1
|
Jiang R, Li L, Wang B, Liu L, Liu L, Xian X, Li W. Ceftriaxone Modulates Ubiquitination of α-Amino-3-Hydroxy-5-Methyl-4-Isoxazole Propionic Acid Receptors to Improve Long-Term Potentiation Impairment Induced by Exogenous β-Amyloid in a Glutamate Transporter-1 Dependent Manner. Mol Neurobiol 2024; 61:7181-7194. [PMID: 38374316 DOI: 10.1007/s12035-024-04037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/09/2024] [Indexed: 02/21/2024]
Abstract
Α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) are crucial for properties of synaptic plasticity, such as long-term potentiation (LTP). LTP impairment can occur early in the onset of Alzheimer's disease (AD). The downregulation or decreased abundance of AMPAR expression in the postsynaptic membrane is closely associated with LTP impairment. Ceftriaxone (Cef) can improve LTP impairment in the early stages of AD in a mouse model. The purpose of this study was to explore the mechanism underlying this process from the aspects of AMPAR expression and ubiquitination degree. In this study, we found that β-amyloid (Aβ) treatment induced hippocampal LTP impairment and AMPAR downregulation and ubiquitination. Cef pretreatment ameliorated Aβ-induced hippocampal LTP impairment, reduced AMPAR ubiquitination, and increased AMPAR expression, especially in the plasma membrane, in Aβ-treated mice. Administration of USP46 siRNA and DHK (a specific blocker of glutamate transporter-1) significantly inhibited the above effects of Cef, suggesting a role for anti-AMPAR ubiquitination and upregulation of glutamate transporter-1 (GLT-1) in the Cef-induced improvements mentioned above. The above findings demonstrate that pretreatment with Cef effectively mitigated Aβ-induced impairment of hippocampal LTP by suppressing the ubiquitination process of AMPARs in a GLT-1-dependent manner. These results provide novel insights into the underlying mechanisms elucidating the anti-AD by Cef.
Collapse
Affiliation(s)
- Rui Jiang
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, People's Republic of China
- School of Nursing, Hebei Medical University, 309 Jianhua South Street, Shijiazhuang, 050000, People's Republic of China
| | - Li Li
- Central Laboratory, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, People's Republic of China
| | - Bu Wang
- Department of Emergency Critical Care Medicine, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, People's Republic of China
| | - Lizhe Liu
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, People's Republic of China
| | - Lirong Liu
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, People's Republic of China
| | - Xiaohui Xian
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, People's Republic of China.
| | - Wenbin Li
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, People's Republic of China.
| |
Collapse
|
2
|
Huo Y, Lu W, Tian Y, Hou Q, Man HY. Prkn knockout mice show autistic-like behaviors and aberrant synapse formation. iScience 2022; 25:104573. [PMID: 35789851 PMCID: PMC9249611 DOI: 10.1016/j.isci.2022.104573] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/26/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with high genetic heterogeneity, affecting one in 44 children in the United States. Recent genomic sequencing studies from autistic human individuals indicate that PARK2, a gene that has long been considered in the pathogenesis of Parkinson's disease, is involved in ASD. Here, we report that Prkn knockout (KO) mice demonstrate autistic-like behaviors including impaired social interaction, elevated repetitive behaviors, and deficits in communication. In addition, Prkn KO mice show reduced neuronal activity in the context of sociability in the prelimbic cortex. Cell morphological examination of layer 5 prelimbic cortical neurons shows a reduction in dendritic arborization and spine number. Furthermore, biochemistry and immunocytochemistry analyses reveal alterations in synapse density and the molecular composition of synapses. These findings indicate that Prkn is implicated in brain development and suggest the potential use of the Prkn KO mouse as a model for autism research.
Collapse
Affiliation(s)
- Yuda Huo
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Wen Lu
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Yuan Tian
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Qingming Hou
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA 02215, USA
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA 02215, USA
| |
Collapse
|
3
|
Sun W, Cheng H, Yang Y, Tang D, Li X, An L. Requirements of Postnatal proBDNF in the Hippocampus for Spatial Memory Consolidation and Neural Function. Front Cell Dev Biol 2021; 9:678182. [PMID: 34336832 PMCID: PMC8319730 DOI: 10.3389/fcell.2021.678182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/03/2021] [Indexed: 11/17/2022] Open
Abstract
Mature brain-derived neurotrophic factor (BDNF) and its downstream signaling pathways have been implicated in regulating postnatal development and functioning of rodent brain. However, the biological role of its precursor pro-brain-derived neurotrophic factor (proBDNF) in the postnatal brain remains unknown. The expression of hippocampal proBDNF was blocked in postnatal weeks, and multiple behavioral tests, Western blot and morphological techniques, and neural recordings were employed to investigate how proBDNF played a role in spatial cognition in adults. The peak expression and its crucial effects were found in the fourth but not in the second or eighth postnatal week. Blocking proBDNF expression disrupted spatial memory consolidation rather than learning or memory retrieval. Structurally, blocking proBDNF led to the reduction in spine density and proportion of mature spines. Although blocking proBDNF did not affect N-methyl-D-aspartate (NMDA) receptor (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits, the learning-induced phosphorylation of the GluN2B subunit level declined significantly. Functionally, paired-pulse facilitation, post-low-frequency stimulation (LFS) transiently enhanced depression, and GluN2B-dependent short-lasting long-term depression in the Schaffer collateral-CA1 pathway were weakened. The firing rate of pyramidal neurons was significantly suppressed around the target region during the memory test. Furthermore, the activation of GluN2B-mediated signaling could effectively facilitate neural function and mitigate memory impairment. The findings were consistent with the hypothesis that postnatal proBDNF played an essential role in synaptic and cognitive functions.
Collapse
Affiliation(s)
- Wei Sun
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hong Cheng
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Neurology, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dongxin Tang
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaolian Li
- Department of Neurology, Jinan Geriatric Hospital, Jinan, China
| | - Lei An
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Neurology, Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Physiology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
4
|
Escobar AP, Martínez-Pinto J, Silva-Olivares F, Sotomayor-Zárate R, Moya PR. Altered Grooming Syntax and Amphetamine-Induced Dopamine Release in EAAT3 Overexpressing Mice. Front Cell Neurosci 2021; 15:661478. [PMID: 34234648 PMCID: PMC8255620 DOI: 10.3389/fncel.2021.661478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/17/2021] [Indexed: 01/06/2023] Open
Abstract
The excitatory amino acid transporter EAAT3 plays an important role in the neuronal uptake of glutamate regulating the activation of glutamate receptors. Polymorphisms in the gene-encoding EAAT3 have been associated with obsessive-compulsive disorder (OCD), although the mechanisms underlying this relationship are still unknown. We recently reported that mice with increased EAAT3 expression in forebrain neurons (EAAT3 g lo /CMKII) display behavioral and synaptic features relevant to OCD, including increased grooming, higher anxiety-like behavior and altered cortico-striatal synaptic function. The dopamine neurotransmitter system is implicated in ritualistic behaviors. Indeed, dopaminergic neurons express EAAT3, and mice lacking EAAT3 exhibit decreased dopamine release and decreased expression of the dopamine D1 receptor. Moreover, EAAT3 plays a role on the effect of the psychostimulant amphetamine. As such, we sought to determine if the OCD-like behavior in EAAT3 g lo /CMKII mice is accompanied by altered nigro-striatal dopaminergic transmission. The aim of this study was to analyze dopamine transmission both in basal conditions and after an acute challenge of amphetamine, using behavioral, neurochemical, molecular, and cellular approaches. We found that in basal conditions, EAAT3 g lo /CMKII mice performed more grooming events and that they remained in phase 1 of the grooming chain syntax compared with control littermates. Administration of amphetamine increased the number of grooming events in control mice, while EAAT3 g lo /CMKII mice remain unaffected. Interestingly, the grooming syntax of amphetamine-control mice resembled that of EAAT3 g lo /CMKII mice in basal conditions. Using in vivo microdialysis, we found decreased basal dopamine levels in EAAT3 g lo /CMKII compared with control mice. Unexpectedly, we found that after acute amphetamine, EAAT3 g lo /CMKII mice had a higher release of dopamine compared with that of control mice, suggesting that EAAT3 overexpression leads to increased dopamine releasability. To determine postsynaptic effect of EAAT3 overexpression over dopamine transmission, we performed Western blot analysis of dopaminergic proteins and found that EAAT3 g lo /CMKII mice have higher expression of D2 receptors, suggesting a higher inhibition of the indirect striatal pathway. Together, the data indicate that EAAT3 overexpression impacts on dopamine transmission, making dopamine neurons more sensitive to the effect of amphetamine and leading to a disbalance between the direct and indirect striatal pathways that favors the performance of repetitive behaviors.
Collapse
Affiliation(s)
- Angélica P Escobar
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaiso, Chile.,Facultad de Ciencias, Instituto de Fisiología, Universidad de Valparaíso, Valparaiso, Chile
| | - Jonathan Martínez-Pinto
- Facultad de Ciencias, Instituto de Fisiología, Universidad de Valparaíso, Valparaiso, Chile.,Facultad de Ciencias, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Universidad de Valparaíso, Valparaiso, Chile
| | - Francisco Silva-Olivares
- Facultad de Ciencias, Instituto de Fisiología, Universidad de Valparaíso, Valparaiso, Chile.,Facultad de Ciencias, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Universidad de Valparaíso, Valparaiso, Chile
| | - Ramón Sotomayor-Zárate
- Facultad de Ciencias, Instituto de Fisiología, Universidad de Valparaíso, Valparaiso, Chile.,Facultad de Ciencias, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Universidad de Valparaíso, Valparaiso, Chile
| | - Pablo R Moya
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaiso, Chile.,Facultad de Ciencias, Instituto de Fisiología, Universidad de Valparaíso, Valparaiso, Chile
| |
Collapse
|
5
|
Rodríguez-Campuzano AG, Ortega A. Glutamate transporters: Critical components of glutamatergic transmission. Neuropharmacology 2021; 192:108602. [PMID: 33991564 DOI: 10.1016/j.neuropharm.2021.108602] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the vertebrate central nervous system. Once released, it binds to specific membrane receptors and transporters activating a wide variety of signal transduction cascades, as well as its removal from the synaptic cleft in order to avoid its extracellular accumulation and the overstimulation of extra-synaptic receptors that might result in neuronal death through a process known as excitotoxicity. Although neurodegenerative diseases are heterogenous in clinical phenotypes and genetic etiologies, a fundamental mechanism involved in neuronal degeneration is excitotoxicity. Glutamate homeostasis is critical for brain physiology and Glutamate transporters are key players in maintaining low extracellular Glutamate levels. Therefore, the characterization of Glutamate transporters has been an active area of glutamatergic research for the last 40 years. Transporter activity its regulated at different levels: transcriptional and translational control, transporter protein trafficking and membrane mobility, and through extensive post-translational modifications. The elucidation of these mechanisms has emerged as an important piece to shape our current understanding of glutamate actions in the nervous system.
Collapse
Affiliation(s)
- Ada G Rodríguez-Campuzano
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico.
| |
Collapse
|
6
|
PKN1 promotes synapse maturation by inhibiting mGluR-dependent silencing through neuronal glutamate transporter activation. Commun Biol 2020; 3:710. [PMID: 33244074 PMCID: PMC7691520 DOI: 10.1038/s42003-020-01435-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 10/28/2020] [Indexed: 12/25/2022] Open
Abstract
Abnormal metabotropic glutamate receptor (mGluR) activity could cause brain disorders; however, its regulation has not yet been fully understood. Here, we report that protein kinase N1 (PKN1), a protein kinase expressed predominantly in neurons in the brain, normalizes group 1 mGluR function by upregulating a neuronal glutamate transporter, excitatory amino acid transporter 3 (EAAT3), and supports silent synapse activation. Knocking out PKN1a, the dominant PKN1 subtype in the brain, unmasked abnormal input-nonspecific mGluR-dependent long-term depression (mGluR-LTD) and AMPA receptor (AMPAR) silencing in the developing hippocampus. mGluR-LTD was mimicked by inhibiting glutamate transporters in wild-type mice. Knocking out PKN1a decreased hippocampal EAAT3 expression and PKN1 inhibition reduced glutamate uptake through EAAT3. Also, synaptic transmission was immature; there were more silent synapses and fewer spines with shorter postsynaptic densities in PKN1a knockout mice than in wild-type mice. Thus, PKN1 plays a critical role in regulation of synaptic maturation by upregulating EAAT3 expression. Generating mice lacking protein kinase N1 (PKN1), Yasuda et al. find that PKN1 loss leads to abnormal input-nonspecific mGluR-dependent long-term depression. The authors also observe reduced glutamate uptake and immature synaptic transmission, suggesting an important role for PKN1 in synapse maturation.
Collapse
|
7
|
O'Connor M, Shentu YP, Wang G, Hu WT, Xu ZD, Wang XC, Liu R, Man HY. Acetylation of AMPA Receptors Regulates Receptor Trafficking and Rescues Memory Deficits in Alzheimer's Disease. iScience 2020; 23:101465. [PMID: 32861999 PMCID: PMC7476873 DOI: 10.1016/j.isci.2020.101465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/21/2020] [Accepted: 08/13/2020] [Indexed: 12/26/2022] Open
Abstract
In Alzheimer's disease (AD), decreases in the amount and synaptic localization of AMPA receptors (AMPARs) result in weakened synaptic activity and dysfunction in synaptic plasticity, leading to impairments in cognitive functions. We have previously found that AMPARs are subject to lysine acetylation, resulting in higher AMPAR stability and protein accumulation. Here we report that AMPAR acetylation was significantly reduced in AD and neurons with Aβ incubation. We identified p300 as the acetyltransferase responsible for AMPAR acetylation and found that enhancing GluA1 acetylation ameliorated Aβ-induced reductions in total and cell-surface AMPARs. Importantly, expression of acetylation mimetic GluA1 (GluA1-4KQ) in APP/PS1 mice rescued impairments in synaptic plasticity and memory. These findings indicate that Aβ-induced reduction in AMPAR acetylation and stability contributes to synaptopathy and memory deficiency in AD, suggesting that AMPAR acetylation may be an effective molecular target for AD therapeutics.
Collapse
Affiliation(s)
- Margaret O'Connor
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Yang-Ping Shentu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guan Wang
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Wen-Ting Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhen-Dong Xu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao-Chuan Wang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Heng-Ye Man
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 72 East Concord St., L-603, Boston, MA 02118, USA
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, MA, USA
| |
Collapse
|
8
|
Escobar AP, Wendland JR, Chávez AE, Moya PR. The Neuronal Glutamate Transporter EAAT3 in Obsessive-Compulsive Disorder. Front Pharmacol 2019; 10:1362. [PMID: 31803055 PMCID: PMC6872633 DOI: 10.3389/fphar.2019.01362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/28/2019] [Indexed: 01/03/2023] Open
Abstract
Obsessive compulsive disorder (OCD) is a heterogeneous psychiatric disorder affecting 1%–3% of the population worldwide. About half of OCD afflicted individuals do not respond to currently available pharmacotherapy, which is mainly based on serotonin reuptake inhibition. Therefore, there is a critical need to search novel and improved therapeutic targets to treat this devastating disorder. In recent years, accumulating evidence has supported the glutamatergic hypothesis of OCD, and particularly pointing a potential role for the neuronal glutamate transporter EAAT3. This mini-review summarizes recent findings regarding the neurobiological basis of OCD, with an emphasis on the glutamatergic neurotransmission and EAAT3 as a key player in OCD etiology.
Collapse
Affiliation(s)
- Angélica P Escobar
- Centro Interdisciplinario de Neurociencia de Valparaíso CINV, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jens R Wendland
- Centro Interdisciplinario de Neurociencia de Valparaíso CINV, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Andrés E Chávez
- Centro Interdisciplinario de Neurociencia de Valparaíso CINV, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Pablo R Moya
- Centro Interdisciplinario de Neurociencia de Valparaíso CINV, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.,Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| |
Collapse
|
9
|
Wu P, Bjørn-Yoshimoto WE, Staudt M, Jensen AA, Bunch L. Identification and Structure-Activity Relationship Study of Imidazo[1,2- a]pyridine-3-amines as First Selective Inhibitors of Excitatory Amino Acid Transporter Subtype 3 (EAAT3). ACS Chem Neurosci 2019; 10:4414-4429. [PMID: 31573179 DOI: 10.1021/acschemneuro.9b00447] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In the present study, screening of a library of 49,087 compounds at the excitatory amino acid transporter subtype 3 (EAAT3) led to the identification of 2-(furan-2-yl)-8-methyl-N-(o-tolyl)imidazo[1,2-a]pyridin-3-amine (3a) which showed a >20-fold preference for inhibition of EAAT3 (IC50 = 13 μM) over EAAT1,2,4 (EAAT1: IC50 ∼ 250 μM; EAAT2,4: IC50 > 250 μM). It was shown that a small lipophilic substituent (methyl or bromine) at the 7- and/or 8-position was essential for activity. Furthermore, the substitution pattern of the o-tolyl group (compound 5b) and the chemical nature of the substituent in the 2-position (compound 7b) were shown to be essential for the selectivity toward EAAT3 over EAAT1,2. The most prominent analogues to come out of this study are 3a and 3e that display ∼35-fold selectivity for EAAT3 (IC50 = 7.2 μM) over EAAT1,2,4 (IC50 ∼ 250 μM).
Collapse
Affiliation(s)
- Peng Wu
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Walden E. Bjørn-Yoshimoto
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Markus Staudt
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Anders A. Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Lennart Bunch
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
| |
Collapse
|
10
|
Liu YJ, Chen J, Li X, Zhou X, Hu YM, Chu SF, Peng Y, Chen NH. Research progress on adenosine in central nervous system diseases. CNS Neurosci Ther 2019; 25:899-910. [PMID: 31334608 PMCID: PMC6698970 DOI: 10.1111/cns.13190] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 06/06/2019] [Accepted: 06/14/2019] [Indexed: 01/04/2023] Open
Abstract
As an endogenous neuroprotectant agent, adenosine is extensively distributed and is particularly abundant in the central nervous system (CNS). Under physiological conditions, the concentration of adenosine is low intra- and extracellularly, but increases significantly in response to stress. The majority of adenosine functions are receptor-mediated, and primarily include the A1, A2A, A2B, and A3 receptors (A1R, A2AR, A2BR, and A3R). Adenosine is currently widely used in the treatment of diseases of the CNS and the cardiovascular systems, and the mechanisms are related to the disease types, disease locations, and the adenosine receptors distribution in the CNS. For example, the main infarction sites of cerebral ischemia are cortex and striatum, which have high levels of A1 and A2A receptors. Cerebral ischemia is manifested with A1R decrease and A2AR increase, as well as reduction in the A1R-mediated inhibitory processes and enhancement of the A2AR-mediated excitatory process. Adenosine receptor dysfunction is also involved in the pathology of Alzheimer's disease (AD), depression, and epilepsy. Thus, the adenosine receptor balance theory is important for brain disease treatment. The concentration of adenosine can be increased by endogenous or exogenous pathways due to its short half-life and high inactivation properties. Therefore, we will discuss the function of adenosine and its receptors, adenosine formation, and metabolism, and its role for the treatment of CNS diseases (such as cerebral ischemia, AD, depression, Parkinson's disease, epilepsy, and sleep disorders). This article will provide a scientific basis for the development of novel adenosine derivatives through adenosine structure modification, which will lead to experimental applications.
Collapse
Affiliation(s)
- Ying-Jiao Liu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Material Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China
| | - Jiao Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Material Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xun Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.,Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China
| | - Xin Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Material Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yao-Mei Hu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.,Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Material Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ye Peng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.,Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China
| | - Nai-Hong Chen
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Material Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China
| |
Collapse
|
11
|
Zhang Y, Guo O, Huo Y, Wang G, Man HY. Amyloid-β Induces AMPA Receptor Ubiquitination and Degradation in Primary Neurons and Human Brains of Alzheimer's Disease. J Alzheimers Dis 2019; 62:1789-1801. [PMID: 29614651 DOI: 10.3233/jad-170879] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
As the primary mediator for synaptic transmission, AMPA receptors (AMPARs) are crucial for synaptic plasticity and higher brain functions. A downregulation of AMPAR expression has been indicated as one of the early pathological molecular alterations in Alzheimer's disease (AD), presumably via amyloid-β (Aβ). However, the molecular mechanisms leading to the loss of AMPARs remain less clear. We report that in primary neurons, application of Aβ triggers AMPAR internalization accompanied with a decrease in cell-surface AMPAR expression. Importantly, in both Aβ-treated neurons and human brain tissue from AD patients, we observed a significant decrease in total AMPAR amount and an enhancement in AMPAR ubiquitination. Consistent with facilitated receptor degradation, AMPARs show higher turnover rates in the presence of Aβ. Furthermore, AD brain lysates and Aβ-incubated neurons show increased expression of the AMPAR E3 ligase Nedd4 and decreased expression of AMPAR deubiquitinase USP46. Changes in these enzymes are responsible for the Aβ-dependent AMPAR reduction. These findings indicate that AMPAR ubiquitination acts as the key molecular event leading to the loss of AMPARs and thus suppressed synaptic transmission in AD.
Collapse
Affiliation(s)
- Yanmin Zhang
- Department of Biology, Boston University, Boston, MA, USA.,Department of Histology and Embryology, Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Ouyang Guo
- Department of Biology, Boston University, Boston, MA, USA
| | - Yuda Huo
- Department of Biology, Boston University, Boston, MA, USA
| | - Guan Wang
- Department of Biology, Boston University, Boston, MA, USA
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA, USA.,Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
12
|
Schulz D, Morschel J, Schuster S, Eulenburg V, Gomeza J. Inactivation of the Mouse L-Proline Transporter PROT Alters Glutamatergic Synapse Biochemistry and Perturbs Behaviors Required to Respond to Environmental Changes. Front Mol Neurosci 2018; 11:279. [PMID: 30177871 PMCID: PMC6110171 DOI: 10.3389/fnmol.2018.00279] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
The endogenous neutral amino acid L-proline exhibits a variety of physiological and behavioral actions in the nervous system, highlighting the importance of accurately regulating its extracellular abundance. The L-proline transporter PROT (Slc6A7) is believed to control the spatial and temporal distribution of L-proline at glutamatergic synapses by rapid uptake of this amino acid into presynaptic terminals. Despite the importance of members of the Slc6 transporter family regulating neurotransmitter signaling and homeostasis in brain, evidence that PROT dysfunction supports risk for mental illness is lacking. Here we report the disruption of the PROT gene by homologous recombination. Mice defective in PROT displayed altered expression of glutamate transmission-related synaptic proteins in cortex and thalamus. PROT deficiency perturbed mouse behavior, such as reduced locomotor activity, decreased approach motivation and impaired memory extinction. Thus, our study demonstrates that PROT regulates behaviors that are needed to respond to environmental changes in vivo and suggests that PROT dysfunctions might contribute to mental disorders showing altered response choice following task contingency changes.
Collapse
Affiliation(s)
- Daniel Schulz
- Institute for Pharmaceutical Biology, University of Bonn Bonn, Germany
| | - Julia Morschel
- Institute for Pharmaceutical Biology, University of Bonn Bonn, Germany
| | - Stefanie Schuster
- Institute of Biochemistry, University of Erlangen-Nuremberg Erlangen, Germany
| | - Volker Eulenburg
- Institute of Biochemistry, University of Erlangen-Nuremberg Erlangen, Germany.,Department of Anesthesiology and Intensive Care Medicine, University of Leipzig Leipzig, Germany
| | - Jesús Gomeza
- Institute for Pharmaceutical Biology, University of Bonn Bonn, Germany
| |
Collapse
|
13
|
González LF, Henríquez-Belmar F, Delgado-Acevedo C, Cisternas-Olmedo M, Arriagada G, Sotomayor-Zárate R, Murphy DL, Moya PR. Neurochemical and behavioral characterization of neuronal glutamate transporter EAAT3 heterozygous mice. Biol Res 2017; 50:29. [PMID: 28927446 PMCID: PMC5605982 DOI: 10.1186/s40659-017-0138-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/11/2017] [Indexed: 12/23/2022] Open
Abstract
Background Obsessive–compulsive disorder (OCD) is a severe neuropsychiatric condition affecting 1–3% of the worldwide population. OCD has a strong genetic component, and the SLC1A1 gene that encodes neuronal glutamate transporter EAAT3 is a strong candidate for this disorder. To evaluate the impact of reduced EAAT3 expression in vivo, we studied male EAAT3 heterozygous and wild-type littermate mice using a battery of behavioral paradigms relevant to anxiety (open field test, elevated plus maze) and compulsivity (marble burying), as well as locomotor activity induced by amphetamine. Using high-performance liquid chromatography, we also determined tissue neurotransmitter levels in cortex, striatum and thalamus—brain areas that are relevant to OCD. Results Compared to wild-type littermates, EAAT3 heterozygous male mice have unaltered baseline anxiety-like, compulsive-like behavior and locomotor activity. Administration of acute amphetamine (5 mg/kg intraperitoneally) increased locomotion with no differences across genotypes. Tissue levels of glutamate, GABA, dopamine and serotonin did not vary between EAAT3 heterozygous and wild-type mice. Conclusions Our results indicate that reduced EAAT3 expression does not impact neurotransmitter content in the corticostriatal circuit nor alter anxiety or compulsive-like behaviors. Electronic supplementary material The online version of this article (doi:10.1186/s40659-017-0138-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luis F González
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Plasticidad Cerebral, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.,Laboratorio de Neurogenética, Centro de Neurobiología y Plasticidad Cerebral, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Francisca Henríquez-Belmar
- Laboratorio de Neurogenética, Centro de Neurobiología y Plasticidad Cerebral, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.,Núcleo Milenio Nu-MIND Biology of Neuropsychiatric Disorders, Valparaíso, Chile
| | - Claudia Delgado-Acevedo
- Laboratorio de Neurogenética, Centro de Neurobiología y Plasticidad Cerebral, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.,Núcleo Milenio Nu-MIND Biology of Neuropsychiatric Disorders, Valparaíso, Chile
| | - Marisol Cisternas-Olmedo
- Laboratorio de Neurogenética, Centro de Neurobiología y Plasticidad Cerebral, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.,Núcleo Milenio Nu-MIND Biology of Neuropsychiatric Disorders, Valparaíso, Chile
| | - Gloria Arriagada
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Viña del Mar, Chile
| | - Ramón Sotomayor-Zárate
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Plasticidad Cerebral, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Dennis L Murphy
- Laboratory of Clinical Science, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Pablo R Moya
- Laboratorio de Neurogenética, Centro de Neurobiología y Plasticidad Cerebral, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile. .,Núcleo Milenio Nu-MIND Biology of Neuropsychiatric Disorders, Valparaíso, Chile. .,Centro Interdisciplinario de Neurociencias de Valparaíso CINV, Valparaíso, Chile.
| |
Collapse
|
14
|
Sub-anesthetic doses of ketamine exert antidepressant-like effects and upregulate the expression of glutamate transporters in the hippocampus of rats. Neurosci Lett 2016; 639:132-137. [PMID: 28043834 DOI: 10.1016/j.neulet.2016.12.070] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 12/19/2016] [Accepted: 12/29/2016] [Indexed: 12/23/2022]
Abstract
Clinical studies on the role of the glutamatergic system in the pathogenesis of depression found that ketamine induces an antidepressant response, but the molecular mechanisms remain unclear. The present study investigated the effects of sub-anesthetic doses of ketamine on the glutamate reuptake function in the rat hippocampus. Chronic unpredictable mild stress (CUMS) was applied to construct animal models of depression. Sixty adult male Sprague-Dawley rats were randomly assigned to 5 groups and received a different regimen of CUMS and ketamine (10, 25, and 50mg/kg) treatment. The sucrose preference test and open-field test were used to assess behavioral changes. The expression levels of excitatory amino acid transporters (EAATs) were measured by western blot. Microdialysis and high-performance liquid chromatography (HPLC) were used to detect hippocampal glutamate concentrations. We found that the expression of EAAT2 and EAAT3 were obviously downregulated, and extracellular concentrations of glutamate were significantly increased in the hippocampi of depressive-like rats. Ketamine (10, 25, and 50mg/kg) upregulated the expression of EAAT2 and EAAT3, decreased the hippocampal concentration of extracellular glutamate, and alleviated the rats' depressive-like behavior. The antidepressant effect of ketamine may be linked to the regulation of EAAT expression and the enhancement of glutamate uptake in the hippocampus of depressive-like rats.
Collapse
|
15
|
Bjørn-Yoshimoto WE, Underhill SM. The importance of the excitatory amino acid transporter 3 (EAAT3). Neurochem Int 2016; 98:4-18. [PMID: 27233497 DOI: 10.1016/j.neuint.2016.05.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 05/09/2016] [Accepted: 05/17/2016] [Indexed: 12/21/2022]
Abstract
The neuronal excitatory amino acid transporter 3 (EAAT3) is fairly ubiquitously expressed in the brain, though it does not necessarily maintain the same function everywhere. It is important in maintaining low local concentrations of glutamate, where its predominant post-synaptic localization can buffer nearby glutamate receptors and modulate excitatory neurotransmission and synaptic plasticity. It is also the main neuronal cysteine uptake system acting as the rate-limiting factor for the synthesis of glutathione, a potent antioxidant, in EAAT3 expressing neurons, while on GABAergic neurons, it is important in supplying glutamate as a precursor for GABA synthesis. Several diseases implicate EAAT3, and modulation of this transporter could prove a useful therapeutic approach. Regulation of EAAT3 could be targeted at several points for functional modulation, including the level of transcription, trafficking and direct pharmacological modulation, and indeed, compounds and experimental treatments have been identified that regulate EAAT3 function at different stages, which together with observations of EAAT3 regulation in patients is giving us insight into the endogenous function of this transporter, as well as the consequences of altered function. This review summarizes work done on elucidating the role and regulation of EAAT3.
Collapse
Affiliation(s)
- Walden E Bjørn-Yoshimoto
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 København Ø, Denmark
| | - Suzanne M Underhill
- National Institute of Mental Health, National Institutes of Health, 35 Convent Drive Room 3A: 210 MSC3742, Bethesda, MD 20892-3742, USA.
| |
Collapse
|
16
|
Meeker KD, Meabon JS, Cook DG. Partial Loss of the Glutamate Transporter GLT-1 Alters Brain Akt and Insulin Signaling in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2016; 45:509-20. [PMID: 25589729 DOI: 10.3233/jad-142304] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The glutamate transporter GLT-1 (also called EAAT2 in humans) plays a critical role in regulating extracellular glutamate levels in the central nervous system (CNS). In Alzheimer's disease (AD), EAAT2 loss is associated with neuropathology and cognitive impairment. In keeping with this, we have reported that partial GLT-1 loss (GLT-1+/-) causes early-occurring cognitive deficits in mice harboring familial AD AβPPswe/PS1ΔE9 mutations. GLT-1 plays important roles in several molecular pathways that regulate brain metabolism, including Akt and insulin signaling in astrocytes. Significantly, AD pathogenesis also involves chronic Akt activation and reduced insulin signaling in the CNS. In this report we tested the hypothesis that GLT-1 heterozygosity (which reduces GLT-1 to levels that are comparable to losses in AD patients) in AβPPswe/PS1ΔE9 mice would induce sustained activation of Akt and disturb components of the CNS insulin signaling cascade. We found that partial GLT-1 loss chronically increased Akt activation (reflected by increased phosphorylation at serine 473), impaired insulin signaling (reflected by decreased IRβ phosphorylation of tyrosines 1150/1151 and increased IRS-1 phosphorylation at serines 632/635 - denoted as 636/639 in humans), and reduced insulin degrading enzyme (IDE) activity in brains of mice expressing familial AβPPswe/PS1ΔE9 AD mutations. GLT-1 loss also caused an apparent compensatory increase in IDE activity in the liver, an organ that has been shown to regulate peripheral amyloid-β levels and expresses GLT-1. Taken together, these findings demonstrate that partial GLT-1 loss can cause insulin/Akt signaling abnormalities that are in keeping with those observed in AD.
Collapse
Affiliation(s)
- Kole D Meeker
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System (VAPSHCS), Seattle, WA, USA
| | - James S Meabon
- Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Puget Sound Health Care System (VAPSHCS), Seattle, WA, USA Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - David G Cook
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System (VAPSHCS), Seattle, WA, USA Division of Gerontology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
17
|
Neurophysiological and Neurochemical Mechanisms Underlying Depression Disorders and Search for New Directions of Treatment. NEUROPHYSIOLOGY+ 2015. [DOI: 10.1007/s11062-015-9542-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Brain extracellular matrix retains connectivity in neuronal networks. Sci Rep 2015; 5:14527. [PMID: 26417723 PMCID: PMC4586818 DOI: 10.1038/srep14527] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 08/24/2015] [Indexed: 11/08/2022] Open
Abstract
The formation and maintenance of connectivity are critically important for the processing and storage of information in neuronal networks. The brain extracellular matrix (ECM) appears during postnatal development and surrounds most neurons in the adult mammalian brain. Importantly, the removal of the ECM was shown to improve plasticity and post-traumatic recovery in the CNS, but little is known about the mechanisms. Here, we investigated the role of the ECM in the regulation of the network activity in dissociated hippocampal cultures grown on microelectrode arrays (MEAs). We found that enzymatic removal of the ECM in mature cultures led to transient enhancement of neuronal activity, but prevented disinhibition-induced hyperexcitability that was evident in age-matched control cultures with intact ECM. Furthermore, the ECM degradation followed by disinhibition strongly affected the network interaction so that it strongly resembled the juvenile pattern seen in naïve developing cultures. Taken together, our results demonstrate that the ECM plays an important role in retention of existing connectivity in mature neuronal networks that can be exerted through synaptic confinement of glutamate. On the other hand, removal of the ECM can play a permissive role in modification of connectivity and adaptive exploration of novel network architecture.
Collapse
|
19
|
GluN2B-Containing NMDA Receptors Regulate AMPA Receptor Traffic through Anchoring of the Synaptic Proteasome. J Neurosci 2015; 35:8462-79. [PMID: 26041915 DOI: 10.1523/jneurosci.3567-14.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NMDA receptors play a central role in shaping the strength of synaptic connections throughout development and in mediating synaptic plasticity mechanisms that underlie some forms of learning and memory formation in the CNS. In the hippocampus and the neocortex, GluN1 is combined primarily with GluN2A and GluN2B, which are differentially expressed during development and confer distinct molecular and physiological properties to NMDA receptors. The contribution of each subunit to the synaptic traffic of NMDA receptors and therefore to their role during development and in synaptic plasticity is still controversial. We report a critical role for the GluN2B subunit in regulating NMDA receptor synaptic targeting. In the absence of GluN2B, the synaptic levels of AMPA receptors are increased and accompanied by decreased constitutive endocytosis of GluA1-AMPA receptor. We used quantitative proteomic analysis to identify changes in the composition of postsynaptic densities from GluN2B(-/-) mouse primary neuronal cultures and found altered levels of several ubiquitin proteasome system components, in particular decreased levels of proteasome subunits. Enhancing the proteasome activity with a novel proteasome activator restored the synaptic levels of AMPA receptors in GluN2B(-/-) neurons and their endocytosis, revealing that GluN2B-mediated anchoring of the synaptic proteasome is responsible for fine tuning AMPA receptor synaptic levels under basal conditions.
Collapse
|
20
|
Conantokin-G attenuates detrimental effects of NMDAR hyperactivity in an ischemic rat model of stroke. PLoS One 2015; 10:e0122840. [PMID: 25822337 PMCID: PMC4379059 DOI: 10.1371/journal.pone.0122840] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 02/24/2015] [Indexed: 12/31/2022] Open
Abstract
The neuroprotective activity of conantokin-G (con-G), a naturally occurring antagonist of N-methyl-D-aspartate receptors (NMDAR), was neurologically and histologically compared in the core and peri-infarct regions after ischemia/reperfusion brain injury in male Sprague-Dawley rats. The contralateral regions served as robust internal controls. Intrathecal injection of con-G, post-middle carotid artery occlusion (MCAO), caused a dramatic decrease in brain infarct size and swelling at 4 hr, compared to 26 hr, and significant recovery of neurological deficits was observed at 26 hr. Administration of con-G facilitated neuronal recovery in the peri-infarct regions as observed by decreased neurodegeneration and diminished calcium microdeposits at 4 hr and 26 hr. Intact Microtubule Associated Protein (MAP2) staining and neuronal cytoarchitecture was observed in the peri-infarct regions of con-G treated rats at both timepoints. Con-G restored localization of GluN1 and GluN2B subunits in the neuronal soma, but not that of GluN2A, which was perinuclear in the peri-infarct regions at 4 hr and 26 hr. This suggests that molecular targeting of the GluN2B subunit has potential for reducing detrimental consequences of ischemia. Overall, the data demonstrated that stroke-induced NMDAR excitoxicity is ameliorated by con-G-mediated repair of neurological and neuroarchitectural deficits, as well as by reconstituting neuronal localization of GluN1 and GluN2B subunits in the peri-infarct region of the stroked brain.
Collapse
|
21
|
Jensen AA, Fahlke C, Bjørn-Yoshimoto WE, Bunch L. Excitatory amino acid transporters: recent insights into molecular mechanisms, novel modes of modulation and new therapeutic possibilities. Curr Opin Pharmacol 2014; 20:116-23. [PMID: 25466154 DOI: 10.1016/j.coph.2014.10.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/05/2014] [Accepted: 10/21/2014] [Indexed: 11/24/2022]
Abstract
The five excitatory amino acid transporters (EAAT1-5) mediating the synaptic uptake of the major excitatory neurotransmitter glutamate are differently expressed throughout the CNS and at the synaptic level. Although EAATs are crucial for normal excitatory neurotransmission, explorations into the physiological functions mediated by the different transporter subtypes and their respective therapeutic potential have so far been sparse, in no small part due to the limited selection of pharmacological tools available. In the present update, we outline important new insights into the molecular compositions of EAATs and their intricate transport process, the novel approaches to pharmacological modulation of the transporters that have emerged, and interesting new perspectives in EAAT as drug targets proposed in recent years.
Collapse
Affiliation(s)
- Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen OE, Denmark.
| | - Christoph Fahlke
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, Germany
| | - Walden E Bjørn-Yoshimoto
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen OE, Denmark
| | - Lennart Bunch
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen OE, Denmark
| |
Collapse
|
22
|
Lin A, Man HY. Endocytic adaptor epidermal growth factor receptor substrate 15 (Eps15) is involved in the trafficking of ubiquitinated α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. J Biol Chem 2014; 289:24652-64. [PMID: 25023288 DOI: 10.1074/jbc.m114.582114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AMPA-type glutamate receptors (AMPARs) play a critical role in mediating fast excitatory synaptic transmission in the brain. Alterations in receptor expression, distribution, and trafficking have been shown to underlie synaptic plasticity and higher brain functions, including learning and memory, as well as brain dysfunctions such as drug addiction and psychological disorders. Therefore, it is essential to elucidate the molecular mechanisms that regulate AMPAR dynamics. We have shown previously that mammalian AMPARs are subject to posttranslational modification by ubiquitin, with AMPAR ubiquitination enhancing receptor internalization and reducing AMPAR cell surface expression. Here we report a crucial role for epidermal growth factor receptor substrate 15 (Eps15), an endocytic adaptor, in ubiquitination-dependent AMPAR internalization. We find that suppression or overexpression of Eps15 results in changes in AMPAR surface expression. Eps15 interacts with AMPARs, which requires Nedd4-mediated GluA1 ubiquitination and the ubiquitin-interacting motif of Eps15. Importantly, we find that Eps15 plays an important role in AMPAR internalization. Knockdown of Eps15 suppresses the internalization of GluA1 but not the mutant GluA1 that lacks ubiquitination sites, indicating a role of Eps15 for the internalization of ubiquitinated AMPARs. These results reveal a novel molecular mechanism employed specifically for the trafficking of the ubiquitin-modified AMPARs.
Collapse
Affiliation(s)
- Amy Lin
- From the Department of Biology, Boston University, Boston, Massachusetts 02215
| | - Heng-Ye Man
- From the Department of Biology, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
23
|
Khatri N, Man HY. Synaptic activity and bioenergy homeostasis: implications in brain trauma and neurodegenerative diseases. Front Neurol 2013; 4:199. [PMID: 24376435 PMCID: PMC3858785 DOI: 10.3389/fneur.2013.00199] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/26/2013] [Indexed: 12/14/2022] Open
Abstract
Powered by glucose metabolism, the brain is the most energy-demanding organ in our body. Adequate ATP production and regulation of the metabolic processes are essential for the maintenance of synaptic transmission and neuronal function. Glutamatergic synaptic activity utilizes the largest portion of bioenergy for synaptic events including neurotransmitter synthesis, vesicle recycling, and most importantly, the postsynaptic activities leading to channel activation and rebalancing of ionic gradients. Bioenergy homeostasis is coupled with synaptic function via activities of the sodium pumps, glutamate transporters, glucose transport, and mitochondria translocation. Energy insufficiency is sensed by the AMP-activated protein kinase (AMPK), a master metabolic regulator that stimulates the catalytic process to enhance energy production. A decline in energy supply and a disruption in bioenergy homeostasis play a critical role in multiple neuropathological conditions including ischemia, stroke, and neurodegenerative diseases including Alzheimer’s disease and traumatic brain injuries.
Collapse
Affiliation(s)
- Natasha Khatri
- Department of Biology, Boston University , Boston, MA , USA ; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine , Boston, MA , USA
| | - Heng-Ye Man
- Department of Biology, Boston University , Boston, MA , USA ; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine , Boston, MA , USA
| |
Collapse
|
24
|
Hypofunction of glutamatergic neurotransmission in the periaqueductal gray contributes to nerve-injury-induced neuropathic pain. J Neurosci 2013; 33:7825-36. [PMID: 23637174 DOI: 10.1523/jneurosci.5583-12.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neuropathic pain, a chronic pain due to neuronal lesion, remains unaltered even after the injury-induced spinal afferent discharges have declined, suggesting an involvement of supraspinal dysfunction. The midbrain ventrolateral periaqueductal gray (vlPAG) is known to be a crucial supraspinal region for initiating descending pain inhibition, but its role in neuropathic pain remains unclear. Therefore, here we examined neuroplastic changes in the vlPAG of midbrain slices isolated from neuropathic rats induced by L5/L6 spinal nerve ligation (SNL) via electrophysiological and neurochemical approaches. Significant mechanical hypersensitivity was induced in rats 2 d after SNL and lasted for >14 d. Compared with the sham-operated group, vlPAG slices from neuropathic rats 3 and 10 days after SNL displayed smaller EPSCs with prolonged latency, less frequent and smaller miniature EPSCs, higher paired-pulse ratio of EPSCs, smaller AMPAR-mediated EPSCs, smaller AMPA currents, greater NMDAR-mediated EPSCs, greater NMDA currents, lower AMPAR-mediated/NMDAR-mediated ratios, and upregulation of the NR1 and NR2B subunits, but not the NR2A, GluR1, or GluR2 subunits, of glutamate receptors. There were no significant differences between day 3 and day 10 neuropathic groups. These results suggest that SNL leads to hypoglutamatergic neurotransmission in the vlPAG resulting from both presynaptic and postsynaptic mechanisms. Upregulation of NMDARs might contribute to hypofunction of AMPARs via subcellular redistribution. Long-term hypoglutamatergic function in the vlPAG may lead to persistent reduction of descending pain inhibition, resulting in chronic neuropathic pain.
Collapse
|
25
|
The density of EAAC1 (EAAT3) glutamate transporters expressed by neurons in the mammalian CNS. J Neurosci 2012; 32:6000-13. [PMID: 22539860 DOI: 10.1523/jneurosci.5347-11.2012] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The extracellular levels of excitatory amino acids are kept low by the action of the glutamate transporters. Glutamate/aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) are the most abundant subtypes and are essential for the functioning of the mammalian CNS, but the contribution of the EAAC1 subtype in the clearance of synaptic glutamate has remained controversial, because the density of this transporter in different tissues has not been determined. We used purified EAAC1 protein as a standard during immunoblotting to measure the concentration of EAAC1 in different CNS regions. The highest EAAC1 levels were found in the young adult rat hippocampus. Here, the concentration of EAAC1 was ∼0.013 mg/g tissue (∼130 molecules μm⁻³), 100 times lower than that of GLT-1. Unlike GLT-1 expression, which increases in parallel with circuit formation, only minor changes in the concentration of EAAC1 were observed from E18 to adulthood. In hippocampal slices, photolysis of MNI-D-aspartate (4-methoxy-7-nitroindolinyl-D-aspartate) failed to elicit EAAC1-mediated transporter currents in CA1 pyramidal neurons, and D-aspartate uptake was not detected electron microscopically in spines. Using EAAC1 knock-out mice as negative controls to establish antibody specificity, we show that these relatively small amounts of EAAC1 protein are widely distributed in somata and dendrites of all hippocampal neurons. These findings raise new questions about how so few transporters can influence the activation of NMDA receptors at excitatory synapses.
Collapse
|
26
|
Foo K, Blumenthal L, Man HY. Regulation of neuronal bioenergy homeostasis by glutamate. Neurochem Int 2012; 61:389-96. [PMID: 22709672 DOI: 10.1016/j.neuint.2012.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 06/07/2012] [Accepted: 06/08/2012] [Indexed: 01/24/2023]
Abstract
Bioenergy homeostasis is crucial in maintaining normal cell function and survival and it is thus important to understand cellular mechanisms underlying its regulation. Neurons use a large amount of ATP to maintain membrane potential and synaptic communication, making the brain the most energy consuming organ in the body. Glutamate mediates a large majority of synaptic transmission which is responsible for the expression of neural plasticity and higher brain functions. Most of the energy cost is attributable to the glutamatergic system; under pathological conditions such as stroke and brain ischemia, neural energy depletion is accompanied by a massive release of glutamate. However, the specific cellular processes implicated in glutamate-dependent bioenergy dynamics are not well understood. We find that glutamate induces a rapid and dramatic reduction of ATP levels in neurons, through reduced ATP genesis and elevated consumption. ATP reduction depends on NMDA receptor activity, but is not a result of neuronal firing, gap junction-mediated leaking or intracellular signaling. Similar changes in ATP levels are also induced by synaptic glutamate accumulation following suppression of glutamate transporter activity. Furthermore, the glutamate-induced ATP down-regulation is blocked by the sodium pump inhibitor ouabain, suggesting the sodium pump as the primary energy consumer during glutamate stimulation. These data suggest the important role of glutamate in the control of cellular ATP homeostasis.
Collapse
Affiliation(s)
- Katrina Foo
- Department of Biology, Boston University, 5 Cummington St., Boston, MA 02215, USA
| | | | | |
Collapse
|