1
|
Lin FX, Gu HY, He W. MAPK signaling pathway in spinal cord injury: Mechanisms and therapeutic potential. Exp Neurol 2025; 383:115043. [PMID: 39522804 DOI: 10.1016/j.expneurol.2024.115043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Spinal cord injury (SCI) is a severe disabling injury of the central nervous system that can lead to motor, sensory, and autonomic dysfunction below the level of the injury. According to its pathophysiological process, SCI can be divided into primary injury and secondary injury. Currently, multiple therapeutic strategies have been proposed to alleviate secondary injury and overcome the occurrence of neurodegenerative events. Although current treatment modalities have achieved varying degrees of success, they cannot effectively intervene or treat its pathological processes, which may be due to the complex treatment and protection mechanisms involved. Research has confirmed that signaling pathways play a crucial role in the pathological processes of SCI and the mechanisms of neuronal recovery. Mitogen-activated protein kinase (MAPK) signaling pathway plays a crucial role in neuronal differentiation, growth, survival and axon regeneration after central nervous system injury. Meanwhile, the MAPK signaling pathway is an important pathway closely related to the pathological processes of SCI. The MAPK signaling pathway is abnormally activated after SCI, and inhibiting the activity of MAPK pathway can effectively inhibit inflammation, oxidative stress, pain and apoptosis to promote the recovery of nerve function after SCI. Based on the role of the MAPK pathway in SCI, it may be a potential therapeutic target. This article summarizes the role and mechanism of MAPK pathway in SCI, and discusses the shortcomings and shortcomings of MAPK pathway in SCI field, as well as the potential challenges of targeting MAPK pathway in SCI treatment strategies. This article aims to elucidate the mechanism of the MAPK pathway in SCI to emphasize the role of targeting the MAPK pathway in the treatment of SCI, providing a theoretical basis for the MAPK pathway as a potential therapeutic target for SCI treatment.
Collapse
Affiliation(s)
- Fei-Xiang Lin
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China
| | - Hou-Yun Gu
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China
| | - Wei He
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China.
| |
Collapse
|
2
|
van de Wetering R, Bibi R, Biggerstaff A, Hong S, Pengelly B, Prisinzano TE, La Flamme AC, Kivell BM. Nalfurafine promotes myelination in vitro and facilitates recovery from cuprizone + rapamycin-induced demyelination in mice. Glia 2024; 72:1801-1820. [PMID: 38899723 DOI: 10.1002/glia.24583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
The kappa opioid receptor has been identified as a promising therapeutic target for promoting remyelination. In the current study, we evaluated the ability of nalfurafine to promote oligodendrocyte progenitor cell (OPC) differentiation and myelination in vitro, and its efficacy in an extended, cuprizone-induced demyelination model. Primary mouse (C57BL/6J) OPC-containing cultures were treated with nalfurafine (0.6-200 nM), clemastine (0.01-100 μM), T3 (30 ng/mL), or vehicle for 5 days. Using immunocytochemistry and confocal microscopy, we found that nalfurafine treatment increased OPC differentiation, oligodendrocyte (OL) morphological complexity, and myelination of nanofibers in vitro. Adult male mice (C57BL/6J) were given a diet containing 0.2% cuprizone and administered rapamycin (10 mg/kg) once daily for 12 weeks followed by 6 weeks of treatment with nalfurafine (0.01 or 0.1 mg/kg), clemastine (10 mg/kg), or vehicle. We quantified the number of OLs using immunofluorescence, gross myelination using black gold staining, and myelin thickness using electron microscopy. Cuprizone + rapamycin treatment produced extensive demyelination and was accompanied by a loss of mature OLs, which was partially reversed by therapeutic administration of nalfurafine. We also assessed these mice for functional behavioral changes in open-field, horizontal bar, and mouse motor skill sequence tests (complex wheel running). Cuprizone + rapamycin treatment resulted in hyperlocomotion, poorer horizontal bar scores, and less distance traveled on the running wheels. Partial recovery was observed on both the horizontal bar and complex running wheel tests over time, which was facilitated by nalfurafine treatment. Taken together, these data highlight the potential of nalfurafine as a remyelination-promoting therapeutic.
Collapse
Affiliation(s)
- Ross van de Wetering
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Rabia Bibi
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Andy Biggerstaff
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Sheein Hong
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Bria Pengelly
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Thomas E Prisinzano
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Anne C La Flamme
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Bronwyn M Kivell
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
3
|
Huang W, Sun X, Zhang X, Xu R, Qian Y, Zhu J. Neural Correlates of Early-Life Urbanization and Their Spatial Relationships with Gene Expression, Neurotransmitter, and Behavioral Domain Atlases. Mol Neurobiol 2024; 61:6407-6422. [PMID: 38308665 DOI: 10.1007/s12035-024-03962-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/15/2024] [Indexed: 02/05/2024]
Abstract
Previous neuroimaging research has established associations between urban exposure during early life and alterations in brain function and structure. However, the molecular mechanisms and behavioral relevance of these associations remain largely unknown. Here, we aimed to address this question using a combined analysis of multimodal data. Initially, we calculated amplitude of low-frequency fluctuations (ALFF) and gray matter volume (GMV) using resting-state functional and structural MRI to investigate their associations with early-life urbanization in a large sample of 511 healthy young adults. Then, we examined the spatial relationships of the identified neural correlates of early-life urbanization with gene expression, neurotransmitter, and behavioral domain atlases. Results showed that higher early-life urbanization scores were correlated with increased ALFF of the right fusiform gyrus and decreased GMV of the left dorsal medial prefrontal cortex and left precuneus. Remarkably, the identified neural correlates of early-life urbanization were spatially correlated with expression of gene categories primarily involving immune system process, signal transduction, and cellular metabolic process. Concurrently, there were significant associations between the neural correlates and specific neurotransmitter systems including dopamine, acetylcholine, and serotonin. Finally, we found that the ALFF correlates were associated with behavioral terms including "perception," "sensory," "cognitive control," and "reasoning." Apart from expanding existing knowledge of early-life urban environmental risk for mental disorders and health in general, our findings may contribute to an emerging framework for integrating social science, neuroscience, genetics, and public policy to respond to the major health challenge of world urbanization.
Collapse
Affiliation(s)
- Weisheng Huang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China
| | - Xuetian Sun
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China
| | - Xiaohan Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China
| | - Ruoxuan Xu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China.
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China.
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China.
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China.
| |
Collapse
|
4
|
Emery B, Wood TL. Regulators of Oligodendrocyte Differentiation. Cold Spring Harb Perspect Biol 2024; 16:a041358. [PMID: 38503504 PMCID: PMC11146316 DOI: 10.1101/cshperspect.a041358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Myelination has evolved as a mechanism to ensure fast and efficient propagation of nerve impulses along axons. Within the central nervous system (CNS), myelination is carried out by highly specialized glial cells, oligodendrocytes. The formation of myelin is a prolonged aspect of CNS development that occurs well into adulthood in humans, continuing throughout life in response to injury or as a component of neuroplasticity. The timing of myelination is tightly tied to the generation of oligodendrocytes through the differentiation of their committed progenitors, oligodendrocyte precursor cells (OPCs), which reside throughout the developing and adult CNS. In this article, we summarize our current understanding of some of the signals and pathways that regulate the differentiation of OPCs, and thus the myelination of CNS axons.
Collapse
Affiliation(s)
- Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Teresa L Wood
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA
| |
Collapse
|
5
|
Xiao J. Thirty years of BDNF study in central myelination: From biology to therapy. J Neurochem 2023; 167:321-336. [PMID: 37747083 DOI: 10.1111/jnc.15968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023]
Abstract
Being the highest expressed neurotrophin in the mammalian brain, the brain-derived neurotrophic factor (BDNF) is essential to neural development and plasticity in both health and diseases. Following the discovery of BDNF by Yves-Alain Barde in 1982, the main feature of BDNF's activity in myelination was first described by Cellerino et al. in 1997. Since then, genetic manipulation of the BDNF-encoding gene and its receptors in murine models has revealed the contribution of BDNF to the myelinating process in the central nervous system (CNS). The series of BDNF or receptor mouse mutants as well as the BDNF polymorphism in humans have provided new insights into the roles that BDNF signaling plays in myelination in a complex manner. 2024 marks the 30th year of BDNF's research in myelination. Here, we share our perspective on the 30-year history of BDNF in the field of CNS myelination from phenotyping to therapeutic development, focusing on genetic evidence regarding the mechanism by which BDNF regulates myelin formation and repair in the CNS. This review also discusses the current hypotheses of BDNF's action on CNS myelination: axonal- and oligodendroglial-driven mechanisms, which may be ultimately activity-dependent. Last, this review raises the challenges and opportunities of developing BDNF-based therapies for neurodegenerative diseases, opening unanswered questions for future investigation.
Collapse
Affiliation(s)
- Junhua Xiao
- School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
- School of Allied Health, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
6
|
Zhao X, Jacob C. Mechanisms of Demyelination and Remyelination Strategies for Multiple Sclerosis. Int J Mol Sci 2023; 24:ijms24076373. [PMID: 37047344 PMCID: PMC10093908 DOI: 10.3390/ijms24076373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/19/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
All currently licensed medications for multiple sclerosis (MS) target the immune system. Albeit promising preclinical results demonstrated disease amelioration and remyelination enhancement via modulating oligodendrocyte lineage cells, most drug candidates showed only modest or no effects in human clinical trials. This might be due to the fact that remyelination is a sophistically orchestrated process that calls for the interplay between oligodendrocyte lineage cells, neurons, central nervous system (CNS) resident innate immune cells, and peripheral immune infiltrates and that this process may somewhat differ in humans and rodent models used in research. To ensure successful remyelination, the recruitment and activation/repression of each cell type should be regulated in a highly organized spatio–temporal manner. As a result, drug candidates targeting one single pathway or a single cell population have difficulty restoring the optimal microenvironment at lesion sites for remyelination. Therefore, when exploring new drug candidates for MS, it is instrumental to consider not only the effects on all CNS cell populations but also the optimal time of administration during disease progression. In this review, we describe the dysregulated mechanisms in each relevant cell type and the disruption of their coordination as causes of remyelination failure, providing an overview of the complex cell interplay in CNS lesion sites.
Collapse
|
7
|
MicroRNAs and MAPKs: Evidence of These Molecular Interactions in Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24054736. [PMID: 36902178 PMCID: PMC10003111 DOI: 10.3390/ijms24054736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder known to be the leading cause of dementia worldwide. Many microRNAs (miRNAs) were found deregulated in the brain or blood of AD patients, suggesting a possible key role in different stages of neurodegeneration. In particular, mitogen-activated protein kinases (MAPK) signaling can be impaired by miRNA dysregulation during AD. Indeed, the aberrant MAPK pathway may facilitate the development of amyloid-beta (Aβ) and Tau pathology, oxidative stress, neuroinflammation, and brain cell death. The aim of this review was to describe the molecular interactions between miRNAs and MAPKs during AD pathogenesis by selecting evidence from experimental AD models. Publications ranging from 2010 to 2023 were considered, based on PubMed and Web of Science databases. According to obtained data, several miRNA deregulations may regulate MAPK signaling in different stages of AD and conversely. Moreover, overexpressing or silencing miRNAs involved in MAPK regulation was seen to improve cognitive deficits in AD animal models. In particular, miR-132 is of particular interest due to its neuroprotective functions by inhibiting Aβ and Tau depositions, as well as oxidative stress, through ERK/MAPK1 signaling modulation. However, further investigations are required to confirm and implement these promising results.
Collapse
|
8
|
Ju C, Yuan F, Wang L, Zang C, Ning J, Shang M, Ma J, Li G, Yang Y, Chen Q, Jiang Y, Li F, Bao X, Zhang D. Inhibition of CXCR2 enhances CNS remyelination via modulating PDE10A/cAMP signaling pathway. Neurobiol Dis 2023; 177:105988. [PMID: 36603746 DOI: 10.1016/j.nbd.2023.105988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/21/2022] [Accepted: 01/01/2023] [Indexed: 01/03/2023] Open
Abstract
CXC chemokine receptor 2 (CXCR2) plays an important role in demyelinating diseases, but the detailed mechanisms were not yet clarified. In the present study, we mainly investigated the critical function and the potential molecular mechanisms of CXCR2 on oligodendrocyte precursor cell (OPC) differentiation and remyelination. The present study demonstrated that inhibiting CXCR2 significantly enhanced OPC differentiation and remyelination in primary cultured OPCs and ethidium bromide (EB)-intoxicated rats by facilitating the formation of myelin proteins, including PDGFRα, MBP, MAG, MOG, and Caspr. Further investigation identified phosphodiesterase 10A (PDE10A) as a main downstream protein of CXCR2, interacting with the receptor to regulate OPC differentiation, in that inhibition of CXCR2 reduced PDE10A expression while suppression of PDE10A did not affect CXCR2. Furthermore, inhibition of PDE10A promoted OPC differentiation, whereas overexpression of PDE10A down-regulated OPC differentiation. Our data also revealed that inhibition of CXCR2/PDE10A activated the cAMP/ERK1/2 signaling pathway, and up-regulated the expression of key transcription factors, including SOX10, OLIG2, MYRF, and ZFP24, that ultimately promoted remyelination and myelin protein biosynthesis. In conclusion, our findings suggested that inhibition of CXCR2 promoted OPC differentiation and enhanced remyelination by regulating PDE10A/cAMP/ERK1/2 signaling pathway. The present data also highlighted that CXCR2 may serve as a potential target for the treatment of demyelination diseases.
Collapse
Affiliation(s)
- Cheng Ju
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Fangyu Yuan
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Lu Wang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Caixia Zang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Jingwen Ning
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Meiyu Shang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Jingwei Ma
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Gen Li
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Yang Yang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Qiuzhu Chen
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Yueqi Jiang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Fangfang Li
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Xiuqi Bao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China.
| |
Collapse
|
9
|
Tong LY, Deng YB, Du WH, Zhou WZ, Liao XY, Jiang X. Clemastine Promotes Differentiation of Oligodendrocyte Progenitor Cells Through the Activation of ERK1/2 via Muscarinic Receptors After Spinal Cord Injury. Front Pharmacol 2022; 13:914153. [PMID: 35865954 PMCID: PMC9294397 DOI: 10.3389/fphar.2022.914153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The recovery of spinal cord injury (SCI) is closely associated with the obstruction of oligodendrocyte progenitor cell (OPC) differentiation, which ultimately induces the inability to generate newly formed myelin. To address the concern, drug-based methods may be the most practical and feasible way, possibly applying to clinical therapies for patients with SCI. In our previous study, we found that clemastine treatment preserves myelin integrity, decreases the loss of axons, and improves functional recovery in the SCI model. Clemastine acts as an antagonist of the muscarinic acetylcholine receptor (muscarinic receptor, MR) identified from a string of anti-muscarinic drugs that can enhance oligodendrocyte differentiation and myelin wrapping. However, the effects of clemastine on OPC differentiation through MRs in SCI and the underlying mechanism remain unclear. To explore the possibility, a rat model of SCI was established. To investigate if clemastine could promote the differentiation of OPCs in SCI via MR, the expressions of OPC and mature OL were detected at 7 days post injury (dpi) or at 14 dpi. The significant effect of clemastine on encouraging OPC differentiation was revealed at 14 dpi rather than 7 dpi. Under pre-treatment with the MR agonist cevimeline, the positive role of clemastine on OPC differentiation was partially disrupted. Further studies indicated that clemastine increased the phosphorylation level of extracellular signal–regulated kinase 1/2 (p-ERK1/2) and the expressions of transcription factors, Myrf and Olig2. To determine the relationship among clemastine, ERK1/2 signaling, specified transcription factors, and OPC differentiation, the ERK1/2 signaling was disturbed by U0126. The inhibition of ERK1/2 in SCI rats treated with clemastine decreased the expressions of p-ERK 1/2, Myrf, Olig2, and mature OLs, suggesting that ERK1/2 is required for clemastine on promoting OPC differentiation and that specified transcription factors may be affected by the activity of ERK1/2. Moreover, the impact of clemastine on modulating the level of p-ERK 1/2 was restricted following cevimeline pre-injecting, which provides further evidence that the role of clemastine was mediated by MRs. Altogether, our data demonstrated that clemastine, mediated by MRs, promotes OPC differentiation under the enhancement of Myrf and Olig2 by activating ERK1/2 signaling and suggests a novel therapeutic prospect for SCI recovery.
Collapse
Affiliation(s)
- Lu-Yao Tong
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yong-Bing Deng
- Department of Chongqing Emergency Medical Center, Chongqing University Center Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Wei-Hong Du
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Wen-Zhu Zhou
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Xin-Yu Liao
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Xue Jiang
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- *Correspondence: Xue Jiang, ,
| |
Collapse
|
10
|
Protocadherin 15 suppresses oligodendrocyte progenitor cell proliferation and promotes motility through distinct signalling pathways. Commun Biol 2022; 5:511. [PMID: 35637313 PMCID: PMC9151716 DOI: 10.1038/s42003-022-03470-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) express protocadherin 15 (Pcdh15), a member of the cadherin superfamily of transmembrane proteins. Little is known about the function of Pcdh15 in the central nervous system (CNS), however, Pcdh15 expression can predict glioma aggression and promote the separation of embryonic human OPCs immediately following a cell division. Herein, we show that Pcdh15 knockdown significantly increases extracellular signal-related kinase (ERK) phosphorylation and activation to enhance OPC proliferation in vitro. Furthermore, Pcdh15 knockdown elevates Cdc42-Arp2/3 signalling and impairs actin kinetics, reducing the frequency of lamellipodial extrusion and slowing filopodial withdrawal. Pcdh15 knockdown also reduces the number of processes supported by each OPC and new process generation. Our data indicate that Pcdh15 is a critical regulator of OPC proliferation and process motility, behaviours that characterise the function of these cells in the healthy CNS, and provide mechanistic insight into the role that Pcdh15 might play in glioma progression. Protocadherin 15 promotes lamellipodial and filopodial dynamics in oligodendrocyte progenitor cells by regulating Cdc42-Arp2/3 activity, but also suppresses ERK1/2 phosphorylation to reduce proliferation.
Collapse
|
11
|
Narine M, Colognato H. Current Insights Into Oligodendrocyte Metabolism and Its Power to Sculpt the Myelin Landscape. Front Cell Neurosci 2022; 16:892968. [PMID: 35573837 PMCID: PMC9097137 DOI: 10.3389/fncel.2022.892968] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/06/2022] [Indexed: 12/20/2022] Open
Abstract
Once believed to be part of the nervenkitt or "nerve glue" network in the central nervous system (CNS), oligodendroglial cells now have established roles in key neurological functions such as myelination, neuroprotection, and motor learning. More recently, oligodendroglia has become the subject of intense investigations aimed at understanding the contributions of its energetics to CNS physiology and pathology. In this review, we discuss the current understanding of oligodendroglial metabolism in regulating key stages of oligodendroglial development and health, its role in providing energy to neighboring cells such as neurons, as well as how alterations in oligodendroglial bioenergetics contribute to disease states. Importantly, we highlight how certain inputs can regulate oligodendroglial metabolism, including extrinsic and intrinsic mediators of cellular signaling, pharmacological compounds, and even dietary interventions. Lastly, we discuss emerging studies aimed at discovering the therapeutic potential of targeting components within oligodendroglial bioenergetic pathways.
Collapse
Affiliation(s)
- Mohanlall Narine
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
- Department of Neurobiology, & Behavior, Stony Brook University, Stony Brook, NY, United States
| | - Holly Colognato
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
12
|
Roosen M, Odé Z, Bunt J, Kool M. The oncogenic fusion landscape in pediatric CNS neoplasms. Acta Neuropathol 2022; 143:427-451. [PMID: 35169893 PMCID: PMC8960661 DOI: 10.1007/s00401-022-02405-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 01/09/2023]
Abstract
Pediatric neoplasms in the central nervous system (CNS) are the leading cause of cancer-related deaths in children. Recent developments in molecular analyses have greatly contributed to a more accurate diagnosis and risk stratification of CNS tumors. Additionally, sequencing studies have identified various, often entity specific, tumor-driving events. In contrast to adult tumors, which often harbor multiple mutated oncogenic drivers, the number of mutated genes in pediatric cancers is much lower and many tumors can have a single oncogenic driver. Moreover, in children, much more than in adults, fusion proteins play an important role in driving tumorigenesis, and many different fusions have been identified as potential driver events in pediatric CNS neoplasms. However, a comprehensive overview of all the different reported oncogenic fusion proteins in pediatric CNS neoplasms is still lacking. A better understanding of the fusion proteins detected in these tumors and of the molecular mechanisms how these proteins drive tumorigenesis, could improve diagnosis and further benefit translational research into targeted therapies necessary to treat these distinct entities. In this review, we discuss the different oncogenic fusions reported in pediatric CNS neoplasms and their structure to create an overview of the variety of oncogenic fusion proteins to date, the tumor entities they occur in and their proposed mode of action.
Collapse
Affiliation(s)
- Mieke Roosen
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands
| | - Zelda Odé
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands
| | - Jens Bunt
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands
| | - Marcel Kool
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands.
- Hopp Children's Cancer Center (KiTZ), 69120, Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center DKFZ and German Cancer Consortium DKTK, 69120, Heidelberg, Germany.
| |
Collapse
|
13
|
Han W, Pan Y, Han Z, Cheng L, Jiang L. Advanced Maternal Age Impairs Myelination in Offspring Rats. Front Pediatr 2022; 10:850213. [PMID: 35311052 PMCID: PMC8927774 DOI: 10.3389/fped.2022.850213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
The effects of advanced maternal age (AMA) on the neurodevelopment of offspring are becoming increasingly important. Myelination is an important aspect of brain development; however, a limited number of studies have focused on the effects of AMA on myelination in offspring. The current study aims to evaluate the association between AMA and myelin sheath development in offspring. We studied the learning and memory function of immature offspring using the novel object recognition test. Then, we investigated the expression of myelin basic protein (MBP) in the immature offspring of young (3-month-old) and old (12-month-old) female rats at different time points (14, 28, and 60 days) after birth with immunofluorescence and western blotting. The myelin sheath ultrastructure was observed with transmission electron microscopy in immature and mature offspring. Extracellular signal-regulated kinase 1 and 2 (ERK1/2) and phosphorylated ERK1/2 (p-ERK1/2) were investigated by western blot in immature offspring at the above time points. AMA impaired the memory function of offspring during early postnatal days. The MBP expression level gradually increased with postnatal development in the offspring of both the AMA and Control (Ctl) groups, but the MBP level in the offspring of the AMA group was lower than that of the Ctl group at 14 days after birth. In addition, the ultrastructure of the myelin sheath was defective in AMA offspring during the early postnatal period; however, the myelin sheath was not significantly affected in offspring during adulthood. Interestingly, ERK phosphorylation at 14 days after birth was lower in AMA offspring than in Ctl offspring. However, ERK phosphorylation at 28 days after birth was higher in AMA offspring than in Ctl offspring. The peak of ERK phosphorylation in the AMA group was abnormal and delayed. Our results indicated that AMA is associated with poor developmental myelin formation in offspring. The ERK signaling pathway may play an essential role in the adverse effects of AMA on the offspring myelin sheath development.
Collapse
Affiliation(s)
- Wei Han
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Ya'nan Pan
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Ziyao Han
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Li Cheng
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Li Jiang
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
14
|
Novel Synthetic Coumarin-Chalcone Derivative (E)-3-(3-(4-(Dimethylamino)Phenyl)Acryloyl)-4-Hydroxy-2 H-Chromen-2-One Activates CREB-Mediated Neuroprotection in A β and Tau Cell Models of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3058861. [PMID: 34812274 PMCID: PMC8605905 DOI: 10.1155/2021/3058861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022]
Abstract
Abnormal accumulations of misfolded Aβ and tau proteins are major components of the hallmark plaques and neurofibrillary tangles in the brains of Alzheimer's disease (AD) patients. These abnormal protein deposits cause neurodegeneration through a number of proposed mechanisms, including downregulation of the cAMP-response-element (CRE) binding protein 1 (CREB) signaling pathway. Using CRE-GFP reporter cells, we investigated the effects of three coumarin-chalcone derivatives synthesized in our lab on CREB-mediated gene expression. Aβ-GFP- and ΔK280 tauRD-DsRed-expressing SH-SY5Y cells were used to evaluate these agents for possible antiaggregative, antioxidative, and neuroprotective effects. Blood-brain barrier (BBB) penetration was assessed by pharmacokinetic studies in mice. Of the three tested compounds, (E)-3-(3-(4-(dimethylamino)phenyl)acryloyl)-4-hydroxy-2H-chromen-2-one (LM-021) was observed to increase CREB-mediated gene expression through protein kinase A (PKA), Ca2+/calmodulin-dependent protein kinase II (CaMKII), and extracellular signal-regulated kinase (ERK) in CRE-GFP reporter cells. LM-021 exhibited antiaggregative, antioxidative, and neuroprotective effects mediated by the upregulation of CREB phosphorylation and its downstream brain-derived neurotrophic factor and BCL2 apoptosis regulator genes in Aβ-GFP- and ΔK280 tauRD-DsRed-expressing SH-SY5Y cells. Blockage of the PKA, CaMKII, or ERK pathway counteracted the beneficial effects of LM-021. LM-021 also exhibited good BBB penetration ability, with brain to plasma ratio of 5.3%, in in vivo pharmacokinetic assessment. Our results indicate that LM-021 works as a CREB enhancer to reduce Aβ and tau aggregation and provide neuroprotection. These findings suggest the therapeutic potential of LM-021 in treating AD.
Collapse
|
15
|
Kim Y, Roh EJ, Joshi HP, Shin HE, Choi H, Kwon SY, Sohn S, Han I. Bazedoxifene, a Selective Estrogen Receptor Modulator, Promotes Functional Recovery in a Spinal Cord Injury Rat Model. Int J Mol Sci 2021; 22:ijms222011012. [PMID: 34681670 PMCID: PMC8537911 DOI: 10.3390/ijms222011012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
In research on various central nervous system injuries, bazedoxifene acetate (BZA) has shown two main effects: neuroprotection by suppressing the inflammatory response and remyelination by enhancing oligodendrocyte precursor cell differentiation and oligodendrocyte proliferation. We examined the effects of BZA in a rat spinal cord injury (SCI) model. Anti-inflammatory and anti-apoptotic effects were investigated in RAW 264.7 cells, and blood-spinal cord barrier (BSCB) permeability and angiogenesis were evaluated in a human brain endothelial cell line (hCMEC/D3). In vivo experiments were carried out on female Sprague Dawley rats subjected to moderate static compression SCI. The rats were intraperitoneally injected with either vehicle or BZA (1mg/kg pre-SCI and 3 mg/kg for 7 days post-SCI) daily. BZA decreased the lipopolysaccharide-induced production of proinflammatory cytokines and nitric oxide in RAW 264.7 cells and preserved BSCB disruption in hCMEC/D3 cells. In the rats, BZA reduced caspase-3 activity at 1 day post-injury (dpi) and suppressed phosphorylation of MAPK (p38 and ERK) at dpi 2, hence reducing the expression of IL-6, a proinflammatory cytokine. BZA also led to remyelination at dpi 20. BZA contributed to improvements in locomotor recovery after compressive SCI. This evidence suggests that BZA may have therapeutic potential to promote neuroprotection, remyelination, and functional outcomes following SCI.
Collapse
Affiliation(s)
- Yiyoung Kim
- School of Medicine, CHA University, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea;
| | - Eun Ji Roh
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (E.J.R.); (H.E.S.); (H.C.); (S.Y.K.); (S.S.)
| | - Hari Prasad Joshi
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada;
| | - Hae Eun Shin
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (E.J.R.); (H.E.S.); (H.C.); (S.Y.K.); (S.S.)
| | - Hyemin Choi
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (E.J.R.); (H.E.S.); (H.C.); (S.Y.K.); (S.S.)
| | - Su Yeon Kwon
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (E.J.R.); (H.E.S.); (H.C.); (S.Y.K.); (S.S.)
| | - Seil Sohn
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (E.J.R.); (H.E.S.); (H.C.); (S.Y.K.); (S.S.)
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (E.J.R.); (H.E.S.); (H.C.); (S.Y.K.); (S.S.)
- Correspondence:
| |
Collapse
|
16
|
ERK/MAPK signalling in the developing brain: Perturbations and consequences. Neurosci Biobehav Rev 2021; 131:792-805. [PMID: 34634357 DOI: 10.1016/j.neubiorev.2021.10.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/26/2021] [Accepted: 10/05/2021] [Indexed: 12/18/2022]
Abstract
The extracellular regulated kinase/microtubule-associated protein kinase (ERK/MAPK) signalling pathway transduces signals that cause an alteration in the ongoing metabolic pathways and modifies gene expression patterns; thus, influencing cellular behaviour. ERK/MAPK signalling is essential for the proper development of the nervous system from neural progenitor cells derived from the embryonic mesoderm. Several signalling molecules that regulate the well-coordinated process of neurodevelopment transduce developmental information through the ERK/MAPK signalling pathway. The ERK/MAPK is a potential novel therapeutic target in several neurodevelopmental disorders, however, despite years of study, there is still significant uncertainty about the exact mechanism by which the ERK/MAPK signalling pathway elicits specific responses in neurodevelopment. Here, we will review the evidence highlighting the role of ERK/MAPK signalling in neurodevelopment. We will also discuss the structural implication and behavioural deficits associated with perturbed ERK/MAPK signalling pathway in cortical development, whilst examining its contribution to the neuropathology of several neurodevelopmental disorders, such as Autism Spectrum Disorder, Schizophrenia, Fragile X, and Attention Deficit Hyperactive Disorder.
Collapse
|
17
|
Safaei HA, Eftekhari SM, Aliomrani M. Analysis of platelet-derived growth factor receptor A and oligodendrocyte transcription factor 2 markers following Hydroxychloroquine administration in animal induced multiple sclerosis model. Metab Brain Dis 2021; 36:2101-2110. [PMID: 34342813 DOI: 10.1007/s11011-021-00802-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/22/2021] [Indexed: 12/19/2022]
Abstract
It has been shown that following demyelination, Oligodendrocyte Progenitor Cells (OPCs) migrate to the lesion site and begin to proliferate, and differentiate. This study aimed to investigate the effects of Hydroxychloroquine (HCQ) on the expression of OLIG-2 and PDGFR-α markers during the myelination process. C57BL/6 mice were fed cuprizone pellets for 5 weeks to induce demyelination and return to a normal diet for 1 week to stimulate remyelination. During the Phase I all of the animals except CPZ and Vehicle groups were exposed to HCQ (2.5, 10, and 100 mg/kg) via drinking water. At the end of the study, animals were euthanized, perfused and the brain samples were assessed for myelination and immunohistochemistry evaluation. What is remarkable is the high rate of Olig2 + cells in the groups treated with 10 and 100 mg/kg HCQ in the demyelination phase and its decreasing trend in the remyelination phase. However, there was no significant difference between groups during phase I and Phase II based on the percentage of olig-2+/total cells in the corpus callosum region. The number of PDGFR-α+ cells in the group treated with 10 mg/kg HCQ was significant in the first phase (p value < 0.05). Considering that the 100 mg/kg HCQ group had the highest level of PDGFR-α as well as the highest level of myelin repair in LFB staining, it could be inferred that it was the most effective dose in inducing proliferation and migration of OPCs.
Collapse
Affiliation(s)
- Hajar Amin Safaei
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| | | | - Mehdi Aliomrani
- Department of Toxicology and Pharmacology, Isfahan Pharmaceutical Science Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I. R. of Iran.
| |
Collapse
|
18
|
Ainatzoglou A, Stamoula E, Dardalas I, Siafis S, Papazisis G. The Effects of PDE Inhibitors on Multiple Sclerosis: a Review of in vitro and in vivo Models. Curr Pharm Des 2021; 27:2387-2397. [PMID: 33655851 DOI: 10.2174/1381612827666210303142356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/11/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic inflammatory and immune-mediated disease, whose current therapeutic means are mostly effective in the relapsing-remitting form of MS, where inflammation is still prominent, but fall short of preventing long term impairment. However, apart from inflammationmediated demyelination, autoimmune mechanisms play a major role in MS pathophysiology, constituting a promising pharmacological target. Phosphodiesterase (PDE) inhibitors have been approved for clinical use in psoriasis and have undergone trials suggesting their neuroprotective effects, rendering them eligible as an option for accessory MS therapy. OBJECTIVE In this review, we discuss the potential role of PDE inhibitors as a complementary MS therapy. METHODS We conducted a literature search through which we screened and comparatively assessed papers on the effects of PDE inhibitor use, both in vitro and in animal models of MS, taking into account a number of inclusion and exclusion criteria. RESULTS In vitro studies indicated that PDE inhibitors promote remyelination and axonal sustenance, while curbing inflammatory cell infiltration, hindering oligodendrocyte and neuronal loss and suppressing cytokine production. In vivo studies underlined that these agents alleviate symptoms and reduce disease scores in MS animal models. CONCLUSION PDE inhibitors proved to be effective in addressing various aspects of MS pathogenesis both in vitro and in vivo models. Given the latest clinical trials proving that the PDE4 inhibitor Ibudilast exerts neuroprotective effects in patients with progressive MS, research on this field should be intensified and selective PDE4 inhibitors with enhanced safety features should be seriously considered as prospective complementary MS therapy.
Collapse
Affiliation(s)
- Alexandra Ainatzoglou
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Stamoula
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Dardalas
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Spyridon Siafis
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Papazisis
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
19
|
Binamé F, Pham-Van LD, Bagnard D. Manipulating oligodendrocyte intrinsic regeneration mechanism to promote remyelination. Cell Mol Life Sci 2021; 78:5257-5273. [PMID: 34019104 PMCID: PMC11073109 DOI: 10.1007/s00018-021-03852-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/14/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023]
Abstract
In demyelinated lesions, astrocytes, activated microglia and infiltrating macrophages secrete several factors regulating oligodendrocyte precursor cells' behaviour. What appears to be the initiation of an intrinsic mechanism of myelin repair is only leading to partial recovery and inefficient remyelination, a process worsening over the course of the disease. This failure is largely due to the concomitant accumulation of inhibitory cues in and around the lesion sites opposing to growth promoting factors. Here starts a complex game of interactions between the signalling pathways controlling oligodendrocytes migration or differentiation. Receptors of positive or negative cues are modulating Ras, PI3K or RhoGTPases pathways acting on oligodendrocyte cytoskeleton remodelling. From the description of this intricate signalling network, this review addresses the extent to which the modulation of the global response to inhibitory cues may pave the route towards novel therapeutic approaches for myelin repair.
Collapse
Affiliation(s)
- Fabien Binamé
- INSERM U1119, Biopathology of Myelin, Neuroprotection and Therapeutic Strategy (BMNST Lab), Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Pôle API, Ecole Supérieure de Biotechnologie, 300 Boulevard Sébastien Brant, 67412, Illkirch, France
| | - Lucas D Pham-Van
- INSERM U1119, Biopathology of Myelin, Neuroprotection and Therapeutic Strategy (BMNST Lab), Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Pôle API, Ecole Supérieure de Biotechnologie, 300 Boulevard Sébastien Brant, 67412, Illkirch, France
| | - Dominique Bagnard
- INSERM U1119, Biopathology of Myelin, Neuroprotection and Therapeutic Strategy (BMNST Lab), Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Pôle API, Ecole Supérieure de Biotechnologie, 300 Boulevard Sébastien Brant, 67412, Illkirch, France.
| |
Collapse
|
20
|
Aluko OM, Lawal SA, Ijomone OM, Aschner M. Perturbed MAPK signaling in ASD: Impact of metal neurotoxicity. CURRENT OPINION IN TOXICOLOGY 2021; 26:1-7. [PMID: 34263087 PMCID: PMC8276949 DOI: 10.1016/j.cotox.2021.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mitogen-activated protein kinase (MAPK) pathways are intracellular signaling pathways necessary for regulating various physiological processes, including neurodevelopment. The developing brain is vulnerable to toxic substances, and metals, such as lead, mercury, nickel, manganese, and others, have been proven to induce disturbances in the MAPK signaling pathway. Since a well-regulated MAPK is necessary for normal neurodevelopment, perturbation of the MAPK pathway results in neurodevelopmental disorders, including autism spectrum disorder (ASD). ASD affects brain parts responsible for communication, cognition, social interaction, and other patterned behaviors. Several studies have addressed the role of metals in the etiopathogenesis of ASD. Here, we briefly review the MAPK signaling pathway and its role in neurodevelopment. Furthermore, we highlight the role of metal toxicity in the development of ASD and how perturbed MAPK signaling may result in ASD.
Collapse
Affiliation(s)
- Oritoke M Aluko
- The Neuro- Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
- Department of Physiology, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Saheed A Lawal
- Department of Physiology, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Omamuyovwi M Ijomone
- The Neuro- Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
- Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
21
|
Spaas J, van Veggel L, Schepers M, Tiane A, van Horssen J, Wilson DM, Moya PR, Piccart E, Hellings N, Eijnde BO, Derave W, Schreiber R, Vanmierlo T. Oxidative stress and impaired oligodendrocyte precursor cell differentiation in neurological disorders. Cell Mol Life Sci 2021; 78:4615-4637. [PMID: 33751149 PMCID: PMC8195802 DOI: 10.1007/s00018-021-03802-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/12/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) account for 5% of the resident parenchymal central nervous system glial cells. OPCs are not only a back-up for the loss of oligodendrocytes that occurs due to brain injury or inflammation-induced demyelination (remyelination) but are also pivotal in plastic processes such as learning and memory (adaptive myelination). OPC differentiation into mature myelinating oligodendrocytes is controlled by a complex transcriptional network and depends on high metabolic and mitochondrial demand. Mounting evidence shows that OPC dysfunction, culminating in the lack of OPC differentiation, mediates the progression of neurodegenerative disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Importantly, neurodegeneration is characterised by oxidative and carbonyl stress, which may primarily affect OPC plasticity due to the high metabolic demand and a limited antioxidant capacity associated with this cell type. The underlying mechanisms of how oxidative/carbonyl stress disrupt OPC differentiation remain enigmatic and a focus of current research efforts. This review proposes a role for oxidative/carbonyl stress in interfering with the transcriptional and metabolic changes required for OPC differentiation. In particular, oligodendrocyte (epi)genetics, cellular defence and repair responses, mitochondrial signalling and respiration, and lipid metabolism represent key mechanisms how oxidative/carbonyl stress may hamper OPC differentiation in neurodegenerative disorders. Understanding how oxidative/carbonyl stress impacts OPC function may pave the way for future OPC-targeted treatment strategies in neurodegenerative disorders.
Collapse
Affiliation(s)
- Jan Spaas
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Lieve van Veggel
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Melissa Schepers
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Assia Tiane
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jack van Horssen
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam University Medical Center, Location VUmc, Amsterdam, The Netherlands
| | - David M Wilson
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Pablo R Moya
- Facultad de Ciencias, Instituto de Fisiología, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - Elisabeth Piccart
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Niels Hellings
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Bert O Eijnde
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Faculty of Medicine and Life Sciences, SMRC-Sportsmedical Research Center, BIOMED Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Rudy Schreiber
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Tim Vanmierlo
- University MS Center (UMSC), Hasselt-Pelt, Belgium.
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
22
|
Pease-Raissi SE, Chan JR. Building a (w)rapport between neurons and oligodendroglia: Reciprocal interactions underlying adaptive myelination. Neuron 2021; 109:1258-1273. [PMID: 33621477 PMCID: PMC8068592 DOI: 10.1016/j.neuron.2021.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/29/2021] [Indexed: 12/27/2022]
Abstract
Myelin, multilayered lipid-rich membrane extensions formed by oligodendrocytes around neuronal axons, is essential for fast and efficient action potential propagation in the central nervous system. Initially thought to be a static and immutable process, myelination is now appreciated to be a dynamic process capable of responding to and modulating neuronal function throughout life. While the importance of this type of plasticity, called adaptive myelination, is now well accepted, we are only beginning to understand the underlying cellular and molecular mechanisms by which neurons communicate experience-driven circuit activation to oligodendroglia and precisely how changes in oligodendrocytes and their myelin refine neuronal function. Here, we review recent findings addressing this reciprocal relationship in which neurons alter oligodendroglial form and oligodendrocytes conversely modulate neuronal function.
Collapse
Affiliation(s)
- Sarah E Pease-Raissi
- Weill Institute for Neuroscience, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Jonah R Chan
- Weill Institute for Neuroscience, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
23
|
Huang HT, Ho CH, Sung HY, Lee LY, Chen WP, Chen YW, Chen CC, Yang CS, Tzeng SF. Hericium erinaceus mycelium and its small bioactive compounds promote oligodendrocyte maturation with an increase in myelin basic protein. Sci Rep 2021; 11:6551. [PMID: 33753806 PMCID: PMC7985201 DOI: 10.1038/s41598-021-85972-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/02/2021] [Indexed: 11/23/2022] Open
Abstract
Oligodendrocytes (OLs), myelin-producing glia in the central nervous system (CNS), produce a myelin extension that enwraps axons to facilitate action potential propagation. An effective approach to induce oligodendrogenesis and myelination is important to foster CNS development and promote myelin repair in neurological diseases. Hericium (H.) erinaceus, an edible and culinary-medicinal mushroom, has been characterized as having neuroprotective activities. However, its effect on OL differentiation has not yet been uncovered. In this study using oligodendrocyte precursor cell (OPC) cultures and an ex vivo cerebellar slice system, we found that the extract from H. erinaceus mycelium (HEM) not only promoted the differentiation of OPCs to OLs in the differentiation medium, but also increased the level of myelin basic protein (MBP) on neuronal fibers. Moreover, daily oral administration of HEM into neonatal rat pups for 7 days enhanced MBP expression and OLs in the corpus callosum of the postnatal rat brain. The effect of HEM-derived bioactive compounds, the diterpenoid xylosides erinacine A (HeA) and HeC and a sesterterpene with 5 isoprene units called HeS, were further evaluated. The results showed that HeA and HeS more potently stimulated MBP expression in OLs and increased the number of OLs. Moreover, overlap between MBP immunoreactivity and neuronal fibers in cultured cerebellar tissue slices was significantly increased in the presence of HeA and HeS. In summary, our findings indicate that HEM extract and its ingredients HeA and HeS display promising functional effects and promote OL maturation, providing insights into their potential for myelination in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hui-Ting Huang
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, #1 University Road, Tainan, Taiwan
| | - Chia-Hsin Ho
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, #1 University Road, Tainan, Taiwan
| | - Hsin-Yu Sung
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, #1 University Road, Tainan, Taiwan
| | - Li-Ya Lee
- Grape King Biotech Research Institute, Zhongli, 320, Taiwan
| | - Wan-Ping Chen
- Grape King Biotech Research Institute, Zhongli, 320, Taiwan
| | - Yu-Wen Chen
- Grape King Biotech Research Institute, Zhongli, 320, Taiwan
| | - Chin-Chu Chen
- Grape King Biotech Research Institute, Zhongli, 320, Taiwan
| | - Chung-Shi Yang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Shun-Fen Tzeng
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, #1 University Road, Tainan, Taiwan.
| |
Collapse
|
24
|
Ito M, Muramatsu R, Kato Y, Sharma B, Uyeda A, Tanabe S, Fujimura H, Kidoya H, Takakura N, Kawahara Y, Takao M, Mochizuki H, Fukamizu A, Yamashita T. Age-dependent decline in remyelination capacity is mediated by apelin–APJ signaling. ACTA ACUST UNITED AC 2021; 1:284-294. [PMID: 37118408 DOI: 10.1038/s43587-021-00041-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 02/03/2021] [Indexed: 02/08/2023]
Abstract
Age-related regeneration failure in the central nervous system can occur as a result of a decline in remyelination efficacy. The responsiveness of myelin-forming cells to signals for remyelination is affected by aging-related epigenetic modification; however, the molecular mechanism is not fully clarified. In the present study, we report that the apelin receptor (APJ) mediates remyelination efficiency with age. APJ expression in myelin-forming cells is correlated with age-associated changes in remyelination efficiency, and the activation of APJ promotes remyelination through the translocation of myelin regulatory factor. APJ signaling activation promoted remyelination in both aged mice with toxin-induced demyelination and mice with experimental autoimmune encephalomyelitis. In human cells, APJ activation enhanced the expression of remyelination markers. Impaired oligodendrocyte function in aged animals can be reversibly reactivated; thus, the results demonstrate that dysfunction of the apelin-APJ system mediates remyelination failure in aged animals, and that their myelinating function can be reactivated by APJ activation.
Collapse
|
25
|
Adams KL, Dahl KD, Gallo V, Macklin WB. Intrinsic and extrinsic regulators of oligodendrocyte progenitor proliferation and differentiation. Semin Cell Dev Biol 2020; 116:16-24. [PMID: 34110985 DOI: 10.1016/j.semcdb.2020.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022]
Abstract
Oligodendrocytes are highly specialized glial cells, responsible for producing myelin in the central nervous system (CNS). The multi-stage process of oligodendrocyte development is tightly regulated to ensure proper lineage progression of oligodendrocyte progenitor cells (OPCs) to mature myelin producing oligodendrocytes. This developmental process involves complex interactions between several intrinsic signaling pathways that are modulated by an array of extrinsic factors. Understanding these regulatory processes is of crucial importance, as it may help to identify specific molecular targets both to enhance plasticity in the normal CNS and to promote endogenous recovery following injury or disease. This review describes two major regulators that play important functional roles in distinct phases of oligodendrocyte development: OPC proliferation and differentiation. Specifically, we highlight the roles of the extracellular astrocyte/radial glia-derived protein Endothelin-1 in OPC proliferation and the intracellular Akt/mTOR pathway in OPC differentiation. Lastly, we reflect on how recent advances in neuroscience and scientific technology will enable greater understanding into how intrinsic and extrinsic regulators interact to generate oligodendrocyte diversity.
Collapse
Affiliation(s)
- Katrina L Adams
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington, DC 20010, USA
| | - Kristin D Dahl
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington, DC 20010, USA
| | - Wendy B Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
26
|
Low-Field Magnetic Stimulation Accelerates the Differentiation of Oligodendrocyte Precursor Cells via Non-canonical TGF-β Signaling Pathways. Mol Neurobiol 2020; 58:855-866. [PMID: 33037982 DOI: 10.1007/s12035-020-02157-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/30/2020] [Indexed: 01/17/2023]
Abstract
Demyelination and oligodendrocyte loss are characteristic changes in demyelinating disorders. Low-field magnetic stimulation (LFMS) is a novel transcranial neuromodulation technology that has shown promising therapeutic potential for a variety of neuropsychiatric conditions. The cellular and molecular mechanisms of magnetic stimulation remain unclear. Previous studies mainly focused on the effects of magnetic stimulation on neuronal cells. Here we aimed to examine the effects of a gamma frequency LFMS on the glial progenitor cells. We used rat central glia-4 (CG4) cell line as an in vitro model. CG4 is a bipotential glial progenitor cell line that can differentiate into either oligodendrocyte or type 2-astrocyte. The cells cultured in a defined differentiation media were exposed to a 40-Hz LFMS 20 min daily for five consecutive days. We found that LFMS transiently elevated the level of TGF-β1 in the culture media in the first 24 h after the treatment. In correlation with the TGF-β1 levels, the percentage of cells possessing complex branches and expressing the late oligodendrocyte progenitor marker O4 was increased, indicating the accelerated differentiation of CG4 cells towards oligodendrocyte in LFMS-treated cultures. LFMS increased phosphorylation of Akt and Erk1/2 proteins, but not SMAD2/3. TGF-β1 receptor I specific inhibitor LY 364947 partially suppressed the effects of LFMS on differentiation and on levels of pAkt and pErk1/2, indicating that LFMS enhances the differentiation of oligodendrocyte progenitor cells via activation of non-canonical TGF-β-Akt and TGF-β-Erk1/2 pathways but not the canonical SMAD pathway. The data from this study reveal a novel mechanism of magnetic stimulation as a potential therapy for demyelination disorders.
Collapse
|
27
|
R-Ras GTPases Signaling Role in Myelin Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21165911. [PMID: 32824627 PMCID: PMC7460555 DOI: 10.3390/ijms21165911] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/18/2022] Open
Abstract
Myelination is required for fast and efficient synaptic transmission in vertebrates. In the central nervous system, oligodendrocytes are responsible for creating myelin sheaths that isolate and protect axons, even throughout adulthood. However, when myelin is lost, the failure of remyelination mechanisms can cause neurodegenerative myelin-associated pathologies. From oligodendrocyte progenitor cells to mature myelinating oligodendrocytes, myelination is a highly complex process that involves many elements of cellular signaling, yet many of the mechanisms that coordinate it, remain unknown. In this review, we will focus on the three major pathways involved in myelination (PI3K/Akt/mTOR, ERK1/2-MAPK, and Wnt/β-catenin) and recent advances describing the crosstalk elements which help to regulate them. In addition, we will review the tight relation between Ras GTPases and myelination processes and discuss its potential as novel elements of crosstalk between the pathways. A better understanding of the crosstalk elements orchestrating myelination mechanisms is essential to identify new potential targets to mitigate neurodegeneration.
Collapse
|
28
|
Tian X, Zhu H, Du S, Zhang XQ, Lin F, Ji F, Tsou YH, Li Z, Feng Y, Ticehurst K, Hannaford S, Xu X, Tao YX. Injectable PLGA-Coated Ropivacaine Produces A Long-Lasting Analgesic Effect on Incisional Pain and Neuropathic Pain. THE JOURNAL OF PAIN 2020; 22:180-195. [PMID: 32739615 DOI: 10.1016/j.jpain.2020.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 02/27/2020] [Accepted: 03/22/2020] [Indexed: 02/07/2023]
Abstract
The management of persistent postsurgical pain and neuropathic pain remains a challenge in the clinic. Local anesthetics have been widely used as simple and effective treatment for these 2 disorders, but the duration of their analgesic effect is short. We here reported a new poly lactic-co-glycolic acid (PLGA)-coated ropivacaine that was continuously released in vitro for at least 6 days. Perisciatic nerve injection of the PLGA-coated ropivacaine attenuated paw incision-induced mechanical allodynia and heat hyperalgesia during the incisional pain period, and spared nerve injury-induced mechanical and cold allodynia for at least 7 days postinjection. This effect was dose-dependent. Perisciatic nerve injection of the PLGA-coated ropivacaine did not produce detectable inflammation, tissue irritation, or damage in the sciatic nerve and surrounding muscles at the injected site, dorsal root ganglion, spinal cord, or brain cortex, although the scores for grasping reflex were mildly and transiently reduced in the higher dosage-treated groups. PERSPECTIVE: Given that PLGA is an FDA-approved medical material, and that ropivacaine is used currently in clinical practice, the injectable PLGA-coated ropivacaine represents a new and highly promising avenue in the management of postsurgical pain and neuropathic pain.
Collapse
Affiliation(s)
- Xue Tian
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey; Department of Anesthesiology, Peking University People's Hospital, Beijing, China
| | - He Zhu
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey
| | - Shibin Du
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Xue-Qing Zhang
- Engineering Research Center of Cell & Therapeutic Antibody Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Fuqing Lin
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Fengtao Ji
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Yung-Hao Tsou
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey
| | - Zhongyu Li
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey
| | - Yi Feng
- Department of Anesthesiology, Peking University People's Hospital, Beijing, China
| | - Kathryn Ticehurst
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Stephen Hannaford
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Xiaoyang Xu
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey; Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey.
| |
Collapse
|
29
|
Foerster S, Guzman de la Fuente A, Kagawa Y, Bartels T, Owada Y, Franklin RJM. The fatty acid binding protein FABP7 is required for optimal oligodendrocyte differentiation during myelination but not during remyelination. Glia 2020; 68:1410-1420. [PMID: 32017258 PMCID: PMC7317849 DOI: 10.1002/glia.23789] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/10/2020] [Accepted: 01/23/2020] [Indexed: 12/12/2022]
Abstract
The major constituents of the myelin sheath are lipids, which are made up of fatty acids (FAs). The hydrophilic environment inside the cells requires FAs to be bound to proteins, preventing their aggregation. Fatty acid binding proteins (FABPs) are one class of proteins known to bind FAs in a cell. Given the crucial role of FAs for myelin sheath formation we investigated the role of FABP7, the major isoform expressed in oligodendrocyte progenitor cells (OPCs), in developmental myelination and remyelination. Here, we show that the knockdown of Fabp7 resulted in a reduction of OPC differentiation in vitro. Consistent with this result, a delay in developmental myelination was observed in Fabp7 knockout animals. This delay was transient with full myelination being established before adulthood. FABP7 was dispensable for remyelination, as the knockout of Fapb7 did not alter remyelination efficiency in a focal demyelination model. In summary, while FABP7 is important in OPC differentiation in vitro, its function is not crucial for myelination and remyelination in vivo.
Collapse
Affiliation(s)
- Sarah Foerster
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Alerie Guzman de la Fuente
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Yoshiteru Kagawa
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Theresa Bartels
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Robin J M Franklin
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
30
|
O'Sullivan A, Lange S, Rotheneichner P, Bieler L, Aigner L, Rivera FJ, Couillard-Despres S. Dimethylsulfoxide Inhibits Oligodendrocyte Fate Choice of Adult Neural Stem and Progenitor Cells. Front Neurosci 2019; 13:1242. [PMID: 31849577 PMCID: PMC6901908 DOI: 10.3389/fnins.2019.01242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
Several clinical trials address demyelinating diseases via transplantation of mesenchymal stromal cells (MSCs). Published reports detail that administration of MSCs in patients may provide a beneficial immunomodulation, and that factors secreted by MSCs are potent inducers of oligodendrogenesis. Dimethylsulfoxide (DMSO) is widely used in life science and medicine as solvent, vehicle or cryoprotectant for cells used in transplantation. Importantly, most transplantation protocols do not include the removal of DMSO before injecting the cell suspension into patients. This indifferent application of DMSO is coming under increasing scrutiny following reports investigating its potential toxic side-effects. While the impact of DMSO on the central nervous system (CNS) has been partially studied, its effect on oligodendrocytes and oligodendrogenesis has not been addressed yet. Consequently, we evaluated the influence of DMSO on oligodendrogenesis, and on the pro-oligodendrogenic effect of MSCs’ secreted factors, using adult rat neural stem and progenitor cells (NSPCs). Here, we demonstrate that a concentration of 1% DMSO robustly suppressed oligodendrogenesis and drove the fate of differentiating NSPCs toward astrogenesis. Furthermore, the pro-oligodendrogenic effect of MSC-conditioned medium (MSCCM) was also nearly completely abolished by the presence of 1% DMSO. In this condition, inhibition of the Erk1/2 signal transduction pathway and high levels of Id2 expression, a specific inhibitor of oligodendrogenic differentiation, were detected. Furthermore, inflammatory demyelinating diseases may even potentiate the impact of DMSO on oligodendrogenesis. Our results demonstrate the imperative of considering the strong anti-oligodendrogenic activity of DMSO when designing future clinical trial protocols.
Collapse
Affiliation(s)
- Anna O'Sullivan
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Salzburg, Austria.,Department of Otorhinolaryngology, Paracelsus Medical University, Salzburg, Austria
| | - Simona Lange
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Salzburg, Austria.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Peter Rotheneichner
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Salzburg, Austria
| | - Lara Bieler
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Salzburg, Austria
| | - Ludwig Aigner
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Salzburg, Austria.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Francisco J Rivera
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Salzburg, Austria.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Sebastien Couillard-Despres
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Salzburg, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
31
|
Kang M, Lee YS. The impact of RASopathy-associated mutations on CNS development in mice and humans. Mol Brain 2019; 12:96. [PMID: 31752929 PMCID: PMC6873535 DOI: 10.1186/s13041-019-0517-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/28/2019] [Indexed: 01/04/2023] Open
Abstract
The RAS signaling pathway is involved in the regulation of developmental processes, including cell growth, proliferation, and differentiation, in the central nervous system (CNS). Germline mutations in the RAS signaling pathway genes are associated with a group of neurodevelopmental disorders, collectively called RASopathy, which includes neurofibromatosis type 1, Noonan syndrome, cardio-facio-cutaneous syndrome, and Costello syndrome. Most mutations associated with RASopathies increase the activity of the RAS-ERK signaling pathway, and therefore, most individuals with RASopathies share common phenotypes, such as a short stature, heart defects, facial abnormalities, and cognitive impairments, which are often accompanied by abnormal CNS development. Recent studies using mouse models of RASopathies demonstrated that particular mutations associated with each disorder disrupt CNS development in a mutation-specific manner. Here, we reviewed the recent literatures that investigated the developmental role of RASopathy-associated mutations using mutant mice, which provided insights into the specific contribution of RAS-ERK signaling molecules to CNS development and the subsequent impact on cognitive function in adult mice.
Collapse
Affiliation(s)
- Minkyung Kang
- Department of Physiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 03080, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Yong-Seok Lee
- Department of Physiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 03080, South Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea. .,Neuroscience Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 03080, South Korea.
| |
Collapse
|
32
|
Yasuda K, Maki T, Saito S, Yamamoto Y, Kinoshita H, Choi YK, Arumugam TV, Lim YA, Chen CLH, Wong PTH, Ihara M, Takahashi R. Effect of fingolimod on oligodendrocyte maturation under prolonged cerebral hypoperfusion. Brain Res 2019; 1720:146294. [DOI: 10.1016/j.brainres.2019.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 02/08/2023]
|
33
|
Stadelmann C, Timmler S, Barrantes-Freer A, Simons M. Myelin in the Central Nervous System: Structure, Function, and Pathology. Physiol Rev 2019; 99:1381-1431. [PMID: 31066630 DOI: 10.1152/physrev.00031.2018] [Citation(s) in RCA: 339] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocytes generate multiple layers of myelin membrane around axons of the central nervous system to enable fast and efficient nerve conduction. Until recently, saltatory nerve conduction was considered the only purpose of myelin, but it is now clear that myelin has more functions. In fact, myelinating oligodendrocytes are embedded in a vast network of interconnected glial and neuronal cells, and increasing evidence supports an active role of oligodendrocytes within this assembly, for example, by providing metabolic support to neurons, by regulating ion and water homeostasis, and by adapting to activity-dependent neuronal signals. The molecular complexity governing these interactions requires an in-depth molecular understanding of how oligodendrocytes and axons interact and how they generate, maintain, and remodel their myelin sheaths. This review deals with the biology of myelin, the expanded relationship of myelin with its underlying axons and the neighboring cells, and its disturbances in various diseases such as multiple sclerosis, acute disseminated encephalomyelitis, and neuromyelitis optica spectrum disorders. Furthermore, we will highlight how specific interactions between astrocytes, oligodendrocytes, and microglia contribute to demyelination in hereditary white matter pathologies.
Collapse
Affiliation(s)
- Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Sebastian Timmler
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Alonso Barrantes-Freer
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Mikael Simons
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| |
Collapse
|
34
|
Mitogenic and progenitor gene programmes in single pilocytic astrocytoma cells. Nat Commun 2019; 10:3731. [PMID: 31427603 PMCID: PMC6700116 DOI: 10.1038/s41467-019-11493-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/10/2019] [Indexed: 01/28/2023] Open
Abstract
Pilocytic astrocytoma (PA), the most common childhood brain tumor, is a low-grade glioma with a single driver BRAF rearrangement. Here, we perform scRNAseq in six PAs using methods that enabled detection of the rearrangement. When compared to higher-grade gliomas, a strikingly higher proportion of the PA cancer cells exhibit a differentiated, astrocyte-like phenotype. A smaller proportion of cells exhibit a progenitor-like phenotype with evidence of proliferation. These express a mitogen-activated protein kinase (MAPK) programme that was absent from higher-grade gliomas. Immune cells, especially microglia, comprise 40% of all cells in the PAs and account for differences in bulk expression profiles between tumor locations and subtypes. These data indicate that MAPK signaling is restricted to relatively undifferentiated cancer cells in PA, with implications for investigational therapies directed at this pathway. Pilocytic astrocytoma is a low-grade pediatric glioma, characterized by a single BRAF rearrangement. Here, Reitman and colleagues use single-cell RNA sequencing to reveal molecular hallmarks of the disease that might be targeted therapeutically.
Collapse
|
35
|
Kasuga Y, Fudge AD, Zhang Y, Li H. Characterization of a long noncoding RNA Pcdh17it as a novel marker for immature premyelinating oligodendrocytes. Glia 2019; 67:2166-2177. [PMID: 31328332 DOI: 10.1002/glia.23684] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 01/12/2023]
Abstract
Oligodendrocyte precursors (OPs) proliferate and differentiate into oligodendrocytes (OLs) during postnatal development and into adulthood in the central nervous system (CNS). Following the initiation of differentiation, OPs give rise to immature, premyelinating OLs, which undergo further differentiation and mature into myelin-forming OLs. We identified an immature OL-specific long noncoding RNA, named Pcdh17it. Through co-localization analysis and morphological characterization of OLs, we found that Pcdh17it is a specific marker for newly born immature OLs in the developing and adult forebrain of mice, and we used this new marker to analyze OL generation over the lifespan of mice. Pcdh17it is an effective tool for monitoring newly born OLs in adult brain, allowing detailed study of the dynamics of OP differentiation into OLs in the normal and pathological CNS.
Collapse
Affiliation(s)
- Yusuke Kasuga
- Wolfson Institute for Biomedical Research, University College London, London, UK
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Alexander D Fudge
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Yumeng Zhang
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, University College London, London, UK
| |
Collapse
|
36
|
Kim YE, Baek ST. Neurodevelopmental Aspects of RASopathies. Mol Cells 2019; 42:441-447. [PMID: 31250618 PMCID: PMC6602148 DOI: 10.14348/molcells.2019.0037] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
RAS gene mutations are frequently found in one third of human cancers. Affecting approximately 1 in 1,000 newborns, germline and somatic gain-of-function mutations in the components of RAS/mitogen-activated protein kinase (RAS/MAPK) pathway has been shown to cause developmental disorders, known as RASopathies. Since RAS-MAPK pathway plays essential roles in proliferation, differentiation and migration involving developmental processes, individuals with RASopathies show abnormalities in various organ systems including central nervous system. The frequently seen neurological defects are developmental delay, macrocephaly, seizures, neurocognitive deficits, and structural malformations. Some of the defects stemmed from dysregulation of molecular and cellular processes affecting early neurodevelopmental processes. In this review, we will discuss the implications of RAS-MAPK pathway components in neurodevelopmental processes and pathogenesis of RASopathies.
Collapse
Affiliation(s)
- Ye Eun Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang 37673,
Korea
| | - Seung Tae Baek
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang 37673,
Korea
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673,
Korea
| |
Collapse
|
37
|
Kim JY, Yoon JY, Sugiura Y, Lee SK, Park JD, Song GJ, Yang HJ. Dendropanax morbiferus leaf extract facilitates oligodendrocyte development. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190266. [PMID: 31312492 PMCID: PMC6599778 DOI: 10.1098/rsos.190266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/04/2019] [Indexed: 06/10/2023]
Abstract
Treatment of multiple sclerosis is effective when anti-inflammatory, neuroprotective and regenerative strategies are combined. Dendropanax morbiferus (DM) has anti-inflammatory, anti-oxidative properties, which may be beneficial for multiple sclerosis. However, there have been no reports on the effects of DM on myelination, which is critical for regenerative processes. To know whether DM benefits myelination, we checked differentiation and myelination of oligodendrocytes (OLs) in various primary culture systems treated with DM leaf EtOH extracts or control. DM extracts increased the OL membrane size in the mixed glial and pure OL precursor cell (OPC) cultures and changed OL-lineage gene expression patterns in the OPC cultures. Western blot analysis of DM-treated OPC cultures showed upregulation of MBP and phosphorylation of ERK1/2. In myelinating cocultures, DM extracts enhanced OL differentiation, followed by increased axonal contacts and myelin gene upregulations such as Myrf, CNP and PLP. Phytochemical analysis by LC-MS/MS identified multiple components from DM extracts, containing bioactive molecules such as quercetin, cannabidiol, etc. Our results suggest DM extracts enhance OL differentiation, followed by an increase in membrane size and axonal contacts, thereby indicating enhanced myelination. In addition, we found that DM extracts contain multiple bioactive components, warranting further studies in relation to finding effective components for enhancing myelination.
Collapse
Affiliation(s)
- Ji-Young Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul 120-749, Republic of Korea
| | - Ju-Young Yoon
- Department of Integrative Biosciences, University of Brain Education, Cheonan 31228, Republic of Korea
| | - Yuki Sugiura
- Department of Biochemistry and Integrative Medical Biology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Soo-Kyoung Lee
- Department of Health Science and Daily Sports, Global Cyber University, Cheonan 31228, Republic of Korea
| | - Jae-Don Park
- Cheju Halla University, Jeju 63092, Republic of Korea
| | - Gyun-Jee Song
- Department of Medical Science, International St Mary's Hospital, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Hyun-Jeong Yang
- Department of Integrative Biosciences, University of Brain Education, Cheonan 31228, Republic of Korea
- Korea Institute of Brain Science, Seoul, Republic of Korea
| |
Collapse
|
38
|
Zhu K, Sun J, Kang Z, Zou Z, Wu X, Wang Y, Wu G, Harris RA, Wang J. Repurposing of omeprazole for oligodendrocyte differentiation and remyelination. Brain Res 2019; 1710:33-42. [DOI: 10.1016/j.brainres.2018.12.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 12/20/2022]
|
39
|
Ishii A, Furusho M, Macklin W, Bansal R. Independent and cooperative roles of the Mek/ERK1/2-MAPK and PI3K/Akt/mTOR pathways during developmental myelination and in adulthood. Glia 2019; 67:1277-1295. [PMID: 30761608 DOI: 10.1002/glia.23602] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/20/2022]
Abstract
Multiple extracellular and intracellular signals regulate the functions of oligodendrocytes as they progress through the complex process of developmental myelination and then maintain a functionally intact myelin sheath throughout adult life, preserving the integrity of the axons. Recent studies suggest that Mek/ERK1/2-MAPK and PI3K/Akt/mTOR intracellular signaling pathways play important, often overlapping roles in the regulation of myelination. However, it remains poorly understood whether they function independently, sequentially, or converge using a common mechanism to facilitate oligodendrocyte differentiation, myelin growth, and maintenance. To address these questions, we analyzed multiple genetically modified mice and asked whether the deficits due to the conditional loss-of-function of ERK1/2 or mTOR could be abrogated by simultaneous constitutive activation of PI3K/Akt or Mek, respectively. From these studies, we concluded that while PI3K/Akt, not Mek/ERK1/2, plays a key role in promoting oligodendrocyte differentiation and timely initiation of myelination through mTORC1 signaling, Mek/ERK1/2-MAPK functions largely independently of mTORC1 to preserve the integrity of the myelinated axons during adulthood. However, to promote the efficient growth of the myelin sheath, these two pathways cooperate with each other converging at the level of mTORC1, both in the context of normal developmental myelination or following forced reactivation of the myelination program during adulthood. Thus, Mek/ERK1/2-MAPK and the PI3K/Akt/mTOR signaling pathways work both independently and cooperatively to maintain a finely tuned, temporally regulated balance as oligodendrocytes progress through different phases of developmental myelination into adulthood. Therapeutic strategies aimed at targeting remyelination in demyelinating diseases are expected to benefit from these findings.
Collapse
Affiliation(s)
- Akihiro Ishii
- Department of Neuroscience, University of Connecticut Medical School, Farmington, Connecticut, USA
| | - Miki Furusho
- Department of Neuroscience, University of Connecticut Medical School, Farmington, Connecticut, USA
| | - Wendy Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Rashmi Bansal
- Department of Neuroscience, University of Connecticut Medical School, Farmington, Connecticut, USA
| |
Collapse
|
40
|
Elbaz B, Popko B. Molecular Control of Oligodendrocyte Development. Trends Neurosci 2019; 42:263-277. [PMID: 30770136 DOI: 10.1016/j.tins.2019.01.002] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 12/27/2022]
Abstract
Myelin is a multilayer lipid membrane structure that wraps and insulates axons, allowing for the efficient propagation of action potentials. During developmental myelination of the central nervous system (CNS), oligodendrocyte progenitor cells (OPCs) proliferate and migrate to their final destination, where they terminally differentiate into mature oligodendrocytes and myelinate axons. Lineage progression and terminal differentiation of oligodendrocyte lineage cells are under tight transcriptional and post-transcriptional control. The characterization of several recently identified regulatory factors that govern these processes, which are the focus of this review, has greatly increased our understanding of oligodendrocyte development and function. These insights are critical to facilitate efforts to enhance OPC differentiation in neurological disorders that disrupt CNS myelin.
Collapse
Affiliation(s)
- Benayahu Elbaz
- The Center for Peripheral Neuropathy, The Department of Neurology, University of Chicago, Chicago, IL, USA
| | - Brian Popko
- The Center for Peripheral Neuropathy, The Department of Neurology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
41
|
Abstract
The MAPK pathway is a prominent intracellular signaling pathway regulating various intracellular functions. Components of this pathway are mutated in a related collection of congenital syndromes collectively referred to as neuro-cardio-facio-cutaneous syndromes (NCFC) or Rasopathies. Recently, it has been appreciated that these disorders are associated with autism spectrum disorders (ASD). In addition, idiopathic ASD has also implicated the MAPK signaling cascade as a common pathway that is affected by many of the genetic variants that have been found to be linked to ASDs. This chapter describes the components of the MAPK pathway and how it is regulated. Furthermore, this chapter will highlight the various functions of the MAPK pathway during both embryonic development of the central nervous system (CNS) and its roles in neuronal physiology and ultimately, behavior. Finally, we will summarize the perturbations to MAPK signaling in various models of autism spectrum disorders and Rasopathies to highlight how dysregulation of this pivotal pathway may contribute to the pathogenesis of autism.
Collapse
|
42
|
Chen BH, Park JH, Lee YL, Kang IJ, Kim DW, Hwang IK, Lee CH, Yan BC, Kim YM, Lee TK, Lee JC, Won MH, Ahn JH. Melatonin improves vascular cognitive impairment induced by ischemic stroke by remyelination via activation of ERK1/2 signaling and restoration of glutamatergic synapses in the gerbil hippocampus. Biomed Pharmacother 2018; 108:687-697. [PMID: 30245469 DOI: 10.1016/j.biopha.2018.09.077] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/29/2018] [Accepted: 09/12/2018] [Indexed: 01/02/2023] Open
Abstract
Vascular dementia affects cognition by damaging axons and myelin. Melatonin is pharmacologically associated with various neurological disorders. In this study, effects of melatonin on cognitive impairment and related mechanisms were investigated in an animal model of ischemic vascular dementia (IVD). Melatonin was intraperitoneally administered to adult gerbils after transient global cerebral ischemia (tGCI) for 25 days beginning 5 days after tGCI. Cognitive impairment was examined using a passive avoidance test and the Barnes maze test. To investigate mechanisms of restorative effects by melatonin, neuronal damage/death, myelin basic protein (MBP, a marker for myelin), Rip (a marker for oligodendrocyte), extracellular signal-regulated protein kinase1/2 (ERK1/2) and phospho-ERK1/2 (p-ERK1/2), and vesicular glutamate transporter (VGLUT)-1 (a glutamatergic synaptic marker) in the hippocampal Cornu Ammonis 1 area (CA1) were evaluated using immunohistochemistry. Melatonin treatment significantly improved tGCI-induced cognitive impairment. Death of CA1 pyramidal neurons after tGCI was not affected by melatonin treatment. However, melatonin treatment significantly increased MBP immunoreactivity and numbers of Rip-immunoreactive oligodendrocytes in the ischemic CA1. In addition, melatonin treatment significantly increased ERK1/2 and p-ERK1/2 immunoreactivities in oligodendrocytes in the ischemic CA1. Furthermore, melatonin treatment significantly increased VGLUT-1 immunoreactive structures in the ischemic CA1. These results indicate that long-term melatonin treatment after tGCI improves cognitive deficit via restoration of myelin, increase of oligodendrocytes which is closely related to the activation of ERK1/2 signaling, and increase of glutamatergic synapses in the ischemic brain area.
Collapse
Affiliation(s)
- Bai Hui Chen
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon, 24252, Republic of Korea
| | - Yun Lyul Lee
- Department of Physiology, College of Medicine, and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Gangwon, 24252, Republic of Korea
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Gangwon, 24252, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, and Research Institute of Oral Sciences, College of Dentistry, Kangnung-Wonju National University, Gangneung, Gangwon, 25457, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Chungcheongnam, 31116, Republic of Korea
| | - Bing Chun Yan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, People's Republic of China
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Jae Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon, 24252, Republic of Korea.
| |
Collapse
|
43
|
Thomas L, Pasquini LA. Galectin-3-Mediated Glial Crosstalk Drives Oligodendrocyte Differentiation and (Re)myelination. Front Cell Neurosci 2018; 12:297. [PMID: 30258354 PMCID: PMC6143789 DOI: 10.3389/fncel.2018.00297] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/17/2018] [Indexed: 12/17/2022] Open
Abstract
Galectin-3 (Gal-3) is the only chimeric protein in the galectin family. Gal-3 structure comprises unusual tandem repeats of proline and glycine-rich short stretches bound to a carbohydrate-recognition domain (CRD). The present review summarizes Gal-3 functions in the extracellular and intracellular space, its regulation and its internalization and secretion, with a focus on the current knowledge of Gal-3 role in central nervous system (CNS) health and disease, particularly oligodendrocyte (OLG) differentiation, myelination and remyelination in experimental models of multiple sclerosis (MS). During myelination, microglia-expressed Gal-3 promotes OLG differentiation by binding glycoconjugates present only on the cell surface of OLG precursor cells (OPC). During remyelination, microglia-expressed Gal-3 favors an M2 microglial phenotype, hence fostering myelin debris phagocytosis through TREM-2b phagocytic receptor and OLG differentiation. Gal-3 is necessary for myelin integrity and function, as evidenced by myelin ultrastructural and behavioral studies from LGALS3-/- mice. Mechanistically, Gal-3 enhances actin assembly and reduces Erk 1/2 activation, leading to early OLG branching. Gal-3 later induces Akt activation and increases MBP expression, promoting gelsolin release and actin disassembly and thus regulating OLG final differentiation. Altogether, findings indicate that Gal-3 mediates the glial crosstalk driving OLG differentiation and (re)myelination and may be regarded as a target in the design of future therapies for a variety of demyelinating diseases.
Collapse
Affiliation(s)
- Laura Thomas
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina.,Institute of Chemistry and Biological Physicochemistry (IQUIFIB), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Laura Andrea Pasquini
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina.,Institute of Chemistry and Biological Physicochemistry (IQUIFIB), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
44
|
Calabretta S, Vogel G, Yu Z, Choquet K, Darbelli L, Nicholson TB, Kleinman CL, Richard S. Loss of PRMT5 Promotes PDGFRα Degradation during Oligodendrocyte Differentiation and Myelination. Dev Cell 2018; 46:426-440.e5. [DOI: 10.1016/j.devcel.2018.06.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 04/20/2018] [Accepted: 06/27/2018] [Indexed: 12/26/2022]
|
45
|
Wang L, Schlagal CR, Gao J, Hao Y, Dunn TJ, McGrath EL, Labastida JA, Yu Y, Feng SQ, Liu SY, Wu P. Oligodendrocyte differentiation from human neural stem cells: A novel role for c-Src. Neurochem Int 2018; 120:21-32. [PMID: 30041015 DOI: 10.1016/j.neuint.2018.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/28/2018] [Accepted: 07/18/2018] [Indexed: 01/06/2023]
Abstract
Human neural stem cells (hNSCs) can differentiate into an oligodendrocyte lineage to facilitate remyelination in patients. Molecular mechanisms underlying oligodendrocyte fate specification remains unknown, hindering the development of efficient methods to generate oligodendrocytes from hNSCs. We have found that Neurobasal-A medium (NB) is capable of inducing hNSCs to oligodendrocyte progenitor cells (OPCs). We identified several signaling molecules are altered after cultivation in NB medium, including Akt, ERK1/2 and c-Src. While sustained activation of Akt and ERK1/2 during both NB induction and subsequent differentiation was required for OPC differentiation, c-Src phosphorylation was increased temporally during the period of NB induction. Both pharmacological inhibition and RNA interference confirmed that a transient elevation of phospho-c-Src is critical for OPC induction. Furthermore, inactivation of c-Src inhibited phosphorylation of Akt and ERK1/2. In summary, we identified a novel and critical role of c-Src in guiding hNSC differentiation to an oligodendrocyte lineage.
Collapse
Affiliation(s)
- Le Wang
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA; Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Rd, Yuexiu Qu, Guangzhou Shi, Guangdong Sheng, China
| | - Caitlin R Schlagal
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
| | - Junling Gao
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
| | - Yan Hao
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA; Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Rd, Heping Qu, 300051, China
| | - Tiffany J Dunn
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
| | - Erica L McGrath
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
| | - Javier Allende Labastida
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
| | - Yongjia Yu
- Department of Radiation Oncology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
| | - Shi-Qing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Rd, Heping Qu, 300051, China
| | - Shao-Yu Liu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Rd, Yuexiu Qu, Guangzhou Shi, Guangdong Sheng, China
| | - Ping Wu
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| |
Collapse
|
46
|
Thei L, Rocha-Ferreira E, Peebles D, Raivich G, Hristova M. Extracellular signal-regulated kinase 2 has duality in function between neuronal and astrocyte expression following neonatal hypoxic-ischaemic cerebral injury. J Physiol 2018; 596:6043-6062. [PMID: 29873394 PMCID: PMC6265549 DOI: 10.1113/jp275649] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/29/2018] [Indexed: 01/08/2023] Open
Abstract
Key points This study identifies phosphorylated extracellular signal‐regulated kinase (ERK) to be immediately diminished followed by a rapid if transient increase for up to 4 h following hypoxic–ischaemic insult (HI) in the neonatal mouse. Phosphorylated ERK up‐regulation was prevented with systemic injection of the mitogen‐activated protein kinase kinase (MEK) inhibitor SL327. Treatment with SL327 both pre‐ and post‐HI gave a strong reduction in the number of dying cells and microgliosis. By utilising transgenic mouse mutations, we observe that neuronal ERK2 significantly contributes to tissue damage, while ERK1 and astrocytic ERK2 are neuroprotective. Compared to global inactivation, selective cell‐specific interference with ERK activity could result in stronger neuroprotection.
Abstract Hypoxia–ischaemia (HI) is a major cause of neonatal brain injury resulting in cerebral palsy, epilepsy, cognitive impairment and other neurological disabilities. The role of extracellular signal‐regulated kinase (ERK) isoforms and their mitogen‐activated protein kinase kinase (MEK)‐dependent phosphorylation in HI has previously been explored but remains unresolved at cellular level. This is pertinent given the growing awareness of the role of non‐neuronal cells in neuroprotection. Using a modified Rice–Vannucci model of HI in the neonatal mouse we observed time‐ and cell‐dependent ERK phosphorylation (pERK), with strongly up‐regulated pERK immunoreactivity first in periventricular white matter axons within 15–45 min of HI, followed by forebrain astrocytes and neurons (1–4 h post‐HI), and return to baseline by 16 h. We explored the effects of pharmacological ERK blockade through the MEK inhibitor SL327 on neonatal HI‐brain damage following HI alone (30 or 60 min) or lipopolysaccharide (LPS)‐sensitised HI insult (30 min). Global inhibition of ERK phosphorylation with systemically applied SL327 abolished forebrain pERK immunoreactivity, and significantly reduced cell death and associated microglial activation at 48 h post‐HI. We then explored the effects of cell‐specific ERK2 deletion alone or in combination with global ERK1 knockout under the same conditions of HI insult. Neuronal ERK2 deletion strongly decreased infarct size, neuronal cell death and microglial activation in grey matter following both HI alone or LPS‐sensitised HI. ERK1 deletion attenuated the protective effect of neuronal ERK2 deletion. Removal of astroglial ERK2 produced a reverse response, with a 3‐ to 4‐fold increase in microglial activation and cell death. Our data suggest a cell‐specific and time‐dependent role of ERK in neonatal HI, with a predominant, neurotoxic effect of neuronal ERK2, which is counteracted by neuroprotection by ERK1 and astrocytic ERK2. Overall, global pharmacological inhibition of ERK phosphorylation is strongly neuroprotective. This study identifies phosphorylated extracellular signal‐regulated kinase (ERK) to be immediately diminished followed by a rapid if transient increase for up to 4 h following hypoxic–ischaemic insult (HI) in the neonatal mouse. Phosphorylated ERK up‐regulation was prevented with systemic injection of the mitogen‐activated protein kinase kinase (MEK) inhibitor SL327. Treatment with SL327 both pre‐ and post‐HI gave a strong reduction in the number of dying cells and microgliosis. By utilising transgenic mouse mutations, we observe that neuronal ERK2 significantly contributes to tissue damage, while ERK1 and astrocytic ERK2 are neuroprotective. Compared to global inactivation, selective cell‐specific interference with ERK activity could result in stronger neuroprotection.
Collapse
Affiliation(s)
- Laura Thei
- UCL Institute for Women's Health, Maternal and Fetal Medicine, Perinatal Brain Repair Group, London, WC1E 6HX, UK.,School of Pharmacy, University of Reading, Reading, RG6 6UA, UK
| | - Eridan Rocha-Ferreira
- UCL Institute for Women's Health, Maternal and Fetal Medicine, Perinatal Brain Repair Group, London, WC1E 6HX, UK.,Institute of Clinical Sciences, University of Gothenburg, Gothenburg, SE 416 85, Sweden
| | - Donald Peebles
- UCL Institute for Women's Health, Maternal and Fetal Medicine, Perinatal Brain Repair Group, London, WC1E 6HX, UK
| | - Gennadij Raivich
- UCL Institute for Women's Health, Maternal and Fetal Medicine, Perinatal Brain Repair Group, London, WC1E 6HX, UK
| | - Mariya Hristova
- UCL Institute for Women's Health, Maternal and Fetal Medicine, Perinatal Brain Repair Group, London, WC1E 6HX, UK
| |
Collapse
|
47
|
Dillenburg A, Ireland G, Holloway RK, Davies CL, Evans FL, Swire M, Bechler ME, Soong D, Yuen TJ, Su GH, Becher JC, Smith C, Williams A, Miron VE. Activin receptors regulate the oligodendrocyte lineage in health and disease. Acta Neuropathol 2018; 135:887-906. [PMID: 29397421 PMCID: PMC5954071 DOI: 10.1007/s00401-018-1813-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/16/2018] [Accepted: 01/29/2018] [Indexed: 12/12/2022]
Abstract
The most prevalent neurological disorders of myelin include perinatal brain injury leading to cerebral palsy in infants and multiple sclerosis in adults. Although these disorders have distinct etiologies, they share a common neuropathological feature of failed progenitor differentiation into myelin-producing oligodendrocytes and lack of myelin, for which there is an unmet clinical need. Here, we reveal that a molecular pathology common to both disorders is dysregulation of activin receptors and that activin receptor signaling is required for the majority of myelin generation in development and following injury. Using a constitutive conditional knockout of all activin receptor signaling in oligodendrocyte lineage cells, we discovered this signaling to be required for myelination via regulation of oligodendrocyte differentiation and myelin compaction. These processes were found to be dependent on the activin receptor subtype Acvr2a, which is expressed during oligodendrocyte differentiation and axonal ensheathment in development and following myelin injury. During efficient myelin regeneration, Acvr2a upregulation was seen to coincide with downregulation of Acvr2b, a receptor subtype with relatively higher ligand affinity; Acvr2b was shown to be dispensable for activin receptor-driven oligodendrocyte differentiation and its overexpression was sufficient to impair the abovementioned ligand-driven responses. In actively myelinating or remyelinating areas of human perinatal brain injury and multiple sclerosis tissue, respectively, oligodendrocyte lineage cells expressing Acvr2a outnumbered those expressing Acvr2b, whereas in non-repairing lesions Acvr2b+ cells were increased. Thus, we propose that following human white matter injury, this increase in Acvr2b expression would sequester ligand and consequently impair Acvr2a-driven oligodendrocyte differentiation and myelin formation. Our results demonstrate dysregulated activin receptor signaling in common myelin disorders and reveal Acvr2a as a novel therapeutic target for myelin generation following injury across the lifespan.
Collapse
|
48
|
R-Ras1 and R-Ras2 Are Essential for Oligodendrocyte Differentiation and Survival for Correct Myelination in the Central Nervous System. J Neurosci 2018; 38:5096-5110. [PMID: 29720552 DOI: 10.1523/jneurosci.3364-17.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/14/2018] [Accepted: 04/10/2018] [Indexed: 12/21/2022] Open
Abstract
Rapid and effective neural transmission of information requires correct axonal myelination. Modifications in myelination alter axonal capacity to transmit electric impulses and enable pathological conditions. In the CNS, oligodendrocytes (OLs) myelinate axons, a complex process involving various cellular interactions. However, we know little about the mechanisms that orchestrate correct myelination. Here, we demonstrate that OLs express R-Ras1 and R-Ras2. Using female and male mutant mice to delete these proteins, we found that activation of the PI3K/Akt and Erk1/2-MAPK pathways was weaker in mice lacking one or both of these GTPases, suggesting that both proteins coordinate the activity of these two pathways. Loss of R-Ras1 and/or R-Ras2 diminishes the number of OLs in major myelinated CNS tracts and increases the proportion of immature OLs. In R-Ras1-/- and R-Ras2-/--null mice, OLs show aberrant morphologies and fail to differentiate correctly into myelin-forming phenotypes. The smaller OL population and abnormal OL maturation induce severe hypomyelination, with shorter nodes of Ranvier in R-Ras1-/- and/or R-Ras2-/- mice. These defects explain the slower conduction velocity of myelinated axons that we observed in the absence of R-Ras1 and R-Ras2. Together, these results suggest that R-Ras1 and R-Ras2 are upstream elements that regulate the survival and differentiation of progenitors into OLs through the PI3K/Akt and Erk1/2-MAPK pathways for proper myelination.SIGNIFICANCE STATEMENT In this study, we show that R-Ras1 and R-Ras2 play essential roles in regulating myelination in vivo and control fundamental aspects of oligodendrocyte (OL) survival and differentiation through synergistic activation of PI3K/Akt and Erk1/2-MAPK signaling. Mice lacking R-Ras1 and/or R-Ras2 show a diminished OL population with a higher proportion of immature OLs, explaining the observed hypomyelination in main CNS tracts. In vivo electrophysiology recordings demonstrate a slower conduction velocity of nerve impulses in the absence of R-Ras1 and R-Ras2. Therefore, R-Ras1 and R-Ras2 are essential for proper axonal myelination and accurate neural transmission.
Collapse
|
49
|
Pol SU, Polanco JJ, Seidman RA, O'Bara MA, Shayya HJ, Dietz KC, Sim FJ. Network-Based Genomic Analysis of Human Oligodendrocyte Progenitor Differentiation. Stem Cell Reports 2018; 9:710-723. [PMID: 28793249 PMCID: PMC5550273 DOI: 10.1016/j.stemcr.2017.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 12/21/2022] Open
Abstract
Impaired human oligodendrocyte progenitor cell (hOPC) differentiation likely contributes to failed remyelination in multiple sclerosis. The characterization of molecular pathways that regulate hOPC differentiation will provide means to induce remyelination. In this study, we determined the gene expression profile of PDGFαR+ hOPCs during initial oligodendrocyte commitment. Weighted gene coexpression network analysis was used to define progenitor and differentiation-specific gene expression modules and functionally important hub genes. These modules were compared with rodent OPC and oligodendrocyte data to determine the extent of species conservation. These analyses identified G-protein β4 (GNB4), which was associated with hOPC commitment. Lentiviral GNB4 overexpression rapidly induced human oligodendrocyte differentiation. Following xenograft in hypomyelinating shiverer/rag2 mice, GNB4 overexpression augmented myelin synthesis and the ability of hOPCs to ensheath host axons, establishing GNB4 as functionally important in human myelination. As such, network analysis of hOPC gene expression accurately predicts genes that influence human oligodendrocyte differentiation in vivo. Transcriptional database of differentiating human oligodendrocyte progenitor cells WGCNA reveals coordinated gene networks in oligodendrocyte specification Dataset comparison identifies unique and shared cross-species gene networks G-protein β4 (GNB4) expression accelerates human oligodendrocyte differentiation
Collapse
Affiliation(s)
- Suyog U Pol
- Neuroscience Program, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, USA; Department of Biomedical Engineering, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, USA
| | - Jessie J Polanco
- Neuroscience Program, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, USA
| | - Richard A Seidman
- Neuroscience Program, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, USA
| | - Melanie A O'Bara
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, USA
| | - Hani J Shayya
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, USA
| | - Karen C Dietz
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, USA; Neuroscience Program, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, USA
| | - Fraser J Sim
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, USA; Neuroscience Program, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, USA.
| |
Collapse
|
50
|
Yu Y, Fu P, Yu Z, Xie M, Wang W, Luo X. NKCC1 Inhibition Attenuates Chronic Cerebral Hypoperfusion-Induced White Matter Lesions by Enhancing Progenitor Cells of Oligodendrocyte Proliferation. J Mol Neurosci 2018; 64:449-458. [PMID: 29502291 DOI: 10.1007/s12031-018-1043-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/15/2018] [Indexed: 11/28/2022]
Abstract
Cerebral white matter is vulnerable to ischemic condition. However, no effective treatment to alleviate or restore the myelin damage caused by chronic cerebral hypoperfusion has been found. Na+-K+-Cl- cotransporter 1 (NKCC1), a Na+-K+-Cl- cotransporter widely expressed in the central nervous system (CNS), involves in regulation of cell swelling, EAA release, cell apoptosis, and proliferation. Nevertheless, the role of NKCC1 in chronic hypoperfusion-induced white matter lesions (WMLs) has not been explored. Here, mice subjected to bilateral common carotid artery stenosis (BCAS) were used as model of chronic cerebral hypoperfusion; density of progenitor cells of oligodendrocyte (OPCs), oligodendrocytes (OLs), astrocytes, and microglia was assessed by immunofluorescent staining and Western blot analysis; working memory was examined by eight-arm radial maze test; expression of MAPK signaling pathway was determined by Western blot analysis. After BCAS, white matter integrity disruption and working memory impairment were observed. NKCC1 inhibition by bumetanide administration enhanced OPC proliferation, attenuated chronic hypoperfusion-induced white matter damage, and promoted recovery of neurological function. However, NKCC1 inhibition caused no significant change in the densities of GFAP- and Iba-1-positive cells in the corpus callosum. Bumetanide administration significantly increased the expression of p-ERK and decreased the expression of p-JNK and p-p38 in comparison to vehicle-BCAS groups. In conclusion, NKCC1 inhibition might significantly ameliorate chronic cerebral hypoperfusion-induced WMLs and cognitive impairment by enhancing progenitor cells of oligodendrocyte proliferation, and this protective function of bumetanide might be mediated by modulation of the MAPK signaling pathway.
Collapse
Affiliation(s)
- Ying Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Peicai Fu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|