1
|
Li C, Sahu S, Kou G, Jagadeesan N, Joseph TP, Li Lin S, Schachner M. Chondroitin 6-sulfate-binding peptides improve recovery in spinal cord-injured mice. Eur J Pharmacol 2021; 910:174421. [PMID: 34391768 DOI: 10.1016/j.ejphar.2021.174421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/01/2021] [Accepted: 08/11/2021] [Indexed: 02/05/2023]
Abstract
The role of glycosaminoglycan sulfation patterns, particularly in regard to scar formation and inhibition of neuritogenesis, has been mainly studied in cell culture with a focus on chondroitin 4-sulfate. In this study, we investigated chondroitin 6-sulfate (C6S) and found that it also inhibits neurite outgrowth of mouse cerebellar granule neurons in vitro. To examine whether the inhibitory activity of C6S could be neutralized, seven previously characterized high-affinity C6S-binding peptides were tested, among which three peptides neutralized the inhibitory functions of C6S. We further investigated these peptides in a mouse model of spinal cord injury, since upregulation of C6S expression in the glial scar following injury has been associated with reduced axonal regrowth and functional recovery. We here subjected mice to severe compression injury at thoracic levels T7-T9, immediately followed by inserting gelfoam patches soaked in C6S-binding peptides or in a control peptide. Application of C6S-binding peptides led to functional recovery after injury and prevented fibrotic glial scar formation, as seen by decreased activation of astrocytes and microglia/macrophages. Decreased expression of several lecticans and deposition of fibronectin at the site of injury were also observed. Application of C6S-binding peptides led to axonal regrowth and inhibited the C6S-mediated activation of RhoA/ROCK and decrease of PI3K-Akt-mTOR signaling pathways. Taken together, these results indicate that treatment with C6S-binding peptides improves functional recovery in a mouse model of spinal cord injury.
Collapse
Affiliation(s)
- Caijie Li
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Sudhanshu Sahu
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Guanhua Kou
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Nataraj Jagadeesan
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Thomson Patrick Joseph
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Stanley Li Lin
- Department of Cell Biology, Shantou University Medical College, Shantou, China; Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou University Medical College, Shantou, China
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, China; Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
2
|
Yang YJ, Bu LL, Shen C, Ge JJ, He SJ, Yu HL, Tang YL, Jue Z, Sun YM, Yu WB, Zuo CT, Wu JJ, Wang J, Liu FT. Fasudil Promotes α-Synuclein Clearance in an AAV-Mediated α-Synuclein Rat Model of Parkinson's Disease by Autophagy Activation. JOURNAL OF PARKINSONS DISEASE 2021; 10:969-979. [PMID: 32568105 DOI: 10.3233/jpd-191909] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disorder, but the disease-modifying therapies focusing on the core pathological changes are still unavailable. Rho-associated protein kinase (ROCK) has been suggested as a promising target for developing neuroprotective therapies in PD. OBJECTIVE We aimed to explore the promotion of α-synuclein (α-syn) clearance in a rat model. METHODS In a rat model induced by unilateral injection of adeno-associated virus of serotype 9 (AAV9) expressing A53T α-syn (AAV9-A53T-α-syn) into the right substantia nigra, we aimed to investigate whether Fasudil could promote α-syn clearance and thereby attenuate motor impairments and dopaminergic deficits. RESULTS In our study, treatment with Fasudil (5 mg/kg rat weight/day) for 8 weeks significantly improved the motor deficits in the Cylinder and Rotarod tests. In the in vivo positron emission tomography imaging with the ligand 18F-dihydrotetrabenazine, Fasudil significantly enhanced the dopaminergic imaging in the injected striatum of the rat model (p < 0.05 vs. vehicle group, p < 0.01 vs. left striatum in Fasudil group). The following mechanistic study confirmed that Fasudil could promote the autophagic clearance of α-syn by Becline 1 and Akt/mTOR pathways. CONCLUSION Our study suggested that Fasudil, the ROCK2 inhibitor, could attenuate the anatomical and behavioral lesions in the Parkinsonian rat model by autophagy activation. Our results identify Fasudil as a drug with high translational potential as disease-modifying treatment for PD and other synucleinopathies.
Collapse
Affiliation(s)
- Yu-Jie Yang
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Lu-Lu Bu
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Cong Shen
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing-Jie Ge
- PET Center, Fudan University, Shanghai, China
| | - Shu-Jin He
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Hui-Ling Yu
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Lin Tang
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhao Jue
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Min Sun
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Wen-Bo Yu
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | | | - Jian-Jun Wu
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Feng-Tao Liu
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Department of Neurology, Huashan Hospital North, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Heijmans L, Mons MR, Joosten EA. A systematic review on descending serotonergic projections and modulation of spinal nociception in chronic neuropathic pain and after spinal cord stimulation. Mol Pain 2021; 17:17448069211043965. [PMID: 34662215 PMCID: PMC8527581 DOI: 10.1177/17448069211043965] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/01/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic neuropathic pain is a debilitating ordeal for patients worldwide and pharmacological treatment efficacy is still limited. As many pharmacological interventions for neuropathic pain often fail, insights into the underlying mechanism and role of identified receptors is of utmost importance. An important target for improving treatment of neuropathic pain is the descending serotonergic system as these projections modulate nociceptive signaling in the dorsal horn. Also with use of last resort treatments like spinal cord stimulation (SCS), the descending serotonergic projections are known to be involved in the pain relieving effect. This systematic review summarizes the involvement of the serotonergic system on nociceptive modulation in the healthy adult rodent and the chronic neuropathic rodent and summarizes all available literature on the serotonergic system in the SCS-treated neuropathic rodent. Medline, Embase and Pubmed databases were used in the search for articles. Descending serotonergic modulation of nociceptive signaling in spinal dorsal horn in normal adult rat is mainly inhibitory and mediated by 5-HT1a, 5-HT1b, 5-HT2c, 5-HT3 and 5-HT4 receptors. Upon injury and in the neuropathic rat, this descending serotonergic modulation becomes facilitatory via activation of the 5-HT2a, 5-HT2b and 5-HT3 receptors. Analgesia due to neuromodulatory intervention like SCS restores the inhibitory function of the descending serotonergic system and involves 5-HT2, 5-HT3 and 5-HT4 receptors. The results of this systematic review provide insights and suggestions for further pharmacological and or neuromodulatory treatment of neuropathic pain based on targeting selected serotonergic receptors related to descending modulation of nociceptive signaling in spinal dorsal horn. With the novel developed SCS paradigms, the descending serotonergic system will be an important target for mechanism-based stimulation induced analgesia.
Collapse
Affiliation(s)
- Lonne Heijmans
- Department of Anesthesiology and Pain Management, Maastricht
University Medical Centre, the Netherlands
- Department of Translational Neuroscience, School of Mental
Health and Neuroscience, Maastricht University, the Netherlands
| | - Martijn R Mons
- Department of Anesthesiology and Pain Management, Maastricht
University Medical Centre, the Netherlands
- Department of Translational Neuroscience, School of Mental
Health and Neuroscience, Maastricht University, the Netherlands
| | - Elbert A Joosten
- Department of Anesthesiology and Pain Management, Maastricht
University Medical Centre, the Netherlands
- Department of Translational Neuroscience, School of Mental
Health and Neuroscience, Maastricht University, the Netherlands
| |
Collapse
|
4
|
Smaila BD, Holland SD, Babaeijandaghi F, Henderson HG, Rossi FMV, Ramer MS. Systemic hypoxia mimicry enhances axonal regeneration and functional recovery following peripheral nerve injury. Exp Neurol 2020; 334:113436. [PMID: 32814068 DOI: 10.1016/j.expneurol.2020.113436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 01/15/2023]
Abstract
Despite the ability of peripheral nerves to regenerate after injury, failure occurs due to an inability of supporting cells to maintain growth, resulting in long-term consequences such as sensorimotor dysfunction and neuropathic pain. Here, we investigate the potential of engaging the cellular adaptive response to hypoxia, via inhibiting its negative regulators, to enhance the regenerative process. Under normoxic conditions, prolyl hydroxylase domain (PHD) proteins 1, 2, and 3 hydroxylate the key metabolic regulator hypoxia inducible factor 1α (HIF1α), marking it for subsequent proteasomal degradation. We inhibited PHD protein function systemically via either individual genetic deletion or pharmacological pan-PHD inhibition using dimethyloxalylglycine (DMOG). We show enhanced axonal regeneration after sciatic nerve crush injury in PHD1-/- mice, PHD3-/- mice, and in DMOG-treated mice, and in PHD1-/- and DMOG-treated mice a reduction in hypersensitivity to cooling after permanent sciatic ligation. Electromyographically, PHD1-/- and PHD3-/- mice showed an increased CMAP amplitude one-month post-injury, probably due to protection against denervation induced muscle atrophy, while DMOG-treated and PHD2+/- mice showed reduced latencies, indicating improved motor axon function. DMOG treatment did not affect the growth of dorsal root ganglion neurites in vitro, suggesting a lack of direct effects of DMOG on axonal regrowth. Enhanced regeneration in vivo was concurrent with an increase in macrophage density, and a shift in macrophage polarization state ratios (from M1-like toward M2-like) in DMOG-treated animals. These results indicate PHD proteins as a novel therapeutic target to improve regenerative and functional outcomes after peripheral nerve injury without manipulating molecular O2.
Collapse
Affiliation(s)
- Brittney D Smaila
- International Collaboration on Repair Discoveries (ICORD), The University of British Columbia, 818 West 10(th) Ave, Vancouver, BC V5Z1M9, Canada
| | - Seth D Holland
- International Collaboration on Repair Discoveries (ICORD), The University of British Columbia, 818 West 10(th) Ave, Vancouver, BC V5Z1M9, Canada
| | - Farshad Babaeijandaghi
- The Biomedical Research Centre, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada
| | - Holly G Henderson
- International Collaboration on Repair Discoveries (ICORD), The University of British Columbia, 818 West 10(th) Ave, Vancouver, BC V5Z1M9, Canada
| | - Fabio M V Rossi
- The Biomedical Research Centre, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada
| | - Matt S Ramer
- International Collaboration on Repair Discoveries (ICORD), The University of British Columbia, 818 West 10(th) Ave, Vancouver, BC V5Z1M9, Canada.
| |
Collapse
|
5
|
Injury of Muscular but not Cutaneous Nerve Drives Acute Neuropathic Pain in Rats. Neurosci Bull 2020; 36:453-462. [PMID: 31933063 DOI: 10.1007/s12264-019-00462-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022] Open
Abstract
Acute pain is a common complication after injury of a peripheral nerve but the underlying mechanism is obscure. We established a model of acute neuropathic pain via pulling a pre-implanted suture loop to transect a peripheral nerve in awake rats. The tibial (both muscular and cutaneous), gastrocnemius-soleus (muscular only), and sural nerves (cutaneous only) were each transected. Transection of the tibial and gastrocnemius-soleus nerves, but not the sural nerve immediately evoked spontaneous pain and mechanical allodynia in the skin territories innervated by the adjacent intact nerves. Evans blue extravasation and cutaneous temperature of the intact skin territory were also significantly increased. In vivo electrophysiological recordings revealed that injury of a muscular nerve induced mechanical hypersensitivity and spontaneous activity in the nociceptive C-neurons in adjacent intact nerves. Our results indicate that injury of a muscular nerve, but not a cutaneous nerve, drives acute neuropathic pain.
Collapse
|
6
|
Tran AP, Warren PM, Silver J. The Biology of Regeneration Failure and Success After Spinal Cord Injury. Physiol Rev 2018. [PMID: 29513146 DOI: 10.1152/physrev.00017.2017] [Citation(s) in RCA: 513] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Since no approved therapies to restore mobility and sensation following spinal cord injury (SCI) currently exist, a better understanding of the cellular and molecular mechanisms following SCI that compromise regeneration or neuroplasticity is needed to develop new strategies to promote axonal regrowth and restore function. Physical trauma to the spinal cord results in vascular disruption that, in turn, causes blood-spinal cord barrier rupture leading to hemorrhage and ischemia, followed by rampant local cell death. As subsequent edema and inflammation occur, neuronal and glial necrosis and apoptosis spread well beyond the initial site of impact, ultimately resolving into a cavity surrounded by glial/fibrotic scarring. The glial scar, which stabilizes the spread of secondary injury, also acts as a chronic, physical, and chemo-entrapping barrier that prevents axonal regeneration. Understanding the formative events in glial scarring helps guide strategies towards the development of potential therapies to enhance axon regeneration and functional recovery at both acute and chronic stages following SCI. This review will also discuss the perineuronal net and how chondroitin sulfate proteoglycans (CSPGs) deposited in both the glial scar and net impede axonal outgrowth at the level of the growth cone. We will end the review with a summary of current CSPG-targeting strategies that help to foster axonal regeneration, neuroplasticity/sprouting, and functional recovery following SCI.
Collapse
Affiliation(s)
- Amanda Phuong Tran
- Department of Neurosciences, Case Western Reserve University , Cleveland, Ohio ; and School of Biomedical Sciences, University of Leeds , Leeds , United Kingdom
| | - Philippa Mary Warren
- Department of Neurosciences, Case Western Reserve University , Cleveland, Ohio ; and School of Biomedical Sciences, University of Leeds , Leeds , United Kingdom
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University , Cleveland, Ohio ; and School of Biomedical Sciences, University of Leeds , Leeds , United Kingdom
| |
Collapse
|
7
|
Lactate Transporter Monocarboxylate Transporter 4 Induces Bone Pain in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2018; 19:ijms19113317. [PMID: 30366393 PMCID: PMC6274991 DOI: 10.3390/ijms19113317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/31/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) poses a significant challenge clinically, as it can invade facial bones and cause bone pain that is undertreated and poorly understood. Here we studied HNSCC bone pain (HNSCC-BP) in an intratibial mouse xenograft model that uses a human HNSCC cell line (SAS cells). These mice develop HNSCC-BP associated with an upregulation of phosphorylated ERK1/2 (pERK1/2), which is a molecular indicator of neuron excitation in the dorsal root ganglia (DRGs) of sensory nerve cell bodies. Our experiments demonstrated that the inhibition of monocarboxylate transporter 4 (MCT4) by short hairpin (shRNA) transduction suppressed the HNSCC-BP, the lactate level in bone marrow, and the pERK1/2 expression in DRG. The sensory nerves also expressed increased levels of the acid-sensing receptor TRPV1. DRG neurons co-cultured with SAS cells showed increased neurite outgrowth, and were inhibited by MCT4 silencing with shRNA. Collectively, our results show that HNSCC induced an acidic bone microenvironment that evokes HNSCC-BP via MCT4 expression.
Collapse
|
8
|
Suppressive effect of Rho-kinase inhibitors Y-27632 and fasudil on spike-and-wave discharges in genetic absence epilepsy rats from Strasbourg (GAERS). Naunyn Schmiedebergs Arch Pharmacol 2018; 391:1275-1283. [PMID: 30073384 DOI: 10.1007/s00210-018-1546-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/19/2018] [Indexed: 12/20/2022]
Abstract
Rho/Rho-kinase (ROCK) signaling contributes to neuroinflammation, epileptogenesis, and seizures in convulsive-type epilepsies. However, this pathway has not been investigated in absence epilepsy. We investigated RhoA activity in genetic absence epilepsy rats from Strasburg (GAERS) and the effects of ROCK inhibitors Y-27632 and fasudil on spike-and-wave discharges (SWDs) of GAERS. ROCK level and activity were measured by Western blot analysis in the brain areas involved in absence seizures (i.e., cortex and thalamus) and hippocampus. Male GAERS were stereotaxically implanted with bilateral cortical electrodes for electroencephalogram (EEG) recordings and/or guide cannula into the right ventricle. ROCK inhibitors were administered by intraperitoneal injection (1-10 mg/kg for Y-27632 or fasudil) or intracerebroventricular injection (7-20 nmol/5 μl for Y-27632 or 10-100 nmol/5 μl for fasudil). EEG was recorded under freely moving conditions. Compared with Wistar rats, GAERS exhibited increased RhoA activity in the somatosensory cortex but not in the thalamus or hippocampus. The single systemic administration of Y-27632 and fasudil partially suppressed the duration and frequency of absence seizure, respectively. However, local brain administration caused a widespread suppressive effect on the total seizure duration, number of seizures, and the average individual seizure length. In summary, Rho/ROCK signaling may be involved in the pathophysiology of absence epilepsy. Furthermore, ROCK inhibitors can control the expression of absence seizure in GAERS, thus indicating that Y-27632 and fasudil have the potential to be used as novel anti-absence drugs.
Collapse
|
9
|
Chen SH, Lue JH, Hsiao YJ, Lai SM, Wang HY, Lin CT, Chen YC, Tsai YJ. Elevated galanin receptor type 2 primarily contributes to mechanical hypersensitivity after median nerve injury. PLoS One 2018; 13:e0199512. [PMID: 29928003 PMCID: PMC6013116 DOI: 10.1371/journal.pone.0199512] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/09/2018] [Indexed: 12/22/2022] Open
Abstract
In this study, we investigated temporal changes in galanin receptor type 2 (GalR2) expression in NF200-, galanin-, neuropeptide Y (NPY)-, and neuronal nitric oxide synthase (nNOS)-like immunoreactive (LI) dorsal root ganglion (DRG) neurons after median nerve chronic constriction injury (CCI), and the effects of GalR2 on c-Fos expression in the cuneate nucleus (CN). Double immunofluorescence labeling methods were used to appraise changes in GalR2 expression in NF200-LI, galanin-LI, NPY-LI, and nNOS-LI DRG neurons after CCI. The von Frey assay was used to assess the efficiency of intraplantar administration of saline, M871 (a GalR2 antagonist), or AR-M1896 (a GalR2 agonist) on neuropathic signs of rats with CCI. The effects of alterations in c-Fos expression were assessed in all treatments. The percentage of GalR2-LI neurons in lesioned DRGs increased and peaked at 1 week after CCI. We further detected that percentages of GalR2-LI neurons labeled for NF200, galanin, NPY, and nNOS significantly increased following CCI. Furthermore, M871 remarkably attenuated tactile allodynia, but the sensation was slightly aggravated by AR-M1896 after CCI. Consequentially, after electrical stimulation of the CCI-treated median nerve, the number of c-Fos-LI neurons in the cuneate nucleus (CN) was significantly reduced in the M871 group, whereas it increased in the AR-M1896 group. These results suggest that activation of GalR2, probably through NPY or nitric oxide, induces c-Fos expression in the CN and transmits mechanical allodynia sensations to the thalamus.
Collapse
Affiliation(s)
- Seu-Hwa Chen
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - June-Horng Lue
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Jung Hsiao
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Mei Lai
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Ying Wang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-Te Lin
- Department of Nursing, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Ya-Chin Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ju Tsai
- Graduate Institute of Biomedical and Pharmaceutical Science, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
10
|
Fujiu K, Shibata M, Nakayama Y, Ogata F, Matsumoto S, Noshita K, Iwami S, Nakae S, Komuro I, Nagai R, Manabe I. A heart-brain-kidney network controls adaptation to cardiac stress through tissue macrophage activation. Nat Med 2017; 23:611-622. [PMID: 28394333 DOI: 10.1038/nm.4326] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 03/21/2017] [Indexed: 12/24/2022]
Abstract
Heart failure is a complex clinical syndrome characterized by insufficient cardiac function. In addition to abnormalities intrinsic to the heart, dysfunction of other organs and dysregulation of systemic factors greatly affect the development and consequences of heart failure. Here we show that the heart and kidneys function cooperatively in generating an adaptive response to cardiac pressure overload. In mice subjected to pressure overload in the heart, sympathetic nerve activation led to activation of renal collecting-duct (CD) epithelial cells. Cell-cell interactions among activated CD cells, tissue macrophages and endothelial cells within the kidney led to secretion of the cytokine CSF2, which in turn stimulated cardiac-resident Ly6Clo macrophages, which are essential for the myocardial adaptive response to pressure overload. The renal response to cardiac pressure overload was disrupted by renal sympathetic denervation, adrenergic β2-receptor blockade or CD-cell-specific deficiency of the transcription factor KLF5. Moreover, we identified amphiregulin as an essential cardioprotective mediator produced by cardiac Ly6Clo macrophages. Our results demonstrate a dynamic interplay between the heart, brain and kidneys that is necessary for adaptation to cardiac stress, and they highlight the homeostatic functions of tissue macrophages and the sympathetic nervous system.
Collapse
Affiliation(s)
- Katsuhito Fujiu
- Department of Cardiovascular Medicine, University of Tokyo, Tokyo, Japan.,Translational Systems Biology and Medicine Initiative, University of Tokyo, Tokyo, Japan.,PRESTO, Japan Science and Technology Agency (JST), Research Division Gobancho Building, Tokyo, Japan
| | - Munehiko Shibata
- Department of Cardiovascular Medicine, University of Tokyo, Tokyo, Japan
| | - Yukiteru Nakayama
- Department of Cardiovascular Medicine, University of Tokyo, Tokyo, Japan
| | - Fusa Ogata
- Department of Cardiovascular Medicine, University of Tokyo, Tokyo, Japan
| | - Sahohime Matsumoto
- Department of Cardiovascular Medicine, University of Tokyo, Tokyo, Japan
| | - Koji Noshita
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Shingo Iwami
- PRESTO, Japan Science and Technology Agency (JST), Research Division Gobancho Building, Tokyo, Japan.,Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan.,CREST, Japan Science and Technology Agency, Research Division Gobancho Building, Tokyo, Japan
| | - Susumu Nakae
- PRESTO, Japan Science and Technology Agency (JST), Research Division Gobancho Building, Tokyo, Japan.,Laboratory of Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, University of Tokyo, Tokyo, Japan
| | | | - Ichiro Manabe
- Department of Disease Biology and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
11
|
Collins A, Li D, McMahon SB, Raisman G, Li Y. Transplantation of Cultured Olfactory Bulb Cells Prevents Abnormal Sensory Responses During Recovery From Dorsal Root Avulsion in the Rat. Cell Transplant 2017; 26:913-924. [PMID: 28337957 DOI: 10.3727/096368917x695353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The central branches of the C7 and C8 dorsal roots were avulsed close to their entry point into the spinal cord in adult rats. The forepaw responses to heat and cold stimuli were tested at 1, 2, and 3 weeks after injury. Over this period, the paws were sensitive to both stimuli at 1-2 weeks and returned toward normal at 3 weeks. Immunohistology showed no evidence of axonal regeneration into the spinal cord in a control group of rats with avulsion only, implying that adjacent dorsal roots and their corresponding dermatomes were involved in the recovery. In a further group of rats, a mixture of bulbar olfactory ensheathing cells and olfactory nerve fibroblasts were transplanted into the gap between the avulsed roots and the spinal cord at the time of avulsion. These rats showed no evidence of either loss of sensation or exaggerated responses to stimuli at any of the time points from 1 to 3 weeks. Immunohistology showed that the transplanted cells formed a complete bridge, and the central branches of the dorsal root fibers had regenerated into the dorsal horn of the spinal cord. These regenerating axons, including Tuj1 and CGRP immunoreactive fibers, were ensheathed by the olfactory ensheathing cells. This confirms our previous demonstration of central regeneration by these transplants and suggests that such transplants may provide a useful means to prevent the development of abnormal sensations such as allodynia after spinal root lesions.
Collapse
|
12
|
Hiasa M, Okui T, Allette YM, Ripsch MS, Sun-Wada GH, Wakabayashi H, Roodman GD, White FA, Yoneda T. Bone Pain Induced by Multiple Myeloma Is Reduced by Targeting V-ATPase and ASIC3. Cancer Res 2017; 77:1283-1295. [PMID: 28254863 DOI: 10.1158/0008-5472.can-15-3545] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 11/16/2022]
Abstract
Multiple myeloma patients experience severe bone pain (MMBP) that is undertreated and poorly understood. In this study, we studied MMBP in an intratibial mouse xenograft model that employs JJN3 human multiple myeloma cells. In this model, mice develop MMBP associated in bone with increased sprouting of calcitonin gene-related peptide-positive (CGRP+) sensory nerves and in dorsal root ganglia (DRG) with upregulation of phosphorylated ERK1/2 (pERK1/2) and pCREB, two molecular indicators of neuron excitation. We found that JJN3 cells expressed a vacuolar proton pump (V-ATPase) that induced an acidic bone microenvironment. Inhibition of JJN3-colonized bone acidification by a single injection of the selective V-ATPase inhibitor, bafilomycin A1, decreased MMBP, CGRP+ sensory neuron sprouting, and pERK1/2 and pCREB expression in DRG. CGRP+ sensory nerves also expressed increased levels of the acid-sensing nociceptor ASIC3. Notably, a single injection of the selective ASIC3 antagonist APETx2 dramatically reduced MMBP in the model. Mechanistic investigations in primary DRG neurons cocultured with JJN3 cells showed increased neurite outgrowth and excitation inhibited by bafilomycin A1 or APETx2. Furthermore, combining APETx2 with bafilomycin A1 reduced MMBP to a greater extent than either agent alone. Finally, combining bafilomycin A1 with the osteoclast inhibitor zoledronic acid was sufficient to ameliorate MMBP, which was refractory to zoledronic acid. Overall, our results show that osteoclasts and multiple myeloma cooperate to induce an acidic bone microenvironment that evokes MMBP as a result of the excitation of ASIC3-activated sensory neurons. Furthermore, they present a mechanistic rationale for targeting ASIC3 on neurons along with the multiple myeloma-induced acidic bone microenvironment as a strategy to relieve MMBP in patients. Cancer Res; 77(6); 1283-95. ©2017 AACR.
Collapse
Affiliation(s)
- Masahiro Hiasa
- Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Tatsuo Okui
- Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yohance M Allette
- Department of Anesthesia, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| | - Matthew S Ripsch
- Department of Anesthesia, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ge-Hong Sun-Wada
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College, Kyoto, Japan
| | - Hiroki Wakabayashi
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - G David Roodman
- Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, Indiana
- The Roudebusch VA, Indianapolis, Indiana
| | - Fletcher A White
- Department of Anesthesia, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| | - Toshiyuki Yoneda
- Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
13
|
Involvement of inhibition of RhoA/Rho kinase signaling in simvastatin-induced amelioration of neuropathic pain. Neuroscience 2016; 333:204-13. [PMID: 27457035 DOI: 10.1016/j.neuroscience.2016.07.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 12/19/2022]
Abstract
Small molecular G-protein plays a key role in several diseases. This study was designed to reveal the role of RhoA signaling in the pathophysiology of neuropathic pain in mice. Partial sciatic nerve injury caused thermal hyperalgesia, mechanical allodynia, and increased plasma membrane translocation of RhoA in the lumber spinal cord. GFAP-immunoreactivity (ir), Iba-1-ir, and Rho kinase 2 (ROCK2-ir) was also increased in the ipsilateral spinal dorsal horn of nerve-ligated mice. Moreover, partial nerve ligation increased the expression of phosphorylated myristoylated alanine-rich protein kinase C substrate (MARCKS)-ir in the ipsilateral spinal dorsal horn. Daily intrathecal administration of simvastatin, beginning 3days before nerve injury, completely blocked all these changes in nerve-ligated mice. Pharmacological inhibition of ROCK also attenuated the increased expression of GFAP-ir and phosphorylated MARCKS-ir. Together, it is suggested that astrogliosis initiated by the activation of RhoA/ROCK signaling results in MARCKS phosphorylation in nerve terminals, which leads to hyperalgesia in neuropathic pain. Furthermore, simvastatin exerts antihyperalgesic and antiallodynic effects through the inhibition of spinal RhoA activation.
Collapse
|
14
|
Liu Y, Kelamangalath L, Kim H, Han SB, Tang X, Zhai J, Hong JW, Lin S, Son YJ, Smith GM. NT-3 promotes proprioceptive axon regeneration when combined with activation of the mTor intrinsic growth pathway but not with reduction of myelin extrinsic inhibitors. Exp Neurol 2016; 283:73-84. [PMID: 27264357 DOI: 10.1016/j.expneurol.2016.05.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 11/25/2022]
Abstract
Although previous studies have identified several strategies to stimulate regeneration of CNS axons, extensive regeneration and functional recovery have remained a major challenge, particularly for large diameter myelinated axons. Within the CNS, myelin is thought to inhibit axon regeneration, while modulating activity of the mTOR pathway promotes regeneration of injured axons. In this study, we examined NT-3 mediated regeneration of sensory axons through the dorsal root entry zone in a triple knockout of myelin inhibitory proteins or after activation of mTOR using a constitutively active (ca) Rheb in DRG neurons to determine the influence of environmental inhibitory or activation of intrinsic growth pathways could enhance NT-3-mediate regeneration. Loss of myelin inhibitory proteins showed modest enhancement of sensory axon regeneration. In mTOR studies, we found a dramatic age related decrease in the mTOR activation as determined by phosphorylation of the downstream marker S6 ribosomal subunit. Expression of caRheb within adult DRG neurons in vitro increased S6 phosphorylation and doubled the overall length of neurite outgrowth, which was reversed in the presence of rapamycin. In adult female rats, combined expression of caRheb in DRG neurons and NT-3 within the spinal cord increased regeneration of sensory axons almost 3 fold when compared to NT-3 alone. Proprioceptive assessment using a grid runway indicates functionally significant regeneration of large-diameter myelinated sensory afferents. Our results indicate that caRheb-induced increase in mTOR activation enhances neurotrophin-3 induced regeneration of large-diameter myelinated axons.
Collapse
Affiliation(s)
- Yingpeng Liu
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Lakshmi Kelamangalath
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Hyukmin Kim
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Seung Baek Han
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Xiaoqing Tang
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Jinbin Zhai
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Jee W Hong
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Shen Lin
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Young-Jin Son
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - George M Smith
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
15
|
Velasco M, O'Sullivan C, Sheridan GK. Lysophosphatidic acid receptors (LPARs): Potential targets for the treatment of neuropathic pain. Neuropharmacology 2016; 113:608-617. [PMID: 27059127 DOI: 10.1016/j.neuropharm.2016.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/15/2015] [Accepted: 04/04/2016] [Indexed: 01/08/2023]
Abstract
Neuropathic pain can arise from lesions to peripheral or central nerve fibres leading to spontaneous action potential generation and a lowering of the nociceptive threshold. Clinically, neuropathic pain can manifest in many chronic disease states such as cancer, diabetes or multiple sclerosis (MS). The bioactive lipid, lysophosphatidic acid (LPA), via activation of its receptors (LPARs), is thought to play a central role in both triggering and maintaining neuropathic pain. In particular, following an acute nerve injury, the excitatory neurotransmitters glutamate and substance P are released from primary afferent neurons leading to upregulated synthesis of lysophosphatidylcholine (LPC), the precursor for LPA production. LPC is converted to LPA by autotaxin (ATX), which can then activate macrophages/microglia and modulate neuronal functioning. A ubiquitous feature of animal models of neuropathic pain is demyelination of damaged nerves. It is thought that LPA contributes to demyelination through several different mechanisms. Firstly, high levels of LPA are produced following macrophage/microglial activation that triggers a self-sustaining feed-forward loop of de novo LPA synthesis. Secondly, macrophage/microglial activation contributes to inflammation-mediated demyelination of axons, thus initiating neuropathic pain. Therefore, targeting LPA production and/or the family of LPA-activated G protein-coupled receptors (GPCRs) may prove to be fruitful clinical approaches to treating demyelination and the accompanying neuropathic pain. This review discusses our current understanding of the role of LPA/LPAR signalling in the initiation of neuropathic pain and suggests potential targeted strategies for its treatment. This article is part of the Special Issue entitled 'Lipid Sensing G Protein-Coupled Receptors in the CNS'.
Collapse
Affiliation(s)
- María Velasco
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK
| | | | - Graham K Sheridan
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK.
| |
Collapse
|
16
|
Abstract
A spinal cord injury refers to an injury to the spinal cord that is caused by a trauma instead of diseases. Spinal cord injury includes a primary mechanical injury and a much more complex secondary injury process involving inflammation, oxidation, excitotoxicity, and cell death. During the secondary injury, many signal pathways are activated and play important roles in mediating the pathogenesis of spinal cord injury. Among them, the RhoA/Rho kinase pathway plays a particular role in mediating spinal degeneration and regeneration. In this review, we will discuss the role and mechanism of RhoA/Rho kinase-mediated spinal cord pathogenesis, as well as the potential of targeting RhoA/Rho kinase as a strategy for promoting both neuroprotection and axonal regeneration.
Collapse
Affiliation(s)
- Xiangbing Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA; Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA; Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
17
|
A Single Bolus of Docosahexaenoic Acid Promotes Neuroplastic Changes in the Innervation of Spinal Cord Interneurons and Motor Neurons and Improves Functional Recovery after Spinal Cord Injury. J Neurosci 2016; 35:12733-52. [PMID: 26377463 DOI: 10.1523/jneurosci.0605-15.2015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Docosahexaenoic acid (DHA) is an ω-3 polyunsaturated fatty acid that is essential in brain development and has structural and signaling roles. Acute DHA administration is neuroprotective and promotes functional recovery in animal models of adult spinal cord injury (SCI). However, the mechanisms underlying this recovery have not been fully characterized. Here we investigated the effects of an acute intravenous bolus of DHA delivered after SCI and characterized DHA-induced neuroplasticity within the adult injured spinal cord. We found robust sprouting of uninjured corticospinal and serotonergic fibers in a rat cervical hemisection SCI model. A mouse pyramidotomy model was used to confirm that this robust sprouting was not species or injury model specific. Furthermore, we demonstrated that corticospinal fibers sprouting to the denervated side of the cord following pyramidotomy contact V2a interneurons. We also demonstrated increased serotonin fibers and synaptophysin in direct contact with motor neurons. DHA also increased synaptophysin in rat cortical cell cultures. A reduction in phosphatase and tensin homolog (PTEN) has been shown to be involved in axonal regeneration and synaptic plasticity. We showed that DHA significantly upregulates miR-21 and downregulates PTEN in corticospinal neurons. Downregulation of PTEN and upregulation of phosphorylated AKT by DHA were also seen in primary cortical neuron cultures and were accompanied by increased neurite outgrowth. In summary, acute DHA induces anatomical and synaptic plasticity in adult injured spinal cord. This study shows that DHA has therapeutic potential in cervical SCI and provides evidence that DHA could exert its beneficial effects in SCI via enhancement of neuroplasticity. SIGNIFICANCE STATEMENT In this study, we show that an acute intravenous injection of docosahexaenoic acid (DHA) 30 min after spinal cord injury induces neuroplasticity. We found robust sprouting of uninjured corticospinal and serotonergic fibers in a rat hemisection spinal cord injury model. A mouse pyramidotomy model was used to confirm that the robust sprouting involved V2a interneurons. We show that DHA significantly upregulates miR-21 and phosphorylated AKT, and downregulates phosphatase and tensin homolog (PTEN), which is involved in suppressing anatomical plasticity, in corticospinal neurons and in primary cortical neuron cultures. We conclude that acute DHA can induce anatomical and synaptic plasticity. This provides direct evidence that DHA could exert its beneficial effects in spinal cord injury via neuroplasticity enhancement.
Collapse
|
18
|
Neuropathic Pain: Sensory Nerve Injury or Motor Nerve Injury? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 904:59-75. [DOI: 10.1007/978-94-017-7537-3_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Sui YP, Zhang XX, Lu JL, Sui F. New Insights into the Roles of Nogo-A in CNS Biology and Diseases. Neurochem Res 2015; 40:1767-85. [PMID: 26266872 DOI: 10.1007/s11064-015-1671-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 07/15/2015] [Accepted: 07/17/2015] [Indexed: 12/22/2022]
Abstract
Nogos have become a hot topic for its well-known number Nogo-A's big role in clinical matters. It has been recognized that the expression of Nogo-A and the receptor NgR1 inhibit the neuron's growth after CNS injuries or the onset of the MS. The piling evidence supports the notion that the Nogo-A is also involved in the synaptic plasticity, which was shown to negatively regulate the strength of synaptic transmission. The occurrence of significant schizophrenia-like behavioral phenotypes in Nogo-A KO rats also added strong proof to this conclusion. This review mainly focuses on the structure of Nogo-A and its corresponding receptor-NgR1, its intra- and extra-cellular signaling, together with its major physiological functions such as regulation of migration and distribution and its related diseases like stroke, AD, ALS and so on.
Collapse
Affiliation(s)
- Yun-Peng Sui
- Institute of Chinese Material Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | | | | | | |
Collapse
|
20
|
Schwann cells generated from neonatal skin-derived precursors or neonatal peripheral nerve improve functional recovery after acute transplantation into the partially injured cervical spinal cord of the rat. J Neurosci 2015; 35:6714-30. [PMID: 25926450 DOI: 10.1523/jneurosci.1070-14.2015] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The transplantation of Schwann cells (SCs) holds considerable promise as a therapy for spinal cord injury, but the optimal source of these cells and the best timing for intervention remains debatable. Previously, we demonstrated that delayed transplantation of SCs generated from neonatal mouse skin-derived precursors (SKP-SCs) promoted repair and functional recovery in rats with thoracic contusions. Here, we conducted two experiments using neonatal rat cells and an incomplete cervical injury model to examine the efficacy of acute SKP-SC transplantation versus media control (Experiment 1) and versus nerve-derived SC or dermal fibroblast (Fibro) transplantation (Experiment 2). Despite limited graft survival, by 10 weeks after injury, rats that received SCs from either source showed improved functional recovery compared with media- or fibroblast-treated animals. Compared with media treatment, SKP-SC-transplanted rats showed enhanced rubrospinal tract (RST) sparing/plasticity in the gray matter (GM) rostral to injury, particularly in the absence of immunosuppression. The functional benefits of SC transplantations over fibroblast treatment correlated with the enhanced preservation of host tissue, reduced RST atrophy, and/or increased RST sparing/plasticity in the GM. In summary, our results indicate that: (1) early transplantation of neonatal SCs generated from skin or nerve promotes repair and functional recovery after incomplete cervical crush injury; (2) either of these cell types is preferable to Fibros for these purposes; and (3) age-matched SCs from these two sources do not differ in terms of their reparative effects or functional efficacy after transplantation into the injured cervical spinal cord.
Collapse
|
21
|
Álvarez-Pérez B, Homs J, Bosch-Mola M, Puig T, Reina F, Verdú E, Boadas-Vaello P. Epigallocatechin-3-gallate treatment reduces thermal hyperalgesia after spinal cord injury by down-regulating RhoA expression in mice. Eur J Pain 2015; 20:341-52. [DOI: 10.1002/ejp.722] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2015] [Indexed: 12/30/2022]
Affiliation(s)
- B. Álvarez-Pérez
- Research Group of Clinical Anatomy; Embryology; Neuroscience and Molecular Oncology (NEOMA); Department of Medical Sciences; Universitat de Girona; Spain
| | - J. Homs
- Research Group of Clinical Anatomy; Embryology; Neuroscience and Molecular Oncology (NEOMA); Department of Medical Sciences; Universitat de Girona; Spain
- Department of Physical Therapy; EUSES - Universitat de Girona; Spain
| | - M. Bosch-Mola
- Research Group of Clinical Anatomy; Embryology; Neuroscience and Molecular Oncology (NEOMA); Department of Medical Sciences; Universitat de Girona; Spain
| | - T. Puig
- Research Group of Clinical Anatomy; Embryology; Neuroscience and Molecular Oncology (NEOMA); Department of Medical Sciences; Universitat de Girona; Spain
| | - F. Reina
- Research Group of Clinical Anatomy; Embryology; Neuroscience and Molecular Oncology (NEOMA); Department of Medical Sciences; Universitat de Girona; Spain
| | - E. Verdú
- Research Group of Clinical Anatomy; Embryology; Neuroscience and Molecular Oncology (NEOMA); Department of Medical Sciences; Universitat de Girona; Spain
| | - P. Boadas-Vaello
- Research Group of Clinical Anatomy; Embryology; Neuroscience and Molecular Oncology (NEOMA); Department of Medical Sciences; Universitat de Girona; Spain
| |
Collapse
|
22
|
Dyck SM, Karimi-Abdolrezaee S. Chondroitin sulfate proteoglycans: Key modulators in the developing and pathologic central nervous system. Exp Neurol 2015; 269:169-87. [PMID: 25900055 DOI: 10.1016/j.expneurol.2015.04.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/11/2015] [Accepted: 04/14/2015] [Indexed: 12/15/2022]
Abstract
Chondroitin Sulfate Proteoglycans (CSPGs) are a major component of the extracellular matrix in the central nervous system (CNS) and play critical role in the development and pathophysiology of the brain and spinal cord. Developmentally, CSPGs provide guidance cues for growth cones and contribute to the formation of neuronal boundaries in the developing CNS. Their presence in perineuronal nets plays a crucial role in the maturation of synapses and closure of critical periods by limiting synaptic plasticity. Following injury to the CNS, CSPGs are dramatically upregulated by reactive glia which form a glial scar around the lesion site. Increased level of CSPGs is a hallmark of all CNS injuries and has been shown to limit axonal plasticity, regeneration, remyelination, and conduction after injury. Additionally, CSPGs create a non-permissive milieu for cell replacement activities by limiting cell migration, survival and differentiation. Mounting evidence is currently shedding light on the potential benefits of manipulating CSPGs in combination with other therapeutic strategies to promote spinal cord repair and regeneration. Moreover, the recent discovery of multiple receptors for CSPGs provides new therapeutic targets for targeted interventions in blocking the inhibitory properties of CSPGs following injury. Here, we will provide an in depth discussion on the impact of CSPGs in normal and pathological CNS. We will also review the recent preclinical therapies that have been developed to target CSPGs in the injured CNS.
Collapse
Affiliation(s)
- Scott M Dyck
- Regenerative Medicine Program, Department of Physiology and the Spinal Cord Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Regenerative Medicine Program, Department of Physiology and the Spinal Cord Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
23
|
Inan SY, Soner BC, Sahin AS. Infralimbic cortex Rho-kinase inhibition causes antidepressant-like activity in rats. Prog Neuropsychopharmacol Biol Psychiatry 2015; 57:36-43. [PMID: 25445474 DOI: 10.1016/j.pnpbp.2014.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/13/2014] [Accepted: 10/20/2014] [Indexed: 01/31/2023]
Abstract
Depression is one of the most common psychiatric disorders in the world; however, its mechanisms remain unclear. Recently, a new signal-transduction pathway, namely Rho/Rho-kinase signalling, has been suggested to be involved in diverse cellular events in the central nervous system; such as epilepsy, anxiety-related behaviors, regulation of dendritic and axonal morphology, antinociception, subarachnoid haemorrhage, spinal cord injury and amyotrophic lateral sclerosis. However there is no evidence showing the involvement of Rho-kinase pathway in depression. In addition, the infralimbic cortex, rodent equivalent to subgenual cingulate cortex has been shown to be responsible for emotional responses. Thus, in the present study, intracranial guide cannulae were stereotaxically implanted bilaterally into the infralimbic cortex, and the effects of repeated microinjections of a Rho-kinase (ROCK) inhibitor Y-27632 (10 nmol) were investigated in rats. Y-27632 significantly decreased immobility time and increased swimming and climbing behaviors when compared to fluoxetine (10 μg) and saline groups in the forced swim test. In addition, Y-27632 treatment did not affect spontaneous locomotor activity and forelimb use in the open-field and cylinder tests respectively; but it enhanced limb placing accuracy in the ladder rung walking test. Our results suggest that Y-27632 could be a potentially active antidepressant agent.
Collapse
Affiliation(s)
- Salim Yalcin Inan
- Department of Pharmacology, Meram Faculty of Medicine, University of Konya-NE, Konya, Turkey.
| | - Burak Cem Soner
- Department of Pharmacology, Meram Faculty of Medicine, University of Konya-NE, Konya, Turkey
| | - Ayse Saide Sahin
- Department of Pharmacology, Meram Faculty of Medicine, University of Konya-NE, Konya, Turkey
| |
Collapse
|
24
|
Bali A, Singh N, Jaggi AS. Renin–angiotensin system in pain: Existing in a double life? J Renin Angiotensin Aldosterone Syst 2014; 15:329-40. [DOI: 10.1177/1470320313503694] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Anjana Bali
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, India
| |
Collapse
|
25
|
Zhang K, Lv Z, Liu J, Zhu H, Li R. Restoration and protection of brachial plexus injury: hot topics in the last decade. Neural Regen Res 2014; 9:1723-8. [PMID: 25374596 PMCID: PMC4211195 DOI: 10.4103/1673-5374.141809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2014] [Indexed: 11/17/2022] Open
Abstract
Brachial plexus injury is frequently induced by injuries, accidents or birth trauma. Upper limb function may be partially or totally lost after injury, or left permanently disabled. With the development of various medical technologies, different types of interventions are used, but their effectiveness is wide ranging. Many repair methods have phasic characteristics, i.e., repairs are done in different phases. This study explored research progress and hot topic methods for protection after brachial plexus injury, by analyzing 1,797 articles concerning the repair of brachial plexus injuries, published between 2004 and 2013 and indexed by the Science Citation Index database. Results revealed that there are many methods used to repair brachial plexus injury, and their effects are varied. Intervention methods include nerve transfer surgery, electrical stimulation, cell transplantation, neurotrophic factor therapy and drug treatment. Therapeutic methods in this field change according to the hot topic of research.
Collapse
Affiliation(s)
- Kaizhi Zhang
- Second Department of Neurosurgery, China-Japan Union Hospital attached to Jilin University, Changchun, Jilin Province, China
| | - Zheng Lv
- Cancer Center, the First Hospital affiliated to Jilin University, Changchun, Jilin Province, China
| | - Jun Liu
- Hand & Foot Surgery and Reparative & Reconstruction Surgery Center, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - He Zhu
- Jilin University Clinic Medical College, Changchun, Jilin Province, China
| | - Rui Li
- Hand & Foot Surgery and Reparative & Reconstruction Surgery Center, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
26
|
Abstract
BACKGROUND Rho-kinases (ROCKs), a family of small GTP-dependent enzymes, are involved in a range of pain models, and their inhibition typically leads to antinociceptive effects. OBJECTIVES To study the effects of inhibiting ROCKs using two known inhibitors, Y27632 and HA1077 (fasudil), administered locally, on nociception and paw edema in rats. METHODS A range of doses of Y27632 or HA1077 (2.5 μg to 1000 μg) were injected locally into rat paws alone or in combination with carrageenan, a known proinflammatory stimulus. Nociceptive responses to mechanical stimuli and increased paw volume, reflecting edema formation, were measured at 2 h and 3 h, using a Randall-Selitto apparatus and a hydroplethysmometer, respectively. RESULTS Animals treated with either ROCK inhibitor showed biphasic nociceptive effects, with lower doses being associated with pronociceptive, and higher doses with antinociceptive responses. In contrast, a monophasic dose-dependent increase in edema was observed in the same animals. Local injection of 8-bromo-cyclic (c)GMP, an activator of the nitric oxide⁄cGMP⁄protein kinase G pathway, also produced biphasic effects on nociceptive responses in rat paws; however, low doses were antinociceptive and high doses were pronociceptive. Local administration of cytochalasin B, an inhibitor of actin polymerization and a downstream mediator of ROCK activity, reversed the antinociceptive effect of Y27632. CONCLUSIONS The results of the present study suggest that ROCKs participate in the local mechanisms associated with nociception⁄antinociception and inflammation, with a possible involvement of the nitric oxide⁄cGMP⁄protein kinase G pathway. Also, drug effects following local administration may differ markedly from the effects following systemic administration. Finally, separate treatment of pain and edema may be needed to maximize clinical benefit in inflammatory pain.
Collapse
|
27
|
Simvastatin Attenuates Formalin-Induced Nociceptive Behaviors by Inhibiting Microglial RhoA and p38 MAPK Activation. THE JOURNAL OF PAIN 2013; 14:1310-9. [DOI: 10.1016/j.jpain.2013.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/07/2013] [Accepted: 05/26/2013] [Indexed: 01/08/2023]
|
28
|
Kempf A, Schwab ME. Nogo-A Represses Anatomical and Synaptic Plasticity in the Central Nervous System. Physiology (Bethesda) 2013; 28:151-63. [DOI: 10.1152/physiol.00052.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Nogo-A was initially discovered as a myelin-associated growth inhibitory protein limiting axonal regeneration after central nervous system (CNS) injury. This review summarizes current knowledge on how myelin and neuronal Nogo-A and its receptors exert physiological functions ranging from the regulation of growth suppression to synaptic plasticity in the developing and adult intact CNS.
Collapse
Affiliation(s)
- Anissa Kempf
- Brain Research Institute, University of Zurich, and Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Martin E. Schwab
- Brain Research Institute, University of Zurich, and Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Matsuura Y, Ohtori S, Iwakura N, Suzuki T, Kuniyoshi K, Takahashi K. Expression of activating transcription factor 3 (ATF3) in uninjured dorsal root ganglion neurons in a lower trunk avulsion pain model in rats. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2013; 22:1794-9. [PMID: 23471575 DOI: 10.1007/s00586-013-2733-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/26/2012] [Accepted: 02/24/2013] [Indexed: 11/26/2022]
Abstract
PURPOSE Clinically, neuropathic pain is frequent and intense following brachial plexus injury. It is thought that brachial plexus pain is not generated by avulsed roots, but rather by non-avulsed roots, since the avulsed root could not possibly transmit action potentials to central nerves. The aim of this study was to evaluate pain behavior and activation of sensory neurons in a brachial plexus avulsion (BPA) model in rats. METHODS Fifteen male Wistar rats were used. In the BPA group, the C8-T1 roots were avulsed from the spinal cord with forceps at the lower trunk level (n = 5). In the naïve group, rats did not receive any procedures (n = 5). In the sham-operated group, the lower trunk was simply exposed (n = 5). Mechanical hyperalgesia of forelimbs corresponding to C6 and C7 dermatomes was measured using von Frey filaments every third day for 3 weeks. Activation of DRG neurons was immunohistochemically examined using anti-ATF3 (a marker for neuron activation) antibodies 21 days after surgery. Von Frey and immunohistochemical data between groups were analyzed using a Kruskal-Wallis test, followed by Mann-Whitney U tests. Bonferroni corrections were performed. RESULTS Animals in the BPA group displayed significant mechanical hyperalgesia at the dermatome innervated by uninjured nerves continuing through day 21 compared with animals in the sham-operated group. ATF3-immunoreactive small and large DRG neurons were significantly activated in the BPA group (10.6 ± 9.5 and 5.2 ± 4.1 %, 39.7 ± 6.7 and 25.2 ± 10.3 %, 78.0 ± 9.1 and 53.7 ± 29.3 %) compared with the sham-operated group (0.7 ± 0.9 and 0 ± 0 %, 2.8 ± 2.0 and 1.0 ± 2.0 %, 3.9 ± 2.7 and 8.6 ± 10.1 %) at every level of C5, 6, and 7. In the naïve group, no DRG neurons were activated. ATF3-immunoreactive small and large DRG neurons were significantly activated at the level of C7 compared with C6 and C5, and significantly activated at the level of C6 compared with C5 in the BPA group. CONCLUSIONS Expression of ATF3 in uninjured DRG neurons may contribute to pain following brachial plexus avulsion injury. Consequently, spared spinal sensory nerves may represent therapeutic targets for treatment of this pain.
Collapse
Affiliation(s)
- Yusuke Matsuura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Ramer LM, van Stolk AP, Inskip JA, Ramer MS, Krassioukov AV. Plasticity of TRPV1-Expressing Sensory Neurons Mediating Autonomic Dysreflexia Following Spinal Cord Injury. Front Physiol 2012; 3:257. [PMID: 22934013 PMCID: PMC3429033 DOI: 10.3389/fphys.2012.00257] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 06/20/2012] [Indexed: 01/22/2023] Open
Abstract
Spinal cord injury (SCI) triggers profound changes in visceral and somatic targets of sensory neurons below the level of injury. Despite this, little is known about the influence of injury to the spinal cord on sensory ganglia. One of the defining characteristics of sensory neurons is the size of their cell body: for example, nociceptors are smaller in size than mechanoreceptors or proprioceptors. In these experiments, we first used a comprehensive immunohistochemical approach to characterize the size distribution of sensory neurons after high- and low-thoracic SCI. Male Wistar rats (300 g) received a spinal cord transection (T3 or T10) or sham-injury. At 30 days post-injury, dorsal root ganglia (DRGs) and spinal cords were harvested and analyzed immunohistochemically. In a wide survey of primary afferents, only those expressing the capsaicin receptor (TRPV1) exhibited somal hypertrophy after T3 SCI. Hypertrophy only occurred caudal to SCI and was pronounced in ganglia far distal to SCI (i.e., in L4-S1 DRGs). Injury-induced hypertrophy was accompanied by a small expansion of central territory in the lumbar spinal dorsal horn and by evidence of TRPV1 upregulation. Importantly, hypertrophy of TRPV1-positive neurons was modest after T10 SCI. Given the specific effects of T3 SCI on TRPV1-positive afferents, we hypothesized that these afferents contribute to autonomic dysreflexia (AD). Rats with T3 SCI received vehicle or capsaicin via intrathecal injection at 2 or 28 days post-SCI; at 30 days, AD was assessed by recording intra-arterial blood pressure during colo-rectal distension (CRD). In both groups of capsaicin-treated animals, the severity of AD was dramatically reduced. While AD is multi-factorial in origin, TRPV1-positive afferents are clearly involved in AD elicited by CRD. These findings implicate TRPV1-positive afferents in the initiation of AD and suggest that TRPV1 may be a therapeutic target for amelioration or prevention of AD after high SCI.
Collapse
Affiliation(s)
- Leanne M Ramer
- International Collaboration On Repair Discoveries, University of British Columbia Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
31
|
Otsuka S, Adamson C, Sankar V, Gibbs KM, Kane-Goldsmith N, Ayer J, Babiarz J, Kalinski H, Ashush H, Alpert E, Lahav R, Feinstein E, Grumet M. Delayed intrathecal delivery of RhoA siRNA to the contused spinal cord inhibits allodynia, preserves white matter, and increases serotonergic fiber growth. J Neurotrauma 2012; 28:1063-76. [PMID: 21443453 DOI: 10.1089/neu.2010.1568] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
RhoA is a key regulator of the actin cytoskeleton that is upregulated after spinal cord injury (SCI). We analyzed different methods for siRNA delivery and developed siRNAs targeting RhoA (siRhoA) for SCI treatment. Cy 3.5-labeled siRNA delivered at the time of SCI yielded fluorescence in several cell types in the injury site. Intraspinal injections of chemically stabilized siRhoA into the spinal cord of injured rats reduced RhoA protein levels after 1 week and improved hindlimb walking over 6 weeks. To explore a less invasive route, we tested intrathecal injection of Cy 3.5-labeled siRNA via lumbar puncture 1 day after SCI, which resulted in robust uptake in the T9-T10 injury site. Lumbar injection of siRhoA 1 day after SCI reduced RhoA mRNA and protein levels 3 days after injection. Although siRhoA treatment did not yield significant improvement in locomotion, it decreased tactile hypersensitivity significantly compared to controls. Histological analysis at 8 weeks showed significant improvement in white matter sparing with siRhoA compared to control siRNA. siRhoA treatment also resulted in less accumulation of ED1+macrophages, increased PKC-γ immunoreactivity in the corticospinal tract rostral to the injury site, and increased serotonergic fiber growth 12 mm caudal to the contusion site. The ability of siRhoA to preserve white matter and promote serotonergic axonal regrowth caudal to the injury site is likely to suppress allodynia. This provides justification for considering clinical development of RhoA inhibitors to treat SCI sub-acutely to reduce allodynia, which occurs frequently in SCI patients.
Collapse
Affiliation(s)
- Seiji Otsuka
- W.M. Keck Center for Collaborative Neuroscience, Rutgers Stem Cell Research Center, Department of Cell Biology & Neuroscience, Rutgers, State University of New Jersey, Piscataway, New Jersey 08854-8082, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Analgesic potential of intrathecal farnesyl thiosalicylic acid and GW 5074 in vincristine-induced neuropathic pain in rats. Food Chem Toxicol 2012; 50:1295-301. [DOI: 10.1016/j.fct.2012.01.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 01/09/2012] [Accepted: 01/26/2012] [Indexed: 12/14/2022]
|
33
|
Jaggi AS, Singh N. Intrathecal delivery of farnesyl thiosalicylic acid and GW 5074 attenuates hyperalgesia and allodynia in chronic constriction injury-induced neuropathic pain in rats. Neurol Sci 2012; 34:297-304. [DOI: 10.1007/s10072-012-0991-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/17/2012] [Indexed: 12/14/2022]
|
34
|
Kopp MA, Liebscher T, Niedeggen A, Laufer S, Brommer B, Jungehulsing GJ, Strittmatter SM, Dirnagl U, Schwab JM. Small-molecule-induced Rho-inhibition: NSAIDs after spinal cord injury. Cell Tissue Res 2012; 349:119-32. [PMID: 22350947 DOI: 10.1007/s00441-012-1334-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/16/2012] [Indexed: 01/16/2023]
Abstract
Limited axonal plasticity within the central nervous system (CNS) is a major restriction for functional recovery after CNS injury. The small GTPase RhoA is a key molecule of the converging downstream cascade that leads to the inhibition of axonal re-growth. The Rho-pathway integrates growth inhibitory signals derived from extracellular cues, such as chondroitin sulfate proteoglycans, Nogo-A, myelin-associated glycoprotein, oligodendrocyte-myelin glycoprotein, Ephrins and repulsive guidance molecule-A, into the damaged axon. Consequently, the activation of RhoA results in growth cone collapse and finally outgrowth failure. In turn, the inhibition of RhoA-activation blinds the injured axon to its growth inhibitory environment resulting in enhanced axonal sprouting and plasticity. This has been demonstrated in various CNS-injury models for direct RhoA-inhibition and for downstream/upstream blockade of the RhoA-associated pathway. In addition, RhoA-inhibition reduces apoptotic cell death and secondary damage and improves locomotor recovery in clinically relevant models after experimental spinal cord injury (SCI). Unexpectedly, a subset of "small molecules" from the group of non-steroid anti-inflammatory drugs, particularly the FDA-approved ibuprofen, has recently been identified as (1) inhibiting RhoA-activation, (2) enhancing axonal sprouting/regeneration, (3) protecting "tissue at risk" (neuroprotection) and (4) improving motor recovery confined to realistic therapeutical time-frames in clinically relevant SCI models. Here, we survey the effect of small-molecule-induced RhoA-inhibition on axonal plasticity and neurofunctional outcome in CNS injury paradigms. Furthermore, we discuss the body of preclinical evidence for a possible clinical translation with a focus on ibuprofen and illustrate putative risks and benefits for the treatment of acute SCI.
Collapse
Affiliation(s)
- M A Kopp
- Department of Neurology and Experimental Neurology, Spinal Cord Injury Research, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chen SH, Tsai YJ, Lin CT, Wang HY, Li SF, Lue JH. Changes in GABA and GABA(B) receptor expressions are involved in neuropathy in the rat cuneate nucleus following median nerve transection. Synapse 2012; 66:561-72. [PMID: 22290688 DOI: 10.1002/syn.21539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 01/20/2012] [Indexed: 01/17/2023]
Abstract
This study examined the relationship between changes in GABA transmission and behavioral abnormalities after median nerve transection. Following unilateral median nerve transection, the percentage of GABA-like immunoreactive neurons in the cuneate nucleus and that of GABA(B) receptor-like immunoreactive neurons in the dorsal root ganglion in the injured side decreased and reached a nadir at 4 weeks after median nerve transection. Four weeks after bilateral median nerve transection and intraperitoneal application with saline, baclofen (2 mg kg⁻¹), or phaclofen (2 mg kg⁻¹) before unilateral electrical stimulation of the injured median nerve, we investigated the level of neuropeptide Y release and c-Fos expression in the stimulated side of the cuneate nucleus. The neuropeptide Y release level and the number of c-Fos-like immunoreactive neurons in the baclofen group were significantly attenuated, whereas those in the phaclofen group had increased compared to the saline group. These findings indicate that median nerve transection reduces GABA transmission, promoting injury-induced neuropeptide Y release and consequently evoking c-Fos expression in cuneate nucleus neurons. Furthermore, this study used the CatWalk method to assess behavioral abnormalities in rats following median nerve transection. These abnormalities were reversed by baclofen treatment. Overall, the results suggest that baclofen treatment block neuropeptide Y release, subsequently lessening c-Fos expression in cuneate neurons and consequently attenuating neuropathic signal transmission to the thalamus.
Collapse
Affiliation(s)
- Seu-Hwa Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10018, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Spinal cord injury (SCI) has multiple consequences, ranging from molecular imbalances to glial scar formation to functional impairments. It is logical to think that a combination of single treatments implemented in the right order and at the right time will be required to repair the spinal cord. However, the single treatments that compose the combination therapy will need to be chosen with caution as many have multiple outcomes that may or may not be synergistic. Single treatments may also elicit unwanted side-effects and/or effects that would decrease the repair potential of other components and/or the entire combination therapy. In this chapter a number of single treatments are discussed with respect to their multiplicity of action. These include strategies to boost growth and survival (such as neurotrophins and cyclic AMP) and strategies to reduce inhibitory factors (such as antimyelin-associated growth inhibitors and digestion of glial scar-associated inhibitors). We also present an overview of combination therapies that have successfully or unsuccessfully been tested in the laboratory using animal models. To effectively design a combination therapy a number of considerations need to be made such as the nature and timing of the treatments and the method for delivery. This chapter discusses these issues as well as considerations related to chronic SCI and the logistics of bringing combination therapies to the clinic.
Collapse
Affiliation(s)
- M Oudega
- Departments of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | | | | |
Collapse
|
37
|
|
38
|
Chen SH, Tsai YJ, Wang HY, Lin CT, Li SF, Lue JH. Decreases of glycine receptor expression induced by median nerve injury in the rat cuneate nucleus contribute to NPY release and c-Fos expression. Life Sci 2011; 90:278-88. [PMID: 22178676 DOI: 10.1016/j.lfs.2011.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 10/07/2011] [Accepted: 11/23/2011] [Indexed: 11/15/2022]
Abstract
AIMS This study aimed to investigate temporal changes in glycine and its receptor expressions in cuneate neurons after median nerve transection (MNT), and the effects of glycine on neuropeptide Y (NPY) release and c-Fos expression in the cuneate nucleus (CN). MAIN METHODS Immunohistochemistry methods were used to appraise changes of glycine- and GlyR-like immunoreactive (LI) neurons in the CN after MNT. The alterations in NPY and c-Fos expressions were used to assess the effects of saline, glycine or strychnine treatment. The CatWalk method was used to assess the efficiency of glycine treatment on the neuropathic signs of rats with MNT. KEY FINDINGS Approximately half of GlyR-LI neurons were fluorogold-labeled cuneothalamic projection neurons in the CN. Following MNT, the number of GlyR-LI neurons significantly decreased in the injured side of CN at 2 and 4 weeks, but the number of glycine-LI neurons remained unchanged. Four weeks after MNT given with electrical stimulation, strychnine significantly decreased the NPY reduction level in the stimulated side CN compared to that of the saline group. However, numbers of c-Fos-LI neurons in the glycine and strychnine groups were both significantly less than that in the saline group. But the paw print width and area in CatWalk analysis showed only a moderate recovery. SIGNIFICANCE We conjecture that glycine increases glycine-mediated postsynaptic inhibition of cuneate neurons, and also blocks GABAergic neurons containing GlyRs which mediate presynaptic inhibition causing temperate NPY release. Consequently, the compromise results showed a weak reduction in c-Fos expression and a slight amelioration of neuropathic behaviors.
Collapse
Affiliation(s)
- Seu-Hwa Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1-1 Jen Ai Road, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
39
|
Nitric oxide implicates c-Fos expression in the cuneate nucleus following electrical stimulation of the transected median nerve. Neurochem Res 2011; 37:84-95. [PMID: 21892689 DOI: 10.1007/s11064-011-0585-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 07/27/2011] [Accepted: 08/21/2011] [Indexed: 12/19/2022]
Abstract
In this study, we investigated whether nitric oxide (NO) modulated injury-induced neuropeptide Y (NPY) releasing and c-Fos expression in the cuneate nucleus (CN) after median nerve transection (MNT). We first examined the temporal changes of neuronal nitric oxide synthase (nNOS) expression in the dorsal root ganglion (DRG) and CN after MNT. Following MNT, the amounts of nNOS-like immunoreactive (nNOS-LI) neurons in the DRG and CN significantly increased as compared with those of the sham-operated rats. Furthermore, 4 weeks after MNT, the increases of nNOS-LI neurons in the DRG and CN were attenuated by pre-emptive lidocaine treatment in a dose-dependent manner. Finally, 4 weeks after MNT, pre-stimulation administration of L-NAME (N (ω)-Nitro-L: -arginine methyl ester) or 7-NI (7-nitroindazole) suppressed the amount of NPY release from the stimulated terminals and thus attenuated c-Fos expression in the CN. Our data implied that NO would modulate neuronal activity in the DRG and CN both after MNT.
Collapse
|
40
|
Delayed olfactory ensheathing cell transplants reduce nociception after dorsal root injury. Exp Neurol 2011; 229:143-57. [DOI: 10.1016/j.expneurol.2010.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/08/2010] [Accepted: 07/12/2010] [Indexed: 02/08/2023]
|
41
|
Fehlings MG, Theodore N, Harrop J, Maurais G, Kuntz C, Shaffrey CI, Kwon BK, Chapman J, Yee A, Tighe A, McKerracher L. A Phase I/IIa Clinical Trial of a Recombinant Rho Protein Antagonist in Acute Spinal Cord Injury. J Neurotrauma 2011; 28:787-96. [DOI: 10.1089/neu.2011.1765] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
| | - Nicholas Theodore
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona
| | - James Harrop
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Gilles Maurais
- Department of Orthopaedic Surgery, Université de Montréal, Montreal, Quebec, Canada
| | - Charles Kuntz
- Department of Neurosurgery, Mayfield Clinic, Cincinnati, Ohio
| | - Chris I. Shaffrey
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia
| | - Brian K. Kwon
- Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jens Chapman
- Department of Orthopaedics, University of Washington, Seattle, Washington
| | - Albert Yee
- Department of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Allyson Tighe
- Department of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Lisa McKerracher
- Department of Orthopaedic Surgery, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
42
|
Ramer MS. Endogenous neurotrophins and plasticity following spinal deafferentation. Exp Neurol 2010; 235:70-7. [PMID: 21195072 DOI: 10.1016/j.expneurol.2010.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/03/2010] [Accepted: 12/22/2010] [Indexed: 01/10/2023]
Abstract
Neurons intrinsic to the spinal cord dorsal horn receive input from various classes of long-distance projection systems. Two of the best known of these are primary afferent and descending monoaminergic axons. Together with intrinsic interneurons, activity in these axonal populations shapes the early part of the sensory experience before it is transmitted to supraspinal structures via ascending projection axons. Injury to dorsal roots, which contain the centrally projecting branches of primary afferent axons, results in their permanent disconnection from the spinal cord, as well as sensory dysfunction such as pain. In animals, experimental dorsal root injuries affecting a small number of roots produce dynamic behavioural changes, providing evidence for the now familiar concept that sensory processing at the level of the spinal cord is not hard-wired. Changes in behaviour following rhizotomy suggest changes in spinal sensory circuitry, and we and others have shown that the density of spinal serotonergic axons as well as processes of inhibitory interneurons increases following rhizotomy. Intact primary afferent axons are less apt to sprout into denervated territory. Recent work from our group has asked (1) what is the stimulus that induces sprouting of serotonergic (and other) axons and (2) what prevents spared primary afferent axons from occupying the territory of those lost to injury. This article will review the evidence that a single factor upregulated by dorsal root injury, brain-derived neurotrophic factor (BDNF), underpins both serotonergic sprouting and a lack of primary afferent plasticity. BDNF also differentially modulates some of the behavioural consequences of dorsal root injury: antagonizing endogenous BDNF improves spontaneous mechanosensory recovery but prevents recovery from rhizotomy-induced hypersensitivity to cold. These findings reinforce the notion that in disease states as complex and variable as spinal cord injury, single pharmacological interventions are unlikely to produce meaningful results. However, understanding the differences in capacity for plasticity among different systems, as well as their triggers, should allow for more patient-tailored therapies.
Collapse
Affiliation(s)
- Matt S Ramer
- Zoology and International Collaboration on Repair Discoveries, 818 W. 10th Ave., Vancouver, BC, Canada.
| |
Collapse
|
43
|
Bretzner F, Plemel JR, Liu J, Richter M, Roskams AJ, Tetzlaff W. Combination of olfactory ensheathing cells with local versus systemic cAMP treatment after a cervical rubrospinal tract injury. J Neurosci Res 2010; 88:2833-46. [PMID: 20568293 DOI: 10.1002/jnr.22440] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The failure of CNS axons to regenerate following traumatic injury is due in part to a growth-inhibitory environment in CNS as well as a weak intrinsic neuronal growth response. Olfactory ensheathing cell (OECs) transplants have been reported to create a favorable environment promoting axonal regeneration, remyelination, and functional recovery after spinal cord injury. However, in our previous experiments, OEC transplants failed to promote regeneration of rubrospinal axons through and beyond the site of a dorsolateral funiculus crush in rats. Rubrospinal neurons undergo massive cell atrophy and limited expression of regeneration-associated genes after axotomy. Using the same injury model, we tested the hypothesis that treatment of the red nucleus with cAMP, known to stimulate the intrinsic growth response in other neurons, will promote rubrospinal regeneration in combination with OEC transplants. In addition, we assessed a systemic increase of cAMP using the phosphodiesterase inhibitor rolipram. OECs prevented cavity formation, attenuated astrocytic hypertrophy and the retraction of the axotomized rubrospinal axons, and tended to reduce the overall lesion size. OEC transplantation lowered the thresholds for thermal sensitivity of both forepaws. None of our treatments, alone or in combination, promoted rubrospinal regeneration through the lesion site. However, the systemic elevation of cAMP with rolipram resulted in greater numbers of OECs and axonal density within the graft and improved motor performance in a cylinder test in conjunction with enhanced rubrospinal branching and attenuated astrocytic hypertrophy.
Collapse
Affiliation(s)
- Frederic Bretzner
- ICORD-International Collaboration On Repair Discoveries, Blusson Spinal Cord Centre, Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
44
|
RhoA/Rho kinase signaling in the spinal cord and diabetic painful neuropathy. Eur J Pharmacol 2010; 644:1-4. [PMID: 20655903 DOI: 10.1016/j.ejphar.2010.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 07/05/2010] [Accepted: 07/11/2010] [Indexed: 11/20/2022]
Abstract
Diabetic neuropathy is one of the most common complications in diabetes, and hyperalgesia and allodynia are serious symptoms of diabetic neuropathy. There are few therapeutic options available for the treatment of such diabetic painful neuropathy. While several reports have indicated that an abnormality of intracellular signaling molecules is involved in the pathogenesis of diabetic painful neuropathy, agents that affect these intracellular signaling molecules have failed to deliver convincing results in clinical trials. Recently, the small molecular G-protein RhoA has been shown to be involved in the pathogenesis of diabetic nephropathy. RhoA and its downstream kinase Rho kinase (ROCK) have been shown to modulate nociceptive transmission in the spinal cord. In this report, we provide a brief overview of the role of the RhoA/ROCK pathway in diabetic complications. We especially focus on the role of the spinal RhoA/ROCK pathway in the pathogenesis of diabetic painful neuropathy. Findings on the association between the spinal RhoA/ROCK pathway and diabetic painful neuropathy may lead to new strategies for its treatment.
Collapse
|
45
|
TNF-α contributes to up-regulation of Nav1.3 and Nav1.8 in DRG neurons following motor fiber injury. Pain 2010; 151:266-279. [PMID: 20638792 DOI: 10.1016/j.pain.2010.06.005] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 04/07/2010] [Accepted: 06/10/2010] [Indexed: 12/13/2022]
Abstract
A large body of evidence has demonstrated that the ectopic discharges of action potentials in primary afferents, resulted from the abnormal expression of voltage gated sodium channels (VGSCs) in dorsal root ganglion (DRG) neurons following peripheral nerve injury are important for the development of neuropathic pain. However, how nerve injury affects the expression of VGSCs is largely unknown. Here, we reported that selective injury of motor fibers by L5 ventral root transection (L5-VRT) up-regulated Nav1.3 and Nav1.8 at both mRNA and protein level and increased current densities of TTX-S and TTX-R channels in DRG neurons, suggesting that nerve injury may up-regulate functional VGSCs in sensory neurons indirectly. As the up-regulated Nav1.3 and Nav1.8 were highly co-localized with TNF-α, we tested the hypothesis that the increased TNF-α may lead to over-expression of the sodium channels. Indeed, we found that peri-sciatic administration of recombinant rat TNF-α (rrTNF) without any nerve injury, which produced lasting mechanical allodynia, also up-regulated Nav1.3 and Nav1.8 in DRG neurons in vivo and that rrTNF enhanced the expression of Nav1.3 and Nav1.8 in cultured adult rat DRG neurons in a dose-dependent manner. Furthermore, inhibition of TNF-α synthesis, which prevented neuropathic pain, strongly inhibited the up-regulation of Nav1.3 and Nav1.8. The up-regulation of the both channels following L5-VRT was significantly lower in TNF receptor 1 knockout mice than that in wild type mice. These data suggest that increased TNF-α may be responsible for up-regulation of Nav1.3 and Nav1.8 in uninjured DRG neurons following nerve injury.
Collapse
|
46
|
Yoshimi E, Kumakura F, Hatori C, Hamachi E, Iwashita A, Ishii N, Terasawa T, Shimizu Y, Takeshita N. Antinociceptive Effects of AS1892802, a Novel Rho Kinase Inhibitor, in Rat Models of Inflammatory and Noninflammatory Arthritis. J Pharmacol Exp Ther 2010; 334:955-63. [DOI: 10.1124/jpet.110.167924] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
47
|
Fouad K, Krajacic A, Tetzlaff W. Spinal cord injury and plasticity: opportunities and challenges. Brain Res Bull 2010; 84:337-42. [PMID: 20471456 DOI: 10.1016/j.brainresbull.2010.04.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 04/29/2010] [Accepted: 04/30/2010] [Indexed: 01/03/2023]
Abstract
There is still no effective treatment to promote functional recovery following spinal cord injury. However, promoting injury-induced adaptive changes (plasticity) within the central nervous system, associated with repair, promise new treatment strategies. Recent contributions from our group and current challenges of this relatively young field are discussed in this review.
Collapse
|
48
|
Boyce-Rustay JM, Simler GH, McGaraughty S, Chu KL, Wensink EJ, Vasudevan A, Honore P. Characterization of Fasudil in preclinical models of pain. THE JOURNAL OF PAIN 2010; 11:941-9. [PMID: 20338818 DOI: 10.1016/j.jpain.2009.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 12/09/2009] [Accepted: 12/29/2009] [Indexed: 11/30/2022]
Abstract
UNLABELLED Activation of Rho kinase (ROCK) has been shown to play a role in neuronal regeneration and development of posttraumatic neuropathic pain. The ROCK inhibitor Fasudil, used clinically for the treatment of vasospasm, was used to investigate the analgesic profile of a ROCK inhibitor. Fasudil was evaluated in different preclinical models of neuropathic, osteoarthritic (OA), and inflammatory pain as well as capsaicin-induced acute pain and secondary mechanical hypersensitivity. In addition, Fasudil was tested in in vivo electrophysiology to determine the mechanism by which Fasudil produces analgesia. Fasudil at the highest dose tested (30 mg/kg) significantly attenuated mechanical allodynia in spinal-nerve ligation (SNL; 77%), chronic constriction injury (CCI; 53%), capsaicin-induced secondary mechanical hypersensitivity (63%), sodium iodoacetate-induced OA pain (88%), and capsaicin-induced acute flinching behaviors (56%). However, Fasudil (at 30 mg/kg) failed to attenuate or had only modest effects on inflammatory thermal hyperalgesia following carrageenan injection and mechanical allodynia following Complete Freund's Adjuvant (CFA) injection. Fasudil produced ED(50) of 10.8 mg/kg in the SNL, and 5.7 mg/kg in the OA pain models. The ED(50) and 95% CI could not be obtained in the other models. Furthermore, administration of Fasudil (10 mg/kg, iv) significantly reduced both spontaneous and evoked firing of wide dynamic range (WDR) neurons in SNL, but not sham rats. Finally, Fasudil significantly decreased exploratory behaviors at 30 mg/kg. These results suggest that the acute administration of a ROCK inhibitor produces efficacy in both neuropathic and nociceptive pain states at doses devoid of locomotor side effects, with specific effects on WDR neurons. PERSPECTIVE In this article, the potential analgesic effects of Fasudil in a range of preclinical pain models were assessed. Fasudil was shown to have efficacy in neuropathic and nociceptive pain models. These findings may help identify new therapeutic treatments for pain in the clinic.
Collapse
|
49
|
Cragg JJ, Scott AL, Ramer MS. Depletion of spinal 5-HT accelerates mechanosensory recovery in the deafferented rat spinal cord. Exp Neurol 2010; 222:277-84. [PMID: 20079735 DOI: 10.1016/j.expneurol.2010.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 12/17/2009] [Accepted: 01/07/2010] [Indexed: 01/05/2023]
Abstract
Dorsal root injuries (DRIs), resulting in the permanent disconnection of nerve roots from the spinal cord, lead to sensory impairments, including both the loss of sensation and the development of neuropathic pain in the affected limb. DRI results in axonal sprouting of intraspinal serotonergic fibers, but the functional consequences of this response to spinal deafferentation remains unclear. Here we aimed to clarify the role of descending serotonergic projections in both mechanosensation and pain following DRI. By ablating serotonergic input to the spinal cord via 5,7-dihydroxytryptamine (5,7-DHT) prior to DRI in rats, we found that serotonergic input to the dorsal horn normally inhibits the recovery of mechanosensation but has no effect on the development or resolution of cold pain. Endogenous brain-derived neurotrophic factor (BDNF) is upregulated by activated microglia, is required for sprouting of serotonergic axons and neuropeptide tyrosine (NPY)-positive interneurons, and suppresses mechanosensory recovery following DRI. Intriguingly, we found that the density of activated microglia, the amount of BDNF protein, and density of NPY-positive processes were all significantly reduced in 5,7-DHT-treated rats, suggesting that serotonergic input to the deafferented dorsal horn is required for all of these consequences of spinal deafferentation. These results indicate that BDNF-dependent serotonergic and/or increases in NPY-positive fiber density slows, and ultimately halts, mechanosensory recovery following DRI.
Collapse
Affiliation(s)
- J J Cragg
- ICORD (International Collaboration on Repair Discoveries), Blusson Spinal Cord Centre, Vancouver, BC, Canada V5Z 1M9
| | | | | |
Collapse
|
50
|
Chen JJ, Lue JH, Lin LH, Huang CT, Chiang RPY, Chen CL, Tsai YJ. Effects of pre-emptive drug treatment on astrocyte activation in the cuneate nucleus following rat median nerve injury. Pain 2010; 148:158-166. [DOI: 10.1016/j.pain.2009.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 01/09/2023]
|