 and intracellular cAMP. In CIA rats, administration of paroxetine to inhibit GRK2 effectively improved the symptoms and clinic parameters with significantly reduced joint synovium inflammation and bone destruction. These results elucidate a novel form of cross-talk between TNFR (a cytokine receptor) and EP4 (a typical G protein-coupled receptor) signaling pathways. The interaction between TRAF2 and GRK2 may become a potential new drug target for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Yu Tai
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Hefei, 230032 China
| | - Bei Huang
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Hefei, 230032 China ,Department of Pharmacy, Maanshan Hospital of Traditional Chinese Medicine, Maanshan, 243000 China
| | - Pai-pai Guo
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Hefei, 230032 China
| | - Zhen Wang
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Hefei, 230032 China
| | - Zheng-wei Zhou
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Hefei, 230032 China
| | - Man-man Wang
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Hefei, 230032 China
| | - Han-fei Sun
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Hefei, 230032 China
| | - Yong Hu
- grid.412679.f0000 0004 1771 3402Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
| | - Sheng-lin Xu
- grid.412679.f0000 0004 1771 3402Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
| | - Ling-ling Zhang
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Hefei, 230032 China
| | - Qing-tong Wang
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Hefei, 230032 China
| | - Wei Wei
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Hefei, 230032 China
| |
Collapse
|
15
|
Takemura H, Kushimoto K, Horii Y, Fujita D, Matsuda M, Sawa T, Amaya F. IGF1-driven induction of GPCR kinase 2 in the primary afferent neuron promotes resolution of acute hyperalgesia. Brain Res Bull 2021; 177:305-315. [PMID: 34687776 DOI: 10.1016/j.brainresbull.2021.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/07/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Dynamic regulation of G-protein-coupled receptor (GPCR) kinase 2 (GRK2) expression restores cellular function by protecting from overstimulation via GPCR and non-GPCR signaling. In the primary afferent neurons, GRK2 negatively regulates nociceptive tone. The present study tested the hypothesis that induction of GRK2 in the primary afferent neurons contributes to the resolution of acute pain after tissue injury. GRK2 expression in the dorsal root ganglion (DRG) was analyzed at 1 and 7 days after the incision. Intraperitoneal administration of a GRK2 inhibitor was performed 7 days post-incision in male Sprague-Dawley rats who underwent plantar incisions to analyze the pain-related behavioral effect of the GRK2 inhibitor. Separately, GRK2 expression was analyzed after injecting insulin-like growth factor 1 (IGF1) into the rat hind paw. In addition, an IGF1 receptor (IGF1R) inhibitor was administered in the plantar incision rats to determine its effect on the incision-induced hyperalgesia and GRK2 expression. Plantar incision induced an increase in GRK2 in the DRG at 7 days, but not at 1 day post-incision. Acute hyperalgesia after the plantar incision disappeared by 7 days post-incision. Intraperitoneal injection of the GRK2 inhibitor at this time reinstated mechanical hyperalgesia, although the GRK2 inhibitor did not produce hyperalgesia in naive rats. After the incision, IGF1 expression increased in the paw, but not in the DRG. Intraplantar injection of IGF1 increased GRK2 expression in the ipsilateral DRG. IGF1R inhibitor administration prevented both the induction of GRK2 and resolution of hyperalgesia after the plantar incision. These findings demonstrate that induction of GRK2 expression driven by tissue IGF1 has potent analgesic effects and produces resolution of hyperalgesia after tissue injury. Dysregulation of IGF1-GRK2 signaling could potentially lead to failure of the spontaneous resolution of acute pain and, hence, development of chronic pain after surgery.
Collapse
Affiliation(s)
- Hitomi Takemura
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan; Research Unit for the Neurobiology of Pain, Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kohsuke Kushimoto
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan; Research Unit for the Neurobiology of Pain, Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuhiko Horii
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan; Research Unit for the Neurobiology of Pain, Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daisuke Fujita
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan; Research Unit for the Neurobiology of Pain, Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Megumi Matsuda
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan; Research Unit for the Neurobiology of Pain, Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Teiji Sawa
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Fumimasa Amaya
- Research Unit for the Neurobiology of Pain, Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan; Department of Pain Management and Palliative Care Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| |
Collapse
|
16
|
Ma X, Chen Y, Li XC, Mi WL, Chu YX, Wang YQ, Mao-Ying QL. Spinal Neuronal GRK2 Contributes to Preventive Effect by Electroacupuncture on Cisplatin-Induced Peripheral Neuropathy in Mice. Anesth Analg 2021; 134:204-215. [PMID: 34652301 PMCID: PMC8647702 DOI: 10.1213/ane.0000000000005768] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The main symptoms of chemotherapy-induced peripheral neuropathy (CIPN) include pain and numbness. Neuronal G protein–coupled receptor kinase 2 (GRK2) plays an important role in various pain models. Cisplatin treatment can induce the activation of proinflammatory microglia in spinal cord. The purpose of this study was to investigate the role of spinal neuronal GRK2 in cisplatin-induced CIPN and in the prevention of CIPN by electroacupuncture (EA).
Collapse
Affiliation(s)
- Xue Ma
- From the Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine
| | - Yu Chen
- From the Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine
| | - Xiao-Chen Li
- From the Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine
| | - Wen-Li Mi
- From the Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine
| | - Yu-Xia Chu
- From the Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine
| | - Yan-Qing Wang
- From the Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science.,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, People's Republic of China
| | - Qi-Liang Mao-Ying
- From the Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine.,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
17
|
Ni Z, Cheng X. Origin and Isoform Specific Functions of Exchange Proteins Directly Activated by cAMP: A Phylogenetic Analysis. Cells 2021; 10:cells10102750. [PMID: 34685730 PMCID: PMC8534922 DOI: 10.3390/cells10102750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/09/2021] [Accepted: 10/09/2021] [Indexed: 12/21/2022] Open
Abstract
Exchange proteins directly activated by cAMP (EPAC1 and EPAC2) are one of the several families of cellular effectors of the prototypical second messenger cAMP. To understand the origin and molecular evolution of EPAC proteins, we performed a comprehensive phylogenetic analysis of EPAC1 and EPAC2. Our study demonstrates that unlike its cousin PKA, EPAC proteins are only present in multicellular Metazoa. Within the EPAC family, EPAC1 is only associated with chordates, while EPAC2 spans the entire animal kingdom. Despite a much more contemporary origin, EPAC1 proteins show much more sequence diversity among species, suggesting that EPAC1 has undergone more selection and evolved faster than EPAC2. Phylogenetic analyses of the individual cAMP binding domain (CBD) and guanine nucleotide exchange (GEF) domain of EPACs, two most conserved regions between the two isoforms, further reveal that EPAC1 and EPAC2 are closely clustered together within both the larger cyclic nucleotide receptor and RAPGEF families. These results support the notion that EPAC1 and EPAC2 share a common ancestor resulting from a fusion between the CBD of PKA and the GEF from RAPGEF1. On the other hand, the two terminal extremities and the RAS-association (RA) domains show the most sequence diversity between the two isoforms. Sequence diversities within these regions contribute significantly to the isoform-specific functions of EPACs. Importantly, unique isoform-specific sequence motifs within the RA domain have been identified.
Collapse
Affiliation(s)
- Zhuofu Ni
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Xiaodong Cheng
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
- Texas Therapeutics Institute, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-500-7487
| |
Collapse
|
18
|
Yeung SC, Ganesan K, Wong SSC, Chung SK, Cheung CW. Characterization of acute pain-induced behavioral passivity in mice: Insights from statistical modeling. Eur J Neurosci 2021; 53:3072-3092. [PMID: 33675141 DOI: 10.1111/ejn.15174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 11/28/2022]
Abstract
Affective-motivational disturbances are highly inconsistent in animal pain models. The reproducibility of the open-field test in assessing anxiety, malaise or disability remains controversial despite its popularity. While traumatic, persistent or multiregional pain models are commonly considered more effective in inducing negative affect or functional impairment, the early psychobehavioral changes before pain chronification are often underexplored. Here, we aimed to clarify the fundamental relationship between hypernociception and passive distress-like behavior using a model of transient inflammatory pain. To minimize latent confounders and increase data consistency, male C57BL/6N mice were habituated to the open-field arena 6 times before receiving the unilateral intraplantar injection of prostaglandin E2 (PGE2) or vehicle. Open-field (40-min exploration) and nociceptive behavior were evaluated repeatedly along the course of hypernociception in both wild-type and transgenic mice with a known pronociceptive phenotype. To reduce subjectivity, multivariate open-field behavioral outcomes were analyzed by statistical modeling based on exploratory factor analyses, which yielded a 2-factor solution. Within 3 hr after PGE2 injection, mice developed significantly reduced center exploration (factor 1) and a marginally significant increase in their habituation tendency (factor 2), which were not apparent in vehicle-injected mice. The behavioral passivity generally improved as hypernociception subsided. Therefore, transient inflammatory irritation is sufficient to suppress mouse open-field exploratory activity. The apparent absence of late affective-motivational changes in some rodents with prolonged hypernociception may not imply a lack of preceding or underlying neuropsychological alterations. Procedural pain after invasive animal experiments, however small, should be assessed and adequately controlled as a potential research confounder.
Collapse
Affiliation(s)
- Sung Ching Yeung
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China
| | - Kumar Ganesan
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China
| | - Stanley Sau Ching Wong
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China
| | - Sookja K Chung
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China.,Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Chi Wai Cheung
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China.,Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
19
|
Regulation of Mitochondrial Function by Epac2 Contributes to Acute Inflammatory Hyperalgesia. J Neurosci 2021; 41:2883-2898. [PMID: 33593853 DOI: 10.1523/jneurosci.2368-20.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/14/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Gαs-coupled receptors signaling through cAMP provide a key mechanism for the sensitization of nociceptive sensory neurons, and the cAMP effector Epac has been implicated in the transition from acute to chronic pain. Epac exerts its effects through Rap1 and protein kinase C (PKC). To identify targets of Epac-PKC signaling in sensory neurons of the mouse dorsal root ganglion (DRG), we profiled PKC substrate proteins phosphorylated in response to the activation of Epac with the proinflammatory prostaglandin E2 (PGE2). A prominent Epac-dependent phospho-protein band induced by PGE2 was identified by mass spectrometry as the mitochondrial enzyme pyruvate dehydrogenase (Pdha1). In dissociated DRG from both males and females, the recruitment of Pdha1 to phospho-protein fractions was rapidly induced by PGE2 and prevented by selective inhibition of Epac2. Epac activation increased mitochondrial respiration, consistent with an increase in Pdha1 function mediated by Epac2. Hindpaw injection of PGE2 induced heat hyperalgesia in males and females, but Pdha1 phosphorylation occurred only in males. Hyperalgesia was attenuated in males but not in females by systemic inhibition of Epac2, and also by a mitochondrial membrane potential uncoupler, dinitrophenol, supporting a role for mitochondrial regulation in acute hyperalgesia. These findings identify a mechanism for the regulation of mitochondrial function by Epac2 that contributes to acute inflammatory hyperalgesia in male mice. Systemic administration of the cyclooxygenase 2 inhibitor celecoxib suppressed both PGE2-induced heat hyperalgesia and Pdha1 phosphorylation in DRG of males but not females, suggesting that prostaglandin synthesis within the DRG mediates the phosphorylation of Pdha1 in response to hindpaw insult.SIGNIFICANCE STATEMENT There has been extensive investigation of mitochondrial dysfunction as a causative factor in neuropathic pain disorders. In contrast, results reported here implicate enhanced mitochondrial function as a contributing factor in the development of acute inflammatory hyperalgesia. We describe a mechanism in which Epac2 activation by prostaglandin receptors leads to phosphorylation of pyruvate dehydrogenase and an increase in mitochondrial respiration in peripheral sensory neurons. Although Epac2 activation leads to Pdha1 (pyruvate dehydrogenase) phosphorylation in dissociated neurons from mice of both sexes, induction of this pathway in vivo by hindpaw insult is restricted to males and appears to require intraganglionic prostaglandin synthesis. These findings support a model in which Gs-coupled receptor modulation of mitochondrial function promotes acute nociceptive signaling and inflammatory hyperalgesia.
Collapse
|
20
|
Garza Carbajal A, Ebersberger A, Thiel A, Ferrari L, Acuna J, Brosig S, Isensee J, Moeller K, Siobal M, Rose-John S, Levine J, Schaible HG, Hucho T. Oncostatin M induces hyperalgesic priming and amplifies signaling of cAMP to ERK by RapGEF2 and PKA. J Neurochem 2020; 157:1821-1837. [PMID: 32885411 DOI: 10.1111/jnc.15172] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022]
Abstract
Hyperalgesic priming is characterized by enhanced nociceptor sensitization by pronociceptive mediators, prototypically PGE2 . Priming has gained interest as a mechanism underlying the transition to chronic pain. Which stimuli induce priming and what cellular mechanisms are employed remains incompletely understood. In adult male rats, we present the cytokine Oncostatin M (OSM), a member of the IL-6 family, as an inducer of priming by a novel mechanism. We used a high content microscopy based approach to quantify the activation of endogenous PKA-II and ERK of thousands sensory neurons in culture. Incubation with OSM increased and prolonged ERK activation by agents that increase cAMP production such as PGE2 , forskolin, and cAMP analogs. These changes were specific to IB4/CaMKIIα positive neurons, required protein translation, and increased cAMP-to-ERK signaling. In both, control and OSM-treated neurons, cAMP/ERK signaling involved RapGEF2 and PKA but not Epac. Similar enhancement of cAMP-to-ERK signaling could be induced by GDNF, which acts mostly on IB4/CaMKIIα-positive neurons, but not by NGF, which acts mostly on IB4/CaMKIIα-negative neurons. In vitro, OSM pretreatment rendered baseline TTX-R currents ERK-dependent and switched forskolin-increased currents from partial to full ERK-dependence in small/medium sized neurons. In summary, priming induced by OSM uses a novel mechanism to enhance and prolong coupling of cAMP/PKA to ERK1/2 signaling without changing the overall pathway structure.
Collapse
Affiliation(s)
- Anibal Garza Carbajal
- Department of Anaesthesiology and Intensive Care Medicine, Translational Pain Research, University Hospital Cologne, University Cologne, Cologne, Germany
| | | | - Alina Thiel
- Department of Anaesthesiology and Intensive Care Medicine, Translational Pain Research, University Hospital Cologne, University Cologne, Cologne, Germany
| | - Luiz Ferrari
- Department of Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jeremy Acuna
- Department of Anaesthesiology and Intensive Care Medicine, Translational Pain Research, University Hospital Cologne, University Cologne, Cologne, Germany
| | - Stephanie Brosig
- Department of Anaesthesiology and Intensive Care Medicine, Translational Pain Research, University Hospital Cologne, University Cologne, Cologne, Germany
| | - Joerg Isensee
- Department of Anaesthesiology and Intensive Care Medicine, Translational Pain Research, University Hospital Cologne, University Cologne, Cologne, Germany
| | - Katharina Moeller
- Department of Anaesthesiology and Intensive Care Medicine, Translational Pain Research, University Hospital Cologne, University Cologne, Cologne, Germany
| | - Maike Siobal
- Department of Anaesthesiology and Intensive Care Medicine, Translational Pain Research, University Hospital Cologne, University Cologne, Cologne, Germany
| | | | - Jon Levine
- Department of Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, CA, USA
| | | | - Tim Hucho
- Department of Anaesthesiology and Intensive Care Medicine, Translational Pain Research, University Hospital Cologne, University Cologne, Cologne, Germany
| |
Collapse
|
21
|
P2X3 receptors contribute to transition from acute to chronic muscle pain. Purinergic Signal 2020; 16:403-414. [PMID: 32766958 DOI: 10.1007/s11302-020-09718-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022] Open
Abstract
This study aimed to evaluate whether the development and/or maintenance of chronic-latent muscle hyperalgesia is modulated by P2X3 receptors. We also evaluate the expression of P2X3 receptors and PKCε of dorsal root ganglions during these processes. A mouse model of chronic-latent muscle hyperalgesia, induced by carrageenan and evidenced by PGE2, was used. Mechanical muscle hyperalgesia was measured by Randall-Selitto analgesimeter. The involvement of P2X3 receptors was analyzed by using the selective P2X3 receptors antagonist A-317491 by intramuscular or intrathecal injections. Expression of P2X3 and PKCε in dorsal root ganglion (L4-S1) were evaluated by Western blotting. Intrathecal blockade of P2X3 receptors previously to carrageenan prevented the development and maintenance of acute and chronic-latent muscle hyperalgesia, while intramuscular blockade of P2X3 receptors previously to carrageenan only reduced the acute muscle hyperalgesia and had no effect on chronic-latent muscle hyperalgesia. Intrathecal, but not intramuscular, blockade of P2X3 receptors immediately before PGE2, in animals previously sensitized by carrageenan, reversed the chronic-latent muscle hyperalgesia. There was an increase in total and phosphorylated PKCε 48 h after the beginning of acute muscle hyperalgesia, and in P2X3 receptors at the period of chronic muscle hyperalgesia. P2X3 receptors expressed on spinal cord dorsal horn contribute to transition from acute to chronic muscle pain. We also suggest an interaction of PKCε and P2X3 receptors in this process. Therefore, we point out P2X3 receptors of the spinal cord dorsal horn as a pharmacological target to prevent the development or reverse the chronic muscle pain conditions.
Collapse
|
22
|
Wang P, Luchowska-Stańska U, van Basten B, Chen H, Liu Z, Wiejak J, Whelan P, Morgan D, Lochhead E, Barker G, Rehmann H, Yarwood SJ, Zhou J. Synthesis and Biochemical Evaluation of Noncyclic Nucleotide Exchange Proteins Directly Activated by cAMP 1 (EPAC1) Regulators. J Med Chem 2020; 63:5159-5184. [PMID: 32340447 DOI: 10.1021/acs.jmedchem.9b02094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Exchange proteins directly activated by cAMP (EPAC) play a central role in various biological functions, and activation of the EPAC1 protein has shown potential benefits for the treatment of various human diseases. Herein, we report the synthesis and biochemical evaluation of a series of noncyclic nucleotide EPAC1 activators. Several potent EPAC1 binders were identified including 25g, 25q, 25n, 25u, 25e, and 25f, which promote EPAC1 guanine nucleotide exchange factor activity in vitro. These agonists can also activate EPAC1 protein in cells, where they exhibit excellent selectivity toward EPAC over protein kinase A and G protein-coupled receptors. Moreover, 25e, 25f, 25n, and 25u exhibited improved selectivity toward activation of EPAC1 over EPAC2 in cells. Of these, 25u was found to robustly inhibit IL-6-activated signal transducer and activator of transcription 3 (STAT3) and subsequent induction of the pro-inflammatory vascular cell adhesion molecule 1 (VCAM1) cell-adhesion protein. These novel EPAC1 activators may therefore act as useful pharmacological tools for elucidation of EPAC function and promising drug leads for the treatment of relevant human diseases.
Collapse
Affiliation(s)
- Pingyuan Wang
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Urszula Luchowska-Stańska
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, U.K
| | - Boy van Basten
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, U.K
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Zhiqing Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jolanta Wiejak
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, U.K
| | - Padraic Whelan
- Institute of Chemical Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, U.K
| | - David Morgan
- Institute of Chemical Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, U.K
| | - Emma Lochhead
- Institute of Chemical Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, U.K
| | - Graeme Barker
- Institute of Chemical Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, U.K
| | - Holger Rehmann
- Department of Molecular Cancer Research, Centre of Biomedical Genetics and Cancer Genomics Centre, University Medical Centre Utrecht, Utrecht 3584 CX, Netherlands
| | - Stephen J Yarwood
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, U.K
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
23
|
Neuropathic and cAMP-induced pain behavior is ameliorated in mice lacking CNGB1. Neuropharmacology 2020; 171:108087. [PMID: 32272140 DOI: 10.1016/j.neuropharm.2020.108087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/22/2020] [Accepted: 04/01/2020] [Indexed: 11/21/2022]
Abstract
Cyclic nucleotide-gated (CNG) channels, which are directly activated by cAMP and cGMP, have long been known to play a key role in retinal and olfactory signal transduction. Emerging evidence indicates that CNG channels are also involved in signaling pathways important for pain processing. Here, we found that the expression of the channel subunits CNGA2, CNGA3, CNGA4 and CNGB1 in dorsal root ganglia, and of CNGA2 in the spinal cord, is transiently altered after peripheral nerve injury in mice. Specifically, we show using in situ hybridization and quantitative real-time RT-PCR that CNG channels containing the CNGB1b subunit are localized to populations of sensory neurons and predominantly excitatory interneurons in the spinal dorsal horn. In CNGB1 knockout (CNGB1-/-) mice, neuropathic pain behavior is considerably attenuated whereas inflammatory pain behavior is normal. Finally, we provide evidence to support CNGB1 as a downstream mediator of cAMP signaling in pain pathways. Altogether, our data suggest that CNGB1-positive CNG channels specifically contribute to neuropathic pain processing after peripheral nerve injury.
Collapse
|
24
|
Abstract
Chronic pain is a major clinical problem of which the mechanisms are incompletely understood. Here, we describe the concept that PI16, a protein of unknown function mainly produced by fibroblasts, controls neuropathic pain. The spared nerve injury (SNI) model of neuropathic pain increases PI16 protein levels in fibroblasts in dorsal root ganglia (DRG) meninges and in the epi/perineurium of the sciatic nerve. We did not detect PI16 expression in neurons or glia in spinal cord, DRG, and nerve. Mice deficient in PI16 are protected against neuropathic pain. In vitro, PI16 promotes transendothelial leukocyte migration. In vivo, Pi16 -/- mice show reduced endothelial barrier permeability, lower leukocyte infiltration and reduced activation of the endothelial barrier regulator MLCK, and reduced phosphorylation of its substrate MLC2 in response to SNI. In summary, our findings support a model in which PI16 promotes neuropathic pain by mediating a cross-talk between fibroblasts and the endothelial barrier leading to barrier opening, cellular influx, and increased pain. Its key role in neuropathic pain and its limited cellular and tissue distribution makes PI16 an attractive target for pain management.
Collapse
|
25
|
EPAC1 and EPAC2 promote nociceptor hyperactivity associated with chronic pain after spinal cord injury. NEUROBIOLOGY OF PAIN 2019; 7:100040. [PMID: 31890991 PMCID: PMC6926371 DOI: 10.1016/j.ynpai.2019.100040] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 12/19/2022]
Abstract
Chronic pain following spinal cord injury (SCI) is associated with electrical hyperactivity (spontaneous and evoked) in primary nociceptors. Cyclic adenosine monophosphate (cAMP) signaling is an important contributor to nociceptor excitability, and knockdown of the cAMP effector, exchange protein activated by cAMP (EPAC), has been shown to relieve pain-like responses in several chronic pain models. To examine potentially distinct roles of each EPAC isoform (EPAC1 and 2) in maintaining chronic pain, we used rat and mouse models of contusive spinal cord injury (SCI). Pharmacological inhibition of EPAC1 or 2 in a rat SCI model was sufficient to reverse SCI-induced nociceptor hyperactivity, indicating that EPAC1 and 2 signaling activity are complementary, with both required to maintain hyperactivity. However, EPAC activation was not sufficient to induce similar hyperactivity in nociceptors from naïve rats, and we observed no change in EPAC protein expression after SCI. In the mouse SCI model, inhibition of both EPAC isoforms through a combination of pharmacological inhibition and genetic deletion was required to reverse SCI-induced nociceptor hyperactivity. This was consistent with our finding that neither EPAC1-/- nor EPAC2-/- mice were protected against SCI-induced chronic pain as assessed with an operant mechanical conflict test. Thus, EPAC1 and 2 activity may play a redundant role in mouse nociceptors, although no corresponding change in EPAC protein expression levels was detected after SCI. Despite some differences between these species, our data demonstrate a fundamental role for both EPAC1 and EPAC2 in mechanisms maintaining nociceptor hyperactivity and chronic pain after SCI.
Collapse
|
26
|
Penela P, Ribas C, Sánchez-Madrid F, Mayor F. G protein-coupled receptor kinase 2 (GRK2) as a multifunctional signaling hub. Cell Mol Life Sci 2019; 76:4423-4446. [PMID: 31432234 PMCID: PMC6841920 DOI: 10.1007/s00018-019-03274-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022]
Abstract
Accumulating evidence indicates that G protein-coupled receptor kinase 2 (GRK2) is a versatile protein that acts as a signaling hub by modulating G protein-coupled receptor (GPCR) signaling and also via phosphorylation or scaffolding interactions with an extensive number of non-GPCR cellular partners. GRK2 multifunctionality arises from its multidomain structure and from complex mechanisms of regulation of its expression levels, activity, and localization within the cell, what allows the precise spatio-temporal shaping of GRK2 targets. A better understanding of the GRK2 interactome and its modulation mechanisms is helping to identify the GRK2-interacting proteins and its substrates involved in the participation of this kinase in different cellular processes and pathophysiological contexts.
Collapse
Affiliation(s)
- Petronila Penela
- Departamento de Biología Molecular, Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, 28049, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, 28006, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), 28029, Madrid, Spain
| | - Catalina Ribas
- Departamento de Biología Molecular, Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, 28049, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, 28006, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), 28029, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Instituto de Investigación Sanitaria La Princesa, 28006, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), 28029, Madrid, Spain
- Cell-Cell Communication Laboratory, Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - Federico Mayor
- Departamento de Biología Molecular, Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, 28049, Madrid, Spain.
- Instituto de Investigación Sanitaria La Princesa, 28006, Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), 28029, Madrid, Spain.
| |
Collapse
|
27
|
Fu W, Nelson TS, Santos DF, Doolen S, Gutierrez JJ, Ye N, Zhou J, Taylor B. An NPY Y1 receptor antagonist unmasks latent sensitization and reveals the contribution of protein kinase A and Epac to chronic inflammatory pain. Pain 2019; 160:1754-1765. [PMID: 31335645 PMCID: PMC6903783 DOI: 10.1097/j.pain.0000000000001557] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Peripheral inflammation produces a long-lasting latent sensitization of spinal nociceptive neurons, that is, masked by tonic inhibitory controls. We explored mechanisms of latent sensitization with an established four-step approach: (1) induction of inflammation; (2) allow pain hypersensitivity to resolve; (3) interrogate latent sensitization with a channel blocker, mutant mouse, or receptor antagonist; and (4) disrupt compensatory inhibition with a receptor antagonist so as to reinstate pain hypersensitivity. We found that the neuropeptide Y Y1 receptor antagonist BIBO3304 reinstated pain hypersensitivity, indicative of an unmasking of latent sensitization. BIBO3304-evoked reinstatement was not observed in AC1 knockout mice and was prevented with intrathecal co-administration of a pharmacological blocker to the N-methyl-D-aspartate receptor (NMDAR), adenylyl cyclase type 1 (AC1), protein kinase A (PKA), transient receptor potential cation channel A1 (TRPA1), channel V1 (TRPV1), or exchange protein activated by cAMP (Epac1 or Epac2). A PKA activator evoked both pain reinstatement and touch-evoked pERK expression in dorsal horn; the former was prevented with intrathecal co-administration of a TRPA1 or TRPV1 blocker. An Epac activator also evoked pain reinstatement and pERK expression. We conclude that PKA and Epac are sufficient to maintain long-lasting latent sensitization of dorsal horn neurons that is kept in remission by the NPY-Y1 receptor system. Furthermore, we have identified and characterized 2 novel molecular signaling pathways in the dorsal horn that drive latent sensitization in the setting of chronic inflammatory pain: NMDAR→AC1→PKA→TRPA1/V1 and NMDAR→AC1→Epac1/2. New treatments for chronic inflammatory pain might either increase endogenous NPY analgesia or inhibit AC1, PKA, or Epac.
Collapse
Affiliation(s)
- Weisi Fu
- Department of Physiology, University of Kentucky Medical Center, Lexington KY, USA
| | - Tyler S. Nelson
- Department of Anesthesiology, Pittsburgh Center for Pain Research, and the Opiate Research Center at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA USA
| | - Diogo F. Santos
- Department of Anesthesiology, Pittsburgh Center for Pain Research, and the Opiate Research Center at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
| | - Suzanne Doolen
- Department of Anesthesiology, Pittsburgh Center for Pain Research, and the Opiate Research Center at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
| | - Javier J.P. Gutierrez
- Department of Anesthesiology, Pittsburgh Center for Pain Research, and the Opiate Research Center at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
| | - Na Ye
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Bradley Taylor
- Department of Physiology, University of Kentucky Medical Center, Lexington KY, USA
- Department of Anesthesiology, Pittsburgh Center for Pain Research, and the Opiate Research Center at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
28
|
Orally active Epac inhibitor reverses mechanical allodynia and loss of intraepidermal nerve fibers in a mouse model of chemotherapy-induced peripheral neuropathy. Pain 2019; 159:884-893. [PMID: 29369966 DOI: 10.1097/j.pain.0000000000001160] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major side effect of cancer treatment that significantly compromises quality of life of cancer patients and survivors. Identification of targets for pharmacological intervention to prevent or reverse CIPN is needed. We investigated exchange protein regulated by cAMP (Epac) as a potential target. Epacs are cAMP-binding proteins known to play a pivotal role in mechanical allodynia induced by nerve injury and inflammation. We demonstrate that global Epac1-knockout (Epac1-/-) male and female mice are protected against paclitaxel-induced mechanical allodynia. In addition, spinal cord astrocyte activation and intraepidermal nerve fiber (IENF) loss are significantly reduced in Epac1-/- mice as compared to wild-type mice. Moreover, Epac1-/- mice do not develop the paclitaxel-induced deficits in mitochondrial bioenergetics in the sciatic nerve that are a hallmark of CIPN. Notably, mice with cell-specific deletion of Epac1 in Nav1.8-positive neurons (N-Epac1-/-) also show reduced paclitaxel-induced mechanical allodynia, astrocyte activation, and IENF loss, indicating that CIPN develops downstream of Epac1 activation in nociceptors. The Epac-inhibitor ESI-09 reversed established paclitaxel-induced mechanical allodynia in wild-type mice even when dosing started 10 days after completion of paclitaxel treatment. In addition, oral administration of ESI-09 suppressed spinal cord astrocyte activation in the spinal cord and protected against IENF loss. Ex vivo, ESI-09 blocked paclitaxel-induced abnormal spontaneous discharges in dorsal root ganglion neurons. Collectively, these findings implicate Epac1 in nociceptors as a novel target for treatment of CIPN. This is clinically relevant because ESI-09 has the potential to reverse a debilitating and long-lasting side effect of cancer treatment.
Collapse
|
29
|
Li ZH, Cui D, Qiu CJ, Song XJ. Cyclic nucleotide signaling in sensory neuron hyperexcitability and chronic pain after nerve injury. NEUROBIOLOGY OF PAIN 2019; 6:100028. [PMID: 31223142 PMCID: PMC6565612 DOI: 10.1016/j.ynpai.2019.100028] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 11/08/2022]
Abstract
Activation of cAMP-PKA and cGMP-PKG pathways contributes to injury-induced sensory neuron hyperexcitability. Activation of cAMP and cGMP contributes to the development of bone cancer pain. PAR2 activation mediates injury-induced cAMP-dependent sensory neuron hyperexcitability.
The cyclic nucleotide signaling, including cAMP-PKA and cGMP-PKG pathways, has been well known to play critical roles in regulating cellular growth, metabolism and many other intracellular processes. In recent years, more and more studies have uncovered the roles of cAMP and cGMP in the nervous system. The cAMP and cGMP signaling mediates chronic pain induced by different forms of injury and stress. Here we summarize the roles of cAMP-PKA and cGMP-PKG signaling pathways in the pathogenesis of chronic pain after nerve injury. In addition, acute dissociation and chronic compression of the dorsal root ganglion (DRG) neurons, respectively, leads to neural hyperexcitability possibly through PAR2 activation-dependent activation of cAMP-PKA pathway. Clinically, radiotherapy can effectively alleviate bone cancer pain at least partly through inhibiting the cancer cell-induced activation of cAMP-PKA pathway. Roles of cyclic nucleotide signaling in neuropathic and inflammatory pain are also seen in many other animal models and are involved in many pro-nociceptive mechanisms including the activation of hyperpolarization-activated cyclic nucleotide (HCN)-modulated ion channels and the exchange proteins directly activated by cAMP (EPAC). Further understanding the roles of cAMP and cGMP signaling in the pathogenesis of chronic pain is theoretically significant and clinically valuable for treatment of chronic pain.
Collapse
Affiliation(s)
- Ze-Hua Li
- Department of Biology, SUSTech Center for Pain Medicine, and Medical School, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.,Department of Anesthesiology and Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education of China), Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing 100142, China
| | - Dong Cui
- Department of Biology, SUSTech Center for Pain Medicine, and Medical School, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.,Department of Anesthesiology and Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education of China), Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing 100142, China
| | - Cheng-Jie Qiu
- Department of Biology, SUSTech Center for Pain Medicine, and Medical School, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xue-Jun Song
- Department of Biology, SUSTech Center for Pain Medicine, and Medical School, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.,Department of Anesthesiology and Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education of China), Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
30
|
Inflammation induces Epac-protein kinase C alpha and epsilon signaling in TRPV1-mediated hyperalgesia. Pain 2019; 159:2383-2393. [PMID: 30015706 DOI: 10.1097/j.pain.0000000000001346] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The exchange proteins activated by cAMP (Epacs) have been shown to play important roles in producing inflammation-induced nociception. Transient receptor potential vanilloid type 1 (TRPV1) is a major receptor processing thermal and chemosensitive nociceptive information. The role of Epacs in modulating the activity of TRPV1 has yet to be determined. Studying the effect of complete Freund adjuvant (CFA)-induced inflammation on capsaicin-activated TRPV1 nociceptive responses in dorsal root ganglia (DRG), we found that CFA produced a large increase in capsaicin-induced responses. The increase was inhibited by Epac1 and Epac2 antagonists. Thus, activation of Epacs is critical in producing enhancement in TRPV1-mediated responses under inflammatory conditions. In addition, the inflammation-induced enhancement of TRPV1 responses was blocked by PKCα and PKCε inhibitors, suggesting the essential roles of these PKCs in enhancing TRPV1 responses. To determine the mechanism underlying the Epac actions on TRPV1, we studied the effects of the Epac activator, 8-(4-chlorophenylthio)-2-O-methyl-cAMP (CPT), on capsaicin-induced nociceptive behavioral responses, capsaicin-activated currents, expression and membrane trafficking of PKC and TRPV1 in DRG. CPT was found to enhance capsaicin-induced nociception and ionic currents. The enhancement was inhibited by PKCα and PKCε inhibitors. In addition, CPT increased the expression of phosphorylated PKCα (pPKCα) and membrane TRPV1 expression in DRG. Studying the colocalization of TRPV1 and pPKCα or pPKCε in DRG slices prepared from CFA-treated rats, we found that pPKCα or pPKCε expressed with TRPV1 in different-sized neurons to exert differential influences on TRPV1 activity. Thus, Epac-PKC signaling is critically important in producing inflammation-induced potentiation of TRPV1 functions.
Collapse
|
31
|
Engelhardt B, Holze J, Elliott C, Baillie GS, Kschischo M, Fröhlich H. Modelling and mathematical analysis of the M$_{2}$ receptor-dependent joint signalling and secondary messenger network in CHO cells. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2018; 35:279-297. [PMID: 28505258 DOI: 10.1093/imammb/dqx003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 02/07/2017] [Indexed: 11/14/2022]
Abstract
The muscarinic M$_{2}$ receptor is a prominent member of the GPCR family and strongly involved in heart diseases. Recently published experimental work explored the cellular response to iperoxo-induced M$_{2}$ receptor stimulation in Chinese hamster ovary (CHO) cells. To better understand these responses, we modelled and analysed the muscarinic M$_{2}$ receptor-dependent signalling pathway combined with relevant secondary messenger molecules using mass action. In our literature-based joint signalling and secondary messenger model, all binding and phosphorylation events are explicitly taken into account in order to enable subsequent stoichiometric matrix analysis. We propose constraint flux sampling (CFS) as a method to characterize the expected shift of the steady state reaction flux distribution due to the known amount of cAMP production and PDE4 activation. CFS correctly predicts an experimentally observable influence on the cytoskeleton structure (marked by actin and tubulin) and in consequence a change of the optical density of cells. In a second step, we use CFS to simulate the effect of knock-out experiments within our biological system, and thus to rank the influence of individual molecules on the observed change of the optical cell density. In particular, we confirm the relevance of the protein RGS14, which is supported by current literature. A combination of CFS with Elementary Flux Mode analysis enabled us to determine the possible underlying mechanism. Our analysis suggests that mathematical tools developed for metabolic network analysis can also be applied to mixed secondary messenger and signalling models. This could be very helpful to perform model checking with little effort and to generate hypotheses for further research if parameters are not known.
Collapse
Affiliation(s)
- Benjamin Engelhardt
- Algorithmic Bioinformatics, Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Dahlmannstr. 2, Bonn, Germany and DFG Research Training Group 1873
| | - Janine Holze
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 3, Bonn, Germany
| | - Christina Elliott
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - George S Baillie
- College of Medical, Veterinary and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Maik Kschischo
- Department of Mathematics and Technology, RheinAhrCampus, University of Applied Sciences Koblenz, Joseph-Rovan-Allee 2, Remagen, Germany
| | - Holger Fröhlich
- Algorithmic Bioinformatics, Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Dahlmannstr. 2, Bonn, Germany
| |
Collapse
|
32
|
Abstract
Abstract Primary sensory neurons are responsible for transmitting sensory information from the peripheral to the central nervous system. Their responses to incoming stimulation become greatly enhanced and prolonged following inflammation, giving rise to exaggerated nociceptive responses and chronic pain. The inflammatory mediator, prostaglandin E2 (PGE2), released from the inflamed tissue surrounding the terminals of sensory neurons contributes to the abnormal pain responses. PGE2 acts on G protein-coupled EP receptors to activate adenylyl cyclase, which catalyzes the conversion of adenosine triphosphate to cyclic adenosine 3′,5′-monophosphate (cAMP). Under normal conditions, cAMP activates primarily protein kinase A. After inflammation, cAMP also activates the exchange proteins activated by cAMP (Epacs) to produce exaggerated PGE2-mediated hyperalgesia. The role of cAMP-Epac signaling in the generation of hypersensitivity is the topic of this review.
Collapse
Affiliation(s)
| | - Yanping Gu
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch Galveston, TX 77555-1069, USA
| |
Collapse
|
33
|
Ji RR, Nackley A, Huh Y, Terrando N, Maixner W. Neuroinflammation and Central Sensitization in Chronic and Widespread Pain. Anesthesiology 2018; 129:343-366. [PMID: 29462012 PMCID: PMC6051899 DOI: 10.1097/aln.0000000000002130] [Citation(s) in RCA: 755] [Impact Index Per Article: 125.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic pain is maintained in part by central sensitization, a phenomenon of synaptic plasticity, and increased neuronal responsiveness in central pain pathways after painful insults. Accumulating evidence suggests that central sensitization is also driven by neuroinflammation in the peripheral and central nervous system. A characteristic feature of neuroinflammation is the activation of glial cells, such as microglia and astrocytes, in the spinal cord and brain, leading to the release of proinflammatory cytokines and chemokines. Recent studies suggest that central cytokines and chemokines are powerful neuromodulators and play a sufficient role in inducing hyperalgesia and allodynia after central nervous system administration. Sustained increase of cytokines and chemokines in the central nervous system also promotes chronic widespread pain that affects multiple body sites. Thus, neuroinflammation drives widespread chronic pain via central sensitization. We also discuss sex-dependent glial/immune signaling in chronic pain and new therapeutic approaches that control neuroinflammation for the resolution of chronic pain.
Collapse
Affiliation(s)
- Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| | - Andrea Nackley
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710
| | - Yul Huh
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710
| | - Niccolò Terrando
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710
| | - William Maixner
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
34
|
Wang HJ, Gu HX, Eijkelkamp N, Heijnen CJ, Kavelaars A. Low GRK2 Underlies Hyperalgesic Priming by Glial Cell-Derived Neurotrophic Factor. Front Pharmacol 2018; 9:592. [PMID: 29922165 PMCID: PMC5996251 DOI: 10.3389/fphar.2018.00592] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/17/2018] [Indexed: 11/13/2022] Open
Abstract
Background: We recently identified the balance between the level of G protein coupled receptor kinase 2 (GRK2) and Epac1 in nociceptors as a key factor in the transition from acute to chronic pain that occurs in mice 'primed' by an inflammatory stimulus. Here, we examined the contribution of GRK2 and Epac-signaling to growth factor-induced hyperalgesic priming. Methods: Mice were primed by intraplantar injection with glial cell-derived neurotrophic factor (GDNF). Mechanical allodynia in response to PGE2 was followed over time in primed and non-primed animals. GRK2 protein levels in dorsal root ganglion (DRG) neurons were quantified by immunohistochemistry. The effect of herpes simplex virus (HSV)-GRK2 amplicons to restore GRK2 levels or of an Epac inhibitor on PGE2 allodynia in primed mice was examined. Results: Glial cell-derived neurotrophic factor-induced hyperalgesia disappeared within 12 days. The hyperalgesic response to a subsequent intraplantar injection of PGE2 was prolonged from <24 h in control mice to more than 72 h in GDNF-primed mice. In male and female primed mice, PGE2 hyperalgesia was inhibited by oral administration of the Epac inhibitor ESI-09, while the drug had no effect in control mice. Mice primed with GDNF had reduced levels of GRK2 in IB4(+) small DRG neurons, but normal GRK2 levels in IB4(-) DRG neurons. Intraplantar administration of HSV-GRK2 amplicons to increase GRK2 protein levels prevented the prolongation of PGE2-induced hyperalgesia in GDNF-primed mice. Conclusion: Low GRK2 in nociceptors is critical to develop a primed state in response to GDNF and leads to engagement of Epac signaling and transition to chronic PGE2-induced hyperalgesia. Increasing GRK2 protein or inhibiting Epac signaling may represent new avenues for preventing transition to a chronic pain state.
Collapse
Affiliation(s)
- Hui-Jing Wang
- Laboratory of Neuropsychopharmacology, College of Fundamental Medicine, Shanghai University of Medicine & Health Science, Shanghai, China.,Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, Netherlands
| | - Han-Xin Gu
- Laboratory of Neuropsychopharmacology, College of Fundamental Medicine, Shanghai University of Medicine & Health Science, Shanghai, China
| | - Niels Eijkelkamp
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, Netherlands
| | - Cobi J Heijnen
- Division of Internal Medicine, Laboratory of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Annemieke Kavelaars
- Division of Internal Medicine, Laboratory of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
35
|
Abstract
Proinflammatory reaction by the body occurs acutely in response to injury that is considered primarily beneficial. However, sustained proinflammatory cytokines observed with chronic pathologies such as metabolic syndrome, cancer, and arthritis are detrimental and in many cases is a major cardiovascular risk factor. Proinflammatory cytokines such as interleukin-1, interleukin-6, and tumor necrosis factor α (TNFα) have long been implicated in cardiovascular risk and considered to be a major underlying cause for heart failure (HF). The failure of the anti-TNFα therapy for HF indicates our elusive understanding on the dichotomous role of proinflammatory cytokines on acutely beneficial effects versus long-term deleterious effects. Despite these well-described observations, less is known about the mechanistic underpinnings of proinflammatory cytokines especially TNFα in pathogenesis of HF. Increasing evidence suggests the existence of an active cross-talk between the TNFα receptor signaling and G-protein-coupled receptors such as β-adrenergic receptor (βAR). Given that βARs are the key regulators of cardiac function, the review will discuss the current state of understanding on the role of proinflammatory cytokine TNFα in regulating βAR function.
Collapse
Affiliation(s)
- Maradumane L Mohan
- *Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and †Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH
| | | | | |
Collapse
|
36
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
37
|
Im YN, Lee YD, Park JS, Kim HK, Im SY, Song HR, Lee HK, Han MK. GPCR Kinase (GRK)-2 Is a Key Negative Regulator of Itch: l-Glutamine Attenuates Itch via a Rapid Induction of GRK2 in an ERK-Dependent Way. J Invest Dermatol 2018. [PMID: 29530536 DOI: 10.1016/j.jid.2018.02.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many itch mediators activate GPCR and trigger itch via activation of GPCR-mediated signaling pathways. GPCRs are desensitized by GPCR kinases (GRKs). The aim of this study is to explore the role of GRKs in itch response and the link between GRKs and glutamine, an amino acid previously shown to be an itch reliever. Itch responses were evoked by histamine, chloroquine, and dinitrochlorobenzene-induced contact dermatitis (CD). Phosphorylation and protein expression were detected by immunofluorescent staining and Western blotting. GRK2 knockdown using small interfering RNA enhanced itch responses evoked by histamine, chloroquine, and dinitrochlorobenzene-induced CD, whereas GRK2 overexpression using GRK2-expressing adenovirus reduced the itch responses. Glutamine reduced all itch evoked by histamine, chloroquine, and dinitrochlorobenzene-induced CD. Glutamine-mediated inhibition of itch was abolished by GRK2 knockdown. Glutamine application resulted in a rapid and strong expression of GRK2 in not only dinitrochlorobenzene-induced CD (within 10 minutes) but also cultured rat dorsal root ganglion cells, F11 (within 1 minute). ERK inhibitor abrogates glutamine-mediated GRK2 expression and inhibition of itch in dinitrochlorobenzene-induced CD. Our data indicate that GRK2 is a key negative regulator of itch and that glutamine attenuates itch via a rapid induction of GRK2 in an ERK-dependent way.
Collapse
Affiliation(s)
- Yu-Na Im
- Department of Immunology and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Yu-Dong Lee
- Department of Immunology and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Jeong-Soo Park
- Department of Immunology and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hae-Kyoung Kim
- Department of Immunology and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Suhn-Young Im
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Hwa-Ryung Song
- Department of Microbiology and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hern-Ku Lee
- Department of Microbiology and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Republic of Korea.
| | - Myung-Kwan Han
- Department of Microbiology and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Republic of Korea.
| |
Collapse
|
38
|
Russart KLG, Huk D, Nelson RJ, Kirschner LS. Elevated aggressive behavior in male mice with thyroid-specific Prkar1a and global Epac1 gene deletion. Horm Behav 2018; 98:121-129. [PMID: 29289659 PMCID: PMC5828986 DOI: 10.1016/j.yhbeh.2017.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/19/2017] [Accepted: 12/23/2017] [Indexed: 11/25/2022]
Abstract
Alterations in circulating thyroid hormone concentrations are associated with several psychological and behavioral disorders. In humans, behavioral disorders such as anxiety, depression, and attention-deficit hyperactivity disorder can be associated with thyroid disease. The Tpo-Cre;Prkar1aflox/flox;Epac1-/- (R1A-Epac1KO) mice, originally bred to investigate the role of exchange protein directly activated by cAMP (Epac1) in follicular thyroid cancer, displayed self-mutilating and aggressive behaviors during casual observation. To assess these atypical responses, behavioral testing was conducted with the R1A-Epac1KO mice, as well as their single knockout counterparts, the thyroid-specific Prkar1a-/- and global Epac1-/- mice. Mice of all three genotypes demonstrated increased aggressive behavior against an intruder mouse. In addition, Epac1-/- mice increased response to an auditory stimulus, and the Prkar1a-/- and R1A-Epac1KO mice increased swimming behavior in the Porsolt forced swim test. Both Prkar1a-/- mice and R1A-Epac1KO mice have increased circulating thyroxine and corticosterone concentrations. Although hyperthyroidism has not been previously associated with aggression, increased thyroid hormone signaling might contribute to the increased aggressive response to the intruder mouse, as well as the increased swimming response. Mice with a genetic background of Tpo-Cre;Prkar1aflox/flox;Epac1-/- are aggressive, and both the thyroid-specific knockout of Prkar1a and global knockout of Epac1 likely contribute to this aggressive behavior. This study supports the hypothesis that altered thyroid signaling and aggressive behavior are linked.
Collapse
Affiliation(s)
- Kathryn L G Russart
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Danielle Huk
- Department of Cancer Biology and Genetics, Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Randy J Nelson
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Lawrence S Kirschner
- Department of Cancer Biology and Genetics, Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
39
|
Acquired Exchange Protein Directly Activated by Cyclic Adenosine Monophosphate Activity Induced by p38 Mitogen-activated Protein Kinase in Primary Afferent Neurons Contributes to Sustaining Postincisional Nociception. Anesthesiology 2017; 126:150-162. [PMID: 27984207 DOI: 10.1097/aln.0000000000001401] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The molecular mechanisms responsible for sustained pain after tissue injury are largely unknown. The aim of this study was to clarify the role of exchange protein directly activated by cyclic adenosine monophosphate (EPAC) in sustained postincisional nociception, using tissue injury-induced nociceptor priming, and involvement of p38 mitogen-activated protein kinase (p38MAPK) in EPAC-mediated nociceptor priming. METHODS Plantar incisions were made in the hind paws of Sprague-Dawley rats (n = 144). Nociceptor priming was confirmed by behavior testing followed by prostaglandin E2 injection 14 to 21 days after the incision. ESI-09, a selective EPAC inhibitor, was administered to assess its effects on nociceptor priming. Expression of two isoforms of EPAC (EPAC1/EPAC2) in dorsal root ganglions from naive rats and those 14 days after the incision was detected by immunohistochemistry and Western blotting. Separately, FR167653, a selective p38MAPK inhibitor, was administered to assess its effect on EPAC1/EPAC2 expression and the development of nociceptor priming. RESULTS Prostaglandin E2 injection 14 to 21 days after the plantar incision induced persistent mechanical hyperalgesia for 7 days. EPAC1/EPAC2 expression in dorsal root ganglion neurons was trivial in naive rats (7.7 ± 4.8% for EPAC1; 6.3 ± 4.1% for EPAC2) but markedly increased 14 days after the incision (21.0 ± 9.4% and 20.1 ± 3.8%, respectively). ESI-09 treatment inhibited prostaglandin E2-induced persistent mechanical hypersensitivity but had no effect on incision-induced acute nociceptive hypersensitivity. Treatment with FR167653 before the incision inhibited the development of nociceptor priming and incision-induced EPAC1/EPAC2 expression (8.5 ± 5.4% and 7.6 ± 3.3%, respectively). CONCLUSIONS Transient inflammatory stimulation causes long-lasting nociceptive hypersensitivity via nociceptor priming during the subacute period after incision. Acquired EPAC activity by p38MAPK in the dorsal root ganglion neurons is a key for this event.
Collapse
|
40
|
Steury MD, McCabe LR, Parameswaran N. G Protein-Coupled Receptor Kinases in the Inflammatory Response and Signaling. Adv Immunol 2017; 136:227-277. [PMID: 28950947 DOI: 10.1016/bs.ai.2017.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
G protein-coupled receptor kinases (GRKs) are serine/threonine kinases that regulate a large and diverse class of G protein-coupled receptors (GPCRs). Through GRK phosphorylation and β-arrestin recruitment, GPCRs are desensitized and their signal terminated. Recent work on these kinases has expanded their role from canonical GPCR regulation to include noncanonical regulation of non-GPCR and nonreceptor substrates through phosphorylation as well as via scaffolding functions. Owing to these and other regulatory roles, GRKs have been shown to play a critical role in the outcome of a variety of physiological and pathophysiological processes including chemotaxis, signaling, migration, inflammatory gene expression, etc. This diverse set of functions for these proteins makes them popular targets for therapeutics. Role for these kinases in inflammation and inflammatory disease is an evolving area of research currently pursued in many laboratories. In this review, we describe the current state of knowledge on various GRKs pertaining to their role in inflammation and inflammatory diseases.
Collapse
Affiliation(s)
| | - Laura R McCabe
- Michigan State University, East Lansing, MI, United States
| | | |
Collapse
|
41
|
Baameur F, Singhmar P, Zhou Y, Hancock JF, Cheng X, Heijnen CJ, Kavelaars A. Epac1 interacts with importin β1 and controls neurite outgrowth independently of cAMP and Rap1. Sci Rep 2016; 6:36370. [PMID: 27808165 PMCID: PMC5093460 DOI: 10.1038/srep36370] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 10/14/2016] [Indexed: 01/23/2023] Open
Abstract
Exchange protein directly activated by cAMP-1 (Epac1) is a cAMP sensor that regulates multiple cellular functions including cellular migration, proliferation and differentiation. Classically, Epac1 is thought to exert its effects through binding of cAMP leading to a conformational change in Epac1 and its accumulation at the plasma membrane (PM) where it activates Rap1. In search for regulators of Epac1 activity, we show here that importin β1 (impβ1) is an Epac1 binding partner that prevents PM accumulation of Epac1. We demonstrate that in the absence of impβ1, endogenous as well as overexpressed Epac1 accumulate at the PM. Moreover, agonist-induced PM translocation of Epac1 leads to dissociation of Epac1 from impβ1. Localization of Epac1 at the PM in the absence of impβ1, requires residue R82 in its DEP domain. Notably, the PM accumulation of Epac1 in the absence of impβ1 does not require binding of cAMP to Epac1 and does not result in Rap1 activation. Functionally, PM accumulation of Epac1, an Epac1 mutant deficient in cAMP binding, or an Epac1 mutant tethered to the PM, is sufficient to inhibit neurite outgrowth. In conclusion, we uncover a cAMP-independent function of Epac1 at the PM and demonstrate that impβ1 controls subcellular localization of Epac1.
Collapse
Affiliation(s)
- Faiza Baameur
- Laboratory of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pooja Singhmar
- Laboratory of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology and Texas Therapeutics Institute, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - John F Hancock
- Department of Integrative Biology and Pharmacology and Texas Therapeutics Institute, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology and Texas Therapeutics Institute, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Cobi J Heijnen
- Laboratory of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Annemieke Kavelaars
- Laboratory of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
42
|
Abstract
PI3K-α, -δ, and -γ all participate in inflammation induction. Antagonism of only PI3K-γ blocks nociception, which is indicative of a role for this isoform within the afferent. Phosphoinositide 3-kinases (PI3Ks) participate in signal transduction cascades that can directly activate and sensitize nociceptors and enhance pain transmission. They also play essential roles in chemotaxis and immune cell infiltration leading to inflammation. We wished to determine which PI3K isoforms were involved in each of these processes. Lightly anesthetized rats (isoflurane) were injected subcutaneously with carrageenan in their hind paws. This was preceded by a local injection of 1% DMSO vehicle or an isoform-specific antagonist to PI3K-α (compound 15-e), -β (TGX221), -δ (Cal-101), or -γ (AS252424). We measured changes in the mechanical pain threshold and spinal c-Fos expression (4 hours after injection) as indices of nociception. Paw volume, plasma extravasation (Evans blue, 0.3 hours after injection), and neutrophil (myeloperoxidase; 1 hour after injection) and macrophage (CD11b+; 4 hour after injection) infiltration into paw tissue were the measured inflammation endpoints. Only PI3K-γ antagonist before treatment reduced the carrageenan-induced pain behavior and spinal expression of c-Fos (P ≤ 0.01). In contrast, pretreatment with PI3K-α, -δ, and-γ antagonists reduced early indices of inflammation. Plasma extravasation PI3K-α (P ≤ 0.05), -δ (P ≤ 0.05), and -γ (P ≤ 0.01), early (0-2 hour) edema -α (P ≤ 0.05), -δ (P ≤ 0.001), and -γ (P ≤ 0.05), and neutrophil infiltration (all P ≤ 0.001) were all reduced compared to vehicle pretreatment. Later (2-4 hour), edema and macrophage infiltration (P ≤ 0.05) were reduced by only the PI3K-δ and -γ isoform antagonists, with the PI3K-δ antagonist having a greater effect on edema. PI3K-β antagonism was ineffective in all paradigms. These data indicate that pain and clinical inflammation are pharmacologically separable and may help to explain clinical conditions in which inflammation naturally wanes or goes into remission, but pain continues unabated.
Collapse
|
43
|
GRK2 Constitutively Governs Peripheral Delta Opioid Receptor Activity. Cell Rep 2016; 16:2686-2698. [PMID: 27568556 DOI: 10.1016/j.celrep.2016.07.084] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 06/24/2016] [Accepted: 07/27/2016] [Indexed: 01/07/2023] Open
Abstract
Opioids remain the standard for analgesic care; however, adverse effects of systemic treatments contraindicate long-term administration. While most clinical opioids target mu opioid receptors (MOR), those that target the delta class (DOR) also demonstrate analgesic efficacy. Furthermore, peripherally restrictive opioids represent an attractive direction for analgesia. However, opioid receptors including DOR are analgesically incompetent in the absence of inflammation. Here, we report that G protein-coupled receptor kinase 2 (GRK2) naively associates with plasma membrane DOR in peripheral sensory neurons to inhibit analgesic agonist efficacy. This interaction prevents optimal Gβ subunit association with the receptor, thereby reducing DOR activity. Importantly, bradykinin stimulates GRK2 movement away from DOR and onto Raf kinase inhibitory protein (RKIP). protein kinase C (PKC)-dependent RKIP phosphorylation induces GRK2 sequestration, restoring DOR functionality in sensory neurons. Together, these results expand the known function of GRK2, identifying a non-internalizing role to maintain peripheral DOR in an analgesically incompetent state.
Collapse
|
44
|
Chen G, Xie RG, Gao YJ, Xu ZZ, Zhao LX, Bang S, Berta T, Park CK, Lay M, Chen W, Ji RR. β-arrestin-2 regulates NMDA receptor function in spinal lamina II neurons and duration of persistent pain. Nat Commun 2016; 7:12531. [PMID: 27538456 PMCID: PMC5477285 DOI: 10.1038/ncomms12531] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/08/2016] [Indexed: 02/02/2023] Open
Abstract
Mechanisms of acute pain transition to chronic pain are not fully understood. Here we demonstrate an active role of β-arrestin 2 (Arrb2) in regulating spinal cord NMDA receptor (NMDAR) function and the duration of pain. Intrathecal injection of the mu-opioid receptor agonist [D-Ala2, NMe-Phe4, Gly-ol5]-enkephalin produces paradoxical behavioural responses: early-phase analgesia and late-phase mechanical allodynia which requires NMDAR; both phases are prolonged in Arrb2 knockout (KO) mice. Spinal administration of NMDA induces GluN2B-dependent mechanical allodynia, which is prolonged in Arrb2-KO mice and conditional KO mice lacking Arrb2 in presynaptic terminals expressing Nav1.8. Loss of Arrb2 also results in prolongation of inflammatory pain and neuropathic pain and enhancement of GluN2B-mediated NMDA currents in spinal lamina IIo not lamina I neurons. Finally, spinal over-expression of Arrb2 reverses chronic neuropathic pain after nerve injury. Thus, spinal Arrb2 may serve as an intracellular gate for acute to chronic pain transition via desensitization of NMDAR. The cellular mechanisms underlying acute pain transitions to chronic pain are poorly understood. Here the authors show that the scaffolding protein β-arrestin 2 contributes to these processes via desensitization of NMDA receptors in spinal neurons.
Collapse
Affiliation(s)
- Gang Chen
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA.,Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Rou-Gang Xie
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA.,Department of Anesthesiology and Pain Management, Xijing Hospital, Department of Neuroscience, Fourth Military Medical University, Xian, Shanxi 710032, China
| | - Yong-Jing Gao
- Pain Research Laboratory, Institute of Nautical Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Zhen-Zhong Xu
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA.,Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, Zhejiang 3100058, China
| | - Lin-Xia Zhao
- Pain Research Laboratory, Institute of Nautical Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Sangsu Bang
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Temugin Berta
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA.,Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, Ohio 45267, USA
| | - Chul-Kyu Park
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA.,Department of Physiology, College of Medicine, Gachon University, Incheon 21999, South Korea
| | - Mark Lay
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Wei Chen
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Ru-Rong Ji
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
45
|
Cao S, Bian Z, Zhu X, Shen SR. Effect of Epac1 on pERK and VEGF Activation in Postoperative Persistent Pain in Rats. J Mol Neurosci 2016; 59:554-64. [DOI: 10.1007/s12031-016-0776-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/02/2016] [Indexed: 02/01/2023]
|
46
|
Critical role for Epac1 in inflammatory pain controlled by GRK2-mediated phosphorylation of Epac1. Proc Natl Acad Sci U S A 2016; 113:3036-41. [PMID: 26929333 DOI: 10.1073/pnas.1516036113] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
cAMP signaling plays a key role in regulating pain sensitivity. Here, we uncover a previously unidentified molecular mechanism in which direct phosphorylation of the exchange protein directly activated by cAMP 1 (EPAC1) by G protein kinase 2 (GRK2) suppresses Epac1-to-Rap1 signaling, thereby inhibiting persistent inflammatory pain. Epac1(-/-) mice are protected against inflammatory hyperalgesia in the complete Freund's adjuvant (CFA) model. Moreover, the Epac-specific inhibitor ESI-09 inhibits established CFA-induced mechanical hyperalgesia without affecting normal mechanical sensitivity. At the mechanistic level, CFA increased activity of the Epac target Rap1 in dorsal root ganglia of WT, but not of Epac1(-/-), mice. Using sensory neuron-specific overexpression of GRK2 or its kinase-dead mutant in vivo, we demonstrate that GRK2 inhibits CFA-induced hyperalgesia in a kinase activity-dependent manner. In vitro, GRK2 inhibits Epac1-to-Rap1 signaling by phosphorylation of Epac1 at Ser-108 in the Disheveled/Egl-10/pleckstrin domain. This phosphorylation event inhibits agonist-induced translocation of Epac1 to the plasma membrane, thereby reducing Rap1 activation. Finally, we show that GRK2 inhibits Epac1-mediated sensitization of the mechanosensor Piezo2 and that Piezo2 contributes to inflammatory mechanical hyperalgesia. Collectively, these findings identify a key role of Epac1 in chronic inflammatory pain and a molecular mechanism for controlling Epac1 activity and chronic pain through phosphorylation of Epac1 at Ser-108. Importantly, using the Epac inhibitor ESI-09, we validate Epac1 as a potential therapeutic target for chronic pain.
Collapse
|
47
|
Abstract
G-protein-coupled receptor kinases (GRKs) are serine/threonine protein kinases originally discovered for their role in G-protein-coupled receptor (GPCR) phosphorylation. Recent studies have demonstrated a much broader function for this kinase family including phosphorylation of cytosolic substrates involved in cell signaling pathways stimulated by GPCRs, as well as by non-GPCRs. In addition, GRKs modulate signaling via phosphorylation-independent functions. Because of these various biochemical functions, GRKs have been shown to affect critical physiological and pathophysiological processes, and thus are considered as drug targets in diseases such as heart failure. Role of GRKs in inflammation and inflammatory diseases is an evolving area of research and several studies including work from our lab in the recent years have demonstrated critical role of GRKs in the immune system. In this review, we discuss the classical and the newly emerging functions of GRKs in the immune system and their role in inflammation and disease processes.
Collapse
|
48
|
Abstract
Nociceptors and neurons in the central nervous system (CNS) that receive nociceptive input show remarkable plasticity in response to injury. This plasticity is thought to underlie the development of chronic pain states. Hence, further understanding of the molecular mechanisms driving and maintaining this plasticity has the potential to lead to novel therapeutic approaches for the treatment of chronic pain states. An important concept in pain plasticity is the presence and persistence of "hyperalgesic priming." This priming arises from an initial injury and results in a remarkable susceptibility to normally subthreshold noxious inputs causing a prolonged pain state in primed animals. Here we describe our current understanding of how this priming is manifested through changes in signaling in the primary nociceptor as well as through memory like alterations at CNS synapses. Moreover, we discuss how commonly utilized analgesics, such as opioids, enhance priming therefore potentially contributing to the development of persistent pain states. Finally we highlight where these priming models draw parallels to common human chronic pain conditions. Collectively, these advances in our understanding of pain plasticity reveal a variety of targets for therapeutic intervention with the potential to reverse rather than palliate chronic pain states.
Collapse
Affiliation(s)
- Ram Kandasamy
- Department of Pharmacology, The University of Arizona, Tucson, AZ, 85721, USA
| | | |
Collapse
|
49
|
Banerjee U, Cheng X. Exchange protein directly activated by cAMP encoded by the mammalian rapgef3 gene: Structure, function and therapeutics. Gene 2015; 570:157-67. [PMID: 26119090 PMCID: PMC4556420 DOI: 10.1016/j.gene.2015.06.063] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 06/23/2015] [Indexed: 01/08/2023]
Abstract
Mammalian exchange protein directly activated by cAMP isoform 1 (EPAC1), encoded by the RAPGEF3 gene, is one of the two-membered family of cAMP sensors that mediate the intracellular functions of cAMP by acting as guanine nucleotide exchange factors for the Ras-like Rap small GTPases. Extensive studies have revealed that EPAC1-mediated cAMP signaling is highly coordinated spatiotemporally through the formation of dynamic signalosomes by interacting with a diverse array of cellular partners. Recent functional analyses of genetically engineered mouse models further suggest that EPAC1 functions as an important stress response switch and is involved in pathophysiological conditions of cardiac stresses, chronic pain, cancer and infectious diseases. These findings, coupled with the development of EPAC specific small molecule modulators, validate EPAC1 as a promising target for therapeutic interventions. Human gene RAPGEF3 encodes for EPAC1 protein. Along with PKA, CNG & HCN, EPAC is an important cAMP sensor. Selective modulators of EPAC1 have been developed for use as pharmacological probes. Formation of EPAC1 signalosomes allows spatiotemporal control of cAMP signaling. EPAC1 is implicated in major pathophysiological conditions and is an attractive therapeutic target.
Collapse
Affiliation(s)
- Upasana Banerjee
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Health Science Center, Houston, TX 77030, United States
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Health Science Center, Houston, TX 77030, United States.
| |
Collapse
|
50
|
Downregulation of Spinal G Protein-Coupled Kinase 2 Abolished the Antiallodynic Effect of Electroacupuncture. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:848603. [PMID: 26064176 PMCID: PMC4429192 DOI: 10.1155/2015/848603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/03/2015] [Indexed: 02/07/2023]
Abstract
Acupuncture or electroacupuncture (EA) has been demonstrated to have a powerful antihypernociceptive effect on inflammatory pain. The attenuation of G protein-coupled receptor kinase 2 (GRK2) in spinal cord and peripheral nociceptor has been widely acknowledged to promote the transition from acute to chronic pain and to facilitate the nociceptive progress. This study was designed to investigate the possible role of spinal GRK2 in EA antiallodynic in a rat model with complete Freund's adjuvant (CFA) induced inflammatory pain. EA was applied to ST36 (“Zusanli”) and BL60 (“Kunlun”) one day after CFA injection. Single EA treatment at day 1 after CFA injection remarkably alleviated CFA induced mechanical allodynia two hours after EA. Repeated EA displayed significant antiallodynic effect from 2nd EA treatment and a persistent effect was observed during the rest of treatments. However, downregulation of spinal GRK2 by intrathecal exposure of GRK2 antisense 30 mins after EA treatment completely eliminated both the transient and persistent antiallodynic effect by EA treatment. These pieces of data demonstrated that the spinal GRK2 played an important role in EA antiallodynia on inflammatory pain.
Collapse
|