1
|
Daiber T, VanderZwan-Butler CJ, Bashaw GJ, Evans TA. Conserved and divergent aspects of Robo receptor signaling and regulation between Drosophila Robo1 and C. elegans SAX-3. Genetics 2021; 217:iyab018. [PMID: 33789352 PMCID: PMC8045725 DOI: 10.1093/genetics/iyab018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/28/2021] [Indexed: 11/24/2022] Open
Abstract
The evolutionarily conserved Roundabout (Robo) family of axon guidance receptors control midline crossing of axons in response to the midline repellant ligand Slit in bilaterian animals including insects, nematodes, and vertebrates. Despite this strong evolutionary conservation, it is unclear whether the signaling mechanism(s) downstream of Robo receptors are similarly conserved. To directly compare midline repulsive signaling in Robo family members from different species, here we use a transgenic approach to express the Robo family receptor SAX-3 from the nematode Caenorhabditis elegans in neurons of the fruit fly, Drosophila melanogaster. We examine SAX-3's ability to repel Drosophila axons from the Slit-expressing midline in gain of function assays, and test SAX-3's ability to substitute for Drosophila Robo1 during fly embryonic development in genetic rescue experiments. We show that C. elegans SAX-3 is properly translated and localized to neuronal axons when expressed in the Drosophila embryonic CNS, and that SAX-3 can signal midline repulsion in Drosophila embryonic neurons, although not as efficiently as Drosophila Robo1. Using a series of Robo1/SAX-3 chimeras, we show that the SAX-3 cytoplasmic domain can signal midline repulsion to the same extent as Robo1 when combined with the Robo1 ectodomain. We show that SAX-3 is not subject to endosomal sorting by the negative regulator Commissureless (Comm) in Drosophila neurons in vivo, and that peri-membrane and ectodomain sequences are both required for Comm sorting of Drosophila Robo1.
Collapse
Affiliation(s)
- Trent Daiber
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | | | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothy A Evans
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
2
|
Backer S, Lokmane L, Landragin C, Deck M, Garel S, Bloch-Gallego E. Trio GEF mediates RhoA activation downstream of Slit2 and coordinates telencephalic wiring. Development 2018; 145:dev.153692. [PMID: 30177526 DOI: 10.1242/dev.153692] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/24/2018] [Indexed: 01/01/2023]
Abstract
Trio, a member of the Dbl family of guanine nucleotide exchange factors, activates Rac1 downstream of netrin 1/DCC signalling in axon outgrowth and guidance. Although it has been proposed that Trio also activates RhoA, the putative upstream factors remain unknown. Here, we show that Slit2 induces Trio-dependent RhoA activation, revealing a crosstalk between Slit and Trio/RhoA signalling. Consistently, we found that RhoA activity is hindered in vivo in T rio mutant mouse embryos. We next studied the development of the ventral telencephalon and thalamocortical axons, which have been previously shown to be controlled by Slit2. Remarkably, this analysis revealed that Trio knockout (KO) mice show phenotypes that bear strong similarities to the ones that have been reported in Slit2 KO mice in both guidepost corridor cells and thalamocortical axon pathfinding in the ventral telencephalon. Taken together, our results show that Trio induces RhoA activation downstream of Slit2, and support a functional role in ensuring the proper positioning of both guidepost cells and a major axonal tract. Our study indicates a novel role for Trio in Slit2 signalling and forebrain wiring, highlighting its role in multiple guidance pathways as well as in biological functions of importance for a factor involved in human brain disorders.
Collapse
Affiliation(s)
- Stéphanie Backer
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, 75014 Paris, France.,INSERM, U1016, Department of Development, Reproduction and Cancer, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France
| | - Ludmilla Lokmane
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, PSL research University, 75005 Paris, France
| | - Camille Landragin
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, 75014 Paris, France.,INSERM, U1016, Department of Development, Reproduction and Cancer, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France
| | - Marie Deck
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, PSL research University, 75005 Paris, France
| | - Sonia Garel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, PSL research University, 75005 Paris, France
| | - Evelyne Bloch-Gallego
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, 75014 Paris, France .,INSERM, U1016, Department of Development, Reproduction and Cancer, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France
| |
Collapse
|
3
|
Rich SK, Terman JR. Axon formation, extension, and navigation: only a neuroscience phenomenon? Curr Opin Neurobiol 2018; 53:174-182. [PMID: 30248549 DOI: 10.1016/j.conb.2018.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 08/13/2018] [Indexed: 01/09/2023]
Abstract
Understanding how neurons form, extend, and navigate their finger-like axonal and dendritic processes is crucial for developing therapeutics for the diseased and damaged brain. Although less well appreciated, many other types of cells also send out similar finger-like projections. Indeed, unlike neuronal specific phenomena such as synapse formation or synaptic transmission, an important issue for thought is that this critical long-standing question of how a cellular process like an axon or dendrite forms and extends is not primarily a neuroscience problem but a cell biological problem. In that case, the use of simple cellular processes - such as the bristle cell process of Drosophila - can aid in the fight to answer these critical questions. Specifically, determining how a model cellular process is generated can provide a framework for manipulations of all types of membranous process-containing cells, including different types of neurons.
Collapse
Affiliation(s)
- Shannon K Rich
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jonathan R Terman
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
4
|
Howard LJ, Brown HE, Wadsworth BC, Evans TA. Midline axon guidance in the Drosophila embryonic central nervous system. Semin Cell Dev Biol 2017; 85:13-25. [PMID: 29174915 DOI: 10.1016/j.semcdb.2017.11.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/13/2017] [Accepted: 11/21/2017] [Indexed: 02/02/2023]
Abstract
Studies in the fruit fly Drosophila melanogaster have provided many fundamental insights into the genetic regulation of neural development, including the identification and characterization of evolutionarily conserved axon guidance pathways and their roles in important guidance decisions. Due to its highly organized and fast-developing embryonic nervous system, relatively small number of neurons, and molecular and genetic tools for identifying, labeling, and manipulating individual neurons or small neuronal subsets, studies of axon guidance in the Drosophila embryonic CNS have allowed researchers to dissect these genetic mechanisms with a high degree of precision. In this review, we discuss the major axon guidance pathways that regulate midline crossing of axons and the formation and guidance of longitudinal axon tracts, two processes that contribute to the development of the precise three-dimensional structure of the insect nerve cord. We focus particularly on recent insights into the roles and regulation of canonical midline axon guidance pathways, and on additional factors and pathways that have recently been shown to contribute to axon guidance decisions at and near the midline.
Collapse
Affiliation(s)
- LaFreda J Howard
- Department of Biological Sciences, University of Arkansas, Fayetteville AR 72701, USA
| | - Haley E Brown
- Department of Biological Sciences, University of Arkansas, Fayetteville AR 72701, USA
| | - Benjamin C Wadsworth
- Department of Biological Sciences, University of Arkansas, Fayetteville AR 72701, USA
| | - Timothy A Evans
- Department of Biological Sciences, University of Arkansas, Fayetteville AR 72701, USA.
| |
Collapse
|
5
|
Morales D, Kania A. Cooperation and crosstalk in axon guidance cue integration: Additivity, synergy, and fine-tuning in combinatorial signaling. Dev Neurobiol 2016; 77:891-904. [PMID: 27739221 DOI: 10.1002/dneu.22463] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/17/2016] [Accepted: 10/10/2016] [Indexed: 12/31/2022]
Abstract
Neural circuit development involves the coordinated growth and guidance of axons to their targets. Following the identification of many guidance cue molecules, recent experiments have focused on the interactions of their signaling cascades, which can be generally classified as additive or non-additive depending on the signal convergence point. While additive (parallel) signaling suggests limited molecular interaction between the pathways, non-additive signaling involves crosstalk between pathways and includes more complex synergistic, hierarchical, and permissive guidance cue relationships. Here the authors have attempted to classify recent studies that describe axon guidance signal integration according to these divisions. They also discuss the mechanistic implications of such interactions, as well as general ideas relating signal integration to the generation of diversity of axon guidance responses. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 891-904, 2017.
Collapse
Affiliation(s)
- Daniel Morales
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, H2W 1R7, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Quebec, H3A 2B4, Canada
| | - Artur Kania
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, H2W 1R7, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Quebec, H3A 2B4, Canada.,Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montréal, Quebec, H3A 2B2, Canada.,Department of Biology, Division of Experimental Medicine, McGill University, Montréal, Quebec, H3A 2B2, Canada.,Faculté de Médecine, Université de Montréal, Montréal, Quebec, H3C 3J7, Canada
| |
Collapse
|