1
|
Przybysz KR, Shillinglaw JE, Wheeler SR, Glover EJ. Chronic ethanol exposure produces long-lasting, subregion-specific physiological adaptations in RMTg-projecting mPFC neurons. Neuropharmacology 2024; 259:110098. [PMID: 39117106 DOI: 10.1016/j.neuropharm.2024.110098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Chronic ethanol exposure produces neuroadaptations in the medial prefrontal cortex (mPFC) that are thought to facilitate maladaptive behaviors that interfere with recovery from alcohol use disorder. Despite evidence that different cortico-subcortical projections play distinct roles in behavior, few studies have examined the physiological effects of chronic ethanol at the circuit level. The rostromedial tegmental nucleus (RMTg) is functionally altered by chronic ethanol exposure. Our recent work identified dense input from the mPFC to the RMTg, yet the effects of chronic ethanol exposure on this circuitry is unknown. In the current study, we examined physiological changes after chronic ethanol exposure in prelimbic (PL) and infralimbic (IL) mPFC neurons projecting to the RMTg. Adult male Long-Evans rats were injected with fluorescent retrobeads into the RMTg and rendered dependent using a 14-day chronic intermittent ethanol (CIE) vapor exposure paradigm. Whole-cell patch-clamp electrophysiological recordings were performed in fluorescently-labeled (RMTg-projecting) and -unlabeled (projection-undefined) layer 5 pyramidal neurons 7-10 days following ethanol exposure. CIE exposure significantly increased intrinsic excitability as well as spontaneous excitatory and inhibitory postsynaptic currents (sE/IPSCs) in RMTg-projecting IL neurons. In contrast, no lasting changes in excitability were observed in RMTg-projecting PL neurons, although a CIE-induced reduction in excitability was observed in projection-undefined PL neurons. CIE exposure also increased the frequency of sEPSCs in RMTg-projecting PL neurons. These data uncover novel subregion- and circuit-specific neuroadaptations in the mPFC following chronic ethanol exposure and reveal that the IL mPFC-RMTg projection is uniquely vulnerable to long-lasting effects of chronic ethanol exposure. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Kathryn R Przybysz
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| | - Joel E Shillinglaw
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| | - Shannon R Wheeler
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| | - Elizabeth J Glover
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Mignogna KM, Tatom Z, Macleod L, Sergi Z, Nguyen A, Michenkova M, Smith ML, Miles MF. Identification of novel genetic loci and candidate genes for progressive ethanol consumption in diversity outbred mice. Neuropsychopharmacology 2024; 49:1892-1904. [PMID: 38951586 PMCID: PMC11473901 DOI: 10.1038/s41386-024-01902-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024]
Abstract
Mouse behavioral genetic mapping studies can identify genomic intervals modulating complex traits under well-controlled environmental conditions and have been used to study ethanol behaviors to aid in understanding genetic risk and the neurobiology of alcohol use disorder (AUD). However, historically such studies have produced large confidence intervals, thus complicating identification of potential causal candidate genes. Diversity Outbred (DO) mice offer the ability to perform high-resolution quantitative trait loci (QTL) mapping on a very genetically diverse background, thus facilitating identification of candidate genes. Here, we studied a population of 636 male DO mice with four weeks of intermittent ethanol access via a three-bottle choice procedure, producing a progressive ethanol consumption phenotype. QTL analysis identified 3 significant (Chrs 3, 4, and 12) and 13 suggestive loci for ethanol-drinking behaviors with narrow confidence intervals (1-4 Mbp for significant QTLs). Results suggested that genetic influences on initial versus progressive ethanol consumption were localized to different genomic intervals. A defined set of positional candidate genes were prioritized using haplotype analysis, identified coding polymorphisms, prefrontal cortex transcriptomics data, human GWAS data and prior rodent gene set data for ethanol or other misused substances. These candidates included Car8, the lone gene with a significant cis-eQTL within a Chr 4 QTL for week four ethanol consumption. These results represent the highest-resolution genetic mapping of ethanol consumption behaviors in mice to date, providing identification of novel loci and candidate genes for study in relation to the neurobiology of AUD.
Collapse
Affiliation(s)
- Kristin M Mignogna
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Zachary Tatom
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Lorna Macleod
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Zachary Sergi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Angel Nguyen
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Marie Michenkova
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Maren L Smith
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael F Miles
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA.
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA.
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
3
|
Cristina Bianchi P, Palombo P, Antonagi Engi S, Eduardo Carneiro de Oliveira P, Emily Boaventura Tavares G, Anjos-Santos A, Suemi Yokoyama T, da Silva Planeta C, Cardoso Cruz F, Molini Leão R. Involvement of Pre-limbic Cortex-Nucleus accumbens projections in Context-Induced alcohol seeking. Brain Res 2024; 1841:149086. [PMID: 38876319 DOI: 10.1016/j.brainres.2024.149086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Alcohol use disorder (AUD) remains a critical public health issue worldwide, characterized by high relapse rates often triggered by contextual cues. This research investigates the neural mechanisms behind context-induced reinstatement of alcohol-seeking behavior, focusing on the nucleus accumbens and its interactions with the prelimbic cortex, employing Male Long-Evans rats in an ABA renewal model. In our experimental setup, rats were trained to self-administer 10 % ethanol in Context A, followed by extinction of lever pressing in the presence of discrete cues in Context B. The context-induced reinstatement of ethanol-seeking was then assessed by re-exposing rats to Context A or B under extinction conditions, aiming to simulate the environmental cues' influence on relapse behaviors. Three experiments were conducted: Experiment 1 utilized Fos-immunohistochemistry to examine neuronal activation in the nucleus accumbens; Experiment 2 applied the baclofen + muscimol inactivation technique to probe the functional importance of the nucleus accumbens core; Experiment 3 used Fos-immunofluorescence along with Retrobeads injection to investigate activation of neurons projecting from the prelimbic cortex to the nucleus accumbens core. Our findings revealed significant increases in Fos-immunoreactive nuclei within the nucleus accumbens core and shell during the reinstatement phase in Context A, underscoring the environment's potent effect on ethanol-seeking behavior. Additionally, inactivation of the nucleus accumbens core markedly reduced reinstatement, and there was a notable activation of neurons from the prelimbic cortex to the nucleus accumbens core in the ethanol-associated context. These results highlight the critical role of the nucleus accumbens core and its corticostriatal projections in the neural circuitry underlying context-driven ethanol seeking.
Collapse
Affiliation(s)
- Paula Cristina Bianchi
- Laboratory of Behavioral Neuroscience, Paulista Medicine School, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil
| | - Paola Palombo
- Laboratory of Behavioral Neuroscience, Paulista Medicine School, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil
| | - Sheila Antonagi Engi
- Laboratory of Behavioral Neuroscience, Paulista Medicine School, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil
| | | | | | - Alexia Anjos-Santos
- Laboratory of Behavioral Neuroscience, Paulista Medicine School, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil
| | - Thais Suemi Yokoyama
- Laboratory of Behavioral Neuroscience, Paulista Medicine School, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil
| | - Cleopatra da Silva Planeta
- Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - Fabio Cardoso Cruz
- Laboratory of Behavioral Neuroscience, Paulista Medicine School, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil
| | - Rodrigo Molini Leão
- Laboratory of Pharmacology, Biomedical Sciences Institute, Department of Pharmacology, Federal University of Uberlândia, Uberlândia, MG, Brazil; Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia/MG, Brazil.
| |
Collapse
|
4
|
Kirsch DE, Ray LA, Wassum KM, Grodin EN. Anterior cingulate and medial prefrontal cortex alcohol cue reactivity varies as a function of drink preference in alcohol use disorder. Drug Alcohol Depend 2024; 256:111123. [PMID: 38367535 DOI: 10.1016/j.drugalcdep.2024.111123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/11/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Functional MRI visual cue reactivity studies have not considered that brain responses to various alcohol-containing beverage types may vary as a function of an individual's drinking patterns and preferences. This study tested whether the brain's reward system responds differently to visual cues associated with an individuals' most commonly consumed ("preferred") alcohol beverage compared with less commonly consumed ("non-preferred") alcohol beverages in individuals with alcohol use disorder (AUD). METHODS Participants (N=70) with current AUD completed a standard visual alcohol cue reactivity procedure during fMRI and reported recent alcohol use through the Timeline Followback interview. Alcohol use patterns were used to infer drink preference. Repeated measure ANCOVAs were used to evaluate differences in subjective craving (alcohol urge) and neural reactivity to cues of individual's "preferred" versus "non-preferred" alcohol beverages. RESULTS Fifty-four (77%) participants were determined to have a "preferred" alcohol beverage, as defined by their pattern of alcohol use. These participants reported greater subjective alcohol urge (p=0.02) and activation in the anterior cingulate cortex (ACC) (p=0.005) and medial prefrontal cortex (mPFC) (p=0.001)) in response to visual cues associated with their "preferred" versus "non-preferred" alcohol beverage. Individuals with an alcohol preference did not differ from those with no alcohol preference on subjective or neural responses to their "preferred" and "non-preferred" alcohol cues. DISCUSSION Results suggest alcohol cue-elicited subjective and neural responses vary as a function of alcohol beverage preference in individuals with AUD and a behaviorally defined alcohol preference. Stronger ACC and mPFC activation may reflect greater subjective value of an individual's "preferred" alcohol beverage cue.
Collapse
Affiliation(s)
- Dylan E Kirsch
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563, USA
| | - Lara A Ray
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Kate M Wassum
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563, USA
| | - Erica N Grodin
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
5
|
Holota R, Dečmanová V, Alexovič Matiašová A, Košuth J, Slovinská L, Pačut L, Tomori Z, Daxnerová Z, Ševc J. Cleaved caspase-3 is present in the majority of glial cells in the intact rat spinal cord during postnatal life. Histochem Cell Biol 2024; 161:269-286. [PMID: 37938347 PMCID: PMC10912154 DOI: 10.1007/s00418-023-02249-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/09/2023]
Abstract
Cell death is an essential process that occurs during the development of the central nervous system. Despite the availability of a wide range of commercially produced antibodies against various apoptotic markers, data regarding apoptosis in intact spinal cord during postnatal development and adulthood are mostly missing. We investigated apoptosis in rat spinal cord at different stages of ontogenesis (postnatal days 8, 29, and 90). For this purpose, we applied immunofluorescent detection of two widely used apoptotic markers, cleaved caspase-3 (cC3) and cleaved poly(ADP-ribose) polymerase (cPARP). Surprisingly, we found significant discrepancy between the number of cC3+ cells and PARP+ cells, with a ratio between 500:1 and 5000:1 in rat spinal cord at all postnatal time points. The majority of cC3+ cells were glial cells and did not exhibit an apoptotic phenotype. In contrast with in vivo results, in vitro analysis of primary cell cultures derived from neonatal rat spinal cord and treated with the apoptotic inductor staurosporine revealed a similar onset of occurrence of both cC3 and cPARP in cells subjected to apoptosis. Gene expression analysis of spinal cord revealed elevated expression of the Birc4 (XIAP), Birc2, and Birc5 (Survivin) genes, which are known potent inhibitors of apoptosis. Our data indicate that cC3 is not an exclusive marker of apoptosis, especially in glial cells, owing its possible presence in inhibited forms and/or its participation in other non-apoptotic roles. Therefore, cPARP appears to be a more appropriate marker to detect apoptosis.
Collapse
Affiliation(s)
- R Holota
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovak Republic
| | - V Dečmanová
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovak Republic
| | - A Alexovič Matiašová
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovak Republic.
| | - J Košuth
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovak Republic
| | - L Slovinská
- Associated Tissue Bank, Faculty of Medicine, P. J. Šafárik University in Košice and L. Pasteur University Hospital, Tr. SNP 1, 04011, Košice, Slovak Republic
- Department of Regenerative Medicine and Cell Therapy, Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 04001, Košice, Slovak Republic
| | - L Pačut
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovak Republic
| | - Z Tomori
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001, Košice, Slovak Republic
| | - Z Daxnerová
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovak Republic
| | - J Ševc
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovak Republic
| |
Collapse
|
6
|
Braunscheidel K, Okas M, Woodward JJ. Toluene alters the intrinsic excitability and excitatory synaptic transmission of basolateral amygdala neurons. Front Neurosci 2024; 18:1366216. [PMID: 38595974 PMCID: PMC11002899 DOI: 10.3389/fnins.2024.1366216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/31/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Inhalant abuse is an important health issue especially among children and adolescents who often encounter these agents in the home. Research into the neurobiological targets of inhalants has lagged behind that of other drugs such as alcohol and psychostimulants. However, studies from our lab and others have begun to reveal how inhalants such as the organic solvent toluene affect neurons in key addiction related areas of the brain including the ventral tegmental area, nucleus accumbens and medial prefrontal cortex. In the present study, we extend these findings and examine the effect of toluene on electrophysiological responses of pyramidal neurons in the basolateral amygdala BLA, a region important for generating emotional and reward based information needed to guide future behavior. Methods Whole-cell patch-clamp electrophysiology recordings of BLA pyramidal neurons in rat brain slices were used to assess toluene effects on intrinsic excitability and excitatory glutamatergic synaptic transmission. Results Acute application of 3 mM but not 0.3 mM toluene produced a small but significant (~20%) increase in current-evoked action potential (AP) firing that reversed following washout of the toluene containing solution. The change in firing during exposure to 3 mM toluene was accompanied by selective changes in AP parameters including reduced latency to first spike, increased AP rise time and decay and a reduction in the fast after-hyperpolization. To examine whether toluene also affects excitatory synaptic signaling, we expressed channelrhodopsin-2 in medial prefrontal cortex neurons and elicited synaptic currents in BLA neurons via light pulses. Toluene (3 mM) reduced light-evoked AMPA-mediated synaptic currents while a lower concentration (0.3 mM) had no effect. The toluene-induced reduction in AMPA-mediated BLA synaptic currents was prevented by the cannabinoid receptor-1 antagonist AM281. Discussion These findings are the first to demonstrate effects of acute toluene on BLA pyramidal neurons and add to existing findings showing that abused inhalants such as toluene have significant effects on neurons in brain regions involved in natural and drug induced reward.
Collapse
Affiliation(s)
| | | | - John J. Woodward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
7
|
Ferland JMN, Ellis RJ, Rompala G, Landry JA, Callens JE, Ly A, Frier MD, Uzamere TO, Hurd YL. Dose mediates the protracted effects of adolescent THC exposure on reward and stress reactivity in males relevant to perturbation of the basolateral amygdala transcriptome. Mol Psychiatry 2023; 28:2583-2593. [PMID: 35236956 DOI: 10.1038/s41380-022-01467-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 01/01/2023]
Abstract
Despite the belief that cannabis is relatively harmless, exposure during adolescence is associated with increased risk of developing several psychopathologies in adulthood. In addition to the high levels of use amongst teenagers, the potency of ∆-9-tetrahydrocannabinol (THC) has increased more than fourfold compared to even twenty years ago, and it is unclear whether potency influences the presentation of THC-induced behaviors. Expanded knowledge about the impact of adolescent THC exposure, especially high dose, is important to delineating neural networks and molecular mechanisms underlying psychiatric risk. Here, we observed that repeated exposure to low (1.5 mg/kg) and high (5 mg/kg) doses of THC during adolescence in male rats produced divergent effects on behavior in adulthood. Whereas low dose rats showed greater sensitivity to reward devaluation and also self-administered more heroin, high dose animals were significantly more reactive to social isolation stress. RNA sequencing of the basolateral amygdala, a region linked to reward processing and stress, revealed significant perturbations in transcripts and gene networks related to synaptic plasticity and HPA axis that were distinct to THC dose as well as stress. In silico single-cell deconvolution of the RNAseq data revealed a significant reduction of astrocyte-specific genes related to glutamate regulation in stressed high dose animals, a result paired anatomically with greater astrocyte-to-neuron ratios and hypotrophic astrocytes. These findings emphasize the importance of dose and behavioral state on the presentation of THC-related behavioral phenotypes in adulthood and dysregulation of astrocytes as an interface for the protracted effects of high dose THC and subsequent stress sensitivity.
Collapse
Affiliation(s)
- Jacqueline-Marie N Ferland
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Randall J Ellis
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Gregory Rompala
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Joseph A Landry
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - James E Callens
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Annie Ly
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Micah D Frier
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Teddy O Uzamere
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Yasmin L Hurd
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA.
| |
Collapse
|
8
|
Hauser SR, Deehan GA, Knight CP, Waeiss RA, Engleman EA, Ding ZM, Johnson PL, McBride WJ, Truitt WA, Rodd ZA. Inhibitory and excitatory alcohol-seeking cues distinct roles in behavior, neurochemistry, and mesolimbic pathway in alcohol preferring (P) rats. Drug Alcohol Depend 2023; 246:109858. [PMID: 37028106 PMCID: PMC10212692 DOI: 10.1016/j.drugalcdep.2023.109858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 04/09/2023]
Abstract
Cues associated with alcohol use can readily enhance self-reported cravings for alcohol, which increases the likelihood of reusing alcohol. Understanding the neuronal mechanisms involved in alcohol-seeking behavior is important for developing strategies to treat alcohol use disorder. In all experiments, adult female alcohol-preferring (P) rats were exposed to three conditioned odor cues; CS+ associated with EtOH self-administration, CS- associated with the absence of EtOH (extinction training), and a CS0, a neutral stimulus. The data indicated that presentation of an excitatory conditioned cue (CS+) can enhance EtOH- seeking while the CS- can inhibit EtOH-seeking under multiple test conditions. Presentation of the CS+ activates a subpopulation of dopamine neurons within the interfascicular nucleus of the posterior ventral tegmental area (posterior VTA) and basolateral amygdala (BLA). Pharmacological inactivation of the BLA with GABA agonists inhibits the ability of the CS+ to enhance EtOH-seeking but does not alter context-induced EtOH-seeking or the ability of the CS- to inhibit EtOH-seeking. Presentation of the conditioned odor cues in a non-drug-paired environment indicated that presentation of the CS+ increased dopamine levels in the BLA. In contrast, presentation of the CS- decreased both glutamate and dopamine levels in the BLA. Further analysis revealed that presentation of a CS+ EtOH-associated conditioned cue activates GABA interneurons but not glutamate projection neurons. Overall, the data indicate that excitatory and inhibitory conditioned cues can contrarily alter EtOH-seeking behaviors and that different neurocircuitries are mediating these distinct cues in critical brain regions. Pharmacotherapeutics for craving should inhibit the CS+ and enhance the CS- neurocircuits.
Collapse
Affiliation(s)
- Sheketha R Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Gerald A Deehan
- Department of Psychology, East Tennessee State University, Johnson City, TN 37614, USA
| | - Christopher P Knight
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Robert A Waeiss
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Eric A Engleman
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Zheng-Ming Ding
- Department of Anesthesiology and Perioperative Medicine, Department of Pharmacology, The Pennsylvania State University, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Phillip L Johnson
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - William J McBride
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - William A Truitt
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Zachary A Rodd
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
9
|
Valyear MD, LeCocq MR, Brown A, Villaruel FR, Segal D, Chaudhri N. Learning processes in relapse to alcohol use: lessons from animal models. Psychopharmacology (Berl) 2023; 240:393-416. [PMID: 36264342 DOI: 10.1007/s00213-022-06254-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/02/2022] [Indexed: 11/29/2022]
Abstract
RATIONALE Alcohol use is reliably preceded by discrete and contextual stimuli which, through diverse learning processes, acquire the capacity to promote alcohol use and relapse to alcohol use. OBJECTIVE We review contemporary extinction, renewal, reinstatement, occasion setting, and sex differences research within a conditioning framework of relapse to alcohol use to inform the development of behavioural and pharmacological therapies. KEY FINDINGS Diverse learning processes and corresponding neurobiological substrates contribute to relapse to alcohol use. Results from animal models indicate that cortical, thalamic, accumbal, hypothalamic, mesolimbic, glutamatergic, opioidergic, and dopaminergic circuitries contribute to alcohol relapse through separable learning processes. Behavioural therapies could be improved by increasing the endurance and generalizability of extinction learning and should incorporate whether discrete cues and contexts influence behaviour through direct excitatory conditioning or occasion setting mechanisms. The types of learning processes that most effectively influence responding for alcohol differ in female and male rats. CONCLUSION Sophisticated conditioning experiments suggest that diverse learning processes are mediated by distinct neural circuits and contribute to relapse to alcohol use. These experiments also suggest that gender-specific behavioural and pharmacological interventions are a way towards efficacious therapies to prevent relapse to alcohol use.
Collapse
Affiliation(s)
- Milan D Valyear
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, Canada. .,Department of Psychology, McGill University, 1205 Ave. Dr. Penfield, Room N8/5, Montréal, QC, H3A 1B1, Canada.
| | - Mandy R LeCocq
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, Canada
| | - Alexa Brown
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, Canada
| | - Franz R Villaruel
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, Canada
| | - Diana Segal
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, Canada
| | - Nadia Chaudhri
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, Canada
| |
Collapse
|
10
|
Servonnet A, Rompré PP, Samaha AN. Optogenetic activation of basolateral amygdala-to-nucleus accumbens core neurons promotes Pavlovian approach responses but not instrumental pursuit of reward cues. Behav Brain Res 2023; 440:114254. [PMID: 36516942 DOI: 10.1016/j.bbr.2022.114254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Reward-associated conditioned stimuli (CSs) can acquire predictive value, evoking conditioned approach behaviours that prepare animals to engage with forthcoming rewards. Such CSs can also acquire conditioned reinforcing value, becoming attractive and pursued. Through their conditioned effects, CSs can promote adaptive (e.g., locating food) but also maladaptive behaviours (e.g., drug use). Basolateral amygdala neurons projecting to the nucleus accumbens core (BLA→NAc core neurons) mediate the response to appetitive CSs, but the extent to which this involves effects on the predictive and/or conditioned reinforcing properties of CSs is unclear. Thus, we examined the effects of optogenetic stimulation of BLA→NAc core neurons on i) CS-triggered approach to the site of reward delivery, a Pavlovian conditioned approach response and ii) the instrumental pursuit of a CS, a measure of conditioned reinforcement. Water-restricted, adult male rats learned that a light-tone compound cue (the CS) predicts water delivery into a receptacle. Pairing optogenetic stimulation of BLA→NAc core neurons with CS presentation potentiated CS-triggered water receptacle visits. This suggests that activity in BLA→NAc core neurons promotes Pavlovian goal-approach behaviour. Next, rats could lever press for CS presentations, without water delivery. Optogenetic stimulation of BLA→NAc core neurons either during instrumental test sessions or during prior CS-water conditioning did not influence lever responding for the CS. This suggests that activity in BLA→NAc core neurons does not influence the instrumental pursuit of a water-paired CS. We conclude that activation of BLA→NAc core neurons promotes cue-induced control over behaviour by increasing conditioned goal-approach responses, without affecting the operant pursuit of reward cues.
Collapse
Affiliation(s)
| | | | - Anne-Noël Samaha
- Department of Pharmacology and Physiology (Faculty of Medicine), Canada; Groupe de recherche sur le système nerveux central, Faculty of Medicine, Université de Montréal, 2900 Edouard-Montpetit Boulevard, Montreal H3T 1J4, Quebec, Canada.
| |
Collapse
|
11
|
Jarczak J, Miszczak M, Radwanska K. Is DNA methylation in the brain a mechanism of alcohol use disorder? Front Behav Neurosci 2023; 17:957203. [PMID: 36778133 PMCID: PMC9908583 DOI: 10.3389/fnbeh.2023.957203] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Alcohol use disorder (AUD) is a worldwide problem. Unfortunately, the molecular mechanisms of alcohol misuse are still poorly understood, therefore successful therapeutic approaches are limited. Accumulating data indicate that the tendency for compulsive alcohol use is inherited, suggesting a genetic background as an important factor. However, the probability to develop AUD is also affected by life experience and environmental factors. Therefore, the epigenetic modifications that are altered over lifetime likely contribute to increased risk of alcohol misuse. Here, we review the literature looking for the link between DNA methylation in the brain, a common epigenetic modification, and AUD-related behaviors in humans, mice and rats. We sum up the main findings, identify the existing gaps in our knowledge and indicate future directions of the research.
Collapse
|
12
|
Magliaro C, Ahluwalia A. Biomedical Research on Substances of Abuse: The Italian Case Study. Altern Lab Anim 2022; 50:423-436. [PMID: 36222242 DOI: 10.1177/02611929221132215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Substances of abuse have the potential to cause addiction, habituation or altered consciousness. Most of the research on these substances focuses on addiction, and is carried out through observational and clinical studies on humans, or experimental studies on animals. The transposition of the EU Directive 2010/63 into Italian law in 2014 (IT Law 2014/26) includes a ban on the use of animals for research on substances of abuse. Since then, in Italy, public debate has continued on the topic, while the application of the Article prohibiting animal research in this area has been postponed every couple of years. In the light of this debate, we briefly review a range of methodologies - including animal and non-animal, as well as patient or population-based studies - that have been employed to address the biochemical, neurobiological, toxicological, clinical and behavioural effects of substances of abuse and their dependency. We then discuss the implications of the Italian ban on the use of animals for such research, proposing concrete and evidence-based solutions to allow scientists to pursue high-quality basic and translational studies within the boundaries of the regulatory and legislative framework.
Collapse
Affiliation(s)
- Chiara Magliaro
- Research Centre 'E. Piaggio', 9310University of Pisa, Pisa, Italy.,Department of Information Engineering, 9310University of Pisa, Pisa, Italy.,Interuniversity Centre for the Promotion of 3R Principles in Teaching and Research (Centro 3R), Pisa, Italy
| | - Arti Ahluwalia
- Research Centre 'E. Piaggio', 9310University of Pisa, Pisa, Italy.,Department of Information Engineering, 9310University of Pisa, Pisa, Italy.,Interuniversity Centre for the Promotion of 3R Principles in Teaching and Research (Centro 3R), Pisa, Italy
| |
Collapse
|
13
|
Fletcher PJ, Li Z, Ji X, Higgins GA, Funk D, Lê A. Effects of pimavanserin and lorcaserin on alcohol self-administration and reinstatement in male and female rats. Neuropharmacology 2022; 215:109150. [DOI: 10.1016/j.neuropharm.2022.109150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/25/2022] [Accepted: 05/23/2022] [Indexed: 11/27/2022]
|
14
|
Price ME, McCool BA. Chronic Alcohol Dysregulates Glutamatergic Function in the Basolateral Amygdala in a Projection-and Sex-Specific Manner. Front Cell Neurosci 2022; 16:857550. [PMID: 35496915 PMCID: PMC9050109 DOI: 10.3389/fncel.2022.857550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic intermittent ethanol and withdrawal (CIE/WD) produces alcohol dependence, facilitates anxiety-like behavior, and increases post-CIE alcohol intake. The basolateral amygdala (BLA) is one of several brain regions that regulates anxiety-like behavior and alcohol intake through downstream projections to the nucleus accumbens (NAC) and bed nucleus of the stria terminalis (BNST), respectively. Previous studies revealed that CIE/WD induces input- and sex-specific adaptations to glutamatergic function in the BLA. The BLA receives information from two distinct input pathways. Glutamatergic afferents from medial structures like the thalamus and prefrontal cortex enter the BLA through the stria terminalis whereas lateral cortical structures like the anterior insula cortex enter the BLA through the external capsule. CIE/WD increases presynaptic glutamatergic function at stria terminalis synapses and postsynaptic function at external capsule synapses. Previous studies sampled neurons throughout the BLA, but did not distinguish between projection-specific populations. The current study investigated BLA neurons that project to the NAC (BLA-NAC neurons) or the BNST (BLA-BNST neurons) as representative “reward” and “aversion” BLA neurons, and showed that CIE/WD alters glutamatergic function and excitability in a projection- and sex-specific manner. CIE/WD increases glutamate release from stria terminalis inputs only onto BLA-BNST neurons. At external capsule synapses, CIE/WD increases postsynaptic glutamatergic function in male BLA-NAC neurons and female BLA-BNST neurons. Subsequent experiments demonstrated that CIE/WD enhanced the excitability of male BLA-NAC neurons and BLA-BNST neurons in both sexes when glutamatergic but not GABAergic function was intact. Thus, CIE/WD-mediated increased glutamatergic function facilitates hyperexcitability in male BLA-NAC neurons and BLA-BNST neurons of both sexes.
Collapse
Affiliation(s)
- Michaela E. Price
- Neuroscience and Alcohol Research Training Programs, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Brian A. McCool
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
- *Correspondence: Brian A. McCool,
| |
Collapse
|
15
|
Li HX, Hu X. Dialectical Thinking Is Linked With Smaller Left Nucleus Accumbens and Right Amygdala. Front Psychol 2022; 13:760489. [PMID: 35222178 PMCID: PMC8866571 DOI: 10.3389/fpsyg.2022.760489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/13/2022] [Indexed: 11/17/2022] Open
Abstract
Our current work examined the interface between thinking style and emotional experience at both the behavioral and neuropsychological levels. Thirty-nine Chinese participants completed the triad task, and we calculated the rate of individually selected relationship pairings to overall selections to represent their holistic thinking tendencies. In addition, participants in the top one-third of the ratio score were classified into the high holistic thinking group, while those in the bottom one-third of the ratio score were classified into the low holistic thinking group. We used the sensitivity to punishment and sensitivity to reward questionnaire (SPSRQ) to examine how people elicit positive and negative affective behaviors. Additionally, we examined the volume of the amygdala and nucleus accumbens and their functional connectivity in the resting-state. We found that high holistic thinkers were much less sensitive to rewards than low holistic thinkers. In other words, individuals with high holistic thinking are less likely to pursue behaviors that have positive emotional outcomes. Furthermore, their bilateral nucleus accumbens and right amygdala volumes were smaller than those of low holistic thinkers. Hierarchical regression analysis showed that holistic thinking tendency can negatively predict the volume of the left nucleus accumbens and right amygdala. Finally, resting-state functional connectivity results showed increased functional connectivity FC between left nucleus accumbens and bilateral amygdala in high holistic thinkers. These findings provide emotion-related manifestations of thinking styles at the behavioral and neural levels.
Collapse
Affiliation(s)
- Hui-Xian Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomeng Hu
- Department of Psychology, Renmin University of China, Beijing, China
| |
Collapse
|
16
|
Keefer SE, Gyawali U, Calu DJ. Choose your path: Divergent basolateral amygdala efferents differentially mediate incentive motivation, flexibility and decision-making. Behav Brain Res 2021; 409:113306. [PMID: 33887310 PMCID: PMC8189324 DOI: 10.1016/j.bbr.2021.113306] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
To survive in a complex environment, individuals form associations between environmental stimuli and rewards to organize and optimize reward seeking behaviors. The basolateral amygdala (BLA) uses these learned associations to inform decision-making processes. In this review, we describe functional projections between BLA and its cortical and striatal targets that promote learning and motivational processes central to decision-making. Specifically, we compare and contrast divergent projections from the BLA to the orbitofrontal (OFC) and to the nucleus accumbens (NAc) and examine the roles of these pathways in associative learning, value-guided decision-making, choice behaviors, as well as cue and context-driven drug seeking. Finally, we consider how these projections are involved in disorders of motivation, with a focus on Substance Use Disorder.
Collapse
Affiliation(s)
- Sara E Keefer
- Department of Anatomy and Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Utsav Gyawali
- Department of Anatomy and Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, United States; Program in Neuroscience, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Donna J Calu
- Department of Anatomy and Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, United States; Program in Neuroscience, University of Maryland, School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
17
|
Domi E, Domi A, Adermark L, Heilig M, Augier E. Neurobiology of alcohol seeking behavior. J Neurochem 2021; 157:1585-1614. [PMID: 33704789 DOI: 10.1111/jnc.15343] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/29/2022]
Abstract
Alcohol addiction is a chronic relapsing brain disease characterized by an impaired ability to stop or control alcohol use despite adverse consequences. A main challenge of addiction treatment is to prevent relapse, which occurs in more than >50% of newly abstinent patients with alcohol disorder within 3 months. In people suffering from alcohol addiction, stressful events, drug-associated cues and contexts, or re-exposure to a small amount of alcohol trigger a chain of behaviors that frequently culminates in relapse. In this review, we first present the preclinical models that were developed for the study of alcohol seeking behavior, namely the reinstatement model of alcohol relapse and compulsive alcohol seeking under a chained schedule of reinforcement. We then provide an overview of the neurobiological findings obtained using these animal models, focusing on the role of opioids systems, corticotropin-release hormone and neurokinins, followed by dopaminergic, glutamatergic, and GABAergic neurotransmissions in alcohol seeking behavior.
Collapse
Affiliation(s)
- Esi Domi
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, Sweden
| | - Ana Domi
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Markus Heilig
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, Sweden
| | - Eric Augier
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, Sweden
| |
Collapse
|
18
|
Groman SM, Lee D, Taylor JR. Unlocking the reinforcement-learning circuits of the orbitofrontal cortex. Behav Neurosci 2021; 135:120-128. [PMID: 34060870 DOI: 10.1037/bne0000414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neuroimaging studies have consistently identified the orbitofrontal cortex (OFC) as being affected in individuals with neuropsychiatric disorders. OFC dysfunction has been proposed to be a key mechanism by which decision-making impairments emerge in diverse clinical populations, and recent studies employing computational approaches have revealed that distinct reinforcement-learning mechanisms of decision-making differ among diagnoses. In this perspective, we propose that these computational differences may be linked to select OFC circuits and present our recent work that has used a neurocomputational approach to understand the biobehavioral mechanisms of addiction pathology in rodent models. We describe how combining translationally analogous behavioral paradigms with reinforcement-learning algorithms and sophisticated neuroscience techniques in animals can provide critical insights into OFC pathology in biobehavioral disorders. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
|
19
|
Strong CE, Kabbaj M. Neural Mechanisms Underlying the Rewarding and Therapeutic Effects of Ketamine as a Treatment for Alcohol Use Disorder. Front Behav Neurosci 2020; 14:593860. [PMID: 33362485 PMCID: PMC7759199 DOI: 10.3389/fnbeh.2020.593860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/06/2020] [Indexed: 11/13/2022] Open
Abstract
Alcohol use disorder (AUD) is the most prevalent substance use disorder and causes a significant global burden. Relapse rates remain incredibly high after decades of attempting to develop novel treatment options that have failed to produce increased rates of sobriety. Ketamine has emerged as a potential treatment for AUD following its success as a therapeutic agent for depression, demonstrated by several preclinical studies showing that acute administration reduced alcohol intake in rodents. As such, ketamine's therapeutic effects for AUD are now being investigated in clinical trials with the hope of it being efficacious in prolonging sobriety from alcohol in humans (ClinicalTrials.gov, Identifier: NCT01558063). Importantly, ketamine's antidepressant effects only last for about 1-week and because AUD is a lifelong disorder, repeated treatment regimens would be necessary to maintain sobriety. This raises questions regarding its safety for AUD treatment since ketamine itself has the potential for addiction. Therefore, this review aims to summarize the neuroadaptations related to alcohol's addictive properties as well as ketamine's therapeutic and addictive properties. To do this, the focus will be on reward-related brain regions such as the nucleus accumbens (NAc), dorsal striatum, prefrontal cortex (PFC), hippocampus, and ventral tegmental area (VTA) to understand how acute vs. chronic exposure will alter reward signaling over time. Additionally, evidence from these studies will be summarized in both male and female subjects. Accordingly, this review aims to address the safety of repeated ketamine infusions for the treatment of AUD. Although more work about the safety of ketamine to treat AUD is warranted, we hope this review sheds light on some answers about the safety of repeated ketamine infusions.
Collapse
Affiliation(s)
- Caroline E Strong
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University, Tallahassee, FL, United States
| | - Mohamed Kabbaj
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
20
|
Giacometti LL, Chandran K, Figueroa LA, Barker JM. Astrocyte modulation of extinction impairments in ethanol-dependent female mice. Neuropharmacology 2020; 179:108272. [PMID: 32801026 DOI: 10.1016/j.neuropharm.2020.108272] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/17/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022]
Abstract
Rates of alcohol use disorders are increasing in women, and there is growing evidence that both the cognitive and biological consequences of alcohol dependence are distinct in women as compared to men. Despite this, the neurobehavioral outcomes of chronic alcohol exposure are poorly characterized in women and female animals. In this study, we find that ethanol dependence impaired extinction of reward seeking in a food conditioned place preference task in female mice. At the same time point, ethanol-dependent females exhibited astrocytic dysregulation as indicated by a brain region-specific reduction in glial fibrillary acidic protein (GFAP) expression. Using a chemogenetic strategy, we demonstrate that modulating astrocyte function via chemogenetic activation of Gq-signaling in nucleus accumbens astrocytes transiently rescued extinction in ethanol-dependent females without impacting basal reward seeking. These findings identify astrocyte function as a potential target for the restoration of behavioral flexibility following chronic alcohol exposure in females.
Collapse
Affiliation(s)
- Laura L Giacometti
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Kelsey Chandran
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Laura A Figueroa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Jacqueline M Barker
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
21
|
Cincotta C, Murawski NJ, Grella SL, McKissick O, Doucette E, Ramirez S. Chronic activation of fear engrams induces extinction-like behavior in ethanol-exposed mice. Hippocampus 2020; 31:3-10. [PMID: 32946184 DOI: 10.1002/hipo.23263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/21/2020] [Accepted: 08/30/2020] [Indexed: 01/31/2023]
Abstract
Alcohol withdrawal directly impacts the brain's stress and memory systems, which may underlie individual susceptibility to persistent drug and alcohol-seeking behaviors. Numerous studies demonstrate that forced alcohol abstinence, which may lead to withdrawal, can impair fear-related memory processes in rodents such as extinction learning; however, the underlying neural circuits mediating these impairments remain elusive. Here, we tested an optogenetic strategy aimed at mitigating fear extinction retrieval impairments in male c57BL/6 mice following exposure to alcohol (i.e., ethanol) and forced abstinence. In the first experiment, extensive behavioral extinction training in a fear-conditioned context was impaired in ethanol-exposed mice compared to controls. In the second experiment, neuronal ensembles processing a contextual fear memory in the dorsal hippocampus were tagged and optogenetically reactivated repeatedly in a distinct context in ethanol-exposed and control mice. Chronic activation of these cells resulted in a context-specific, extinction-like reduction in fear responses in both control and ethanol-exposed mice. These findings suggest that while ethanol can impair the retrieval an extinction memory, optogenetic manipulation of a fear engram is sufficient to induce an extinction-like reduction in fear responses.
Collapse
Affiliation(s)
- Christine Cincotta
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
| | | | - Stephanie L Grella
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
| | - Olivia McKissick
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
| | - Emily Doucette
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
| | - Steve Ramirez
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Vena AA, Zandy SL, Cofresí RU, Gonzales RA. Behavioral, neurobiological, and neurochemical mechanisms of ethanol self-administration: A translational review. Pharmacol Ther 2020; 212:107573. [PMID: 32437827 PMCID: PMC7580704 DOI: 10.1016/j.pharmthera.2020.107573] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Alcohol use disorder has multiple characteristics including excessive ethanol consumption, impaired control over drinking behaviors, craving and withdrawal symptoms, compulsive seeking behaviors, and is considered a chronic condition. Relapse is common. Determining the neurobiological targets of ethanol and the adaptations induced by chronic ethanol exposure is critical to understanding the clinical manifestation of alcohol use disorders, the mechanisms underlying the various features of the disorder, and for informing medication development. In the present review, we discuss ethanol's interactions with a variety of neurotransmitter systems, summarizing findings from preclinical and translational studies to highlight recent progress in the field. We then describe animal models of ethanol self-administration, emphasizing the value, limitations, and validity of commonly used models. Lastly, we summarize the behavioral changes induced by chronic ethanol self-administration, with an emphasis on cue-elicited behavior, the role of ethanol-related memories, and the emergence of habitual ethanol seeking behavior.
Collapse
Affiliation(s)
- Ashley A Vena
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, United States of America
| | | | - Roberto U Cofresí
- Psychological Sciences, University of Missouri, United States of America
| | - Rueben A Gonzales
- Division of Pharmacology and Toxicology, College of Pharmacy and Institute for Neuroscience, The University of Texas at Austin, United States of America.
| |
Collapse
|
23
|
Kuiper LB, Lucas KA, Mai V, Coolen LM. Enhancement of Drug Seeking Following Drug Taking in a Sexual Context Requires Anterior Cingulate Cortex Activity in Male Rats. Front Behav Neurosci 2020; 14:87. [PMID: 32670029 PMCID: PMC7330085 DOI: 10.3389/fnbeh.2020.00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/08/2020] [Indexed: 11/13/2022] Open
Abstract
Individual variance in vulnerability to develop addictions is influenced by social factors. Specifically, drug-taking in a sexual context appears to enhance further drug-seeking behavior in human users, as these users identify the effects of drugs to enhance sexual pleasure as a primary reason for continued drug use. Methamphetamine (Meth) is commonly used in this context. Similarly, male rats that self-administered Meth immediately followed by sexual behavior display enhanced drug-seeking behavior, including attenuation of extinction and increased reinstatement to seeking of Meth-associated cues. Hence, drug-taking in a sexual context enhances vulnerability for addiction. However, the neural mechanisms by which this occurs are unknown. Here the hypothesis was tested that medial prefrontal cortex is essential for this effect of Meth and sex when experienced concurrently. First it was shown that CaMKII neurons in the anterior cingulate area (ACA) were co-activated by both Meth and sex. Next, chemogenetic inactivation of ACA CaMKII cells using AAV5-CaMKIIa-hM4Di-mCherry was shown not to affect Meth-induced locomotor activity or sexual behavior. Subsequently, chemogenetic inactivation of ACA CaMKII neurons during Meth self-administration followed by sexual behavior was shown to prevent the effects of Meth and sex on enhanced reinstatement of Meth-seeking but did not affect enhanced drug-seeking during extinction tests. These results indicate that ACA CaMKII cell activation during exposure to Meth in a sexual context plays an essential role in the subsequent enhancement of drug-seeking during reinstatement tests.
Collapse
Affiliation(s)
- Lindsey B Kuiper
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Kathryn A Lucas
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Vy Mai
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Lique M Coolen
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States.,Brain Health Research Institute, Kent State University, Kent, OH, United States.,Department of Biological Sciences, Kent State University, Kent, OH, United States
| |
Collapse
|
24
|
Halladay LR, Kocharian A, Piantadosi PT, Authement ME, Lieberman AG, Spitz NA, Coden K, Glover LR, Costa VD, Alvarez VA, Holmes A. Prefrontal Regulation of Punished Ethanol Self-administration. Biol Psychiatry 2020; 87:967-978. [PMID: 31937415 PMCID: PMC7217757 DOI: 10.1016/j.biopsych.2019.10.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/08/2019] [Accepted: 10/25/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND A clinical hallmark of alcohol use disorder is persistent drinking despite potential adverse consequences. The ventromedial prefrontal cortex (vmPFC) and dorsomedial prefrontal cortex (dmPFC) are positioned to exert top-down control over subcortical regions, such as the nucleus accumbens shell (NAcS) and basolateral amygdala, which encode positive and negative valence of ethanol (EtOH)-related stimuli. Prior rodent studies have implicated these regions in regulation of punished EtOH self-administration (EtOH-SA). METHODS We conducted in vivo electrophysiological recordings in mouse vmPFC and dmPFC to obtain neuronal correlates of footshock-punished EtOH-SA. Ex vivo recordings were performed in NAcS D1 receptor-expressing medium spiny neurons receiving vmPFC input to examine punishment-related plasticity in this pathway. Optogenetic photosilencing was employed to assess the functional contribution of the vmPFC, dmPFC, vmPFC projections to NAcS, or vmPFC projections to basolateral amygdala, to punished EtOH-SA. RESULTS Punishment reduced EtOH lever pressing and elicited aborted presses (lever approach followed by rapid retraction). Neurons in the vmPFC and dmPFC exhibited phasic firing to EtOH lever presses and aborts, but only in the vmPFC was there a population-level shift in coding from lever presses to aborts with punishment. Closed-loop vmPFC, but not dmPFC, photosilencing on a postpunishment probe test negated the reduction in EtOH lever presses but not in aborts. Punishment was associated with altered plasticity at vmPFC inputs to D1 receptor-expressing medium spiny neurons in the NAcS. Photosilencing vmPFC projections to the NAcS, but not to the basolateral amygdala, partially reversed suppression of EtOH lever presses on probe testing. CONCLUSIONS These findings demonstrate a key role for the vmPFC in regulating EtOH-SA after punishment, with implications for understanding the neural basis of compulsive drinking in alcohol use disorder.
Collapse
Affiliation(s)
- Lindsay R Halladay
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland; Department of Psychology, Santa Clara University, Santa Clara, California.
| | - Adrina Kocharian
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Patrick T Piantadosi
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland; Center on Compulsive Behaviors, Intramural Research Program, National Institutes of Health, Bethesda, Maryland
| | - Michael E Authement
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland; Center on Compulsive Behaviors, Intramural Research Program, National Institutes of Health, Bethesda, Maryland
| | - Abby G Lieberman
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Nathen A Spitz
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Kendall Coden
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Lucas R Glover
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Vincent D Costa
- Department of Behavioral Neuroscience, Oregon Health Sciences University, Portland, Oregon
| | - Veronica A Alvarez
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland; Center on Compulsive Behaviors, Intramural Research Program, National Institutes of Health, Bethesda, Maryland
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
25
|
Nashawi H, Gustafson TJ, Mietlicki-Baase EG. Palatable food access impacts expression of amylin receptor components in the mesocorticolimbic system. Exp Physiol 2020; 105:1012-1024. [PMID: 32306457 DOI: 10.1113/ep088356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/14/2020] [Indexed: 12/11/2022]
Abstract
NEW FINDINGS What is the central question of this study? We tested whether intra-nucleus accumbens core amylin receptor (AmyR) activation suppresses feeding and evaluated whether intake of palatable food influences mesocorticolimbic AmyR expression. What is the main finding and its importance? Intra-nucleus accumbens core AmyR activation reduces food intake in some dietary conditions. We showed that all components of the AmyR are expressed in the prefrontal cortex and central nucleus of the amygdala and demonstrated that access to fat impacts AmyR expression in these and other mesocorticolimbic nuclei. These results suggest that the intake of palatable food might alter amylin signalling in the brain and shed further light onto potential sites of action for amylin. ABSTRACT Amylin is a pancreas- and brain-derived peptide that acts within the CNS to promote negative energy balance. However, our understanding of the CNS sites of action for amylin remains incomplete. Here, we investigate the effect of amylin receptor (AmyR) activation in the nucleus accumbens core (NAcC) on the intake of bland and palatable foods. Intra-NAcC injection of the AmyR agonist salmon calcitonin or amylin itself in male chow-fed rats had no effect on food intake, meal size or number of meals. However, in chow-fed rats with access to fat solution, although fat intake was not affected by intra-NAcC AmyR activation, subsequent chow intake was suppressed. Given that mesolimbic AmyR activation suppresses energy intake in rats with access to fat solution, we tested whether fat access changes AmyR expression in key mesocorticolimbic nuclei. Fat exposure did not affect NAcC AmyR expression, whereas in the accumbens shell, expression of receptor activity modifying protein (RAMP) 3 was significantly reduced in fat-consuming rats. We show that all components of AmyRs are expressed in the medial prefrontal cortex and central nucleus of the amygdala; fat access significantly reduced expression of calcitonin receptor-A in the central nucleus of the amygdala and RAMP2 in the medial prefrontal cortex. Taken together, these results indicate that intra-NAcC AmyR activation can suppress energy intake and, furthermore, suggest that AmyR signalling in a broader range of mesocorticolimbic sites might have a role in mediating the effects of amylin on food intake and body weight.
Collapse
Affiliation(s)
- Houda Nashawi
- Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Tyler J Gustafson
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Elizabeth G Mietlicki-Baase
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, USA.,Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
26
|
Visser E, Matos MR, van der Loo RJ, Marchant NJ, de Vries TJ, Smit AB, van den Oever MC. A persistent alcohol cue memory trace drives relapse to alcohol seeking after prolonged abstinence. SCIENCE ADVANCES 2020; 6:eaax7060. [PMID: 32494694 PMCID: PMC7202866 DOI: 10.1126/sciadv.aax7060] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 02/24/2020] [Indexed: 05/26/2023]
Abstract
Alcohol use disorder is characterized by a high risk of relapse during periods of abstinence. Relapse is often triggered by retrieval of persistent alcohol memories upon exposure to alcohol-associated environmental cues, but little is known about the neuronal circuitry that supports the long-term storage of alcohol cue associations. We found that a small ensemble of neurons in the medial prefrontal cortex (mPFC) of mice was activated during cue-paired alcohol self-administration (SA) and that selective suppression of these neurons 1 month later attenuated cue-induced relapse to alcohol seeking. Inhibition of alcohol seeking was specific to these neurons as suppression of a non-alcohol-related or sucrose SA-activated mPFC ensemble did not affect relapse behavior. Hence, the mPFC neuronal ensemble activated during cue-paired alcohol consumption functions as a lasting memory trace that mediates cue-evoked relapse long after cessation of alcohol intake, thereby providing a potential target for treatment of alcohol relapse vulnerability.
Collapse
Affiliation(s)
- Esther Visser
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV, Netherlands
| | - Mariana R. Matos
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV, Netherlands
| | - Rolinka J. van der Loo
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV, Netherlands
| | - Nathan J. Marchant
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Location VUmc, 1081 HZ, Netherlands
| | - Taco J. de Vries
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV, Netherlands
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Location VUmc, 1081 HZ, Netherlands
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV, Netherlands
| | - Michel C. van den Oever
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV, Netherlands
| |
Collapse
|
27
|
Ma L, Chen W, Yu D, Han Y. Brain-Wide Mapping of Afferent Inputs to Accumbens Nucleus Core Subdomains and Accumbens Nucleus Subnuclei. Front Syst Neurosci 2020; 14:15. [PMID: 32317941 PMCID: PMC7150367 DOI: 10.3389/fnsys.2020.00015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
The nucleus accumbens (NAc) is the ventral part of the striatum and the interface between cognition, emotion, and action. It is composed of three major subnuclei: i.e., NAc core (NAcC), lateral shell (NAcLS), and medial shell (NAcMS), which exhibit functional heterogeneity. Thus, determining the synaptic inputs of the subregions of the NAc is important for understanding the circuit mechanisms involved in regulating different functions. Here, we simultaneously labeled subregions of the NAc with cholera toxin subunit B conjugated with multicolor Alexa Fluor, then imaged serial sections of the whole brain with a fully automated slide scanning system. Using the interactive WholeBrain framework, we characterized brain-wide inputs to the NAcC subdomains, including the rostral, caudal, dorsal, and ventral subdomains (i.e., rNAcC, cNAcC, dNAcC, and vNAcC, respectively) and the NAc subnuclei. We found diverse brain regions, distributed from the cerebrum to brain stem, projecting to the NAc. Of the 57 brain regions projecting to the NAcC, the anterior olfactory nucleus (AON) exhibited the greatest inputs. The input neurons of rNAcC and cNAcC are two distinct populations but share similar distribution over the same upstream brain regions, whereas the input neurons of dNAcC and vNAcC exhibit slightly different distributions over the same upstream regions. Of the 55 brain regions projecting to the NAcLS, the piriform area contributed most of the inputs. Of the 72 brain regions projecting to the NAcMS, the lateral septal nucleus contributed most of the inputs. The input neurons of NAcC and NAcLS share similar distributions, whereas the NAcMS exhibited brain-wide distinct distribution. Thus, the NAcC subdomains appeared to share the same upstream brain regions, although with distinct input neuron populations and slight differences in the input proportions, whereas the NAcMS subnuclei received distinct inputs from multiple upstream brain regions. These results lay an anatomical foundation for understanding the different functions of NAcC subdomains and NAc subnuclei.
Collapse
Affiliation(s)
- Liping Ma
- Department of Neurobiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Wenqi Chen
- Department of Neurobiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Danfang Yu
- Department of Neurobiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.,Department of Neurology, Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, China
| | - Yunyun Han
- Department of Neurobiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.,Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Giacometti LL, Barker JM. Sex differences in the glutamate system: Implications for addiction. Neurosci Biobehav Rev 2020; 113:157-168. [PMID: 32173404 DOI: 10.1016/j.neubiorev.2020.03.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 01/21/2020] [Accepted: 03/08/2020] [Indexed: 12/21/2022]
Abstract
Clinical and preclinical research have identified sex differences in substance use and addiction-related behaviors. Historically, substance use disorders are more prevalent in men than women, though this gap is closing. Despite this difference, women appear to be more susceptible to the effects of many drugs and progress to substance abuse treatment more quickly than men. While the glutamate system is a key regulator of addiction-related behaviors, much of the work implicating glutamate signaling and glutamatergic circuits has been conducted in men and male rodents. An increasing number of studies have identified sex differences in drug-induced glutamate alterations as well as sex and estrous cycle differences in drug seeking behaviors. This review will describe sex differences in the glutamate system with an emphasis on implications for substance use disorders, highlighting the gaps in our current understanding of how innate and drug-induced alterations in the glutamate system may contribute to sex differences in addiction-related behaviors.
Collapse
Affiliation(s)
- L L Giacometti
- Department of Pharmacology and Physiology, Drexel University College of Medicine, United States.
| | - J M Barker
- Department of Pharmacology and Physiology, Drexel University College of Medicine, United States.
| |
Collapse
|
29
|
Basolateral amygdala - nucleus accumbens circuitry regulates optimal cue-guided risk/reward decision making. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109830. [PMID: 31811876 DOI: 10.1016/j.pnpbp.2019.109830] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/08/2019] [Accepted: 12/01/2019] [Indexed: 11/21/2022]
Abstract
Maladaptive decision making is a characteristic feature of substance use disorder and pathological gambling. Studies in humans and animals have implicated neural circuits that include the basolateral amygdala (BLA) and nucleus accumbens (NAc) in facilitating risk/reward decision making. However, the preclinical literature has focussed primarily on situations where animals use internally-generated information to adapt to changes in reward likelihood, whereas many real-life situations require the use of external stimuli to facilitate context-appropriate behavior. We recently developed the "Blackjack" task, to measure cued risk/reward decision making requiring rats to chose between Small/Certain and Large/Risky rewards, with auditory cues at the start of each trial explicitly informing that the probability of obtaining a large reward was either good (50%) or poor (12.5%). Here we investigated the contribution of the BLA and its interaction with the NAc in guiding these types of decisions. In well-trained male rats, bilateral inactivation of the BLA induced suboptimal decision making, primarily by reducing risky choice on good-odds trials. In comparison, pharmacological disconnection of the BLA and NAc-shell also induced suboptimal decision making, diverting choice from more preferred option by reducing or increasing risky choice on good vs. poor odds trials respectively. Together, these results suggest that the BLA-NAc circuitry plays a crucial role in integrating information provided by discriminative stimuli. Furthermore, this circuitry may aid in guiding action selection of advantageous options in situations to maximize rewards. Finally, they suggest that perturbations in optimal decision making observed in substance abuse and gambling disorders may be driven in part by dysfunction within this circuitry.
Collapse
|
30
|
Karkhanis AN, Al-Hasani R. Dynorphin and its role in alcohol use disorder. Brain Res 2020; 1735:146742. [PMID: 32114059 DOI: 10.1016/j.brainres.2020.146742] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
The dynorphin / kappa opioid receptor (KOR) system has been implicated in many aspects that influence neuropsychiatric disorders. Namely, this system modulates neural circuits that primarily regulate reward seeking, motivation processing, stress responsivity, and pain sensitivity, thus affecting the development of substance and alcohol use disorder (AUD). The effects of this system are often bidirectional and depend on projection targets. To date, a majority of the studies focusing on this system have examined the KOR function using agonists and antagonists. Indeed, there are studies that have examined prodynorphin and dynorphin levels by measuring mRNA and tissue content levels; however, static levels of the neuropeptide and its precursor do not explain complete and online function of the peptide as would be explained by measuring dynorphin transmission in real time. New and exciting methods using optogenetics, chemogenetics, genetic sensors, fast scan cyclic voltammetry are now being developed to detect various neuropeptides with a focus on opioid peptides, including dynorphin. In this review we discuss studies that examine dynorphin projections in areas involved in AUD, its functional involvement in AUD and vulnerability to develop AUD at various ages. Moreover, we discuss dynorphin's role in promoting AUD by dysregulation motivation circuits and how advancements in opioid peptide detection will further our understanding.
Collapse
Affiliation(s)
- Anushree N Karkhanis
- Department of Psychology, Developmental Exposure Alcohol Research Center, Center for Developmental and Behavioral Neuroscience, Binghamton University - SUNY, 4400 Vestal Parkway East, Binghamton, NY 13902, USA.
| | - Ream Al-Hasani
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, Department of Anesthesiology Washington University in St. Louis, Center for Clinical Pharmacology, Washington University School of Medicine & St. Louis College of Pharmacy 660 S.Euclid, Box 8054, St. Louis, MO 63110, USA.
| |
Collapse
|
31
|
Sekutowicz M, Guggenmos M, Kuitunen-Paul S, Garbusow M, Sebold M, Pelz P, Priller J, Wittchen HU, Smolka MN, Zimmermann US, Heinz A, Sterzer P, Schmack K. Neural Response Patterns During Pavlovian-to-Instrumental Transfer Predict Alcohol Relapse and Young Adult Drinking. Biol Psychiatry 2019; 86:857-863. [PMID: 31521335 DOI: 10.1016/j.biopsych.2019.06.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 06/19/2019] [Accepted: 06/30/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Pavlovian-to-instrumental transfer (PIT) describes the influence of conditioned stimuli on instrumental behaviors and is discussed as a key process underlying substance abuse. Here, we tested whether neural responses during alcohol-related PIT predict future relapse in alcohol-dependent patients and future drinking behavior in adolescents. METHODS Recently detoxified alcohol-dependent patients (n = 52) and young adults without dependence (n = 136) underwent functional magnetic resonance imaging during an alcohol-related PIT paradigm, and their drinking behavior was assessed in a 12-month follow-up. To predict future drinking behavior from PIT activation patterns, we used a multivoxel classification scheme based on linear support vector machines. RESULTS When training and testing the classification scheme in patients, PIT activation patterns predicted future relapse with 71.2% accuracy. Feature selection revealed that classification was exclusively based on activation patterns in medial prefrontal cortex. To probe the generalizability of this functional magnetic resonance imaging-based prediction of future drinking behavior, we applied the support vector machine classifier that had been trained on patients to PIT functional magnetic resonance imaging data from adolescents. An analysis of cross-classification predictions revealed that those young social drinkers who were classified as abstainers showed a greater reduction in alcohol consumption at 12-month follow-up than those classified as relapsers (Δ = -24.4 ± 6.0 g vs. -5.7 ± 3.6 g; p = .019). CONCLUSIONS These results suggest that neural responses during PIT could constitute a generalized prognostic marker for future drinking behavior in established alcohol use disorder and in at-risk states.
Collapse
Affiliation(s)
- Maria Sekutowicz
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany; Sozial und Präventivmedizin, Department Sport- und Gesundheitswissenschaften, Universität Potsdam, Potsdam, Germany.
| | - Matthias Guggenmos
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sören Kuitunen-Paul
- Institute for Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany; Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Maria Garbusow
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Miriam Sebold
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Patricia Pelz
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany; Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hans-Ulrich Wittchen
- Institute for Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany; Research Group Clinical Psychology and Psychotherapy, Department of Psychiatry and Psychotherapy, Ludwig Maximilans Universität Munich, Munich, Germany
| | - Michael N Smolka
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany; Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Ulrich S Zimmermann
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany; Department of Addiction Medicine and Psychotherapy, kbo-Isar-Amper-Klinikum München, Munich, Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Sterzer
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Katharina Schmack
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany; Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| |
Collapse
|
32
|
Encoding of the Intent to Drink Alcohol by the Prefrontal Cortex Is Blunted in Rats with a Family History of Excessive Drinking. eNeuro 2019; 6:ENEURO.0489-18.2019. [PMID: 31358511 PMCID: PMC6712204 DOI: 10.1523/eneuro.0489-18.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/19/2019] [Accepted: 06/01/2019] [Indexed: 11/21/2022] Open
Abstract
The prefrontal cortex (PFC) plays a central role in guiding decision making, and its function is altered by alcohol use and an individual's innate risk for excessive alcohol drinking. The primary goal of this work was to determine how neural activity in the PFC guides the decision to drink. Towards this goal, the within-session changes in neural activity were measured from medial PFC (mPFC) of rats performing a drinking procedure that allowed them to consume or abstain from alcohol in a self-paced manner. Recordings were obtained from rats that either lacked or expressed an innate risk for excessive alcohol intake, Wistar or alcohol-preferring (P) rats, respectively. Wistar rats exhibited patterns of neural activity consistent with the intention to drink or abstain from drinking, whereas these patterns were blunted or absent in P rats. Collectively, these data indicate that neural activity patterns in mPFC associated with the intention to drink alcohol are influenced by innate risk for excessive alcohol drinking. This observation may indicate a lack of control over the decision to drink by this otherwise well-validated supervisory brain region.
Collapse
|
33
|
Khoo SY, Sciascia JM, Pettorelli A, Maddux JMN, Chaudhri N. The medial prefrontal cortex is required for responding to alcohol-predictive cues but only in the absence of alcohol delivery. J Psychopharmacol 2019; 33:842-854. [PMID: 31070082 DOI: 10.1177/0269881119844180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The prelimbic medial prefrontal cortex is implicated in promoting drug-seeking in relapse tests. However, drug-seeking behaviour is typically extinguished before a test and tests normally occur without drug delivery. AIMS We investigated the involvement of the prelimbic and the infralimbic cortex in responding elicited by a non-extinguished cue for alcohol that was presented without alcohol in an alcohol-associated context or a neutral context, and in responding to the same cue when it was paired with alcohol. METHODS Male, Long-Evans rats (220-240 g on arrival) were acclimated to 15% ethanol (v/v; 'alcohol') and then trained to associate a conditioned stimulus (10 s white noise; 15 trials/session) with alcohol delivery into a fluid port (0.2 mL/conditioned stimulus, 3 mL per session) for oral intake. Conditioning sessions occurred in a specific 'alcohol context' and were alternated daily with exposure to a second 'neutral' context that contained neither the conditioned stimulus nor alcohol. RESULTS At test, functional prelimbic cortex inactivation using baclofen/muscimol reduced fluid port entries elicited by a non-extinguished conditioned stimulus that was presented without alcohol, but had no subsequent impact on port entries when the conditioned stimulus was paired with alcohol. Similar results were obtained following infralimbic cortex inactivation; however, infralimbic cortex inactivation also non-specifically reduced port entries in the absence of alcohol. CONCLUSIONS These data indicate that the prelimbic and infralimbic cortex are involved in responding to cues for alcohol when alcohol delivery is omitted, but suggest that other brain regions are engaged in responding to such cues in the presence of alcohol.
Collapse
Affiliation(s)
- Shaun Y Khoo
- 1 Center for Studies in Behavioral Neurobiology/FRQS Groupe de Recherche en Neurobiologie Comportementale, Concordia University, Montreal, QC, Canada
| | - Joanna M Sciascia
- 1 Center for Studies in Behavioral Neurobiology/FRQS Groupe de Recherche en Neurobiologie Comportementale, Concordia University, Montreal, QC, Canada
| | - Annie Pettorelli
- 1 Center for Studies in Behavioral Neurobiology/FRQS Groupe de Recherche en Neurobiologie Comportementale, Concordia University, Montreal, QC, Canada
| | - Jean-Marie N Maddux
- 1 Center for Studies in Behavioral Neurobiology/FRQS Groupe de Recherche en Neurobiologie Comportementale, Concordia University, Montreal, QC, Canada.,2 Department of Psychology, Lake Forest College, Lake Forest, IL, USA
| | - Nadia Chaudhri
- 1 Center for Studies in Behavioral Neurobiology/FRQS Groupe de Recherche en Neurobiologie Comportementale, Concordia University, Montreal, QC, Canada
| |
Collapse
|
34
|
Groman SM, Keistler C, Keip AJ, Hammarlund E, DiLeone RJ, Pittenger C, Lee D, Taylor JR. Orbitofrontal Circuits Control Multiple Reinforcement-Learning Processes. Neuron 2019; 103:734-746.e3. [PMID: 31253468 DOI: 10.1016/j.neuron.2019.05.042] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/18/2019] [Accepted: 05/24/2019] [Indexed: 12/18/2022]
Abstract
Adaptive decision making in dynamic environments requires multiple reinforcement-learning steps that may be implemented by dissociable neural circuits. Here, we used a novel directionally specific viral ablation approach to investigate the function of several anatomically defined orbitofrontal cortex (OFC) circuits during adaptive, flexible decision making in rats trained on a probabilistic reversal learning task. Ablation of OFC neurons projecting to the nucleus accumbens selectively disrupted performance following a reversal, by disrupting the use of negative outcomes to guide subsequent choices. Ablation of amygdala neurons projecting to the OFC also impaired reversal performance, but due to disruptions in the use of positive outcomes to guide subsequent choices. Ablation of OFC neurons projecting to the amygdala, by contrast, enhanced reversal performance by destabilizing action values. Our data are inconsistent with a unitary function of the OFC in decision making. Rather, distinct OFC-amygdala-striatal circuits mediate distinct components of the action-value updating and maintenance necessary for decision making.
Collapse
Affiliation(s)
| | - Colby Keistler
- Department of Psychiatry, Yale University, New Haven, CT 06515, USA
| | - Alex J Keip
- Department of Psychiatry, Yale University, New Haven, CT 06515, USA
| | - Emma Hammarlund
- Department of Psychiatry, Yale University, New Haven, CT 06515, USA
| | - Ralph J DiLeone
- Department of Psychiatry, Yale University, New Haven, CT 06515, USA; Department of Neuroscience, Yale University, New Haven, CT 06515, USA
| | - Christopher Pittenger
- Department of Psychiatry, Yale University, New Haven, CT 06515, USA; Child Study Center, Yale University, New Haven, CT 06515, USA
| | - Daeyeol Lee
- Department of Psychiatry, Yale University, New Haven, CT 06515, USA; Department of Neuroscience, Yale University, New Haven, CT 06515, USA; Department of Psychology, Yale University, New Haven, CT 06515, USA
| | - Jane R Taylor
- Department of Psychiatry, Yale University, New Haven, CT 06515, USA; Department of Neuroscience, Yale University, New Haven, CT 06515, USA; Department of Psychology, Yale University, New Haven, CT 06515, USA.
| |
Collapse
|
35
|
Goode TD, Maren S. Common neurocircuitry mediating drug and fear relapse in preclinical models. Psychopharmacology (Berl) 2019; 236:415-437. [PMID: 30255379 PMCID: PMC6373193 DOI: 10.1007/s00213-018-5024-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/03/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Comorbidity of anxiety disorders, stressor- and trauma-related disorders, and substance use disorders is extremely common. Moreover, therapies that reduce pathological fear and anxiety on the one hand, and drug-seeking on the other, often prove short-lived and are susceptible to relapse. Considerable advances have been made in the study of the neurobiology of both aversive and appetitive extinction, and this work reveals shared neural circuits that contribute to both the suppression and relapse of conditioned responses associated with trauma or drug use. OBJECTIVES The goal of this review is to identify common neural circuits and mechanisms underlying relapse across domains of addiction biology and aversive learning in preclinical animal models. We focus primarily on neural circuits engaged during the expression of relapse. KEY FINDINGS After extinction, brain circuits involving the medial prefrontal cortex and hippocampus come to regulate the expression of conditioned responses by the amygdala, bed nucleus of the stria terminalis, and nucleus accumbens. During relapse, hippocampal projections to the prefrontal cortex inhibit the retrieval of extinction memories resulting in a loss of inhibitory control over fear- and drug-associated conditional responding. CONCLUSIONS The overlapping brain systems for both fear and drug memories may explain the co-occurrence of fear and drug-seeking behaviors.
Collapse
Affiliation(s)
- Travis D Goode
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, 301 Old Main Dr., College Station, TX, 77843-3474, USA
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, 301 Old Main Dr., College Station, TX, 77843-3474, USA.
| |
Collapse
|
36
|
Agoglia AE, Herman MA. The center of the emotional universe: Alcohol, stress, and CRF1 amygdala circuitry. Alcohol 2018; 72:61-73. [PMID: 30220589 PMCID: PMC6165695 DOI: 10.1016/j.alcohol.2018.03.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/15/2018] [Accepted: 03/27/2018] [Indexed: 12/15/2022]
Abstract
The commonalities between different phases of stress and alcohol use as well as the high comorbidity between alcohol use disorders (AUDs) and anxiety disorders suggest common underlying cellular mechanisms governing the rewarding and aversive aspects of these related conditions. As an integrative center that assigns emotional salience to a wide variety of internal and external stimuli, the amygdala complex plays a major role in how alcohol and stress influence cellular physiology to produce disordered behavior. Previous work has illustrated the broad role of the amygdala in alcohol, stress, and anxiety. However, the challenge of current and future studies is to identify the specific dysregulations that occur within distinct amygdala circuits and subpopulations and the commonalities between these alterations in each disorder, with the long-term goal of identifying potential targets for therapeutic intervention. Specific intra-amygdala circuits and cell type-specific subpopulations are emerging as critical targets for stress- and alcohol-induced plasticity, chief among them the corticotropin releasing factor (CRF) and CRF receptor 1 (CRF1) system. CRF and CRF1 have been implicated in the effects of alcohol in several amygdala nuclei, including the basolateral (BLA) and central amygdala (CeA); however, the precise circuitry involved in these effects and the role of these circuits in stress and anxiety are only beginning to be understood.
Collapse
Affiliation(s)
- Abigail E Agoglia
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Melissa A Herman
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
37
|
Role of glutamatergic system and mesocorticolimbic circuits in alcohol dependence. Prog Neurobiol 2018; 171:32-49. [PMID: 30316901 DOI: 10.1016/j.pneurobio.2018.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/08/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023]
Abstract
Emerging evidence demonstrates that alcohol dependence is associated with dysregulation of several neurotransmitters. Alterations in dopamine, glutamate and gamma-aminobutyric acid release are linked to chronic alcohol exposure. The effects of alcohol on the glutamatergic system in the mesocorticolimbic areas have been investigated extensively. Several studies have demonstrated dysregulation in the glutamatergic systems in animal models exposed to alcohol. Alcohol exposure can lead to an increase in extracellular glutamate concentrations in mesocorticolimbic brain regions. In addition, alcohol exposure affects the expression and functions of several glutamate receptors and glutamate transporters in these brain regions. In this review, we discussed the effects of alcohol exposure on glutamate receptors, glutamate transporters and glutamate homeostasis in each area of the mesocorticolimbic system. In addition, we discussed the genetic aspect of alcohol associated with glutamate and reward circuitry. We also discussed the potential therapeutic role of glutamate receptors and glutamate transporters in each brain region for the treatment of alcohol dependence. Finally, we provided some limitations on targeting the glutamatergic system for potential therapeutic options for the treatment alcohol use disorders.
Collapse
|
38
|
Cheng H, Kellar D, Lake A, Finn P, Rebec GV, Dharmadhikari S, Dydak U, Newman S. Effects of Alcohol Cues on MRS Glutamate Levels in the Anterior Cingulate. Alcohol Alcohol 2018; 53:209-215. [PMID: 29329417 DOI: 10.1093/alcalc/agx119] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/20/2017] [Indexed: 11/13/2022] Open
Abstract
Growing evidence suggests that glutamate neurotransmission plays a critical role in alcohol addiction. Cue-induced change of glutamate has been observed in animal studies but never been investigated in humans. This work investigates cue-induced change in forebrain glutamate in individuals with alcohol use disorder (AUD). A total of 35 subjects (17 individuals with AUD and 18 healthy controls) participated in this study. The glutamate concentration was measured with single-voxel 1H-MR spectroscopy at the dorsal anterior cingulate. Two MRS sessions were performed in succession, the first to establish basal glutamate levels and the second to measure the change in response to alcohol cues. The changes in glutamate were quantified for both AUD subjects and controls. A mixed model ANOVA and t-tests were performed for statistical analysis. ANOVA revealed a main effect of cue-induced decrease of glutamate level in the anterior cingulate cortex (ACC). A significant interaction revealed that only AUD subjects showed significant decrease of glutamate in the ACC. There were no significant group differences in the level of basal glutamate. However, a negative correlation was found between the basal glutamate level and the number of drinking days in the past 2 weeks for the AUD subjects. Collectively, our results indicate that glutamate in key areas of the forebrain reward circuit is modulated by alcohol cues in early alcohol dependence.
Collapse
Affiliation(s)
- Hu Cheng
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Derek Kellar
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Allison Lake
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Peter Finn
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - George V Rebec
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Shalmali Dharmadhikari
- School of Health Sciences, Purdue University, West Lafayette, IN, USA.,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ulrike Dydak
- School of Health Sciences, Purdue University, West Lafayette, IN, USA.,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sharlene Newman
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| |
Collapse
|
39
|
Ho AL, Salib AMN, Pendharkar AV, Sussman ES, Giardino WJ, Halpern CH. The nucleus accumbens and alcoholism: a target for deep brain stimulation. Neurosurg Focus 2018; 45:E12. [DOI: 10.3171/2018.5.focus18157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alcohol use disorder (AUD) is a difficult to treat condition with a significant global public health and cost burden. The nucleus accumbens (NAc) has been implicated in AUD and identified as an ideal target for deep brain stimulation (DBS). There are promising preclinical animal studies of DBS for alcohol consumption as well as some initial human clinical studies that have shown some promise at reducing alcohol-related cravings and, in some instances, achieving long-term abstinence. In this review, the authors discuss the evidence and concepts supporting the role of the NAc in AUD, summarize the findings from published NAc DBS studies in animal models and humans, and consider the challenges and propose future directions for neuromodulation of the NAc for the treatment of AUD.
Collapse
Affiliation(s)
| | - Anne-Mary N. Salib
- Departments of 1Neurosurgery and
- 2Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | | | | | - William J. Giardino
- 2Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Casey H. Halpern
- Departments of 1Neurosurgery and
- 2Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
40
|
Grodin EN, Sussman L, Sundby K, Brennan GM, Diazgranados N, Heilig M, Momenan R. Neural Correlates of Compulsive Alcohol Seeking in Heavy Drinkers. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:1022-1031. [PMID: 30143454 DOI: 10.1016/j.bpsc.2018.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND Compulsive alcohol use, the tendency to continue alcohol seeking and taking despite negative consequences, is a hallmark of alcohol use disorder. Preclinical rodent studies have suggested a role for the medial prefrontal cortex, anterior insula, and nucleus accumbens in compulsive alcohol seeking. It is presently unknown whether these findings translate to humans. We used a novel functional magnetic resonance imaging paradigm and tested the hypothesis that heavy drinkers would compulsively seek alcohol despite the risk of an aversive consequence, and that this behavior would be associated with the activity of frontostriatal circuitry. METHODS Non-treatment-seeking heavy and light drinkers (n = 21 per group) completed a functional magnetic resonance imaging paradigm in which they could earn alcohol or food points at various threat levels (i.e., various probabilities of incurring an aversive consequence). Brain function was evaluated when individuals had the opportunity to earn reward points at the risk of an aversive consequence, an electric shock on the wrist. RESULTS Compared with light drinkers, heavy drinkers attempted to earn more aversion-paired alcohol points. Frontostriatal circuitry, including the medial prefrontal cortex, anterior insula, and striatum, was more active in this group when viewing threat-predictive alcohol cues. Heavy drinkers had increased connectivity between the anterior insula and the nucleus accumbens. Greater connectivity was associated with more attempts to earn aversion-paired alcohol points and self-reported compulsive alcohol use scores. CONCLUSIONS Higher activation of frontostriatal circuitry in heavy drinkers may contribute to compulsive alcohol seeking. Treatments that disrupt this circuitry may result in a decrease in compulsive alcohol use.
Collapse
Affiliation(s)
- Erica N Grodin
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland; Department of Neuroscience, Brown University, Providence, Rhode Island.
| | - Lauren Sussman
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Kelsey Sundby
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Grace M Brennan
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Nancy Diazgranados
- Office of the Clinical Directory, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Reza Momenan
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
41
|
Namba MD, Tomek SE, Olive MF, Beckmann JS, Gipson CD. The Winding Road to Relapse: Forging a New Understanding of Cue-Induced Reinstatement Models and Their Associated Neural Mechanisms. Front Behav Neurosci 2018; 12:17. [PMID: 29479311 PMCID: PMC5811475 DOI: 10.3389/fnbeh.2018.00017] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/22/2018] [Indexed: 12/13/2022] Open
Abstract
In drug addiction, cues previously associated with drug use can produce craving and frequently trigger the resumption of drug taking in individuals vulnerable to relapse. Environmental stimuli associated with drugs or natural reinforcers can become reliably conditioned to increase behavior that was previously reinforced. In preclinical models of addiction, these cues enhance both drug self-administration and reinstatement of drug seeking. In this review, we will dissociate the roles of conditioned stimuli as reinforcers from their modulatory or discriminative functions in producing drug-seeking behavior. As well, we will examine possible differences in neurobiological encoding underlying these functional differences. Specifically, we will discuss how models of drug addiction and relapse should more systematically evaluate these different types of stimuli to better understand the neurobiology underlying craving and relapse. In this way, behavioral and pharmacotherapeutic interventions may be better tailored to promote drug use cessation outcomes and long-term abstinence.
Collapse
Affiliation(s)
- Mark D. Namba
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - Seven E. Tomek
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - M. Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - Joshua S. Beckmann
- Department of Psychology, University of Kentucky, Lexington, KY, United States
| | - Cassandra D. Gipson
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
42
|
Klenowski PM. Emerging role for the medial prefrontal cortex in alcohol-seeking behaviors. Addict Behav 2018; 77:102-106. [PMID: 28992574 DOI: 10.1016/j.addbeh.2017.09.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/01/2017] [Accepted: 09/27/2017] [Indexed: 01/01/2023]
Abstract
The medial prefrontal cortex (mPFC) plays an important role in high-order executive processes and sends highly organized projections to sub-cortical regions controlling mood, motivation and impulsivity. Recent preclinical and clinical studies have demonstrated alcohol-induced effects on the activity and composition of the PFC which are implicated in associative learning processes and may disrupt executive control over impulsivity, leading to an inability to self-limit alcohol intake. Animal studies have begun to dissect the role of the mPFC circuitry in alcohol-seeking behavior and withdrawal, and have identified a key role for projections to sub-cortical sites including the extended amygdala and the nucleus accumbens (NAc). Importantly, these studies have highlighted that alcohol can have contrasting effects on the mPFC compared to other addictive substances and also produce differential effects on the structure and activity of the mPFC following short-term versus long-term consumption. Because of these differences, how the mPFC influences the initial aspects of alcohol-seeking behavior and how we can better understand the long-term effects of alcohol use on the activity and connectivity of the mPFC need to be considered. Given the lack of preclinical data from long-term drinking models, an increased focus should be directed towards identifying how long-term alcohol use changes the mPFC, in order to provide new insights into the mechanisms underlying the transition to dependence.
Collapse
|
43
|
Circuit and Synaptic Plasticity Mechanisms of Drug Relapse. J Neurosci 2017; 37:10867-10876. [PMID: 29118216 DOI: 10.1523/jneurosci.1821-17.2017] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 01/09/2023] Open
Abstract
High rates of relapse to drug use during abstinence is a defining feature of human drug addiction. This clinical scenario has been studied at the preclinical level using different animal models in which relapse to drug seeking is assessed after cessation of operant drug self-administration in rodents and monkeys. In our Society for Neuroscience (SFN) session entitled "Circuit and Synaptic Plasticity Mechanisms of Drug Relapse," we will discuss new developments of our understanding of circuits and synaptic plasticity mechanisms of drug relapse from studies combining established and novel animal models with state-of-the-art cellular, electrophysiology, anatomical, chemogenetic, and optogenetic methods. We will also discuss the translational implications of these new developments. In the mini-review that introduces our SFN session, we summarize results from our laboratories on behavioral, cellular, and circuit mechanisms of drug relapse within the context of our session.
Collapse
|