1
|
Vincent PFY, Young ED, Edge ASB, Glowatzki E. Auditory hair cells and spiral ganglion neurons regenerate synapses with refined release properties in vitro. Proc Natl Acad Sci U S A 2024; 121:e2315599121. [PMID: 39058581 PMCID: PMC11294990 DOI: 10.1073/pnas.2315599121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
Ribbon synapses between inner hair cells (IHCs) and type I spiral ganglion neurons (SGNs) in the inner ear are damaged by noise trauma and with aging, causing "synaptopathy" and hearing loss. Cocultures of neonatal denervated organs of Corti and newly introduced SGNs have been developed to find strategies for improving IHC synapse regeneration, but evidence of the physiological normality of regenerated synapses is missing. This study utilizes IHC optogenetic stimulation and SGN recordings, showing that, when P3-5 denervated organs of Corti are cocultured with SGNs, newly formed IHC/SGN synapses are indeed functional, exhibiting glutamatergic excitatory postsynaptic currents. When using older organs of Corti at P10-11, synaptic activity probed by deconvolution showed more mature release properties, closer to the specialized mode of IHC synaptic transmission crucial for coding the sound signal. This functional assessment of newly formed IHC synapses developed here, provides a powerful tool for testing approaches to improve synapse regeneration.
Collapse
Affiliation(s)
- Philippe F. Y. Vincent
- The Center for Hearing and Balance, The Johns Hopkins School of Medicine, Baltimore, MD21205
- Department of Otolaryngology Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, MD21205
| | - Eric D. Young
- The Center for Hearing and Balance, The Johns Hopkins School of Medicine, Baltimore, MD21205
- Department of Otolaryngology Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, MD21205
- Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, MD21205
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD21205
| | - Albert S. B. Edge
- Department of Otolaryngology, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA02114
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Harvard Stem Cell Institute, Cambridge, MA02139
| | - Elisabeth Glowatzki
- The Center for Hearing and Balance, The Johns Hopkins School of Medicine, Baltimore, MD21205
- Department of Otolaryngology Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, MD21205
- Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, MD21205
| |
Collapse
|
2
|
Vecchi JT, Claussen AD, Hansen MR. Decreasing the physical gap in the neural-electrode interface and related concepts to improve cochlear implant performance. Front Neurosci 2024; 18:1425226. [PMID: 39114486 PMCID: PMC11303154 DOI: 10.3389/fnins.2024.1425226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Cochlear implants (CI) represent incredible devices that restore hearing perception for those with moderate to profound sensorineural hearing loss. However, the ability of a CI to restore complex auditory function is limited by the number of perceptually independent spectral channels provided. A major contributor to this limitation is the physical gap between the CI electrodes and the target spiral ganglion neurons (SGNs). In order for CI electrodes to stimulate SGNs more precisely, and thus better approximate natural hearing, new methodologies need to be developed to decrease this gap, (i.e., transitioning CIs from a far-field to near-field device). In this review, strategies aimed at improving the neural-electrode interface are discussed in terms of the magnitude of impact they could have and the work needed to implement them. Ongoing research suggests current clinical efforts to limit the CI-related immune response holds great potential for improving device performance. This could eradicate the dense, fibrous capsule surrounding the electrode and enhance preservation of natural cochlear architecture, including SGNs. In the long term, however, optimized future devices will likely need to induce and guide the outgrowth of the peripheral process of SGNs to be in closer proximity to the CI electrode in order to better approximate natural hearing. This research is in its infancy; it remains to be seen which strategies (surface patterning, small molecule release, hydrogel coating, etc.) will be enable this approach. Additionally, these efforts aimed at optimizing CI function will likely translate to other neural prostheses, which face similar issues.
Collapse
Affiliation(s)
- Joseph T. Vecchi
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, Iowa City, IA, United States
- Department of Otolaryngology Head-Neck Surgery, Carver College of Medicine, Iowa City, IA, United States
| | - Alexander D. Claussen
- Department of Otolaryngology Head-Neck Surgery, Carver College of Medicine, Iowa City, IA, United States
| | - Marlan R. Hansen
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, Iowa City, IA, United States
- Department of Otolaryngology Head-Neck Surgery, Carver College of Medicine, Iowa City, IA, United States
| |
Collapse
|
3
|
Jin L, Yu X, Zhou X, Li G, Li W, He Y, Li H, Shen X. The miR-182-5p/GPX4 Pathway Contributes to Sevoflurane-Induced Ototoxicity via Ferroptosis. Int J Mol Sci 2024; 25:6774. [PMID: 38928480 PMCID: PMC11204258 DOI: 10.3390/ijms25126774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Our study aimed to investigate the role of ferroptosis in sevoflurane-induced hearing impairment and explore the mechanism of the microRNA-182-5p (miR-182-5p)/Glutathione Peroxidase 4 (GPX4) pathway in sevoflurane-induced ototoxicity. Immunofluorescence staining was performed using myosin 7a and CtBP2. Cell viability was assessed using the CCK-8 kit. Fe2+ concentration was measured using FerroOrange and Mi-to-FerroGreen fluorescent probes. The lipid peroxide level was assessed using BODIPY 581/591 C11 and MitoSOX fluorescent probes. The auditory brainstem response (ABR) test was conducted to evaluate the hearing status. Bioinformatics tools and dual luciferase gene reporter analysis were used to confirm the direct targeting of miR-182-5p on GPX4 mRNA. GPX4 and miR-182-5p expression in cells was assessed by qRT-PCR and Western blot. Ferrostatin-1 (Fer-1) pretreatment significantly improved hearing impairment and damage to ribbon synapses in mice caused by sevoflurane exposure. Immunofluorescence staining revealed that Fer-1 pretreatment reduced intracellular and mitochondrial iron overload, as well as lipid peroxide accumulation. Our findings indicated that miR-182-5p was upregulated in sevoflurane-exposed HEI-OC1 cells, and miR-182-5p regulated GPX4 expression by binding to the 3'UTR of GPX4 mRNA. The inhibition of miR-182-5p attenuated sevoflurane-induced iron overload and lipid peroxide accumulation. Our study elucidated that the miR-182-5p/GPX4 pathway was implicated in sevoflurane-induced ototoxicity by promoting ferroptosis.
Collapse
Affiliation(s)
- Lin Jin
- Department of Anesthesiology, Eye and ENT Hospital, Fudan University, Shanghai 200031, China; (L.J.)
| | - Xiaopei Yu
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; (X.Y.); (Y.H.)
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Xuehua Zhou
- Department of Anesthesiology, Eye and ENT Hospital, Fudan University, Shanghai 200031, China; (L.J.)
| | - Gang Li
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Wen Li
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; (X.Y.); (Y.H.)
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Yingzi He
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; (X.Y.); (Y.H.)
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Huawei Li
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; (X.Y.); (Y.H.)
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Xia Shen
- Department of Anesthesiology, Eye and ENT Hospital, Fudan University, Shanghai 200031, China; (L.J.)
| |
Collapse
|
4
|
Vincent PF, Young ED, Edge AS, Glowatzki E. Auditory Hair Cells and Spiral Ganglion Neurons Regenerate Synapses with Refined Release Properties In Vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.05.561095. [PMID: 38076928 PMCID: PMC10705289 DOI: 10.1101/2023.10.05.561095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Ribbon synapses between inner hair cells (IHCs) and type I spiral ganglion neurons (SGNs) in the inner ear are damaged by noise trauma and with aging, causing 'synaptopathy 'and hearing loss. Co-cultures of neonatal denervated organs of Corti and newly introduced SGNs have been developed to find strategies for improving IHC synapse regeneration, but evidence of the physiological normality of regenerated synapses is missing. This study utilizes IHC optogenetic stimulation and SGN recordings, showing that newly formed IHC synapses are indeed functional, exhibiting glutamatergic excitatory postsynaptic currents. When older organs of Corti were plated, synaptic activity probed by deconvolution, showed more mature release properties, closer to the highly specialized mode of IHC synaptic transmission that is crucial for coding the sound signal. This newly developed functional assessment of regenerated IHC synapses provides a powerful tool for testing approaches to improve synapse regeneration.
Collapse
Affiliation(s)
- Philippe F.Y. Vincent
- The Center for Hearing and Balance, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Otolaryngology Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Eric D. Young
- The Center for Hearing and Balance, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Otolaryngology Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Albert S.B. Edge
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Elisabeth Glowatzki
- The Center for Hearing and Balance, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Otolaryngology Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
5
|
Gross J, Knipper M, Mazurek B. Candidate Key Proteins in Tinnitus: A Bioinformatic Study of Synaptic Transmission in Spiral Ganglion Neurons. Cell Mol Neurobiol 2023; 43:4189-4207. [PMID: 37736859 PMCID: PMC10661836 DOI: 10.1007/s10571-023-01405-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 08/24/2023] [Indexed: 09/23/2023]
Abstract
To study key proteins associated with changes in synaptic transmission in the spiral ganglion in tinnitus, we build three gene lists from the GeneCard database: 1. Perception of sound (PoS), 2. Acoustic stimulation (AcouStim), and 3. Tinnitus (Tin). Enrichment analysis by the DAVID database resulted in similar Gene Ontology (GO) terms for cellular components in all gene lists, reflecting synaptic structures known to be involved in auditory processing. The STRING protein-protein interaction (PPI) network and the Cytoscape data analyzer were used to identify the top two high-degree proteins (HDPs) and their high-score interaction proteins (HSIPs) identified by the combined score (CS) of the corresponding edges. The top two protein pairs (key proteins) for the PoS are BDNF-GDNF and OTOF-CACNA1D and for the AcouStim process BDNF-NTRK2 and TH-CALB1. The Tin process showed BDNF and NGF as HDPs, with high-score interactions with NTRK1 and NGFR at a comparable level. Compared to the PoS and AcouStim process, the number of HSIPs of key proteins (CS > 90. percentile) increases strongly in Tin. In the PoS and AcouStim networks, BDNF receptor signaling is the dominant pathway, and in the Tin network, the NGF-signaling pathway is of similar importance. Key proteins and their HSIPs are good indicators of biological processes and of signaling pathways characteristic for the normal hearing on the one hand and tinnitus on the other.
Collapse
Affiliation(s)
- Johann Gross
- Tinnitus Center, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Leibniz Society of Science Berlin, Berlin, Germany.
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
- Leibniz Society of Science Berlin, Berlin, Germany
| | - Birgit Mazurek
- Tinnitus Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
6
|
Rahman MT, Bailey EM, Gansemer BM, Pieper AA, Manak JR, Green SH. Anti-inflammatory Therapy Protects Spiral Ganglion Neurons After Aminoglycoside Antibiotic-Induced Hair Cell Loss. Neurotherapeutics 2023; 20:578-601. [PMID: 36697994 PMCID: PMC10121993 DOI: 10.1007/s13311-022-01336-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 01/26/2023] Open
Abstract
Destruction of cochlear hair cells by aminoglycoside antibiotics leads to gradual death of the spiral ganglion neurons (SGNs) that relay auditory information to the brain, potentially limiting the efficacy of cochlear implants. Because the reasons for this cochlear neurodegeneration are unknown, there are no neuroprotective strategies for patients. To investigate this problem, we assessed transcriptomic changes in the rat spiral ganglion following aminoglycoside antibiotic (kanamycin)-induced hair cell destruction. We observed selectively increased expression of immune and inflammatory response genes and increased abundance of activated macrophages in spiral ganglia by postnatal day 32 in kanamycin-deafened rats, preceding significant SGN degeneration. Treatment with the anti-inflammatory medications dexamethasone and ibuprofen diminished long-term SGN degeneration. Ibuprofen and dexamethasone also diminished macrophage activation. Efficacy of ibuprofen treatment was augmented by co-administration of the nicotinamide adenine dinucleotide-stabilizing agent P7C3-A20. Our results support a critical role of neuroinflammation in SGN degeneration after aminoglycoside antibiotic-mediated cochlear hair cell loss, as well as a neuroprotective strategy that could improve cochlear implant efficacy.
Collapse
Affiliation(s)
- Muhammad T Rahman
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Erin M Bailey
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Andrew A Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, 44106, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - J Robert Manak
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA
| | - Steven H Green
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
7
|
Crozier RA, Wismer ZQ, Parra-Munevar J, Plummer MR, Davis RL. Amplification of input differences by dynamic heterogeneity in the spiral ganglion. J Neurophysiol 2022; 127:1317-1333. [PMID: 35389760 PMCID: PMC9054264 DOI: 10.1152/jn.00544.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/22/2022] Open
Abstract
A defining feature of type I primary auditory afferents that compose ∼95% of the spiral ganglion is their intrinsic electrophysiological heterogeneity. This diversity is evident both between and within unitary, rapid, and slow adaptation (UA, RA, and SA) classes indicative of specializations designed to shape sensory receptor input. But to what end? Our initial impulse is to expect the opposite: that auditory afferents fire uniformly to represent acoustic stimuli with accuracy and high fidelity. Yet this is clearly not the case. One explanation for this neural signaling strategy is to coordinate a system in which differences between input stimuli are amplified. If this is correct, then stimulus disparity enhancements within the primary afferents should be transmitted seamlessly into auditory processing pathways that utilize population coding for difference detection. Using sound localization as an example, one would expect to observe separately regulated differences in intensity level compared with timing or spectral cues within a graded tonotopic distribution. This possibility was evaluated by examining the neuromodulatory effects of cAMP on immature neurons with high excitability and slow membrane kinetics. We found that electrophysiological correlates of intensity and timing were indeed independently regulated and tonotopically distributed, depending on intracellular cAMP signaling level. These observations, therefore, are indicative of a system in which differences between signaling elements of individual stimulus attributes are systematically amplified according to auditory processing constraints. Thus, dynamic heterogeneity mediated by cAMP in the spiral ganglion has the potential to enhance the representations of stimulus input disparities transmitted into higher level difference detection circuitry.NEW & NOTEWORTHY Can changes in intracellular second messenger signaling within primary auditory afferents shift our perception of sound? Results presented herein lead to this conclusion. We found that intracellular cAMP signaling level systematically altered the kinetics and excitability of primary auditory afferents, exemplifying how dynamic heterogeneity can enhance differences between electrophysiological correlates of timing and intensity.
Collapse
Affiliation(s)
| | - Zachary Q Wismer
- AtlantiCare Regional Medical Center, Department of Family Medicine, Atlantic City, New Jersey
| | - Jeffrey Parra-Munevar
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| | - Mark R Plummer
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| | - Robin L Davis
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
8
|
Chen J, Gao D, Chen J, Hou S, He B, Li Y, Li S, Zhang F, Sun X, Mammano F, Sun L, Yang J, Zheng G. Single-Cell RNA Sequencing Analysis Reveals Greater Epithelial Ridge Cells Degeneration During Postnatal Development of Cochlea in Rats. Front Cell Dev Biol 2021; 9:719491. [PMID: 34540839 PMCID: PMC8446670 DOI: 10.3389/fcell.2021.719491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/03/2021] [Indexed: 01/01/2023] Open
Abstract
Greater epithelial ridge cells, a transient neonatal cell group in the cochlear duct, which plays a crucial role in the functional maturation of hair cell, structural development of tectorial membrane, and refinement of audio localization before hearing. Greater epithelial ridge cells are methodologically homogeneous, while whether different cell subtypes are existence in this intriguing region and the degeneration mechanism during postnatal cochlear development are poorly understood. In the present study, single-cell RNA sequencing was performed on the cochlear duct of postnatal rats at day 1 (P1) and day 7 (P7) to identify subsets of greater epithelial ridge cell and progression. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were used to examine genes enriched biological processes in these clusters. We identified a total of 26 clusters at P1 and P7 rats and found that the cell number of five cell clusters decreased significantly, while four clusters had similar gene expression patterns and biological properties. The genes of these four cell populations were mainly enriched in Ribosome and P13K-Akt signal pathway. Among them, Rps16, Rpsa, Col4a2, Col6a2, Ctsk, and Jun are particularly interesting as their expression might contribute to the greater epithelial ridge cells degeneration. In conclusion, our study provides an important reference resource of greater epithelial ridge cells landscape and mechanism insights for further understanding greater epithelial ridge cells degeneration during postnatal rat cochlear development.
Collapse
Affiliation(s)
- Jianyong Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Dekun Gao
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Junmin Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Shule Hou
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Baihui He
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yue Li
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Shuna Li
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Fan Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Xiayu Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Fabio Mammano
- Department of Physics and Astronomy "G. Galilei", University of Padova, Padua, Italy.,Department of Biomedical Sciences, Institute of Cell Biology and Neurobiology, Italian National Research Council, Monterotondo, Italy
| | - Lianhua Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jun Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Guiliang Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
9
|
Liu W, Liu Q, Crozier RA, Davis RL. Analog Transmission of Action Potential Fine Structure in Spiral Ganglion Axons. J Neurophysiol 2021; 126:888-905. [PMID: 34346782 DOI: 10.1152/jn.00237.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Action potential waveforms generated at the axon initial segment (AIS) are specialized between and within neuronal classes. But is the fine structure of each electrical event retained when transmitted along myelinated axons or is it rapidly and uniformly transmitted to be modified again at the axon terminal? To address this issue action potential axonal transmission was evaluated in a class of primary sensory afferents that possess numerous types of voltage-gated ion channels underlying a complex repertoire of endogenous firing patterns. In addition to their signature intrinsic electrophysiological heterogeneity, spiral ganglion neurons are uniquely designed. The bipolar, myelinated somata of type I neurons are located within the conduction pathway, requiring that action potentials generated at the first heminode must be conducted through their electrically excitable membrane. We utilized this unusual axonal-like morphology to serve as a window into action potential transmission to compare locally-evoked action potential profiles to those generated peripherally at their glutamatergic synaptic connections with hair cell receptors. These comparisons showed that the distinctively-shaped somatic action potentials were highly correlated with the nodally-generated, invading ones for each neuron. This result indicates that the fine structure of the action potential waveform is maintained axonally, thus supporting the concept that analog signaling is incorporated into each digitally-transmitted action potential in the specialized primary auditory afferents.
Collapse
Affiliation(s)
- Wenke Liu
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.,Institute for System Genetics, New York University School of Medicine, New York, NY, United States
| | - Qing Liu
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.,Inscopix, Inc., Palo Alto, California, United States
| | - Robert A Crozier
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.,Synergy Pharmaceuticals Inc., New York, NY, United States
| | - Robin L Davis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| |
Collapse
|
10
|
Xiao Y, Wang X, Wang S, Li J, Xu X, Wang M, Li G, Shen W. Celastrol Attenuates Learning and Memory Deficits in an Alzheimer's Disease Rat Model. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5574207. [PMID: 34350293 PMCID: PMC8328733 DOI: 10.1155/2021/5574207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/19/2021] [Accepted: 07/08/2021] [Indexed: 01/31/2023]
Abstract
Alzheimer's disease (AD) is a chronic progressive neurodegenerative disorder that is associated with learning, memory, and cognitive deficits. Neuroinflammation and synapse loss are involved in the pathology of AD. Diverse measures have been applied to treat AD, but currently, there is no effective treatment. Celastrol (CEL) is a pentacyclic triterpene isolated from Tripterygium wilfordii Hook F that has been shown to enhance cell viability and inhibit amyloid-β production induced by lipopolysaccharides in vitro. In the present study, the protective effect of CEL on Aβ 25-35-induced rat model of AD was assessed. Our results showed that CEL administration at a dose of 2 mg/kg/day improved spatial memory in the Morris water maze. Further biochemical analysis showed that CEL treatment of intrahippocampal Aβ 25-35-microinjected rats attenuated hippocampal NF-κB activity; inhibited proinflammatory markers, namely, IL-1β, IL-6, and TNF-α; and upregulated anti-inflammatory factors, such as IL-4 and IL-10. Furthermore, CEL upregulated hippocampal neurexin-1β, neuroligin-1, CA1, and PSD95 expression levels, which may improve synaptic function. Simultaneously, CEL also increased glucose metabolism in Aβ 25-35-microinjected rats. In conclusion, CEL could exert protective effects against learning and memory decline induced by intrahippocampal Aβ 25-35 through anti-inflammation, promote synaptic development, and maintain hippocampal energy metabolism.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Neurology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xifeng Wang
- Department of Neurology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Siyi Wang
- Department of Neurology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Li
- Department of Neurology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xueyu Xu
- Department of Neurology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Department of Neurology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Li
- Department of Neurology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Shen
- Department of Neurology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Kohrman D, Borges BC, Cassinotti L, Ji L, Corfas G. Axon-glia interactions in the ascending auditory system. Dev Neurobiol 2021; 81:546-567. [PMID: 33561889 PMCID: PMC9004231 DOI: 10.1002/dneu.22813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/25/2020] [Accepted: 02/05/2021] [Indexed: 11/09/2022]
Abstract
The auditory system detects and encodes sound information with high precision to provide a high-fidelity representation of the environment and communication. In mammals, detection occurs in the peripheral sensory organ (the cochlea) containing specialized mechanosensory cells (hair cells) that initiate the conversion of sound-generated vibrations into action potentials in the auditory nerve. Neural activity in the auditory nerve encodes information regarding the intensity and frequency of sound stimuli, which is transmitted to the auditory cortex through the ascending neural pathways. Glial cells are critical for precise control of neural conduction and synaptic transmission throughout the pathway, allowing for the precise detection of the timing, frequency, and intensity of sound signals, including the sub-millisecond temporal fidelity is necessary for tasks such as sound localization, and in humans, for processing complex sounds including speech and music. In this review, we focus on glia and glia-like cells that interact with hair cells and neurons in the ascending auditory pathway and contribute to the development, maintenance, and modulation of neural circuits and transmission in the auditory system. We also discuss the molecular mechanisms of these interactions, their impact on hearing and on auditory dysfunction associated with pathologies of each cell type.
Collapse
Affiliation(s)
- David Kohrman
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Beatriz C. Borges
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Luis Cassinotti
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Lingchao Ji
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Gabriel Corfas
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Age-related hearing loss pertaining to potassium ion channels in the cochlea and auditory pathway. Pflugers Arch 2020; 473:823-840. [PMID: 33336302 PMCID: PMC8076138 DOI: 10.1007/s00424-020-02496-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/27/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
Age-related hearing loss (ARHL) is the most prevalent sensory deficit in the elderly and constitutes the third highest risk factor for dementia. Lifetime noise exposure, genetic predispositions for degeneration, and metabolic stress are assumed to be the major causes of ARHL. Both noise-induced and hereditary progressive hearing have been linked to decreased cell surface expression and impaired conductance of the potassium ion channel KV7.4 (KCNQ4) in outer hair cells, inspiring future therapies to maintain or prevent the decline of potassium ion channel surface expression to reduce ARHL. In concert with KV7.4 in outer hair cells, KV7.1 (KCNQ1) in the stria vascularis, calcium-activated potassium channels BK (KCNMA1) and SK2 (KCNN2) in hair cells and efferent fiber synapses, and KV3.1 (KCNC1) in the spiral ganglia and ascending auditory circuits share an upregulated expression or subcellular targeting during final differentiation at hearing onset. They also share a distinctive fragility for noise exposure and age-dependent shortfalls in energy supply required for sustained surface expression. Here, we review and discuss the possible contribution of select potassium ion channels in the cochlea and auditory pathway to ARHL. We postulate genes, proteins, or modulators that contribute to sustained ion currents or proper surface expressions of potassium channels under challenging conditions as key for future therapies of ARHL.
Collapse
|
13
|
Farnoosh G, Mahmoudian-Sani MR. Effects of Growth Factors and the MicroRNA-183 Family on Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells Towards Auditory Neuron-Like Cells. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2020; 13:79-89. [PMID: 32982315 PMCID: PMC7490102 DOI: 10.2147/sccaa.s248526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 08/17/2020] [Indexed: 11/30/2022]
Abstract
Introduction Hearing Loss (HL) is known as the most common sensory processing disorder across the world. An effective treatment which has been currently used for patients suffering from this condition is cochlear implant (CI). The major limitation of this treatment is the need for a healthy auditory neuron (AN). Accordingly, mesenchymal cells (MCs) are regarded as good candidates for cell-based therapeutic approaches. The present study aimed to investigate the potentials of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) for differentiation towards ANs along with using treatments with growth factors and microRNA (miRNA) transfection in vitro. Methods To this end, neurospheres derived from hBM-MSCs were treated via basic fibroblast growth factor (bFGF), neurotrophin-3 (NT-3), and brain-derived neurotrophic factor (BDNF) as growth factors N2 and B27 supplements, as well as miRNA-96, -182, -183 transfected into hBM-MSCs in order to evaluate the differentiation of such cells into ANs. Results Treatments with growth factors demonstrated a significant increase in neurogenin 1 (Ngn1) and sex determining region Y-box 2 (SOX2) markers; but tubulin, microtubule-associated protein 2 (MAP2), and GATA binding protein 3 (GATA3) markers were not statistically significant. The findings also revealed that miRNA-182 expression in miRNA-183 family could boost the expressions of some AN marker (ie, Ngn1, SOX2, peripherin, and nestin) in vitro. Discussion It can be concluded that miRNA is probably a good substitute for growth factors used in differentiating into ANs. Transdifferentiation of hBM-MSCs into ANs, which does not occur under normal conditions, may be thus facilitated by miRNAs, especially miRNA-182, or via a combination of miRNA and growth factors.
Collapse
Affiliation(s)
- Gholamreza Farnoosh
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
14
|
Li Q, Chen M, Zhang C, Lu T, Min S, Li S. Opposite Roles of NT-3 and BDNF in Synaptic Remodeling of the Inner Ear Induced by Electrical Stimulation. Cell Mol Neurobiol 2020; 41:1665-1682. [PMID: 32770528 DOI: 10.1007/s10571-020-00935-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022]
Abstract
With the development of neural prostheses, neural plasticity including synaptic remodeling under electrical stimulation is drawing more and more attention. Indeed, intracochlear electrical stimulation used to restore hearing in deaf can induce the loss of residual hearing and synapses of the inner hair cells (IHCs). However, the mechanism under this process is largely unknown. Considering that the guinea pig is always a suitable and convenient choice for the animal model of cochlea implant (CI), in the present study, normal-hearing guinea pigs were implanted with CIs. Four-hour electrical stimulation with the intensity of 6 dB above electrically evoked compound action potential (ECAP) threshold (which can decrease the quantity of IHC synapses and the excitability of the auditory nerve) resulted in the upregulation of Bdnf (p < 0.0001) and downregulation of Nt-3 (p < 0.05). Intracochlear perfusion of exogenous NT-3 or TrkC/Fc (which blocks NT-3) can, respectively, resist or aggravate the synaptic loss induced by electrical stimulation. In contrast, local delivery of exogenous BDNF or TrkB/Fc (which blocks BDNF) to the cochlea, respectively, exacerbated or protected against the synaptic loss caused by electrical stimulation. Notably, the synaptic changes were only observed in the basal and middle halves of the cochlea. All the findings above suggested that NT-3 and BDNF may play opposite roles in the remodeling of IHC synapses induced by intracochlear electrical stimulation, i.e. NT-3 and BDNF promoted the regeneration and degeneration of IHC synapses, respectively.
Collapse
Affiliation(s)
- Qiang Li
- ENT Institute and Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| | - Min Chen
- ENT Institute and Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| | - Chen Zhang
- ENT Institute and Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| | - Tianhao Lu
- ENT Institute and Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| | - Shiyao Min
- ENT Institute and Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| | - Shufeng Li
- ENT Institute and Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China. .,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China.
| |
Collapse
|
15
|
Markowitz AL, Kalluri R. Gradients in the biophysical properties of neonatal auditory neurons align with synaptic contact position and the intensity coding map of inner hair cells. eLife 2020; 9:e55378. [PMID: 32639234 PMCID: PMC7343388 DOI: 10.7554/elife.55378] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
Sound intensity is encoded by auditory neuron subgroups that differ in thresholds and spontaneous rates. Whether variations in neuronal biophysics contributes to this functional diversity is unknown. Because intensity thresholds correlate with synaptic position on sensory hair cells, we combined patch clamping with fiber labeling in semi-intact cochlear preparations in neonatal rats from both sexes. The biophysical properties of auditory neurons vary in a striking spatial gradient with synaptic position. Neurons with high thresholds to injected currents contact hair cells at synaptic positions where neurons with high thresholds to sound-intensity are found in vivo. Alignment between in vitro and in vivo thresholds suggests that biophysical variability contributes to intensity coding. Biophysical gradients were evident at all ages examined, indicating that cell diversity emerges in early post-natal development and persists even after continued maturation. This stability enabled a remarkably successful model for predicting synaptic position based solely on biophysical properties.
Collapse
Affiliation(s)
- Alexander L Markowitz
- Neuroscience Graduate Program, University of Southern CaliforniaLos AngelesUnited States
- Department of Otolaryngology, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Radha Kalluri
- Neuroscience Graduate Program, University of Southern CaliforniaLos AngelesUnited States
- Department of Otolaryngology, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
16
|
Leake PA, Akil O, Lang H. Neurotrophin gene therapy to promote survival of spiral ganglion neurons after deafness. Hear Res 2020; 394:107955. [PMID: 32331858 DOI: 10.1016/j.heares.2020.107955] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/16/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022]
Abstract
Hearing impairment is a major health and economic concern worldwide. Currently, the cochlear implant (CI) is the standard of care for remediation of severe to profound hearing loss, and in general, contemporary CIs are highly successful. But there is great variability in outcomes among individuals, especially in children, with many CI users deriving much less or even marginal benefit. Much of this variability is related to differences in auditory nerve survival, and there has been substantial interest in recent years in exploring potential therapies to improve survival of the cochlear spiral ganglion neurons (SGN) after deafness. Preclinical studies using osmotic pumps and other approaches in deafened animal models to deliver neurotrophic factors (NTs) directly to the cochlea have shown promising results, especially with Brain-Derived Neurotrophic Factor (BDNF). More recent studies have focused on the use of NT gene therapy to force expression of NTs by target cells within the cochlea. This could provide the means for a one-time treatment to promote long-term NT expression and improve neural survival after deafness. This review summarizes the evidence for the efficacy of exogenous NTs in preventing SGN degeneration after hearing loss and reviews the animal research to date suggesting that NT gene therapy can elicit long-term NT expression in the cochlea, resulting in significantly improved SGN and radial nerve fiber survival after deafness. In addition, we discuss NT gene therapy in other non-auditory applications and consider some of the remaining issues with regard to selecting optimal vectors, timing of treatment, and place/method of delivery, etc. that must be resolved prior to considering clinical application.
Collapse
Affiliation(s)
- Patricia A Leake
- S & I Epstein Laboratory, Dept. of Otolaryngology Head and Neck Surgery, University of California San Francisco, 2340 Sutter Street, Room N331, San Francisco, CA, 94115-1330, USA.
| | - Omar Akil
- S & I Epstein Laboratory, Dept. of Otolaryngology Head and Neck Surgery, University of California San Francisco, 2340 Sutter Street, Room N331, San Francisco, CA, 94115-1330, USA
| | - Hainan Lang
- Dept. of Pathology and Laboratory Medicine, Medical University of South Carolina, 165 Ashley Avenue, Room RS613, Charleston, SC, 29414, USA
| |
Collapse
|
17
|
Ogier JM, Burt RA, Drury HR, Lim R, Nayagam BA. Organotypic Culture of Neonatal Murine Inner Ear Explants. Front Cell Neurosci 2019; 13:170. [PMID: 31130846 PMCID: PMC6509234 DOI: 10.3389/fncel.2019.00170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/11/2019] [Indexed: 01/08/2023] Open
Abstract
The inner ear is a complex organ containing highly specialised cell types and structures that are critical for sensing sound and movement. In vivo, the inner ear is difficult to study due to the osseous nature of the otic capsule and its encapsulation within an intricate bony labyrinth. As such, mammalian inner ear explants are an invaluable tool for the study and manipulation of the complex intercellular connections, structures, and cell types within this specialised organ. The greatest strength of this technique is that the complete organ of Corti, or peripheral vestibular organs including hair cells, supporting cells and accompanying neurons, is maintained in its in situ form. The greatest weakness of in vitro hair cell preparations is the short time frame in which the explanted tissue remains viable. Yet, cochlear explants have proven to be an excellent experimental model for understanding the fundamental aspects of auditory biology, substantiated by their use for over 40 years. In this protocol, we present a modernised inner ear explant technique that employs organotypic cell culture inserts and serum free media. This approach decreases the likelihood of explant damage by eliminating the need for adhesive substances. Serum free media also restricts excessive cellular outgrowth and inter-experimental variability, both of which are side effects of exogenous serum addition to cell cultures. The protocol described can be applied to culture both cochlear and vestibular explants from various mammals. Example outcomes are demonstrated by immunohistochemistry, hair cell quantification, and electrophysiological recordings to validate the versatility and viability of the protocol.
Collapse
Affiliation(s)
- Jacqueline M. Ogier
- Department of Genetics, The Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Rachel A. Burt
- Department of Genetics, The Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
- Department of Genetics, The University of Melbourne, Parkville, VIC, Australia
| | - Hannah R. Drury
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Rebecca Lim
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Bryony A. Nayagam
- Department of Audiology and Speech Pathology, The University of Melbourne, Parkville, VIC, Australia
- The Bionics Institute, East Melbourne, VIC, Australia
| |
Collapse
|
18
|
McGovern MM, Randle MR, Cuppini CL, Graves KA, Cox BC. Multiple supporting cell subtypes are capable of spontaneous hair cell regeneration in the neonatal mouse cochlea. Development 2019; 146:146/4/dev171009. [PMID: 30770379 DOI: 10.1242/dev.171009] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022]
Abstract
Supporting cells (SCs) are known to spontaneously regenerate hair cells (HCs) in the neonatal mouse cochlea, yet little is known about the relative contribution of distinct SC subtypes which differ in morphology and function. We have previously shown that HC regeneration is linked to Notch signaling, and some SC subtypes, but not others, lose expression of the Notch effector Hes5 Other work has demonstrated that Lgr5-positive SCs have an increased capacity to regenerate HCs; however, several SC subtypes express Lgr5. To further investigate the source for spontaneous HC regeneration, we used three CreER lines to fate-map distinct groups of SCs during regeneration. Fate-mapping either alone or combined with a mitotic tracer showed that pillar and Deiters' cells contributed more regenerated HCs overall. However, when normalized to the total fate-mapped population, pillar, Deiters', inner phalangeal and border cells had equal capacity to regenerate HCs, and all SC subtypes could divide after HC damage. Investigating the mechanisms that allow individual SC subtypes to regenerate HCs and the postnatal changes that occur in each group during maturation could lead to therapies for hearing loss.
Collapse
Affiliation(s)
- Melissa M McGovern
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA
| | - Michelle R Randle
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA
| | - Candice L Cuppini
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA
| | - Kaley A Graves
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA
| | - Brandon C Cox
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA .,Department of Surgery, Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA
| |
Collapse
|
19
|
Ghosh S, Sheth S, Sheehan K, Mukherjea D, Dhukhwa A, Borse V, Rybak LP, Ramkumar V. The Endocannabinoid/Cannabinoid Receptor 2 System Protects Against Cisplatin-Induced Hearing Loss. Front Cell Neurosci 2018; 12:271. [PMID: 30186120 PMCID: PMC6110918 DOI: 10.3389/fncel.2018.00271] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/03/2018] [Indexed: 12/22/2022] Open
Abstract
Previous studies have demonstrated the presence of cannabinoid 2 receptor (CB2R) in the rat cochlea which was induced by cisplatin. In an organ of Corti-derived cell culture model, it was also shown that an agonist of the CB2R protected these cells against cisplatin-induced apoptosis. In the current study, we determined the distribution of CB2R in the mouse and rat cochleae and examined whether these receptors provide protection against cisplatin-induced hearing loss. In a knock-in mouse model expressing the CB2R tagged with green fluorescent protein, we show distribution of CB2R in the organ of Corti, stria vascularis, spiral ligament and spiral ganglion cells. A similar distribution of CB2R was observed in the rat cochlea using a polyclonal antibody against CB2R. Trans-tympanic administration of (2-methyl-1-propyl-1H-indol-3-yl)-1-naphthalenylmethanone (JWH015), a selective agonist of the CB2R, protected against cisplatin-induced hearing loss which was reversed by blockade of this receptor with 6-iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl](4-methoxyphenyl)methanone (AM630), an antagonist of CB2R. JWH015 also reduced the loss of outer hair cells (OHCs) in the organ of Corti, loss of inner hair cell (IHC) ribbon synapses and loss of Na+/K+-ATPase immunoreactivity in the stria vascularis. Administration of AM630 alone produced significant hearing loss (measured by auditory brainstem responses) which was not associated with loss of OHCs, but led to reductions in the levels of IHC ribbon synapses and strial Na+/K+-ATPase immunoreactivity. Furthermore, knock-down of CB2R by trans-tympanic administration of siRNA sensitized the cochlea to cisplatin-induced hearing loss at the low and middle frequencies. Hearing loss induced by cisplatin and AM630 in the rat was associated with increased expression of genes for oxidative stress and inflammatory proteins in the rat cochlea. In vitro studies indicate that JWH015 did not alter cisplatin-induced killing of cancer cells suggesting this agent could be safely used during cisplatin chemotherapy. These data unmask a protective role of the cochlear endocannabinoid/CB2R system which appears tonically active under normal conditions to preserve normal hearing. However, an exogenous agonist is needed to boost the activity of endocannabinoid/CB2R system for protection against a more traumatic cochlear insult, as observed with cisplatin administration.
Collapse
Affiliation(s)
- Sumana Ghosh
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Sandeep Sheth
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Kelly Sheehan
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Debashree Mukherjea
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Asmita Dhukhwa
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Vikrant Borse
- Department of Otolaryngology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Leonard P Rybak
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States.,Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| |
Collapse
|
20
|
Detection of single mRNAs in individual cells of the auditory system. Hear Res 2018; 367:88-96. [PMID: 30071403 DOI: 10.1016/j.heares.2018.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/23/2018] [Accepted: 07/16/2018] [Indexed: 01/17/2023]
Abstract
Gene expression analysis is essential for understanding the rich repertoire of cellular functions. With the development of sensitive molecular tools such as single-cell RNA sequencing, extensive gene expression data can be obtained and analyzed from various tissues. Single-molecule fluorescence in situ hybridization (smFISH) has emerged as a powerful complementary tool for single-cell genomics studies because of its ability to map and quantify the spatial distributions of single mRNAs at the subcellular level in their native tissue. Here, we present a detailed method to study the copy numbers and spatial localizations of single mRNAs in the cochlea and inferior colliculus. First, we demonstrate that smFISH can be performed successfully in adult cochlear tissue after decalcification. Second, we show that the smFISH signals can be detected with high specificity. Third, we adapt an automated transcript analysis pipeline to quantify and identify single mRNAs in a cell-specific manner. Lastly, we show that our method can be used to study possible correlations between transcriptional and translational activities of single genes. Thus, we have developed a detailed smFISH protocol that can be used to study the expression of single mRNAs in specific cell types of the peripheral and central auditory systems.
Collapse
|
21
|
Sultemeier DR, Hoffman LF. Partial Aminoglycoside Lesions in Vestibular Epithelia Reveal Broad Sensory Dysfunction Associated with Modest Hair Cell Loss and Afferent Calyx Retraction. Front Cell Neurosci 2017; 11:331. [PMID: 29163044 PMCID: PMC5663721 DOI: 10.3389/fncel.2017.00331] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/09/2017] [Indexed: 11/13/2022] Open
Abstract
Although the effects of aminoglycoside antibiotics on hair cells have been investigated for decades, their influences on the dendrites of primary afferent neurons have not been widely studied. This is undoubtedly due to the difficulty in disassociating pathology to dendritic processes from that resulting from loss of the presynaptic hair cell. This was overcome in the present investigation through development of a preparation using Chinchilla laniger that enabled direct perilymphatic infusion. Through this strategy we unmasked gentamicin's potential effects on afferent calyces. The pathophysiology of the vestibular neuroepithelia after post-administration durations of 0.5 through 6 months was assessed using single-neuron electrophysiology, immunohistochemistry, and confocal microscopy. Hair cell densities within cristae central zones (0.5-, 1-, 2-, and 6-months) and utricle peri- and extrastriola (6-months) regions were determined, and damage to calretinin-immunoreactive calyces was quantified. Gentamicin-induced hair cell loss exhibited a profile that reflected elimination of a most-sensitive group by 0.5-months post-administration (18.2%), followed by loss of a second group (20.6%) over the subsequent 5.5 months. The total hair cell loss with this gentamicin dose (approximately 38.8%) was less than the estimated fraction of type I hair cells in the chinchilla's crista central zone (approximately 60%), indicating that viable type I hair cells remained. Extensive lesions to afferent calyces were observed at 0.5-months, though stimulus-evoked modulation was intact at this post-administration time. Widespread compromise to calyx morphology and severe attenuation of stimulus-evoked afferent discharge modulation was found at 1 month post-administration, a condition that persisted in preparations examined through the 6-month post-administration interval. Spontaneous discharge was robust at all post-administration intervals. All calretinin-positive calyces had retracted at 2 and 6 months post-administration. We found no evidence of morphologic or physiologic recovery. These results indicate that gentamicin-induced partial lesions to vestibular epithelia include hair cell loss (ostensibly reflecting an apoptotic effect) that is far less extensive than the compromise to stimulus-evoked afferent discharge modulation and retraction of afferent calyces (reflecting non-apoptotic effects). Additionally, calyx retraction cannot be completely accounted for by loss of type I hair cells, supporting the possibility for direct action of gentamicin on the afferent dendrite.
Collapse
Affiliation(s)
- David R. Sultemeier
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Larry F. Hoffman
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
22
|
Afferent synaptogenesis between ectopic hair-cell-like cells and neurites of spiral ganglion induced by Atoh1 in mammals in vitro. Neuroscience 2017; 357:185-196. [PMID: 28576729 DOI: 10.1016/j.neuroscience.2017.05.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/20/2017] [Accepted: 05/23/2017] [Indexed: 11/20/2022]
Abstract
Newly formed ectopic hair-cell-like cells (EHCLCs) induced by overexpression of atonal homolog 1 (Atoh1) in vitro were found to possess features of endogenous hair cells (HCs) in previous reports and in the present study. However, limited information is available regarding whether EHCLCs and native spiral ganglion neurons (SGNs) form afferent synapses, which are important for the restoration of hearing. In the current study, we focused on the afferent synaptogenesis between EHCLCs and SGN-derived dendrites. Cochlear explants of auditory epithelia with native SGNs retained were cultured in vitro, and human adenovirus serotype 5 (Ad5) vectors encoding Atoh1 were used to overexpress Atoh1 and induce EHCLCs. We observed that the neurites of the original SGNs extended toward the lesser epithelial ridge (LER) and innervated the EHCLCs. Immunohistochemical analyses revealed the expression of presynaptic ribbon C-terminal-binding protein 2 (CtBP2) and postsynaptic density protein (PSD)-95 in the nerve endings of SGN-derived neurons adjacent to EHCLCs. PSD-95 was located directly opposite CtBP2-positive puncta in the terminals of branches of SGNs, demonstrating that the neurites of SGNs formed afferent-like synaptic connections with EHCLCs. However, the expression of glutamate receptor type 2 (GluR2) could not be detected in the terminals of branches of SGNs surrounding EHCLCs. In addition, we found that the presynaptic ribbon (CtBP2) formation in EHCLCs preceded neural innervation. Furthermore, CtBP2-positive puncta increased and then decreased in EHCLCs, similar to the changes observed in endogenous HCs in terms of their number and distribution. Our finding of the generation of cochlear afferent synapses between EHCLCs and original SGNs will lay the foundation for regenerative approaches to restoring hearing after hair cell loss.
Collapse
|
23
|
Matsuoka AJ, Morrissey ZD, Zhang C, Homma K, Belmadani A, Miller CA, Chadly DM, Kobayashi S, Edelbrock AN, Tanaka‐Matakatsu M, Whitlon DS, Lyass L, McGuire TL, Stupp SI, Kessler JA. Directed Differentiation of Human Embryonic Stem Cells Toward Placode-Derived Spiral Ganglion-Like Sensory Neurons. Stem Cells Transl Med 2017; 6:923-936. [PMID: 28186679 PMCID: PMC5442760 DOI: 10.1002/sctm.16-0032] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 08/31/2016] [Accepted: 10/19/2016] [Indexed: 12/15/2022] Open
Abstract
The ability to generate spiral ganglion neurons (SGNs) from stem cells is a necessary prerequisite for development of cell-replacement therapies for sensorineural hearing loss. We present a protocol that directs human embryonic stem cells (hESCs) toward a purified population of otic neuronal progenitors (ONPs) and SGN-like cells. Between 82% and 95% of these cells express SGN molecular markers, they preferentially extend neurites to the cochlear nucleus rather than nonauditory nuclei, and they generate action potentials. The protocol follows an in vitro stepwise recapitulation of developmental events inherent to normal differentiation of hESCs into SGNs, resulting in efficient sequential generation of nonneuronal ectoderm, preplacodal ectoderm, early prosensory ONPs, late ONPs, and cells with cellular and molecular characteristics of human SGNs. We thus describe the sequential signaling pathways that generate the early and later lineage species in the human SGN lineage, thereby better describing key developmental processes. The results indicate that our protocol generates cells that closely replicate the phenotypic characteristics of human SGNs, advancing the process of guiding hESCs to states serving inner-ear cell-replacement therapies and possible next-generation hybrid auditory prostheses. © Stem Cells Translational Medicine 2017;6:923-936.
Collapse
Affiliation(s)
- Akihiro J. Matsuoka
- Department of Otolaryngology and Head and Neck SurgeryChicagoILUSA
- Department of Communication Sciences and DisordersChicagoILUSA
- Knowles Hearing CenterChicagoILUSA
| | | | - Chaoying Zhang
- Department of Otolaryngology and Head and Neck SurgeryChicagoILUSA
| | - Kazuaki Homma
- Department of Otolaryngology and Head and Neck SurgeryChicagoILUSA
- Knowles Hearing CenterChicagoILUSA
| | - Abdelhak Belmadani
- Department of Molecular Pharmacology and Biological ChemistryChicagoILUSA
| | | | - Duncan M. Chadly
- Department of Otolaryngology and Head and Neck SurgeryChicagoILUSA
| | - Shun Kobayashi
- Department of Otolaryngology and Head and Neck SurgeryChicagoILUSA
| | | | | | - Donna S. Whitlon
- Department of Otolaryngology and Head and Neck SurgeryChicagoILUSA
- Knowles Hearing CenterChicagoILUSA
| | - Ljuba Lyass
- Department of Biomedical EngineeringChicagoILUSA
| | | | - Samuel I. Stupp
- Department of MedicineChicagoILUSA
- Department of Biomedical EngineeringChicagoILUSA
- Simpson Querrey Institute for BioNanotechnologyChicagoILUSA
- Department of ChemistryNorthwestern University
- Department of Materials Science & EngineeringNorthwestern University
| | - John A. Kessler
- Department of NeurologyFeinberg School of Medicine, Northwestern UniversityChicagoILUSA
| |
Collapse
|
24
|
Callejo A, Durochat A, Bressieux S, Saleur A, Chabbert C, Domènech Juan I, Llorens J, Gaboyard-Niay S. Dose-dependent cochlear and vestibular toxicity of trans-tympanic cisplatin in the rat. Neurotoxicology 2017; 60:1-9. [PMID: 28223157 DOI: 10.1016/j.neuro.2017.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 11/18/2022]
Abstract
In vivo studies are needed to study cisplatin ototoxicity and to evaluate candidate protective treatments. Rats and mice are the preferred species for toxicological and pharmacological pre-clinical research, but systemic administration of cisplatin causes high morbidity in these species. We hypothesized that trans-tympanic administration of cisplatin would provide a good model for studying its auditory and vestibular toxicity in the rat. Cisplatin was administered by the trans-tympanic route in one ear (50μl, 0.5-2mg/ml) of rats of both sexes and two different strains. Cochlear toxicity was corroborated by histological means. Vestibular toxicity was demonstrated by behavioral and histological analysis. Cisplatin concentrations were assessed in inner ear after trans-tympanic and i.v. administration. In all experiments, no lethality and only scant body weight loss were recorded. Cisplatin caused dose-dependent cochlear toxicity, as demonstrated by hair cell counts in the apical and middle turns of the cochlea, and vestibular toxicity, as demonstrated by behavioral analysis and hair cell counts in utricles. High concentrations of cisplatin were found in the inner ear after trans-tympanic administration. In comparison, i.v. administration resulted in lower inner ear concentrations. We conclude that trans-tympanic administration provides an easy, reproducible and safe model to study the cochlear and vestibular toxicity of cisplatin in the rat. This route of exposure may be useful to address particular questions on cisplatin induced ototoxicity and to test candidate protective treatments.
Collapse
Affiliation(s)
- Angela Callejo
- Departament de Ciències Fisiològiques, Universitat de Barcelona, 08907 L'Hospitalet de Llobregat, Catalonia, Spain; Unitat Funcional d'Otorinolaringologia i Al·lèrgia, Institut Universtiari Dexeus, 08028 Barcelona, Catalonia, Spain
| | | | | | | | | | - Ivan Domènech Juan
- Unitat Funcional d'Otorinolaringologia i Al·lèrgia, Institut Universtiari Dexeus, 08028 Barcelona, Catalonia, Spain; Institut de Neurociències, Universitat de Barcelona, Catalonia, Spain
| | - Jordi Llorens
- Departament de Ciències Fisiològiques, Universitat de Barcelona, 08907 L'Hospitalet de Llobregat, Catalonia, Spain; Institut de Neurociències, Universitat de Barcelona, Catalonia, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 L'Hospitalet de Llobregat, Catalonia, Spain.
| | | |
Collapse
|
25
|
Ramamurthy P, White JB, Yull Park J, Hume RI, Ebisu F, Mendez F, Takayama S, Barald KF. Concomitant differentiation of a population of mouse embryonic stem cells into neuron-like cells and schwann cell-like cells in a slow-flow microfluidic device. Dev Dyn 2017; 246:7-27. [PMID: 27761977 PMCID: PMC5159187 DOI: 10.1002/dvdy.24466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 09/16/2016] [Accepted: 09/30/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND To send meaningful information to the brain, an inner ear cochlear implant (CI) must become closely coupled to as large and healthy a population of remaining spiral ganglion neurons (SGN) as possible. Inner ear gangliogenesis depends on macrophage migration inhibitory factor (MIF), a directionally attractant neurotrophic cytokine made by both Schwann and supporting cells (Bank et al., 2012). MIF-induced mouse embryonic stem cell (mESC)-derived "neurons" could potentially substitute for lost or damaged SGN. mESC-derived "Schwann cells" produce MIF, as do all Schwann cells (Huang et al., a; Roth et al., 2007; Roth et al., 2008) and could attract SGN to a "cell-coated" implant. RESULTS Neuron- and Schwann cell-like cells were produced from a common population of mESCs in an ultra-slow-flow microfluidic device. As the populations interacted, "neurons" grew over the "Schwann cell" lawn, and early events in myelination were documented. Blocking MIF on the Schwann cell side greatly reduced directional neurite outgrowth. MIF-expressing "Schwann cells" were used to coat a CI: Mouse SGN and MIF-induced "neurons" grew directionally to the CI and to a wild-type but not MIF-knockout organ of Corti explant. CONCLUSIONS Two novel stem cell-based approaches for treating the problem of sensorineural hearing loss are described. Developmental Dynamics 246:7-27, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Poornapriya Ramamurthy
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Joshua B White
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan
| | - Joong Yull Park
- School of Mechanical Engineering, College of Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Richard I Hume
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Fumi Ebisu
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Flor Mendez
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Shuichi Takayama
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan
| | - Kate F Barald
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
26
|
McGovern MM, Brancheck J, Grant AC, Graves KA, Cox BC. Quantitative Analysis of Supporting Cell Subtype Labeling Among CreER Lines in the Neonatal Mouse Cochlea. J Assoc Res Otolaryngol 2016; 18:227-245. [PMID: 27873085 DOI: 10.1007/s10162-016-0598-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 10/17/2016] [Indexed: 11/30/2022] Open
Abstract
Four CreER lines that are commonly used in the auditory field to label cochlear supporting cells (SCs) are expressed in multiple SC subtypes, with some lines also showing reporter expression in hair cells (HCs). We hypothesized that altering the tamoxifen dose would modify CreER expression and target subsets of SCs. We also used two different reporter lines, ROSA26 tdTomato and CAG-eGFP, to achieve the same goal. Our results confirm previous reports that Sox2 CreERT2 and Fgfr3-iCreER T2 are not only expressed in neonatal SCs but also in HCs. Decreasing the tamoxifen dose did not reduce HC expression for Sox2 CreERT2 , but changing to the CAG-eGFP reporter decreased reporter-positive HCs sevenfold. However, there was also a significant decrease in the number of reporter-positive SCs. In contrast, there was a large reduction in reporter-positive HCs in Fgfr3-iCreER T2 mice with the lowest tamoxifen dose tested yet only limited reduction in SC labeling. The targeting of reporter expression to inner phalangeal and border cells was increased when Plp-CreER T2 was paired with the CAG-eGFP reporter; however, the total number of labeled cells decreased. Changes to the tamoxifen dose or reporter line with Prox1 CreERT2 caused minimal changes. Our data demonstrate that modifications to the tamoxifen dose or the use of different reporter lines may be successful in narrowing the numbers and/or types of cells labeled, but each CreER line responded differently. When the ROSA26 tdTomato reporter was combined with any of the four CreER lines, there was no difference in the number of tdTomato-positive cells after one or two injections of tamoxifen given at birth. Thus, tamoxifen-mediated toxicity could be reduced by only giving one injection. While the CAG-eGFP reporter consistently labeled fewer cells, both reporter lines are valuable depending on the goal of the study.
Collapse
Affiliation(s)
- Melissa M McGovern
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62711, USA
| | - Joseph Brancheck
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62711, USA
| | - Auston C Grant
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62711, USA
| | - Kaley A Graves
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62711, USA
| | - Brandon C Cox
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62711, USA.
- Department of Surgery, Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, 62711, USA.
| |
Collapse
|
27
|
Smith FL, Davis RL. Organ of Corti explants direct tonotopically graded morphology of spiral ganglion neurons in vitro. J Comp Neurol 2016; 524:2182-207. [PMID: 26663318 DOI: 10.1002/cne.23940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 11/12/2015] [Accepted: 11/30/2015] [Indexed: 01/25/2023]
Abstract
The spiral ganglion is a compelling model system to examine how morphological form contributes to sensory function. While the ganglion is composed mainly of a single class of type I neurons that make simple one-to-one connections with inner hair cell sensory receptors, it has an elaborate overall morphological design. Specific features, such as soma size and axon outgrowth, are graded along the spiral contour of the cochlea. To begin to understand the interplay between different regulators of neuronal morphology, we cocultured neuron explants with peripheral target tissues removed from distinct cochlear locations. Interestingly, these "hair cell microisolates" were capable of both increasing and decreasing neuronal somata size, without adversely affecting survival. Moreover, axon characteristics elaborated de novo by the primary afferents in culture were systematically regulated by the sensory endorgan. Apparent peripheral nervous system (PNS)-like and central nervous system (CNS)-like axonal profiles were established in our cocultures allowing an analysis of putative PNS/CNS axon length ratios. As predicted from the in vivo organization, PNS-like axon bundles elaborated by apical cocultures were longer than their basal counterparts and this phenotype was methodically altered when neuron explants were cocultured with microisolates from disparate cochlear regions. Thus, location-dependent signals within the organ of Corti may set the "address" of neurons within the spiral ganglion, allowing them to elaborate the appropriate tonotopically associated morphological features in order to carry out their signaling function. J. Comp. Neurol. 524:2182-2207, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Felicia L Smith
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | - Robin L Davis
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
28
|
Innervation of Cochlear Hair Cells by Human Induced Pluripotent Stem Cell-Derived Neurons In Vitro. Stem Cells Int 2016; 2016:1781202. [PMID: 26966437 PMCID: PMC4761396 DOI: 10.1155/2016/1781202] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/31/2015] [Indexed: 01/09/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) may serve as an autologous source of replacement neurons in the injured cochlea, if they can be successfully differentiated and reconnected with residual elements in the damaged auditory system. Here, we explored the potential of hiPSC-derived neurons to innervate early postnatal hair cells, using established in vitro assays. We compared two hiPSC lines against a well-characterized hESC line. After ten days' coculture in vitro, hiPSC-derived neural processes contacted inner and outer hair cells in whole cochlear explant cultures. Neural processes from hiPSC-derived neurons also made contact with hair cells in denervated sensory epithelia explants and expressed synapsin at these points of contact. Interestingly, hiPSC-derived neurons cocultured with hair cells at an early stage of differentiation formed synapses with a higher number of hair cells, compared to hiPSC-derived neurons cocultured at a later stage of differentiation. Notable differences in the innervation potentials of the hiPSC-derived neurons were also observed and variations existed between the hiPSC lines in their innervation efficiencies. Collectively, these data illustrate the promise of hiPSCs for auditory neuron replacement and highlight the need to develop methods to mitigate variabilities observed amongst hiPSC lines, in order to achieve reliable clinical improvements for patients.
Collapse
|
29
|
Goodrich LV. Early Development of the Spiral Ganglion. THE PRIMARY AUDITORY NEURONS OF THE MAMMALIAN COCHLEA 2016. [DOI: 10.1007/978-1-4939-3031-9_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Gillespie LN, Richardson RT, Nayagam BA, Wise AK. Treating hearing disorders with cell and gene therapy. J Neural Eng 2015; 11:065001. [PMID: 25420002 DOI: 10.1088/1741-2560/11/6/065001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hearing loss is an increasing problem for a substantial number of people and, with an aging population, the incidence and severity of hearing loss will become more significant over time. There are very few therapies currently available to treat hearing loss, and so the development of new therapeutic strategies for hearing impaired individuals is of paramount importance to address this unmet clinical need. Most forms of hearing loss are progressive in nature and therefore an opportunity exists to develop novel therapeutic approaches to slow or halt hearing loss progression, or even repair or replace lost hearing function. Numerous emerging technologies have potential as therapeutic options. This paper details the potential of cell- and gene-based therapies to provide therapeutic agents to protect sensory and neural cells from various insults known to cause hearing loss; explores the potential of replacing lost sensory and nerve cells using gene and stem cell therapy; and describes the considerations for clinical translation and the challenges that need to be overcome.
Collapse
|
31
|
Coate TM, Spita NA, Zhang KD, Isgrig KT, Kelley MW. Neuropilin-2/Semaphorin-3F-mediated repulsion promotes inner hair cell innervation by spiral ganglion neurons. eLife 2015; 4. [PMID: 26302206 PMCID: PMC4566076 DOI: 10.7554/elife.07830] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/22/2015] [Indexed: 12/18/2022] Open
Abstract
Auditory function is dependent on the formation of specific innervation patterns between mechanosensory hair cells (HCs) and afferent spiral ganglion neurons (SGNs). In particular, type I SGNs must precisely connect with inner HCs (IHCs) while avoiding connections with nearby outer HCs (OHCs). The factors that mediate these patterning events are largely unknown. Using sparse-labeling and time-lapse imaging, we visualized for the first time the behaviors of developing SGNs including active retraction of processes from OHCs, suggesting that some type I SGNs contact OHCs before forming synapses with IHCs. In addition, we demonstrate that expression of Semaphorin-3F in the OHC region inhibits type I SGN process extension by activating Neuropilin-2 receptors expressed on SGNs. These results suggest a model in which cochlear innervation patterns by type I SGNs are determined, at least in part, through a Semaphorin-3F-mediated inhibitory signal that impedes processes from extending beyond the IHC region. DOI:http://dx.doi.org/10.7554/eLife.07830.001 The process of hearing begins when sound waves enter the outer ear, causing the eardrum to vibrate. The three small bones of the middle ear pass these vibrations on to the cochlea, a fluid-filled structure shaped like a spiral. Tiny hair cells inside the cochlea move in response to the vibrations and convert them into electrical signals, which are transmitted by cells called spiral ganglion neurons (SGNs) to the brain. Hair cells can be divided into ‘inner’ and ‘outer’ hair cells. Inner hair cells transmit most of the information about a sound to the brain, via connections with type I SGNs. Outer hair cells are thought to amplify sound and connect to type II SGNs. How the type I and II SGNs connect to the correct type of hair cell as the ear develops is not well understood, despite these connections being essential for hearing. Coate et al. have now used time-lapse imaging and fixed specimens to follow individually labeled SGNs as they establish these connections within the cochlea of a mouse embryo. Although the type I SGNs ultimately formed connections with inner hair cells, many of them made contact with outer hair cells first. These contacts were short-lived thanks to a protein found near the outer hair cells, named Semaphorin-3F. This protein repels the type I SGNs by activating a receptor on their surface called Neuropilin-2, and so directs the type I SGNs towards the inner hair cells. One of the mysteries that remains to be solved is how type II SGNs are ‘permitted’ to extend into the outer hair cell region, even though they are also confronted by Semaphorin-3F. In addition, it will also be important to determine how SGNs adapt to cues from different Semaphorins from different parts of the cochlea as they navigate into different hair cell regions. DOI:http://dx.doi.org/10.7554/eLife.07830.002
Collapse
Affiliation(s)
- Thomas M Coate
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, Bethesda, United States
| | - Nathalie A Spita
- Department of Biology, Georgetown University, Washington, United States
| | - Kaidi D Zhang
- Department of Biology, Georgetown University, Washington, United States
| | - Kevin T Isgrig
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, Bethesda, United States
| | - Matthew W Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, Bethesda, United States
| |
Collapse
|
32
|
Romero-Guevara R, Cencetti F, Donati C, Bruni P. Sphingosine 1-phosphate signaling pathway in inner ear biology. New therapeutic strategies for hearing loss? Front Aging Neurosci 2015; 7:60. [PMID: 25954197 PMCID: PMC4407579 DOI: 10.3389/fnagi.2015.00060] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/08/2015] [Indexed: 12/13/2022] Open
Abstract
Hearing loss is one of the most prevalent conditions around the world, in particular among people over 60 years old. Thus, an increase of this affection is predicted as result of the aging process in our population. In this context, it is important to further explore the function of molecular targets involved in the biology of inner ear sensory cells to better individuate new candidates for therapeutic application. One of the main causes of deafness resides into the premature death of hair cells and auditory neurons. In this regard, neurotrophins and growth factors such as insulin like growth factor are known to be beneficial by favoring the survival of these cells. An elevated number of published data in the last 20 years have individuated sphingolipids not only as structural components of biological membranes but also as critical regulators of key biological processes, including cell survival. Ceramide, formed by catabolism of sphingomyelin (SM) and other complex sphingolipids, is a strong inducer of apoptotic pathway, whereas sphingosine 1-phosphate (S1P), generated by cleavage of ceramide to sphingosine and phosphorylation catalyzed by two distinct sphingosine kinase (SK) enzymes, stimulates cell survival. Interestingly S1P, by acting as intracellular mediator or as ligand of a family of five distinct S1P receptors (S1P1–S1P5), is a very powerful bioactive sphingolipid, capable of triggering also other diverse cellular responses such as cell migration, proliferation and differentiation, and is critically involved in the development and homeostasis of several organs and tissues. Although new interesting data have become available, the information on S1P pathway and other sphingolipids in the biology of the inner ear is limited. Nonetheless, there are several lines of evidence implicating these signaling molecules during neurogenesis in other cell populations. In this review, we discuss the role of S1P during inner ear development, also as guidance for future studies.
Collapse
Affiliation(s)
- Ricardo Romero-Guevara
- Department Scienze Biomediche Sperimentali e Cliniche "Mario Serio", University of Florence Firenze, Italy
| | - Francesca Cencetti
- Department Scienze Biomediche Sperimentali e Cliniche "Mario Serio", University of Florence Firenze, Italy
| | - Chiara Donati
- Department Scienze Biomediche Sperimentali e Cliniche "Mario Serio", University of Florence Firenze, Italy
| | - Paola Bruni
- Department Scienze Biomediche Sperimentali e Cliniche "Mario Serio", University of Florence Firenze, Italy
| |
Collapse
|
33
|
Kersigo J, Fritzsch B. Inner ear hair cells deteriorate in mice engineered to have no or diminished innervation. Front Aging Neurosci 2015; 7:33. [PMID: 25852547 PMCID: PMC4364252 DOI: 10.3389/fnagi.2015.00033] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/28/2015] [Indexed: 12/14/2022] Open
Abstract
The innervation of the inner ear critically depends on the two neurotrophins Ntf3 and Bdnf. In contrast to this molecularly well-established dependency, evidence regarding the need of innervation for long-term maintenance of inner ear hair cells is inconclusive, due to experimental variability. Mutant mice that lack both neurotrophins could shed light on the long-term consequences of innervation loss on hair cells without introducing experimental variability, but do not survive after birth. Mutant mice with conditional deletion of both neurotrophins lose almost all innervation by postnatal day 10 and show an initially normal development of hair cells by this stage. No innervation remains after 3 weeks and complete loss of all innervation results in near complete loss of outer and many inner hair cells of the organ of Corti within 4 months. Mutants that retain one allele of either neurotrophin have only partial loss of innervation of the organ of Corti and show a longer viability of cochlear hair cells with more profound loss of inner hair cells. By 10 months, hair cells disappear with a base to apex progression, proportional to the residual density of innervation and similar to carboplatin ototoxicity. Similar to reports of hair cell loss after aminoglycoside treatment, blobbing of stereocilia of apparently dying hair cells protrude into the cochlear duct. Denervation of vestibular sensory epithelia for several months also resulted in variable results, ranging from unusual hair cells resembling the aberrations found in the organ of Corti, to near normal hair cells in the canal cristae. Fusion and/or resorption of stereocilia and loss of hair cells follows a pattern reminiscent of Myo6 and Cdc42 null mice. Our data support a role of innervation for long-term maintenance but with a remarkable local variation that needs to be taken into account when attempting regeneration of the organ of Corti.
Collapse
Affiliation(s)
| | - Bernd Fritzsch
- Department of Biology, University of IowaIowa City, IA, USA
| |
Collapse
|
34
|
Davis RL, Crozier RA. Dynamic firing properties of type I spiral ganglion neurons. Cell Tissue Res 2015; 361:115-27. [PMID: 25567109 DOI: 10.1007/s00441-014-2071-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
Spiral ganglion neurons, the first neural element in the auditory system, possess complex intrinsic properties, possibly required to process frequency-specific sensory input that is integrated with extensive efferent regulation. Together with their tonotopically-graded sizes, the somata of these neurons reveal a sophisticated electrophysiological profile. Type I neurons, which make up ~95 % of the ganglion, have myriad voltage-gated ion channels that not only vary along the frequency contour of the cochlea, but also can be modulated by regulators such as voltage, calcium, and second messengers. The resultant developmentally- and tonotopically-regulated neuronal firing patterns conform to three distinct response modes (unitary, rapid, and slow) based on threshold and accommodation. This phenotype, however, is not static for any individual type I neuron. Recent observations have shown that, as neurons become less excitable with age, they demonstrate enhanced plasticity enabling them to change from one response mode to another depending upon resting membrane potential and the presence of neurotrophin-3. Thus, the primary auditory afferents utilized to encode dynamic acoustic stimuli possess the intrinsic specializations that allow them dynamically to alter their firing pattern.
Collapse
Affiliation(s)
- Robin L Davis
- Department of Cell Biology and Neuroscience, Nelson Laboratories, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA,
| | | |
Collapse
|
35
|
Schimmang T, Durán Alonso B, Zimmermann U, Knipper M. Is there a relationship between brain-derived neurotrophic factor for driving neuronal auditory circuits with onset of auditory function and the changes following cochlear injury or during aging? Neuroscience 2014; 283:26-43. [PMID: 25064058 DOI: 10.1016/j.neuroscience.2014.07.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 01/06/2023]
Abstract
Brain-derived neurotrophic factor, BDNF, is one of the most important neurotrophic factors acting in the peripheral and central nervous system. In the auditory system its function was initially defined by using constitutive knockout mouse mutants and shown to be essential for survival of neurons and afferent innervation of hair cells in the peripheral auditory system. Further examination of BDNF null mutants also revealed a more complex requirement during re-innervation processes involving the efferent system of the cochlea. Using adult mouse mutants defective in BDNF signaling, it could be shown that a tonotopical gradient of BDNF expression within cochlear neurons is required for maintenance of a specific spatial innervation pattern of outer hair cells and inner hair cells. Additionally, BDNF is required for maintenance of voltage-gated potassium channels (KV) in cochlear neurons, which may form part of a maturation step within the ascending auditory pathway with onset of hearing and might be essential for cortical acuity of sound-processing and experience-dependent plasticity. A presumptive harmful role of BDNF during acoustic trauma and consequences of a loss of cochlear BDNF during aging are discussed in the context of a partial reversion of this maturation step. We compare the potentially beneficial and harmful roles of BDNF for the mature auditory system with those BDNF functions known in other sensory circuits, such as the vestibular, visual, olfactory, or somatosensory system.
Collapse
Affiliation(s)
- T Schimmang
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, E-47003 Valladolid, Spain.
| | - B Durán Alonso
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, E-47003 Valladolid, Spain
| | - U Zimmermann
- University of Tübingen, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - M Knipper
- University of Tübingen, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| |
Collapse
|
36
|
Liu W, Davis RL. Calretinin and calbindin distribution patterns specify subpopulations of type I and type II spiral ganglion neurons in postnatal murine cochlea. J Comp Neurol 2014; 522:2299-318. [PMID: 24414968 DOI: 10.1002/cne.23535] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/27/2013] [Accepted: 01/04/2014] [Indexed: 01/02/2023]
Abstract
As the first neural element in the auditory pathway, neurons in the spiral ganglion shape the initial coding of sound stimuli for subsequent processing. Within the ganglion, type I and type II neurons form divergent and convergent innervation patterns, respectively, with their hair cell sensory receptors, indicating that very different information is gathered and conveyed. Layered onto these basic innervation patterns are structural and electrophysiological features that provide additional levels of processing multifaceted sound stimuli. To understand the nature of this additional complexity of signal coding, we characterized the distribution of calretinin and calbindin, two regulators of intracellular calcium that serve as markers for neuronal subpopulations. We showed in acute preparations and in vitro that calretinin and calbindin staining levels were heterogeneous. Immunocytochemical analysis of colocalization further showed that high levels of staining for the two molecules rarely overlapped. Although varied amounts of calbindin and calretinin were found within each tonotopic location and neuronal type, some distinct subdistributions were noted. For example, calretinin levels were highest in neurons innervating the midcochlea region, whereas calbindin levels were similar across the entire ganglion. Furthermore, we noted that apical type II neurons, identified by antiperipherin labeling, had significantly lower levels of calretinin and higher levels of calbindin. We also established that the endogenous firing feature of onset tau of the subthreshold response showed a pattern related to quantified calretinin and calbindin staining levels. Taken together, our results suggest an additional dimension of complexity within the spiral ganglion beyond that currently categorized.
Collapse
Affiliation(s)
- Wenke Liu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, 08854
| | | |
Collapse
|
37
|
Postnatal expression of neurotrophic factors accessible to spiral ganglion neurons in the auditory system of adult hearing and deafened rats. J Neurosci 2014; 34:13110-26. [PMID: 25253857 DOI: 10.1523/jneurosci.1014-14.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Spiral ganglion neurons (SGNs) receive input from cochlear hair cells and project from the cochlea to the cochlear nucleus. After destruction of hair cells with aminoglycoside antibiotics or noise, SGNs gradually die. It has been assumed that SGN death is attributable to loss of neurotrophic factors (NTFs) derived from hair cells or supporting cells in the organ of Corti (OC). We used quantitative PCR (qPCR) to assay NTF expression-neurotrophin-3 (NT-3), BDNF, GDNF, neurturin, artemin, and CNTF-in the OC and cochlear nucleus at various ages from postnatal day 0 (P0) to P90 in control hearing and neonatally deafened rats. NT-3, neurturin, and CNTF were most abundant in the postnatal hearing OC; CNTF and neurturin most abundant in the cochlear nucleus. In the OC, NT-3 and CNTF showed a postnatal increase in expression approximately concomitant with hearing onset. In rats deafened by daily kanamycin injections (from P8 to P16), surviving inner hair cells were evident at P16 but absent by P19, with most postsynaptic boutons lost before P16. NT-3 and CNTF, which normally increase postnatally, had significantly reduced expression in the OC of deafened rats, although CNTF was expressed throughout the time that SGNs were dying. In contrast, neurturin expression was constant, unaffected by deafening or by age. CNTF and neurturin expression in the cochlear nucleus was unaffected by deafening or age. Thus, NTFs other than NT-3 are available to SGNs even as they are dying after deafening, apparently conflicting with the hypothesis that SGN death is attributable to lack of NTFs.
Collapse
|
38
|
Nishimura K, Weichert RM, Liu W, Davis RL, Dabdoub A. Generation of induced neurons by direct reprogramming in the mammalian cochlea. Neuroscience 2014; 275:125-35. [PMID: 24928351 DOI: 10.1016/j.neuroscience.2014.05.067] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/15/2014] [Accepted: 05/14/2014] [Indexed: 01/27/2023]
Abstract
Primary auditory neurons (ANs) in the mammalian cochlea play a critical role in hearing as they transmit auditory information in the form of electrical signals from mechanosensory cochlear hair cells in the inner ear to the brainstem. Their progressive degeneration is associated with disease conditions, excessive noise exposure and aging. Replacement of ANs, which lack the ability to regenerate spontaneously, would have a significant impact on research and advancement in cochlear implants in addition to the amelioration of hearing impairment. The aim of this study was to induce a neuronal phenotype in endogenous non-neural cells in the cochlea, which is the essential organ of hearing. Overexpression of a neurogenic basic helix-loop-helix transcription factor, Ascl1, in the cochlear non-sensory epithelial cells induced neurons at high efficiency at embryonic, postnatal and juvenile stages. Moreover, induced neurons showed typical properties of neuron morphology, gene expression and electrophysiology. Our data indicate that Ascl1 alone or Ascl1 and NeuroD1 is sufficient to reprogram cochlear non-sensory epithelial cells into functional neurons. Generation of neurons from non-neural cells in the cochlea is an important step for the regeneration of ANs in the mature mammalian cochlea.
Collapse
Affiliation(s)
- K Nishimura
- Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada.
| | - R M Weichert
- Department of Surgery/Otolaryngology, UCSD School of Medicine, La Jolla, CA 92093, USA.
| | - W Liu
- Department of Cell Biology and Neuroscience, Nelson Laboratories, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA.
| | - R L Davis
- Department of Cell Biology and Neuroscience, Nelson Laboratories, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA.
| | - A Dabdoub
- Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Otolaryngology - Head and Neck Surgery, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
39
|
Bas E, Van De Water TR, Lumbreras V, Rajguru S, Goss G, Hare JM, Goldstein BJ. Adult human nasal mesenchymal-like stem cells restore cochlear spiral ganglion neurons after experimental lesion. Stem Cells Dev 2013; 23:502-14. [PMID: 24172073 DOI: 10.1089/scd.2013.0274] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A loss of sensory hair cells or spiral ganglion neurons from the inner ear causes deafness, affecting millions of people. Currently, there is no effective therapy to repair the inner ear sensory structures in humans. Cochlear implantation can restore input, but only if auditory neurons remain intact. Efforts to develop stem cell-based treatments for deafness have demonstrated progress, most notably utilizing embryonic-derived cells. In an effort to bypass limitations of embryonic or induced pluripotent stem cells that may impede the translation to clinical applications, we sought to utilize an alternative cell source. Here, we show that adult human mesenchymal-like stem cells (MSCs) obtained from nasal tissue can repair spiral ganglion loss in experimentally lesioned cochlear cultures from neonatal rats. Stem cells engraft into gentamicin-lesioned organotypic cultures and orchestrate the restoration of the spiral ganglion neuronal population, involving both direct neuronal differentiation and secondary effects on endogenous cells. As a physiologic assay, nasal MSC-derived cells engrafted into lesioned spiral ganglia demonstrate responses to infrared laser stimulus that are consistent with those typical of excitable cells. The addition of a pharmacologic activator of the canonical Wnt/β-catenin pathway concurrent with stem cell treatment promoted robust neuronal differentiation. The availability of an effective adult autologous cell source for inner ear tissue repair should contribute to efforts to translate cell-based strategies to the clinic.
Collapse
Affiliation(s)
- Esperanza Bas
- 1 Department of Otolaryngology, University of Miami Miller School of Medicine , Miami, Florida
| | | | | | | | | | | | | |
Collapse
|
40
|
Brugeaud A, Tong M, Luo L, Edge ASB. Inhibition of repulsive guidance molecule, RGMa, increases afferent synapse formation with auditory hair cells. Dev Neurobiol 2013; 74:457-66. [PMID: 24123853 DOI: 10.1002/dneu.22136] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/03/2013] [Accepted: 09/23/2013] [Indexed: 11/12/2022]
Abstract
The peripheral fibers that extend from auditory neurons to hair cells are sensitive to damage, and replacement of the fibers and their afferent synapse with hair cells would be of therapeutic interest. Here, we show that RGMa, a repulsive guidance molecule previously shown to play a role in the development of the chick visual system, is expressed in the developing, newborn, and mature mouse inner ear. The effect of RGMa on synaptogenesis between afferent neurons and hair cells, from which afferent connections had been removed, was assessed. Contact of neural processes with hair cells and elaboration of postsynaptic densities at sites of the ribbon synapse were increased by treatment with a blocking antibody to RGMa, and pruning of auditory fibers to achieve the mature branching pattern of afferent neurons was accelerated. Inhibition by RGMa could thus explain why auditory neurons have a low capacity to regenerate peripheral processes: postnatal spiral ganglion neurons retain the capacity to send out processes that respond to signals for synapse formation, but expression of RGMa postnatally appears to be detrimental to regeneration of afferent hair cell innervation and antagonizes synaptogenesis. Increased synaptogenesis after inhibition of RGMa suggests that manipulation of guidance or inhibitory factors may provide a route to increase formation of new synapses at deafferented hair cells.
Collapse
Affiliation(s)
- Aurore Brugeaud
- Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, 02115; Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, 02114
| | | | | | | |
Collapse
|
41
|
Ramírez-Franco J, Alonso B, Bartolomé-Martín D, Sánchez-Prieto J, Torres M. Studying synaptic efficiency by post-hoc immunolabelling. BMC Neurosci 2013; 14:127. [PMID: 24138605 PMCID: PMC3854067 DOI: 10.1186/1471-2202-14-127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 10/10/2013] [Indexed: 11/10/2022] Open
Abstract
Background In terms of vesicular recycling, synaptic efficiency is a key determinant of the fidelity of synaptic transmission. The ability of a presynaptic terminal to reuse its vesicular content is thought to be a signature of synaptic maturity and this process depends on the activity of several proteins that govern exo/endocytosis. Upon stimulation, individual terminals in networks of cultured cerebellar granule neurons exhibit heterogeneous exocytic responses, which reflect the distinct states of maturity and plasticity intrinsic to individual synaptic terminals. This dynamic scenario serves as the substrate for processes such as scaling, plasticity and synaptic weight redistribution. Presynaptic strength has been associated with the activity of several types of proteins, including the scaffolding proteins that form the active zone cytomatrix and the proteins involved in presynaptic exocytosis. Methods We have combined fluorescence imaging techniques using the styryl dye FM1-43 in primary cultures of cerebellar granule cells with subsequent post-hoc immunocytochemistry in order to study synaptic efficiency in terms of vesicular release. We describe a protocol to easily quantify these results with minimal user intervention. Results In this study we describe a technique that specifically correlates presynaptic activity with the levels of presynaptic markers. This method involves the use of the styryl dye FM1-43 to estimate the release capacity of a synaptic terminal, and the subsequent post-hoc immunolabelling of thousands of individual nerve terminals. We observed a strong correlation between the release capacity of the nerve terminal and the levels of the RIM1α but not the Munc13-1 protein in the active zone. Conclusions Our findings support those of previous studies and point out to RIM1α as a crucial factor in determining synaptic efficiency. These results also demonstrate that this technique is a useful tool to analyse the molecular differences underlying the heterogeneous responses exhibited by neuronal networks.
Collapse
Affiliation(s)
| | | | | | - José Sánchez-Prieto
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid 28040, Spain.
| | | |
Collapse
|
42
|
Coate TM, Kelley MW. Making connections in the inner ear: recent insights into the development of spiral ganglion neurons and their connectivity with sensory hair cells. Semin Cell Dev Biol 2013; 24:460-9. [PMID: 23660234 PMCID: PMC3690159 DOI: 10.1016/j.semcdb.2013.04.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 04/15/2013] [Indexed: 01/18/2023]
Abstract
In mammals, auditory information is processed by the hair cells (HCs) located in the cochlea and then rapidly transmitted to the CNS via a specialized cluster of bipolar afferent connections known as the spiral ganglion neurons (SGNs). Although many anatomical aspects of SGNs are well described, the molecular and cellular mechanisms underlying their genesis, how they are precisely arranged along the cochlear duct, and the guidance mechanisms that promote the innervation of their hair cell targets are only now being understood. Building upon foundational studies of neurogenesis and neurotrophins, we review here new concepts and technologies that are helping to enrich our understanding of the development of the nervous system within the inner ear.
Collapse
Affiliation(s)
- Thomas M Coate
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
43
|
The Peripheral Processes of Spiral Ganglion Cells After Intracochlear Application of Brain-Derived Neurotrophic Factor in Deafened Guinea Pigs. Otol Neurotol 2013; 34:570-8. [DOI: 10.1097/mao.0b013e31828687b1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
44
|
Inner ear supporting cells: rethinking the silent majority. Semin Cell Dev Biol 2013; 24:448-59. [PMID: 23545368 DOI: 10.1016/j.semcdb.2013.03.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/21/2013] [Indexed: 11/21/2022]
Abstract
Sensory epithelia of the inner ear contain two major cell types: hair cells and supporting cells. It has been clear for a long time that hair cells play critical roles in mechanoreception and synaptic transmission. In contrast, until recently the more abundant supporting cells were viewed as serving primarily structural and homeostatic functions. In this review, we discuss the growing information about the roles that supporting cells play in the development, function and maintenance of the inner ear, their activities in pathological states, their potential for hair cell regeneration, and the mechanisms underlying these processes.
Collapse
|
45
|
Regenerated synapses between postnatal hair cells and auditory neurons. J Assoc Res Otolaryngol 2013; 14:321-9. [PMID: 23423560 DOI: 10.1007/s10162-013-0374-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 01/29/2013] [Indexed: 02/06/2023] Open
Abstract
Regeneration of synaptic connections between hair cells and spiral ganglion neurons would be required to restore hearing after neural loss. Here we demonstrate by immunohistochemistry the appearance of afferent-like cochlear synapses in vitro after co-culture of de-afferented organ of Corti with spiral ganglion neurons from newborn mice. The glutamatergic synaptic complexes at the ribbon synapse of the inner hair cell contain markers for presynaptic ribbons and postsynaptic densities. We found postsynaptic density protein PSD-95 at the contacts between hair cells and spiral ganglion neurons in newly formed synapses in vitro. The postsynaptic proteins were directly facing the CtBP2-positive presynaptic ribbons of the hair cells. BDNF and NT-3 promoted afferent synaptogenesis in vitro. Direct juxtaposition of the postsynaptic densities with the components of the preexisting ribbon synapse indicated that growing fibers recognized components of the presynaptic sites. Initiation of cochlear synaptogenesis appeared to be influenced by glutamate release from the hair cell ribbons at the presynaptic site since the synaptic regeneration was impaired in glutamate vesicular transporter 3 mutant mice. These insights into cochlear synaptogenesis could be relevant to regenerative approaches for neural loss in the cochlea.
Collapse
|
46
|
Nayagam BA, Edge AS, Needham K, Hyakumura T, Leung J, Nayagam DAX, Dottori M. An in vitro model of developmental synaptogenesis using cocultures of human neural progenitors and cochlear explants. Stem Cells Dev 2012; 22:901-12. [PMID: 23078657 DOI: 10.1089/scd.2012.0082] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In mammals, the sensory hair cells and auditory neurons do not spontaneously regenerate and their loss results in permanent hearing impairment. Stem cell therapy is one emerging strategy that is being investigated to overcome the loss of sensory cells after hearing loss. To successfully replace auditory neurons, stem cell-derived neurons must be electrically active, capable of organized outgrowth of processes, and of making functional connections with appropriate tissues. We have developed an in vitro assay to test these parameters using cocultures of developing cochlear explants together with neural progenitors derived from human embryonic stem cells (hESCs). We found that these neural progenitors are electrically active and extend their neurites toward the sensory hair cells in cochlear explants. Importantly, this neurite extension was found to be significantly greater when neural progenitors were predifferentiated toward a neural crest-like lineage. When grown in coculture with hair cells only (denervated cochlear explants), stem cell-derived processes were capable of locating and growing along the hair cell rows in an en passant-like manner. Many presynaptic terminals (synapsin 1-positive) were observed between hair cells and stem cell-derived processes in vitro. These results suggest that differentiated hESC-derived neural progenitors may be useful for developing therapies directed at auditory nerve replacement, including complementing emerging hair cell regeneration therapies.
Collapse
Affiliation(s)
- Bryony A Nayagam
- Department of Otolaryngology, The University of Melbourne, Melbourne, Parkville, Australia.
| | | | | | | | | | | | | |
Collapse
|
47
|
Green SH, Bailey E, Wang Q, Davis RL. The Trk A, B, C's of Neurotrophins in the Cochlea. Anat Rec (Hoboken) 2012; 295:1877-95. [DOI: 10.1002/ar.22587] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 12/20/2022]
|
48
|
Olucha-Bordonau FE, Otero-García M, Sánchez-Pérez AM, Núñez A, Ma S, Gundlach AL. Distribution and targets of the relaxin-3 innervation of the septal area in the rat. J Comp Neurol 2012; 520:1903-39. [PMID: 22134882 DOI: 10.1002/cne.23018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neural tracing studies have revealed that the rat medial and lateral septum are targeted by ascending projections from the nucleus incertus, a population of tegmental GABA neurons. These neurons express the relaxin-family peptide, relaxin-3, and pharmacological modulation of relaxin-3 receptors in medial septum alters hippocampal theta rhythm and spatial memory. In an effort to better understand the basis of these interactions, we have characterized the distribution of relaxin-3 fibers/terminals in relation to different septal neuron populations identified using established protein markers. Dense relaxin-3 fiber plexuses were observed in regions of medial septum containing hippocampal-projecting choline acetyltransferase (ChAT)-, neuronal nitric oxide synthase (nNOS)-, and parvalbumin (PV)-positive neurons. In lateral septum (LS), relaxin-3 fibers were concentrated in the ventrolateral nucleus of rostral LS and the ventral nucleus of caudal LS, with sparse labeling in the dorsolateral and medial nuclei of rostral LS, dorsal nucleus of caudal LS, and ventral portion nuclei. Relaxin-3 fibers were also observed in the septofimbrial and triangular septal nuclei. In the medial septum, we observed relaxin-3-immunoreactive contacts with ChAT-, PV-, and glutamate decarboxylase-67-positive neurons that projected to hippocampus, and contacts between relaxin-3 terminals and calbindin- and calretinin-positive neurons. Relaxin-3 colocalized with synaptophysin in nerve terminals in all septal areas, and ultrastructural analysis revealed these terminals were symmetrical and contacted spines, somata, dendritic shafts, and occasionally other axonal terminals. These data predict that this GABA/peptidergic projection modulates septohippocampal activity and hippocampal theta rhythm related to exploratory navigation, defensive and ingestive behaviors, and responses to neurogenic stressors.
Collapse
Affiliation(s)
- Francisco E Olucha-Bordonau
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
49
|
Spike encoding of neurotransmitter release timing by spiral ganglion neurons of the cochlea. J Neurosci 2012; 32:4773-89. [PMID: 22492033 DOI: 10.1523/jneurosci.4511-11.2012] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mammalian cochlear spiral ganglion neurons (SGNs) encode sound with microsecond precision. Spike triggering relies upon input from a single ribbon-type active zone of a presynaptic inner hair cell (IHC). Using patch-clamp recordings of rat SGN postsynaptic boutons innervating the modiolar face of IHCs from the cochlear apex, at room temperature, we studied how spike generation contributes to spike timing relative to synaptic input. SGNs were phasic, firing a single short-latency spike for sustained currents of sufficient onset slope. Almost every EPSP elicited a spike, but latency (300-1500 μs) varied with EPSP size and kinetics. When current-clamp stimuli approximated the mean physiological EPSC (≈300 pA), several times larger than threshold current (rheobase, ≈50 pA), spikes were triggered rapidly (latency, ≈500 μs) and precisely (SD, <50 μs). This demonstrated the significance of strong synaptic input. However, increasing EPSC size beyond the physiological mean resulted in less-potent reduction of latency and jitter. Differences in EPSC charge and SGN baseline potential influenced spike timing less as EPSC onset slope and peak amplitude increased. Moreover, the effect of baseline potential on relative threshold was small due to compensatory shift of absolute threshold potential. Experimental first-spike latencies in response to a broad range of stimuli were predicted by a two-compartment exponential integrate-and-fire model, with latency prediction error of <100 μs. In conclusion, the close anatomical coupling between a strong synapse and spike generator along with the phasic firing property lock SGN spikes to IHC exocytosis timing to generate the auditory temporal code with high fidelity.
Collapse
|
50
|
Sly DJ, Hampson AJ, Minter RL, Heffer LF, Li J, Millard RE, Winata L, Niasari A, O'Leary SJ. Brain-derived neurotrophic factor modulates auditory function in the hearing cochlea. J Assoc Res Otolaryngol 2011; 13:1-16. [PMID: 22086147 DOI: 10.1007/s10162-011-0297-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 10/13/2011] [Indexed: 01/06/2023] Open
Abstract
Neurotrophins prevent spiral ganglion neuron (SGN) degeneration in animal models of ototoxin-induced deafness and may be used in the future to improve the hearing of cochlear implant patients. It is increasingly common for patients with residual hearing to undergo cochlear implantation. However, the effect of neurotrophin treatment on acoustic hearing is not known. In this study, brain-derived neurotrophic factor (BDNF) was applied to the round window membrane of adult guinea pigs for 4 weeks using a cannula attached to a mini-osmotic pump. SGN survival was first assessed in ototoxically deafened guinea pigs to establish that the delivery method was effective. Increased survival of SGNs was observed in the basal and middle cochlear turns of deafened guinea pigs treated with BDNF, confirming that delivery to the cochlea was successful. The effects of BDNF treatment in animals with normal hearing were then assessed using distortion product otoacoustic emissions (DPOAEs), pure tone, and click-evoked auditory brainstem responses (ABRs). DPOAE assessment indicated a mild deficit of 5 dB SPL in treated and control groups at 1 and 4 weeks after cannula placement. In contrast, ABR evaluation showed that BDNF lowered thresholds at specific frequencies (8 and 16 kHz) after 1 and 4 weeks posttreatment when compared to the control cohort receiving Ringer's solution. Longer treatment for 4 weeks not only widened the range of frequencies ameliorated from 2 to 32 kHz but also lowered the threshold by at least 28 dB SPL at frequencies ≥16 kHz. BDNF treatment for 4 weeks also increased the amplitude of the ABR response when compared to either the control cohort or prior to treatment. We show that BDNF applied to the round window reduces auditory thresholds and could potentially be used clinically to protect residual hearing following cochlear implantation.
Collapse
Affiliation(s)
- David J Sly
- Department of Otolaryngology, University of Melbourne, 32 Gisborne Street, Melbourne, 3002, Victoria, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|