1
|
Iida M, Tanaka M, Takagi T, Matsuki T, Kimura K, Shibata K, Kobayashi Y, Mizutani Y, Kuwamura H, Yamada K, Kitaura H, Kakita A, Sakakibara M, Asai N, Takahashi M, Asai M. Girdin deficiency causes developmental and epileptic encephalopathy with hippocampal sclerosis and interneuronopathy. Epilepsia 2024. [PMID: 39675783 DOI: 10.1111/epi.18204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024]
Abstract
OBJECTIVE Loss-of-function mutations in the GIRDIN/CCDC88A gene cause developmental epileptic encephalopathy (DEE) in humans. However, its pathogenesis is largely unknown. Global knockout mice of the corresponding orthologous gene (gKOs) have a preweaning lethal phenotype with growth failure, preventing longitudinal analysis. We aimed to overcome this lethality and elucidate DEE pathogenesis. METHODS We developed a novel lifelong feeding regimen (NLFR), which consists of providing mash food from postnatal day 14 (P14) until weaning (P28), followed by agar-bound food exclusively after weaning. Videography, electroencephalography (EEG), and histological analyses were performed. Conditional Girdin/Ccdc88a knockout mice (cKOs) of variable lineages (Nestin, Emx1, or Nkx2-1) were generated to identify the region responsible for epilepsy. RESULTS Under the NLFR, gKOs survived beyond 1 year and displayed fully penetrant, robust epileptic phenotypes, including early-onset (P22.3 in average) generalized tonic-clonic seizures (GTCSs) (averaging eight per day), which were completely synchronized with fast rhythms on EEG, frequent interictal electroencephalographic spikes (averaging 430 per hour), and progressive deformation of visceral organs. In addition, gKOs had absence seizures, which were not always time-locked to frequent spike waves on EEG. The frequent GTCSs and interictal spikes in gKOs were suppressed by known antiepileptic drugs. Histologically, bilateral hippocampi in gKOs exhibited congenital cornu-ammonis splitting, granule cell dispersion, and astrogliosis. Furthermore, analysis of conditional knockouts using multiple Cre-deleters identified a defect in the delivery of interneuron precursors from the medial ganglionic eminence into the hippocampal primordium during embryogenesis as a major cause of epileptogenesis. SIGNIFICANCE These findings give rise to a new approach of lifelong caregiving to overcome the problem of preweaning lethality in animal models. We propose a useful model for studying DEE with hippocampal sclerosis and interneuronopathy. gKOs with NLFR combine the contradictory properties of robust epileptic phenotypes and long-term survivability, which can be used to investigate spontaneous epileptic wave propagation and therapeutic intervention in hippocampal sclerosis.
Collapse
Affiliation(s)
- Machiko Iida
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Motoki Tanaka
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Tsuyoshi Takagi
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Tohru Matsuki
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Kimihiro Kimura
- Pharmacology Research Unit, Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - Kazuki Shibata
- Pharmacology Research Unit, Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - Yohei Kobayashi
- Pharmacology Research Unit, Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - Yuka Mizutani
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Haruki Kuwamura
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Keitaro Yamada
- Department of Pediatric Neurology, Central Hospital, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Hiroki Kitaura
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Clinical Engineering, Faculty of Health Science, Komatsu University, Komatsu, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Mayu Sakakibara
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoya Asai
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahide Takahashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masato Asai
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
2
|
Burkart ME, Kurzke J, Jacobi R, Vera J, Ashcroft FM, Eilers J, Lippmann K. KATP channel mutation disrupts hippocampal network activity and nocturnal gamma shifts. Brain 2024; 147:4200-4212. [PMID: 38748482 DOI: 10.1093/brain/awae157] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/31/2024] [Accepted: 05/02/2024] [Indexed: 12/14/2024] Open
Abstract
ATP-sensitive potassium (KATP) channels couple cell metabolism to cellular electrical activity. Humans affected by severe activating mutations in KATP channels suffer from developmental delay, epilepsy and neonatal diabetes (DEND syndrome). While the aetiology of diabetes in DEND syndrome is well understood, the pathophysiology of the neurological symptoms remains unclear. We hypothesized that impaired activity of parvalbumin-positive interneurons (PV-INs) may result in seizures and cognitive problems. We found, by performing electrophysiological experiments, that expressing the DEND mutation Kir6.2-V59M selectively in mouse PV-INs reduced intrinsic gamma frequency preference and short-term depression as well as disturbed cognition-associated gamma oscillations and hippocampal sharp waves. Furthermore, the risk of seizures was increased and the day-night shift in gamma activity disrupted. Blocking KATP channels with tolbutamide partially rescued the network oscillations. The non-reversible part may, to some extent, result from observed altered PV-IN dendritic branching and PV-IN arrangement within CA1. In summary, PV-INs play a key role in DEND syndrome, and this provides a framework for establishing treatment options.
Collapse
Affiliation(s)
- Marie-Elisabeth Burkart
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Josephine Kurzke
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Robert Jacobi
- Department for Neurophysiology, Institute for Physiology, Julius-Maximilians-University Würzburg, Würzburg 97070, Germany
| | - Jorge Vera
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Frances M Ashcroft
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Jens Eilers
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Kristina Lippmann
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| |
Collapse
|
3
|
Gonzalez-Ramos A, Berglind F, Kudláček J, Rocha ER, Melin E, Sebastião AM, Valente CA, Ledri M, Andersson M, Kokaia M. Chemogenetics with PSAM 4-GlyR decreases excitability and epileptiform activity in epileptic hippocampus. Gene Ther 2024:10.1038/s41434-024-00493-7. [PMID: 39455855 DOI: 10.1038/s41434-024-00493-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/28/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Despite the availability of new drugs on the clinics in recent years, drug-resistant epilepsy remains an unresolved challenge for healthcare, and one-third of epilepsy patients remain refractory to anti-seizure medications. Gene therapy in experimental models has emerged as effective treatment targeting specific neuronal populations in the epileptogenic focus. When combined with an external chemical activator using chemogenetics, it also becomes an "on-demand" treatment. Here, we evaluate a targeted and specific chemogenetic therapy, the PSAM/PSEM system, which holds promise as a potential candidate for clinical application in treating drug-resistant epilepsy. We show that the inert ligand uPSEM817, which selectively activates the chloride-permeable channel PSAM4-GlyR, effectively reduces the number of depolarization-induced action potentials in vitro. This effect is likely due to the shunting of depolarizing currents, as evidenced by decreased membrane resistance in these cells. In organotypic slices, uPSEM817 decreased the number of bursts and peak amplitude of events of spontaneous epileptiform activity. Although administration of uPSEM817 in vivo did not significantly alter electrographic seizures in a male mouse model of temporal lobe epilepsy, it did demonstrate a strong trend toward reducing the frequency of interictal epileptiform discharges. These findings indicate that PSAM4-GlyR-based chemogenetics holds potential as an anti-seizure strategy, although further refinement is necessary to enhance its efficacy.
Collapse
Affiliation(s)
- Ana Gonzalez-Ramos
- Epilepsy Center, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Fredrik Berglind
- Epilepsy Center, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Jan Kudláček
- Epilepsy Center, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Elza R Rocha
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisboa, Portugal
| | - Esbjörn Melin
- Epilepsy Center, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia A Valente
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisboa, Portugal
| | - Marco Ledri
- Epilepsy Center, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - My Andersson
- Epilepsy Center, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Merab Kokaia
- Epilepsy Center, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden.
| |
Collapse
|
4
|
Rahimi S, Joyce L, Fenzl T, Drexel M. Crosstalk between the subiculum and sleep-wake regulation: A review. J Sleep Res 2024; 33:e14134. [PMID: 38196146 DOI: 10.1111/jsr.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 01/11/2024]
Abstract
The circuitry underlying the initiation, maintenance, and coordination of wakefulness, rapid eye movement sleep, and non-rapid eye movement sleep is not thoroughly understood. Sleep is thought to arise due to decreased activity in the ascending reticular arousal system, which originates in the brainstem and awakens the thalamus and cortex during wakefulness. Despite the conventional association of sleep-wake states with hippocampal rhythms, the mutual influence of the hippocampal formation in regulating vigilance states has been largely neglected. Here, we focus on the subiculum, the main output region of the hippocampal formation. The subiculum, particulary the ventral part, sends extensive monosynaptic projections to crucial regions implicated in sleep-wake regulation, including the thalamus, lateral hypothalamus, tuberomammillary nucleus, basal forebrain, ventrolateral preoptic nucleus, ventrolateral tegmental area, and suprachiasmatic nucleus. Additionally, second-order projections from the subiculum are received by the laterodorsal tegmental nucleus, locus coeruleus, and median raphe nucleus, suggesting the potential involvement of the subiculum in the regulation of the sleep-wake cycle. We also discuss alterations in the subiculum observed in individuals with sleep disorders and in sleep-deprived mice, underscoring the significance of investigating neuronal communication between the subiculum and pathways promoting both sleep and wakefulness.
Collapse
Affiliation(s)
- Sadegh Rahimi
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Leesa Joyce
- Clinic of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, München, Germany
| | - Thomas Fenzl
- Clinic of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, München, Germany
| | - Meinrad Drexel
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
5
|
Neřoldová M, Stuchlík A. Chemogenetic Tools and their Use in Studies of Neuropsychiatric Disorders. Physiol Res 2024; 73:S449-S470. [PMID: 38957949 PMCID: PMC11412350 DOI: 10.33549/physiolres.935401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Chemogenetics is a newly developed set of tools that allow for selective manipulation of cell activity. They consist of a receptor mutated irresponsive to endogenous ligands and a synthetic ligand that does not interact with the wild-type receptors. Many different types of these receptors and their respective ligands for inhibiting or excitating neuronal subpopulations were designed in the past few decades. It has been mainly the G-protein coupled receptors (GPCRs) selectively responding to clozapine-N-oxide (CNO), namely Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), that have been employed in research. Chemogenetics offers great possibilities since the activity of the receptors is reversible, inducible on demand by the ligand, and non-invasive. Also, specific groups or types of neurons can be selectively manipulated thanks to the delivery by viral vectors. The effect of the chemogenetic receptors on neurons lasts longer, and even chronic activation can be achieved. That can be useful for behavioral testing. The great advantage of chemogenetic tools is especially apparent in research on brain diseases since they can manipulate whole neuronal circuits and connections between different brain areas. Many psychiatric or other brain diseases revolve around the dysfunction of specific brain networks. Therefore, chemogenetics presents a powerful tool for investigating the underlying mechanisms causing the disease and revealing the link between the circuit dysfunction and the behavioral or cognitive symptoms observed in patients. It could also contribute to the development of more effective treatments.
Collapse
Affiliation(s)
- M Neřoldová
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic. E-mail:
| | | |
Collapse
|
6
|
Ge J, Xie S, Duan J, Tian B, Ren P, Hu E, Huang Q, Mao H, Zou Y, Chen Q, Wang W. Imbalance between hippocampal projection cell and parvalbumin interneuron architecture increases epileptic susceptibility in mouse model of methyl CpG binding protein 2 duplication syndrome. Epilepsia 2024; 65:2483-2496. [PMID: 38819633 DOI: 10.1111/epi.18027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE Methyl CpG-binding protein 2 (MECP2) duplication syndrome is a rare X-linked genomic disorder affecting predominantly males, which is usually manifested as epilepsy and autism spectrum disorder (ASD) comorbidity. The transgenic line MeCP2Tg1 was used for mimicking MECP2 duplication syndrome and showed autism-epilepsy co-occurrence. Previous works suggested that the excitatory/inhibitory (E/I) imbalance is a potential common mechanism for both epilepsy and ASD. The projection neurons and parvalbumin (PV) interneurons account for the majority of E/I balance in the hippocampus. Therefore, we explored how structural changes of projection and PV+ neurons occur in the hippocampus of MeCP2Tg1 mice and whether these morphological changes contribute to epilepsy susceptibility. METHODS We used the interneuron Designer receptors exclusively activated by designer drugs mouse model to inhibit inhibitory neurons in the hippocampus to verify the epilepsy susceptibility of MeCP2Tg1 (FVB, an inbred strain named as sensitivity to Friend leukemia virus) mice. Electroencephalograms were recorded for the definition of seizure. We performed retro-orbital injection of virus in MeCP2Tg1 (FVB):CaMKIIα-Cre (C57BL/6) mice or MeCP2Tg1:PV-Cre (C57BL/6) mice and their littermate controls to specifically label projection and PV+ neurons for structural analysis. RESULTS Epilepsy susceptibility was increased in MeCP2Tg1 mice. There was a reduced number of PV neurons and reduced dendritic complexity in the hippocampus of MeCP2Tg1 mice. The dendritic complexity in MeCP2Tg1 mice was increased compared to wild-type mice, and total dendritic spine density in dentate gyrus of MeCP2Tg1 mice was also increased. Total dendritic spine density was increased in CA1 of MeCP2Tg1 mice. SIGNIFICANCE Overexpression of MeCP2 may disrupt crucial signaling pathways, resulting in decreased dendritic complexity of PV interneurons and increased dendritic spine density of projection neurons. This reciprocal modulation of excitatory and inhibitory neuronal structures associated with MeCP2 implies its significance as a potential target in the development of epilepsy and offers a novel perspective on the co-occurrence of autism and epilepsy.
Collapse
Affiliation(s)
- Junye Ge
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Shengjun Xie
- Jingzhou Hospital affiliated with Yangtze University, Jingzhou, China
| | - Jiamei Duan
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Biqing Tian
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Pengfei Ren
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Erling Hu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Qiyi Huang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Honghui Mao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yuxin Zou
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Qian Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Rana C, Mattis J. Pan-Inhibitory Hippocampal Neuron Ablation Reveals Insights into the Role of Interneurons in Epileptogenesis. eNeuro 2024; 11:ENEURO.0229-24.2024. [PMID: 38997138 PMCID: PMC11248801 DOI: 10.1523/eneuro.0229-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 07/14/2024] Open
Affiliation(s)
- Chandni Rana
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48104
| | - Joanna Mattis
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48104
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48104
| |
Collapse
|
8
|
Neumann AM, Britsch S. Molecular Genetics of Acquired Temporal Lobe Epilepsy. Biomolecules 2024; 14:669. [PMID: 38927072 PMCID: PMC11202058 DOI: 10.3390/biom14060669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
An epilepsy diagnosis reduces a patient's quality of life tremendously, and it is a fate shared by over 50 million people worldwide. Temporal lobe epilepsy (TLE) is largely considered a nongenetic or acquired form of epilepsy that develops in consequence of neuronal trauma by injury, malformations, inflammation, or a prolonged (febrile) seizure. Although extensive research has been conducted to understand the process of epileptogenesis, a therapeutic approach to stop its manifestation or to reliably cure the disease has yet to be developed. In this review, we briefly summarize the current literature predominately based on data from excitotoxic rodent models on the cellular events proposed to drive epileptogenesis and thoroughly discuss the major molecular pathways involved, with a focus on neurogenesis-related processes and transcription factors. Furthermore, recent investigations emphasized the role of the genetic background for the acquisition of epilepsy, including variants of neurodevelopmental genes. Mutations in associated transcription factors may have the potential to innately increase the vulnerability of the hippocampus to develop epilepsy following an injury-an emerging perspective on the epileptogenic process in acquired forms of epilepsy.
Collapse
Affiliation(s)
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, 89081 Ulm, Germany;
| |
Collapse
|
9
|
Leitch B. Parvalbumin Interneuron Dysfunction in Neurological Disorders: Focus on Epilepsy and Alzheimer's Disease. Int J Mol Sci 2024; 25:5549. [PMID: 38791587 PMCID: PMC11122153 DOI: 10.3390/ijms25105549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Parvalbumin expressing (PV+) GABAergic interneurons are fast spiking neurons that provide powerful but relatively short-lived inhibition to principal excitatory cells in the brain. They play a vital role in feedforward and feedback synaptic inhibition, preventing run away excitation in neural networks. Hence, their dysfunction can lead to hyperexcitability and increased susceptibility to seizures. PV+ interneurons are also key players in generating gamma oscillations, which are synchronized neural oscillations associated with various cognitive functions. PV+ interneuron are particularly vulnerable to aging and their degeneration has been associated with cognitive decline and memory impairment in dementia and Alzheimer's disease (AD). Overall, dysfunction of PV+ interneurons disrupts the normal excitatory/inhibitory balance within specific neurocircuits in the brain and thus has been linked to a wide range of neurodevelopmental and neuropsychiatric disorders. This review focuses on the role of dysfunctional PV+ inhibitory interneurons in the generation of epileptic seizures and cognitive impairment and their potential as targets in the design of future therapeutic strategies to treat these disorders. Recent research using cutting-edge optogenetic and chemogenetic technologies has demonstrated that they can be selectively manipulated to control seizures and restore the balance of neural activity in the brains of animal models. This suggests that PV+ interneurons could be important targets in developing future treatments for patients with epilepsy and comorbid disorders, such as AD, where seizures and cognitive decline are directly linked to specific PV+ interneuron deficits.
Collapse
Affiliation(s)
- Beulah Leitch
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
10
|
Zeng C, Lu Y, Wei X, Sun L, Wei L, Ou S, Huang Q, Wu Y. Parvalbumin Regulates GAD Expression through Calcium Ion Concentration to Affect the Balance of Glu-GABA and Improve KA-Induced Status Epilepticus in PV-Cre Transgenic Mice. ACS Chem Neurosci 2024; 15:1951-1966. [PMID: 38696478 DOI: 10.1021/acschemneuro.3c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024] Open
Abstract
Aims: the study aimed to (i) use adeno-associated virus technology to modulate parvalbumin (PV) gene expression, both through overexpression and silencing, within the hippocampus of male mice and (ii) assess the impact of PV on the metabolic pathway of glutamate and γ-aminobutyric acid (GABA). Methods: a status epilepticus (SE) mouse model was established by injecting kainic acid into the hippocampus of transgenic mice. When the seizures of mice reached SE, the mice were killed at that time point and 30 min after the onset of SE. Hippocampal tissues were extracted and the mRNA and protein levels of PV and the 65 kDa (GAD65) and 67 kDa (GAD67) isoforms of glutamate decarboxylase were assessed using real-time quantitative polymerase chain reaction and Western blot, respectively. The concentrations of glutamate and GABA were detected with high-performance liquid chromatography (HPLC), and the intracellular calcium concentration was detected using flow cytometry. Results: we demonstrate that the expression of PV is associated with GAD65 and GAD67 and that PV regulates the levels of GAD65 and GAD67. PV was correlated with calcium concentration and GAD expression. Interestingly, PV overexpression resulted in a reduction in calcium ion concentration, upregulation of GAD65 and GAD67, elevation of GABA concentration, reduction in glutamate concentration, and an extension of seizure latency. Conversely, PV silencing induced the opposite effects. Conclusion: parvalbumin may affect the expression of GAD65 and GAD67 by regulating calcium ion concentration, thereby affecting the metabolic pathways associated with glutamate and GABA. In turn, this contributes to the regulation of seizure activity.
Collapse
Affiliation(s)
- Chunmei Zeng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, #6 Shuangyong Road,Nanning, Guangxi 530021, China
| | - Yuling Lu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, #6 Shuangyong Road,Nanning, Guangxi 530021, China
| | - Xing Wei
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, #6 Shuangyong Road,Nanning, Guangxi 530021, China
| | - Lanfeng Sun
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, #6 Shuangyong Road,Nanning, Guangxi 530021, China
| | - Lei Wei
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, #6 Shuangyong Road,Nanning, Guangxi 530021, China
| | - Sijie Ou
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, #6 Shuangyong Road,Nanning, Guangxi 530021, China
| | - Qi Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, #6 Shuangyong Road,Nanning, Guangxi 530021, China
| | - Yuan Wu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, #6 Shuangyong Road,Nanning, Guangxi 530021, China
| |
Collapse
|
11
|
Dusing MR, LaSarge CL, Drake AW, Westerkamp GC, McCoy C, Hetzer SM, Kraus KL, Pedapati EV, Danzer SC. Transient Seizure Clusters and Epileptiform Activity Following Widespread Bilateral Hippocampal Interneuron Ablation. eNeuro 2024; 11:ENEURO.0317-23.2024. [PMID: 38575351 PMCID: PMC11036118 DOI: 10.1523/eneuro.0317-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024] Open
Abstract
Interneuron loss is a prominent feature of temporal lobe epilepsy in both animals and humans and is hypothesized to be critical for epileptogenesis. As loss occurs concurrently with numerous other potentially proepileptogenic changes, however, the impact of interneuron loss in isolation remains unclear. For the present study, we developed an intersectional genetic approach to induce bilateral diphtheria toxin-mediated deletion of Vgat-expressing interneurons from dorsal and ventral hippocampus. In a separate group of mice, the same population was targeted for transient neuronal silencing with DREADDs. Interneuron ablation produced dramatic seizure clusters and persistent epileptiform activity. Surprisingly, after 1 week seizure activity declined precipitously and persistent epileptiform activity disappeared. Occasional seizures (≈1/day) persisted to the end of the experiment at 4 weeks. In contrast to the dramatic impact of interneuron ablation, transient silencing produced large numbers of interictal spikes, a significant but modest increase in seizure occurrence and changes in EEG frequency band power. Taken together, findings suggest that the hippocampus regains relative homeostasis-with occasional breakthrough seizures-in the face of an extensive and abrupt loss of interneurons.
Collapse
Affiliation(s)
- Mary R Dusing
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039
| | - Candi L LaSarge
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio 45229-3039
| | - Austin W Drake
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio 45229-3039
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039
| | - Grace C Westerkamp
- Division of Child Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039
| | - Carlie McCoy
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039
| | - Shelby M Hetzer
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio 45229-3039
| | - Kimberly L Kraus
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio 45229-3039
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039
| | - Ernest V Pedapati
- Division of Child Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio 45229-3039
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039
- Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039
| |
Collapse
|
12
|
Efthymiou S, Han W, Ilyas M, Li J, Yu Y, Scala M, Malintan NT, Ilyas M, Vavouraki N, Mankad K, Maroofian R, Rocca C, Salpietro V, Lakhani S, Mallack EJ, Palculict TB, Li H, Zhang G, Zafar F, Rana N, Takashima N, Matsunaga H, Manzoni C, Striano P, Lythgoe MF, Aruga J, Lu W, Houlden H. Human mutations in SLITRK3 implicated in GABAergic synapse development in mice. Front Mol Neurosci 2024; 17:1222935. [PMID: 38495551 PMCID: PMC10940442 DOI: 10.3389/fnmol.2024.1222935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/02/2024] [Indexed: 03/19/2024] Open
Abstract
This study reports on biallelic homozygous and monoallelic de novo variants in SLITRK3 in three unrelated families presenting with epileptic encephalopathy associated with a broad neurological involvement characterized by microcephaly, intellectual disability, seizures, and global developmental delay. SLITRK3 encodes for a transmembrane protein that is involved in controlling neurite outgrowth and inhibitory synapse development and that has an important role in brain function and neurological diseases. Using primary cultures of hippocampal neurons carrying patients' SLITRK3 variants and in combination with electrophysiology, we demonstrate that recessive variants are loss-of-function alleles. Immunostaining experiments in HEK-293 cells showed that human variants C566R and E606X change SLITRK3 protein expression patterns on the cell surface, resulting in highly accumulating defective proteins in the Golgi apparatus. By analyzing the development and phenotype of SLITRK3 KO (SLITRK3-/-) mice, the study shows evidence of enhanced susceptibility to pentylenetetrazole-induced seizure with the appearance of spontaneous epileptiform EEG as well as developmental deficits such as higher motor activities and reduced parvalbumin interneurons. Taken together, the results exhibit impaired development of the peripheral and central nervous system and support a conserved role of this transmembrane protein in neurological function. The study delineates an emerging spectrum of human core synaptopathies caused by variants in genes that encode SLITRK proteins and essential regulatory components of the synaptic machinery. The hallmark of these disorders is impaired postsynaptic neurotransmission at nerve terminals; an impaired neurotransmission resulting in a wide array of (often overlapping) clinical features, including neurodevelopmental impairment, weakness, seizures, and abnormal movements. The genetic synaptopathy caused by SLITRK3 mutations highlights the key roles of this gene in human brain development and function.
Collapse
Affiliation(s)
- Stephanie Efthymiou
- Department of Neuromuscular Disorders, University College London (UCL) Queen Square Institute of Neurology, London, United Kingdom
- U.O.C. Genetica Medica, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Wenyan Han
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Muhammad Ilyas
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - Jun Li
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Yichao Yu
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Marcello Scala
- Department of Neuromuscular Disorders, University College London (UCL) Queen Square Institute of Neurology, London, United Kingdom
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Nancy T. Malintan
- Department of Neuromuscular Disorders, University College London (UCL) Queen Square Institute of Neurology, London, United Kingdom
| | - Muhammad Ilyas
- Centre for Omic Sciences, Islamia College Peshawar, Peshawar, Pakistan
| | - Nikoleta Vavouraki
- School of Pharmacy, University of Reading, Reading, United Kingdom
- Department of Mathematics and Statistics, University of Reading, Reading, United Kingdom
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital, London, United Kingdom
- Developmental Neurosciences Department, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Reza Maroofian
- Department of Neuromuscular Disorders, University College London (UCL) Queen Square Institute of Neurology, London, United Kingdom
| | - Clarissa Rocca
- Department of Neuromuscular Disorders, University College London (UCL) Queen Square Institute of Neurology, London, United Kingdom
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, University College London (UCL) Queen Square Institute of Neurology, London, United Kingdom
| | - Shenela Lakhani
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Eric J. Mallack
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | | | - Hong Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Guojun Zhang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
- Department of Pediatric Neurology, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Faisal Zafar
- Department of Pediatrics, Multan Hospital, Multan, Pakistan
| | - Nuzhat Rana
- Department of Pediatrics, Multan Hospital, Multan, Pakistan
| | - Noriko Takashima
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute (BSI), Saitama, Japan
| | - Hayato Matsunaga
- Department of Medical Pharmacology, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan
| | - Claudia Manzoni
- School of Pharmacy, University College London, London, United Kingdom
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Mark F. Lythgoe
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Jun Aruga
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute (BSI), Saitama, Japan
- Department of Medical Pharmacology, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Henry Houlden
- Department of Neuromuscular Disorders, University College London (UCL) Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
13
|
Nieoczym D, Marszalek-Grabska M, Szalak R, Kundap U, Kaczor AA, Wrobel TM, Kosheva N, Komar M, Abram M, Esguerra CV, Samarut E, Pieróg M, Jakubiec M, Kaminski K, Kukula-Koch W, Gawel K. A comprehensive assessment of palmatine as anticonvulsant agent - In vivo and in silico studies. Biomed Pharmacother 2024; 172:116234. [PMID: 38325264 DOI: 10.1016/j.biopha.2024.116234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
Previously, we demonstrated that palmatine (PALM) - an isoquinoline alkaloid from Berberis sibrica radix, exerted antiseizure activity in the pentylenetetrazole (PTZ)-induced seizure assay in larval zebrafish. The aim of the present study was to more precisely characterize PALM as a potential anticonvulsant drug candidate. A range of zebrafish and mouse seizure/epilepsy models were applied in the investigation. Immunostaining analysis was conducted to assess the changes in mouse brains, while in silico molecular modelling was performed to determine potential targets for PALM. Accordingly, PALM had anticonvulsant effect in ethyl 2-ketopent-4-enoate (EKP)-induced seizure assay in zebrafish larvae as well as in the 6 Hz-induced psychomotor seizure threshold and timed infusion PTZ tests in mice. The protective effect in the EKP-induced seizure assay was confirmed in the local field potential recordings. PALM did not affect seizures in the gabra1a knockout line of zebrafish larvae. In the scn1Lab-/- zebrafish line, pretreatment with PALM potentiated seizure-like behaviour of larvae. Repetitive treatment with PALM, however, did not reduce development of PTZ-induced seizure activity nor prevent the loss of parvalbumin-interneurons in the hippocampus of the PTZ kindled mice. In silico molecular modelling revealed that the noted anticonvulsant effect of PALM in EKP-induced seizure assay might result from its interactions with glutamic acid decarboxylase and/or via AMPA receptor non-competitive antagonism. Our study has demonstrated the anticonvulsant activity of PALM in some experimental models of seizures, including a model of pharmacoresistant seizures induced by EKP. These results indicate that PALM might be a suitable new drug candidate but the precise mechanism of its anticonvulsant activity has to be determined.
Collapse
Affiliation(s)
- Dorota Nieoczym
- Chair of Animal Physiology and Pharmacology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka Str. 19, 20-033 Lublin, Poland
| | - Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego Str. 8b, 20-090 Lublin, Poland
| | - Radoslaw Szalak
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 12 Akademicka St., 20-950 Lublin, Poland
| | - Uday Kundap
- Research Center of the University of Montreal Hospital Center (CRCHUM), Department of Neurosciences, Université de Montréal, Montréal, QC H2X 0A9, Canada; Canada East Spine Centre, Saint John Regional Hospital, Department of Spine and Orthopaedics surgery, Horizon Health Network, Saint John, NB E2L 4L4, Canada
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodżki St., PL-20093 Lublin, Poland; School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Tomasz M Wrobel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodżki St., PL-20093 Lublin, Poland
| | - Nataliia Kosheva
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego Str. 8b, 20-090 Lublin, Poland
| | - Malgorzata Komar
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 12 Akademicka St., 20-950 Lublin, Poland
| | - Michal Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Camila V Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalleen 21, Forskningsparken, 0349 Oslo, Norway
| | - Eric Samarut
- Research Center of the University of Montreal Hospital Center (CRCHUM), Department of Neurosciences, Université de Montréal, Montréal, QC H2X 0A9, Canada; Neurosciences Department, University of Montreal, Montreal, QC, Canada
| | - Mateusz Pieróg
- Chair of Animal Physiology and Pharmacology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka Str. 19, 20-033 Lublin, Poland
| | - Marcin Jakubiec
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Krzysztof Kaminski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Chodzki Str. 1, 20-093 Lublin, Poland
| | - Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego Str. 8b, 20-090 Lublin, Poland.
| |
Collapse
|
14
|
Lankhuijzen LM, Ridler T. Opioids, microglia, and temporal lobe epilepsy. Front Neurol 2024; 14:1298489. [PMID: 38249734 PMCID: PMC10796828 DOI: 10.3389/fneur.2023.1298489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
A lack of treatment options for temporal lobe epilepsy (TLE) demands an urgent quest for new therapies to recover neuronal damage and reduce seizures, potentially interrupting the neurotoxic cascades that fuel hyper-excitability. Endogenous opioids, along with their respective receptors, particularly dynorphin and kappa-opioid-receptor, present as attractive candidates for controlling neuronal excitability and therapeutics in epilepsy. We perform a critical review of the literature to evaluate the role of opioids in modulating microglial function and morphology in epilepsy. We find that, in accordance with anticonvulsant effects, acute opioid receptor activation has unique abilities to modulate microglial activation through toll-like 4 receptors, regulating downstream secretion of cytokines. Abnormal activation of microglia is a dominant feature of neuroinflammation, and inflammatory cytokines are found to aggravate TLE, inspiring the challenge to alter microglial activation by opioids to suppress seizures. We further evaluate how opioids can modulate microglial activation in epilepsy to enhance neuroprotection and reduce seizures. With controlled application, opioids may interrupt inflammatory cycles in epilepsy, to protect neuronal function and reduce seizures. Research on opioid-microglia interactions has important implications for epilepsy and healthcare approaches. However, preclinical research on opioid modulation of microglia supports a new therapeutic pathway for TLE.
Collapse
Affiliation(s)
| | - Thomas Ridler
- Hatherly Laboratories, Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
15
|
Rahimi S, Salami P, Matulewicz P, Schmuck A, Bukovac A, Ramos-Prats A, Tasan RO, Drexel M. The role of subicular VIP-expressing interneurons on seizure dynamics in the intrahippocampal kainic acid model of temporal lobe epilepsy. Exp Neurol 2023; 370:114580. [PMID: 37884187 DOI: 10.1016/j.expneurol.2023.114580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
The subiculum, a key output region of the hippocampus, is increasingly recognized as playing a crucial role in seizure initiation and spread. The subiculum consists of glutamatergic pyramidal cells, which show alterations in intrinsic excitability in the course of epilepsy, and multiple types of GABAergic interneurons, which exhibit varying characteristics in epilepsy. In this study, we aimed to assess the role of the vasoactive intestinal peptide interneurons (VIP-INs) of the ventral subiculum in the pathophysiology of temporal lobe epilepsy. We observed that an anatomically restricted inhibition of VIP-INs of the ventral subiculum was sufficient to reduce seizures in the intrahippocampal kainic acid model of epilepsy, changing the circadian rhythm of seizures, emphasizing the critical role of this small cell population in modulating TLE. As we expected, permanent unilateral or bilateral silencing of VIP-INs of the ventral subiculum in non-epileptic animals did not induce seizures or epileptiform activity. Interestingly, transient activation of VIP-INs of the ventral subiculum was enough to increase the frequency of seizures in the acute seizure model. Our results offer new perspectives on the crucial involvement of VIP-INs of the ventral subiculum in the pathophysiology of TLE. Given the observed predominant disinhibitory role of the VIP-INs input in subicular microcircuits, modifications of this input could be considered in the development of therapeutic strategies to improve seizure control.
Collapse
Affiliation(s)
- Sadegh Rahimi
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Pariya Salami
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Pawel Matulewicz
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Armin Schmuck
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anneliese Bukovac
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Arnau Ramos-Prats
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ramon Osman Tasan
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Meinrad Drexel
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
16
|
Whitebirch AC, Santoro B, Barnett A, Lisgaras CP, Scharfman HE, Siegelbaum SA. Reduced Cholecystokinin-Expressing Interneuron Input Contributes to Disinhibition of the Hippocampal CA2 Region in a Mouse Model of Temporal Lobe Epilepsy. J Neurosci 2023; 43:6930-6949. [PMID: 37643861 PMCID: PMC10573827 DOI: 10.1523/jneurosci.2091-22.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
A significant proportion of temporal lobe epilepsy (TLE) patients experience drug-resistant seizures associated with mesial temporal sclerosis, in which there is extensive cell loss in the hippocampal CA1 and CA3 subfields, with a relative sparing of dentate gyrus granule cells and CA2 pyramidal neurons (PNs). A role for CA2 in seizure generation was suggested based on findings of a reduction in CA2 synaptic inhibition (Williamson and Spencer, 1994) and the presence of interictal-like spike activity in CA2 in resected hippocampal tissue from TLE patients (Wittner et al., 2009). We recently found that in the pilocarpine-induced status epilepticus (PILO-SE) mouse model of TLE there was an increase in CA2 intrinsic excitability associated with a loss of CA2 synaptic inhibition. Furthermore, chemogenetic silencing of CA2 significantly reduced seizure frequency, consistent with a role of CA2 in promoting seizure generation and/or propagation (Whitebirch et al., 2022). In the present study, we explored the cellular basis of this inhibitory deficit using immunohistochemical and electrophysiological approaches in PILO-SE male and female mice. We report a widespread decrease in the density of pro-cholecystokinin-immunopositive (CCK+) interneurons and a functional impairment of CCK+ interneuron-mediated inhibition of CA2 PNs. We also found a disruption in the perisomatic perineuronal net in the CA2 stratum pyramidale. Such pathologic alterations may contribute to an enhanced excitation of CA2 PNs and CA2-dependent seizure activity in the PILO-SE mouse model.SIGNIFICANCE STATEMENT Impaired synaptic inhibition in hippocampal circuits has been identified as a key feature that contributes to the emergence and propagation of seizure activity in human patients and animal models of temporal lobe epilepsy (TLE). Among the hippocampal subfields, the CA2 region is particularly resilient to seizure-associated neurodegeneration and has been suggested to play a key role in seizure activity in TLE. Here we report that perisomatic inhibition of CA2 pyramidal neurons mediated by cholecystokinin-expressing interneurons is selectively reduced in acute hippocampal slices from epileptic mice. Parvalbumin-expressing interneurons, in contrast, appear relatively conserved in epileptic mice. These findings advance our understanding of the cellular mechanisms underlying inhibitory disruption in hippocampal circuits in a mouse model of spontaneous recurring seizures.
Collapse
Affiliation(s)
- Alexander C Whitebirch
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University Irving Medical Center, New York, New York 10027
| | - Bina Santoro
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University Irving Medical Center, New York, New York 10027
| | - Anastasia Barnett
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University Irving Medical Center, New York, New York 10027
| | - Christos Panagiotis Lisgaras
- Department of Child & Adolescent Psychiatry, New York University Langone Health, New York, New York 10016
- Department of Neuroscience & Physiology, New York University Langone Health, New York, New York 10016
- Department of Psychiatry, New York University Langone Health, New York, New York 10016
- The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| | - Helen E Scharfman
- Department of Child & Adolescent Psychiatry, New York University Langone Health, New York, New York 10016
- Department of Neuroscience & Physiology, New York University Langone Health, New York, New York 10016
- Department of Psychiatry, New York University Langone Health, New York, New York 10016
- The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| | - Steven A Siegelbaum
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University Irving Medical Center, New York, New York 10027
| |
Collapse
|
17
|
Huang TH, Lin YS, Hsiao CW, Wang LY, Ajibola MI, Abdulmajeed WI, Lin YL, Li YJ, Chen CY, Lien CC, Chiu CD, Cheng IHJ. Differential expression of GABA A receptor subunits δ and α6 mediates tonic inhibition in parvalbumin and somatostatin interneurons in the mouse hippocampus. Front Cell Neurosci 2023; 17:1146278. [PMID: 37545878 PMCID: PMC10397515 DOI: 10.3389/fncel.2023.1146278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/14/2023] [Indexed: 08/08/2023] Open
Abstract
Inhibitory γ-aminobutyric acid (GABA)-ergic interneurons mediate inhibition in neuronal circuitry and support normal brain function. Consequently, dysregulation of inhibition is implicated in various brain disorders. Parvalbumin (PV) and somatostatin (SST) interneurons, the two major types of GABAergic inhibitory interneurons in the hippocampus, exhibit distinct morpho-physiological properties and coordinate information processing and memory formation. However, the molecular mechanisms underlying the specialized properties of PV and SST interneurons remain unclear. This study aimed to compare the transcriptomic differences between these two classes of interneurons in the hippocampus using the ribosome tagging approach. The results revealed distinct expressions of genes such as voltage-gated ion channels and GABAA receptor subunits between PV and SST interneurons. Gabrd and Gabra6 were identified as contributors to the contrasting tonic GABAergic inhibition observed in PV and SST interneurons. Moreover, some of the differentially expressed genes were associated with schizophrenia and epilepsy. In conclusion, our results provide molecular insights into the distinct roles of PV and SST interneurons in health and disease.
Collapse
Affiliation(s)
- Tzu-Hsuan Huang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Sian Lin
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX, United States
| | - Chiao-Wan Hsiao
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Liang-Yun Wang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Musa Iyiola Ajibola
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, College of Life Sciences, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Wahab Imam Abdulmajeed
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, College of Life Sciences, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Yu-Ling Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Jui Li
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cho-Yi Chen
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Chang Lien
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, College of Life Sciences, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Di Chiu
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
- Spine Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Irene Han-Juo Cheng
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
18
|
Jendryka MM, Lewin U, van der Veen B, Kapanaiah SKT, Prex V, Strahnen D, Akam T, Liss B, Pekcec A, Nissen W, Kätzel D. Control of sustained attention and impulsivity by G q-protein signalling in parvalbumin interneurons of the anterior cingulate cortex. Transl Psychiatry 2023; 13:243. [PMID: 37407615 DOI: 10.1038/s41398-023-02541-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023] Open
Abstract
The anterior cingulate cortex (ACC) has been implicated in attention deficit hyperactivity disorder (ADHD). More specifically, an appropriate balance of excitatory and inhibitory activity in the ACC may be critical for the control of impulsivity, hyperactivity, and sustained attention which are centrally affected in ADHD. Hence, pharmacological augmentation of parvalbumin- (PV) or somatostatin-positive (Sst) inhibitory ACC interneurons could be a potential treatment strategy. We, therefore, tested whether stimulation of Gq-protein-coupled receptors (GqPCRs) in these interneurons could improve attention or impulsivity assessed with the 5-choice-serial reaction-time task in male mice. When challenging impulse control behaviourally or pharmacologically, activation of the chemogenetic GqPCR hM3Dq in ACC PV-cells caused a selective decrease of active erroneous-i.e. incorrect and premature-responses, indicating improved attentional and impulse control. When challenging attention, in contrast, omissions were increased, albeit without extension of reward latencies or decreases of attentional accuracy. These effects largely resembled those of the ADHD medication atomoxetine. Additionally, they were mostly independent of each other within individual animals. GqPCR activation in ACC PV-cells also reduced hyperactivity. In contrast, if hM3Dq was activated in Sst-interneurons, no improvement of impulse control was observed, and a reduction of incorrect responses was only induced at high agonist levels and accompanied by reduced motivational drive. These results suggest that the activation of GqPCRs expressed specifically in PV-cells of the ACC may be a viable strategy to improve certain aspects of sustained attention, impulsivity and hyperactivity in ADHD.
Collapse
Affiliation(s)
- Martin M Jendryka
- Institute of Applied Physiology, Ulm University, Ulm, Germany
- Boehringer Ingelheim Pharma GmbH & Co. KG, Div. Research Germany, Biberach an der Riss, Germany
| | - Uwe Lewin
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| | | | | | - Vivien Prex
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| | - Daniel Strahnen
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| | - Thomas Akam
- Department of Experimental Psychology and Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Birgit Liss
- Institute of Applied Physiology, Ulm University, Ulm, Germany
- Linacre College and New College, University of Oxford, Oxford, UK
| | - Anton Pekcec
- Boehringer Ingelheim Pharma GmbH & Co. KG, Div. Research Germany, Biberach an der Riss, Germany
| | - Wiebke Nissen
- Boehringer Ingelheim Pharma GmbH & Co. KG, Div. Research Germany, Biberach an der Riss, Germany
| | - Dennis Kätzel
- Institute of Applied Physiology, Ulm University, Ulm, Germany.
| |
Collapse
|
19
|
Bonet-Fernández JM, Tranque P, Aroca-Aguilar JD, Muñoz LJ, López DE, Escribano J, de Cabo C. Seizures regulate the cation-Cl - cotransporter NKCC1 in a hamster model of epilepsy: implications for GABA neurotransmission. Front Neurol 2023; 14:1207616. [PMID: 37448751 PMCID: PMC10338185 DOI: 10.3389/fneur.2023.1207616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/05/2023] [Indexed: 07/15/2023] Open
Abstract
Background The balance between the activity of the Na+/K+/Cl- cotransporter (NKCC1) that introduces Cl- into the cell and the K+/Cl- cotransporter (KCC2) that transports Cl- outside the cell is critical in determining the inhibitory or excitatory outcome of GABA release. Mounting evidence suggests that the impairment of GABAergic inhibitory neurotransmission plays a crucial role in the pathophysiology of epilepsy, both in patients and animal models. Previous studies indicate that decreased KCC2 expression is linked to audiogenic seizures in GASH/Sal hamsters, highlighting that Cl- imbalance can cause neuronal hyperexcitability. In this study, we aimed to investigate whether the Na+/K+/Cl- cotransporter NKCC1 is also affected by audiogenic seizures and could, therefore, play a role in neuronal hyperexcitability within the GASH/Sal epilepsy model. Methods NKCC1 protein expression in both the GASH/Sal strain and wild type hamsters was analyzed by immunohistochemistry and Western blotting techniques. Brain regions examined included cortex, hippocampus, hypothalamus, inferior colliculus and pons-medulla oblongata, which were evaluated both at rest and after sound-inducing seizures in GASH/Sal hamsters. A complementary analysis of NKCC1 gene slc12a2 expression was conducted by real-time PCR. Finally, protein and mRNA levels of glutamate decarboxylase GAD67 were measured as an indicator of GABA release. Results The induction of seizures caused significant changes in NKCC1 expression in epileptic GASH/Sal hamsters, despite the similar brain expression pattern of NKCC1 in GASH/Sal and wild type hamsters in the absence of seizures. Interestingly, the regulation of brain NKCC1 by seizures demonstrated regional specificity, as protein levels exclusively increased in the hippocampus and hypothalamus. Complementary real-time PCR analysis revealed that NKCC1 regulation was post-transcriptional only in the hypothalamus. In addition, seizures also modulated GAD67 mRNA levels in a brain region-specific manner. The increased GAD67 expression in the hippocampus and hypothalamus of the epileptic hamster brain suggests that NKCC1 upregulation overlaps with GABA release in these regions during seizures. Conclusions Our results indicate that seizure induction causes dysregulation of NKCC1 expression in GASH/Sal animals, which overlaps with changes in GABA release. These observations provide evidence for the critical role of NKCC1 in how seizures affect neuronal excitability, and support NKCC1 contribution to the development of secondary foci of epileptogenic activity.
Collapse
Affiliation(s)
- Juan-Manuel Bonet-Fernández
- Neuropsychopharmacology Unit, Research Department, Albacete General Hospital, Albacete, Spain
- Biomedical Instrumentation Service, Faculty of Medicine, University of Castilla-La Mancha, Albacete, Spain
| | - Pedro Tranque
- Biomedical Instrumentation Service, Faculty of Medicine, University of Castilla-La Mancha, Albacete, Spain
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Albacete, Spain
| | - Jose Daniel Aroca-Aguilar
- Department of Genetics, Faculty of Medicine/Instituto de Investigación en Discapacidades Neurológicas (IDINE), University of Castilla-La Mancha, Albacete, Spain
| | - Luis J. Muñoz
- Instituto de Neurociencias de Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
| | - Dolores E. López
- Instituto de Neurociencias de Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
| | - Julio Escribano
- Department of Genetics, Faculty of Medicine/Instituto de Investigación en Discapacidades Neurológicas (IDINE), University of Castilla-La Mancha, Albacete, Spain
| | - Carlos de Cabo
- Neuropsychopharmacology Unit, Research Department, Albacete General Hospital, Albacete, Spain
| |
Collapse
|
20
|
Xiong H, Tang F, Guo Y, Xu R, Lei P. Neural Circuit Changes in Neurological Disorders: Evidence from in vivo Two-photon Imaging. Ageing Res Rev 2023; 87:101933. [PMID: 37061201 DOI: 10.1016/j.arr.2023.101933] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
Neural circuits, such as synaptic plasticity and neural activity, are critical components of healthy brain function. The consequent dynamic remodeling of neural circuits is an ongoing procedure affecting neuronal activities. Disruption of this essential process results in diseases. Advanced microscopic applications such as two-photon laser scanning microscopy have recently been applied to understand neural circuit changes during disease since it can visualize fine structural and functional cellular activation in living animals. In this review, we have summarized the latest work assessing the dynamic rewiring of postsynaptic dendritic spines and modulation of calcium transients in neurons of the intact living brain, focusing on their potential roles in neurological disorders (e.g. Alzheimer's disease, stroke, and epilepsy). Understanding the fine changes that occurred in the brain during disease is crucial for future clinical intervention developments.
Collapse
Affiliation(s)
- Huan Xiong
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China; Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China
| | - Fei Tang
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China
| | - Yujie Guo
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China.
| |
Collapse
|
21
|
Barrutieta-Arberas I, Ortuzar N, Vaquero-Rodríguez A, Picó-Gallardo M, Bengoetxea H, Guevara MA, Gargiulo PA, Lafuente JV. The role of ketamine in major depressive disorders: Effects on parvalbumin-positive interneurons in hippocampus. Exp Biol Med (Maywood) 2023; 248:588-595. [PMID: 37158084 PMCID: PMC10350797 DOI: 10.1177/15353702231170007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Major depressive disorder (MDD) is a complex illness that is arising as a growing public health concern. Although several brain areas are related to this type of disorders, at the cellular level, the parvalbumin-positive cells of the hippocampus interplay a very relevant role. They control pyramidal cell bursts, neuronal networks, basic microcircuit functions, and other complex neuronal tasks involved in mood disorders. In resistant depressions, the efficacy of current antidepressant treatments drops dramatically, so the new rapid-acting antidepressants (RAADs) are being postulated as novel treatments. Ketamine at subanesthetic doses and its derivative metabolites have been proposed as RAADs due to their rapid and sustained action by blocking N-methyl-d-aspartate (NMDA) receptors, which in turn lead to the release of brain-derived neurotrophic factor (BDNF). This mechanism produces a rapid plasticity activation mediated by neurotransmitter homeostasis, synapse recovery, and increased dendritic spines and therefore, it is a promising therapeutic approach to improve cognitive symptoms in MDD.
Collapse
Affiliation(s)
- I Barrutieta-Arberas
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - N Ortuzar
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Neurodegenerative Diseases Group, BioCruces Health Research Institute, 48903 Barakaldo, Spain
| | - A Vaquero-Rodríguez
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Neurodegenerative Diseases Group, BioCruces Health Research Institute, 48903 Barakaldo, Spain
| | - M Picó-Gallardo
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - H Bengoetxea
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Neurodegenerative Diseases Group, BioCruces Health Research Institute, 48903 Barakaldo, Spain
| | - MA Guevara
- Laboratory of Neurosciences and Experimental Psychology, Area of Pharmacology, Department of Pathology, Faculty of Medical Sciences, National Council of Scientific and Technical Research, National University of Cuyo, 5502 Mendoza, Argentina
| | - PA Gargiulo
- Laboratory of Neurosciences and Experimental Psychology, Area of Pharmacology, Department of Pathology, Faculty of Medical Sciences, National Council of Scientific and Technical Research, National University of Cuyo, 5502 Mendoza, Argentina
| | - JV Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Neurodegenerative Diseases Group, BioCruces Health Research Institute, 48903 Barakaldo, Spain
| |
Collapse
|
22
|
Ábrahám H, Kojima H, Götzer K, Molnár A, Tornóczky T, Seress L. Development of parvalbumin-immunoreactive neurons in the postnatal human hippocampal formation. Front Neuroanat 2023; 17:1058370. [PMID: 36816519 PMCID: PMC9932602 DOI: 10.3389/fnana.2023.1058370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction: Parvalbumin (PV) is a calcium-binding protein present in fast-spiking GABAergic neurons, such as basket and axo-axonic cells. Previous studies in non-human primates reported prenatal expression of PV in the temporal archicortex including entorhinal cortex and hippocampal formation. In contrast, PV-immunoreactivity was observed only postnatally in the human entorhinal cortex. Regarding PV expression in the human hippocampal formation, no information is available. Methods: In this study, the neurochemical maturation of PV-immunoreactive interneurons was studied in the postnatal developing human hippocampal formation. Results: Before birth, no PV-immunoreactive neurons could be detected in the human hippocampus. At birth, only a few PV-immunoreactive neurons were visible in Ammon's horn. The first PV-immunoreactive cells in the hilus of the dentate gyrus appeared at the age of 1 month. Even at the age of 5 months, only a few PV-immunopositive cells were present in the dentate hilus. The number of cells and their dendritic and axonal arborization in Ammon's horn and in the dentate gyrus gradually increased with age. Even at the age of 2 years, dendritic tree and axons of PV-immunoreactive neurons were less complex than can be seen in 8 and 11 years old children. Discussion: Our results showed that long-lasting maturation of PV-immunoreactive interneurons follows the developmental sequence of the subfields of the human hippocampal formation and provides further morphological evidence for the long-lasting functional maturation of the human cortex.
Collapse
Affiliation(s)
- Hajnalka Ábrahám
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Pécs, Hungary,Center for Neuroscience, University of Pécs, Pécs, Hungary,Institute for the Psychology of Special Needs, Bárczi Gusztáv Faculty of Special Needs Education, Eötvös Loránd University, Budapest, Hungary,*Correspondence: Hajnalka Ábrahám
| | - Hisae Kojima
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Pécs, Hungary
| | - Katalin Götzer
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Pécs, Hungary
| | - Abigél Molnár
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Pécs, Hungary
| | - Tamás Tornóczky
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| | - László Seress
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Pécs, Hungary,Center for Neuroscience, University of Pécs, Pécs, Hungary
| |
Collapse
|
23
|
Zeng C, Lei D, Lu Y, Huang Q, Wu Y, Yang S, Wu Y. Parvalbumin in the metabolic pathway of glutamate and γ-aminobutyric acid: Influence on expression of GAD65 and GAD67. Arch Biochem Biophys 2023; 734:109499. [PMID: 36587827 DOI: 10.1016/j.abb.2022.109499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
Parvalbumin-expressing neurons are a type of inhibitory intermediate neuron that play an important role in terminating seizures. The aim of the present study was to use lentiviral construction and packaging technology to overexpress and silence the parvalbumin gene in pheochromocytoma (PC12) cells, and to evaluate how parvalbumin influences the metabolic pathway involving glutamate and γ-aminobutyric acid (GABA). In this work, Immunofluorescence staining was used to verify the differentiation of PC12 cells into neurons after adding nerve growth factor (NGF). Western blotting and real-time quantitative polymerase chain reaction (qRT-PCR) were used to confirm lentivirus-mediated knockdown or overexpression of parvalbumin. Expression of parvalbumin, the 65-kDa GAD isoform (GAD65), and the 67-kDa GAD isoform (GAD67) in neuronal cells was examined at the mRNA and protein levels using qRT-PCR, western blotting and immunofluorescence staining, while intracellular glutamate and GABA levels were determined by high performance liquid chromatography (HPLC). We demonstrate that the expression of parvalbumin is associated with GAD65 and GAD67. Interestingly, overexpression of parvalbumin up-regulated GAD65 and GAD67, increased GABA concentration, and decreased glutamate concentration. Silencing of parvalbumin led to the opposite effects. Altogether, parvalbumin affected the expression of GAD65 and GAD67, thereby influencing the metabolic pathway involving glutamate and GABA.
Collapse
Affiliation(s)
- Chunmei Zeng
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, #6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Danqing Lei
- Experimental Center of Life Sciences Institutes, Guangxi Medical University, #22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Yuling Lu
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, #6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Qi Huang
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, #6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Ying Wu
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, #6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Shengyu Yang
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, #6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Yuan Wu
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, #6 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
24
|
Bae S, Lim HK, Jeong Y, Kim SG, Park SM, Shon YM, Suh M. Deep brain stimulation of the anterior nuclei of the thalamus can alleviate seizure severity and induce hippocampal GABAergic neuronal changes in a pilocarpine-induced epileptic mouse brain. Cereb Cortex 2022; 32:5530-5543. [PMID: 35258078 DOI: 10.1093/cercor/bhac033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 01/25/2023] Open
Abstract
Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) has been widely used as an effective treatment for refractory temporal lobe epilepsy. Despite its promising clinical outcome, the exact mechanism of how ANT-DBS alleviates seizure severity has not been fully understood, especially at the cellular level. To assess effects of DBS, the present study examined electroencephalography (EEG) signals and locomotor behavior changes and conducted immunohistochemical analyses to examine changes in neuronal activity, number of neurons, and neurogenesis of inhibitory neurons in different hippocampal subregions. ANT-DBS alleviated seizure activity, abnormal locomotor behaviors, reduced theta-band, increased gamma-band EEG power in the interictal state, and increased the number of neurons in the dentate gyrus (DG). The number of parvalbumin- and somatostatin-expressing inhibitory neurons was recovered to the level in DG and CA1 of naïve mice. Notably, BrdU-positive inhibitory neurons were increased. In conclusion, ANT-DBS not only could reduce the number of seizures, but also could induce neuronal changes in the hippocampus, which is a key region involved in chronic epileptogenesis. Importantly, our results suggest that ANT-DBS may lead to hippocampal subregion-specific cellular recovery of GABAergic inhibitory neurons.
Collapse
Affiliation(s)
- Sungjun Bae
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.,IMNEWRUN Inc., N Center Bldg. A 5F, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hyun-Kyoung Lim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, South Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, South Korea
| | - Yoonyi Jeong
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea
| | - Sung-Min Park
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Young-Min Shon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea.,Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Suwon 16419, South Korea
| | - Minah Suh
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.,IMNEWRUN Inc., N Center Bldg. A 5F, Sungkyunkwan University, Suwon 16419, South Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, South Korea.,Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
25
|
Barker-Haliski M, Pitsch J, Galanopoulou AS, Köhling R. A companion to the preclinical common data elements for phenotyping seizures and epilepsy in rodent models. A report of the TASK3-WG1C: Phenotyping working group of the ILAE/AES joint translational task force. Epilepsia Open 2022. [PMID: 36461665 DOI: 10.1002/epi4.12676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Epilepsy is a heterogeneous disorder characterized by spontaneous seizures and behavioral comorbidities. The underlying mechanisms of seizures and epilepsy across various syndromes lead to diverse clinical presentation and features. Similarly, animal models of epilepsy arise from numerous dissimilar inciting events. Preclinical seizure and epilepsy models can be evoked through many different protocols, leaving the phenotypic reporting subject to diverse interpretations. Serendipity can also play an outsized role in uncovering novel drivers of seizures or epilepsy, with some investigators even stumbling into epilepsy research because of a new genetic cross or unintentional drug effect. The heightened emphasis on rigor and reproducibility in preclinical research, including that which is conducted for epilepsy, underscores the need for standardized phenotyping strategies. To address this goal as part of the TASK3-WG1C Working Group of the International League Against Epilepsy (ILAE)/American Epilepsy Society (AES) Joint Translational Task Force, we developed a case report form (CRF) to describe the common data elements (CDEs) necessary for the phenotyping of seizure-like behaviors in rodents. This companion manuscript describes the use of the proposed CDEs and CRF for the visual, behavioral phenotyping of seizure-like behaviors. These phenotyping CDEs and accompanying CRF can be used in parallel with video-electroencephalography (EEG) studies or as a first visual screen to determine whether a model manifests seizure-like behaviors before utilizing more specialized diagnostic tests, like video-EEG. Systematic logging of seizure-like behaviors may help identify models that could benefit from more specialized diagnostic tests to determine whether these are epileptic seizures, such as video-EEG.
Collapse
Affiliation(s)
- Melissa Barker-Haliski
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Julika Pitsch
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, New York, USA
- Dominick P Purpura Department of Neuroscience, Isabelle Rapin Division of Child Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Rüdiger Köhling
- Oscar-Langendorff-Institut für Physiologie, Universitätsmedizin Rostock, Rostock, Germany
| |
Collapse
|
26
|
Drexel M, Sperk G. Seizure-induced overexpression of NPY induces epileptic tolerance in a mouse model of spontaneous recurrent seizures. Front Mol Neurosci 2022; 15:974784. [PMID: 36311021 PMCID: PMC9608171 DOI: 10.3389/fnmol.2022.974784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Epileptic seizures result in pronounced over-expression of neuropeptide Y (NPY). In vivo and in vitro studies revealed that NPY exerts potent anticonvulsive actions through presynaptic Y2 receptors by suppressing glutamate release from principal neurons. We now investigated whether seizure-induced over-expression of NPY contributes to epileptic tolerance induced by preceding seizures. We used a previously established animal model based on selective inhibition of GABA release from parvalbumin (PV)-containing interneurons in the subiculum in mice. The animals present spontaneous recurrent seizures (SRS) and clusters of interictal spikes (IS). The frequency of SRS declined after five to six weeks, indicating development of seizure tolerance. In interneurons of the subiculum and sector CA1, SRS induced over-expression of NPY that persisted there for a prolonged time despite of a later decrease in SRS frequency. In contrast to NPY, somatostatin was not overexpressed in the respective axon terminals. Contrary to interneurons, NPY was only transiently expressed in mossy fibers. To demonstrate a protective function of endogenous, over-expressed NPY, we injected the selective NPY-Y2 receptor antagonist JNJ 5207787 simultaneously challenging the mice by a low dose of pentylenetetrazol (PTZ, 30 or 40 mg/kg, i.p.). In control mice, neither PTZ nor PTZ plus JNJ 5207787 induced convulsions. In mice with silenced GABA/PV neurons, PTZ alone only modestly enhanced EEG activity. When we injected JNJ 5207787 together with PTZ (either dose) the number of seizures, however, became significantly increased. In addition, in the epileptic mice CB1 receptor immunoreactivity was reduced in terminal areas of basket cells pointing to reduced presynaptic inhibition of GABA release from these neurons. Our experiments demonstrate that SRS result in overexpression of NPY in hippocampal interneurons. NPY overexpression persists for several weeks and may be related to later decreasing SRS frequency. Injection of the Y2 receptor antagonist JNJ 5207787 prevents this protective action of NPY only when release of the peptide is triggered by injection of PTZ and induces pronounced convulsions. Thus, over-expressed NPY released “on demand” by seizures may help terminating acute seizures and may prevent from recurrent epileptic activity.
Collapse
|
27
|
A hypothalamic dopamine locus for psychostimulant-induced hyperlocomotion in mice. Nat Commun 2022; 13:5944. [PMID: 36209152 PMCID: PMC9547883 DOI: 10.1038/s41467-022-33584-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
The lateral septum (LS) has been implicated in the regulation of locomotion. Nevertheless, the neurons synchronizing LS activity with the brain’s clock in the suprachiasmatic nucleus (SCN) remain unknown. By interrogating the molecular, anatomical and physiological heterogeneity of dopamine neurons of the periventricular nucleus (PeVN; A14 catecholaminergic group), we find that Th+/Dat1+ cells from its anterior subdivision innervate the LS in mice. These dopamine neurons receive dense neuropeptidergic innervation from the SCN. Reciprocal viral tracing in combination with optogenetic stimulation ex vivo identified somatostatin-containing neurons in the LS as preferred synaptic targets of extrahypothalamic A14 efferents. In vivo chemogenetic manipulation of anterior A14 neurons impacted locomotion. Moreover, chemogenetic inhibition of dopamine output from the anterior PeVN normalized amphetamine-induced hyperlocomotion, particularly during sedentary periods. Cumulatively, our findings identify a hypothalamic locus for the diurnal control of locomotion and pinpoint a midbrain-independent cellular target of psychostimulants. The psychostimulant-sensitive neural mechanism linking the circadian clock to locomotion is unknown. Here, hypothalamic A14 neurons are shown to time diurnal activity by entraining the lateral septum, and their activity is shown to be sensitive to amphetamine.
Collapse
|
28
|
Seizer L, Rahimi S, Santos-Sierra S, Drexel M. Expression of toll like receptor 8 (TLR8) in specific groups of mouse hippocampal interneurons. PLoS One 2022; 17:e0267860. [PMID: 35507634 PMCID: PMC9067651 DOI: 10.1371/journal.pone.0267860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/16/2022] [Indexed: 11/18/2022] Open
Abstract
Toll-like receptors (TLR) are one of the main constituents of the innate immune system in mammals. They can detect conserved microbial structures (pathogen-associated molecular patterns) and host-derived ligands that are produced during cellular stress and damage (danger-associated molecular patterns) and may then initiate an intracellular signaling cascade leading to the expression of pro-inflammatory cytokines and immediate immune responses. Some TLR (TLR1, 2, 4, 5, and 6) are expressed on the cell surface while others (TLR3, 7, 8 and 9) are present on the surface of endosomes and their ligands require internalization before recognition is possible. Several TLR have also been detected in neurons where they may serve functions that are not related to immune responses. TLR2, 3, and 4 have been described in cortical neurons and, for TLR4, a seizure-promoting role in epilepsies associated with inflammation has been shown. TLR3, 7, and 8 expressed in neurons seem to influence the growth or withdrawal of neurites and robust activation of TLR8 in neurons may even induce neuronal death. The goal of the current study was to investigate the expression of TLR8 in the hippocampus of mice during postnatal development and in adulthood. We focused on three functionally distinct groups of GABAergic interneurons characterized by the expression of the molecular markers parvalbumin, somatostatin, or calretinin, and we applied double fluorescence immunohistochemistry and cell counts to quantify co-expression of TLR8 in the three groups of GABA-interneurons across hippocampal subregions. We found subregion-specific differences in the expression of TLR8 in these interneurons. During postnatal development, TLR8 was detected only in mice older than P5. While only a small fraction of hippocampal calretinin-positive interneurons expressed TLR8, most parvalbumin-positive interneurons in all hippocampal subregions co-expressed TLR8. Somatostatin-positive interneurons co-expressing TLR8 were mainly present in hippocampal sector CA3 but rare in the dentate gyrus and CA1. High expression of TLR8 in parvalbumin-interneurons may contribute to their high vulnerability in human temporal lobe epilepsy.
Collapse
Affiliation(s)
- Lennart Seizer
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Sadegh Rahimi
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Meinrad Drexel
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
29
|
Mueller JS, Tescarollo FC, Sun H. DREADDs in Epilepsy Research: Network-Based Review. Front Mol Neurosci 2022; 15:863003. [PMID: 35465094 PMCID: PMC9021489 DOI: 10.3389/fnmol.2022.863003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Epilepsy can be interpreted as altered brain rhythms from overexcitation or insufficient inhibition. Chemogenetic tools have revolutionized neuroscience research because they allow "on demand" excitation or inhibition of neurons with high cellular specificity. Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are the most frequently used chemogenetic techniques in epilepsy research. These engineered muscarinic receptors allow researchers to excite or inhibit targeted neurons with exogenous ligands. As a result, DREADDs have been applied to investigate the underlying cellular and network mechanisms of epilepsy. Here, we review the existing literature that has applied DREADDs to understand the pathophysiology of epilepsy. The aim of this review is to provide a general introduction to DREADDs with a focus on summarizing the current main findings in experimental epilepsy research using these techniques. Furthermore, we explore how DREADDs may be applied therapeutically as highly innovative treatments for epilepsy.
Collapse
Affiliation(s)
| | | | - Hai Sun
- Department of Neurosurgery, Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| |
Collapse
|
30
|
Mikroulis A, Ledri M, Ruffolo G, Palma E, Sperk G, Dalli J, Vezzani A, Kokaia M. Lipid mediator n-3 docosapentaenoic acid-derived protectin D1 enhances synaptic inhibition of hippocampal principal neurons by interaction with a G-protein-coupled receptor. FASEB J 2022; 36:e22203. [PMID: 35188290 PMCID: PMC9306510 DOI: 10.1096/fj.202101815r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 01/16/2023]
Abstract
Epilepsy is a severe neurological disease manifested by spontaneous recurrent seizures due to abnormal hyper‐synchronization of neuronal activity. Epilepsy affects about 1% of the population and up to 40% of patients experience seizures that are resistant to currently available drugs, thus highlighting an urgent need for novel treatments. In this regard, anti‐inflammatory drugs emerged as potential therapeutic candidates. In particular, specific molecules apt to resolve the neuroinflammatory response occurring in acquired epilepsies have been proven to counteract seizures in experimental models, and humans. One candidate investigational molecule has been recently identified as the lipid mediator n‐3 docosapentaenoic acid‐derived protectin D1 (PD1n‐3DPA) which significantly reduced seizures, cell loss, and cognitive deficit in a mouse model of acquired epilepsy. However, the mechanisms that mediate the PD1n‐3DPA effect remain elusive. We here addressed whether PD1n‐3DPA has direct effects on neuronal activity independent of its anti‐inflammatory action. We incubated, therefore, hippocampal slices with PD1n‐3DPA and investigated its effect on excitatory and inhibitory synaptic inputs to the CA1 pyramidal neurons. We demonstrate that inhibitory drive onto the perisomatic region of the pyramidal neurons is increased by PD1n‐3DPA, and this effect is mediated by pertussis toxin‐sensitive G‐protein coupled receptors. Our data indicate that PD1n‐3DPA acts directly on inhibitory transmission, most likely at the presynaptic site of inhibitory synapses as also supported by Xenopus oocytes and immunohistochemical experiments. Thus, in addition to its anti‐inflammatory effects, PD1n‐3DPA anti‐seizure and neuroprotective effects may be mediated by its direct action on neuronal excitability by modulating their synaptic inputs.
Collapse
Affiliation(s)
- Apostolos Mikroulis
- Epilepsy Center, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Marco Ledri
- Epilepsy Center, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, Rome, Italy.,IRCCS San Raffaele Pisana, Rome, Italy
| | - Eleonora Palma
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, Rome, Italy
| | - Günther Sperk
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK
| | - Annamaria Vezzani
- Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| | - Merab Kokaia
- Epilepsy Center, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
31
|
Godoy LD, Prizon T, Rossignoli MT, Leite JP, Liberato JL. Parvalbumin Role in Epilepsy and Psychiatric Comorbidities: From Mechanism to Intervention. Front Integr Neurosci 2022; 16:765324. [PMID: 35250498 PMCID: PMC8891758 DOI: 10.3389/fnint.2022.765324] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
Parvalbumin is a calcium-binding protein present in inhibitory interneurons that play an essential role in regulating many physiological processes, such as intracellular signaling and synaptic transmission. Changes in parvalbumin expression are deeply related to epilepsy, which is considered one of the most disabling neuropathologies. Epilepsy is a complex multi-factor group of disorders characterized by periods of hypersynchronous activity and hyperexcitability within brain networks. In this scenario, inhibitory neurotransmission dysfunction in modulating excitatory transmission related to the loss of subsets of parvalbumin-expressing inhibitory interneuron may have a prominent role in disrupted excitability. Some studies also reported that parvalbumin-positive interneurons altered function might contribute to psychiatric comorbidities associated with epilepsy, such as depression, anxiety, and psychosis. Understanding the epileptogenic process and comorbidities associated with epilepsy have significantly advanced through preclinical and clinical investigation. In this review, evidence from parvalbumin altered function in epilepsy and associated psychiatric comorbidities were explored with a translational perspective. Some advances in potential therapeutic interventions are highlighted, from current antiepileptic and neuroprotective drugs to cutting edge modulation of parvalbumin subpopulations using optogenetics, designer receptors exclusively activated by designer drugs (DREADD) techniques, transcranial magnetic stimulation, genome engineering, and cell grafting. Creating new perspectives on mechanisms and therapeutic strategies is valuable for understanding the pathophysiology of epilepsy and its psychiatric comorbidities and improving efficiency in clinical intervention.
Collapse
Affiliation(s)
- Lívea Dornela Godoy
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Tamiris Prizon
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - João Pereira Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- João Pereira Leite,
| | - José Luiz Liberato
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- *Correspondence: José Luiz Liberato,
| |
Collapse
|
32
|
Herrmann T, Gerth M, Dittmann R, Pensold D, Ungelenk M, Liebmann L, Hübner CA. Disruption of KCC2 in Parvalbumin-Positive Interneurons Is Associated With a Decreased Seizure Threshold and a Progressive Loss of Parvalbumin-Positive Interneurons. Front Mol Neurosci 2022; 14:807090. [PMID: 35185464 PMCID: PMC8850922 DOI: 10.3389/fnmol.2021.807090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023] Open
Abstract
GABAA receptors are ligand-gated ion channels, which are predominantly permeable for chloride. The neuronal K-Cl cotransporter KCC2 lowers the intraneuronal chloride concentration and thus plays an important role for GABA signaling. KCC2 loss-of-function is associated with seizures and epilepsy. Here, we show that KCC2 is expressed in the majority of parvalbumin-positive interneurons (PV-INs) of the mouse brain. PV-INs receive excitatory input from principle cells and in turn control principle cell activity by perisomatic inhibition and inhibitory input from other interneurons. Upon Cre-mediated disruption of KCC2 in mice, the polarity of the GABA response of PV-INs changed from hyperpolarization to depolarization for the majority of PV-INs. Reduced excitatory postsynaptic potential-spike (E-S) coupling and increased spontaneous inhibitory postsynaptic current (sIPSC) frequencies further suggest that PV-INs are disinhibited upon disruption of KCC2. In vivo, PV-IN-specific KCC2 knockout mice display a reduced seizure threshold and develop spontaneous sometimes fatal seizures. We further found a time dependent loss of PV-INs, which was preceded by an up-regulation of pro-apoptotic genes upon disruption of KCC2.
Collapse
|
33
|
Drexel M, Rahimi S, Sperk G. Silencing of hippocampal somatostatin interneurons induces recurrent spontaneous limbic seizures in mice. Neuroscience 2022; 487:155-165. [DOI: 10.1016/j.neuroscience.2022.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 12/22/2022]
|
34
|
Chen S, Chen F, Amin N, Ren Q, Ye S, Hu Z, Tan X, Jiang M, Fang M. Defects of parvalbumin-positive interneurons in the ventral dentate gyrus region are implicated depression-like behavior in mice. Brain Behav Immun 2022; 99:27-42. [PMID: 34562597 DOI: 10.1016/j.bbi.2021.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/01/2021] [Accepted: 09/18/2021] [Indexed: 12/21/2022] Open
Abstract
Depression is an increasingly common but extremely serve mood disorder that remains poorly understood and inadequately treated. Fast-spiking parvalbumin-positive interneurons (PVIs), a subpopulation of GABAergic interneurons (GABA, g-aminobutyric acid), exhibit a widespread distribution throughout the hippocampus, and has been reported to play an important role in a variety of mental disorders. However, the relationship between depression and hippocampal PVIs remains unclear. Here in this present study, a series of experiments were conducted to clarify the potential relationship. Here, chronic unpredicted mild stress (CUMS) and Lipopolysaccharide (LPS) injection were introduced to induce depression-like behavior in mice, and led to a clear decline in PVIs numbers in the ventral hippocampal (vHPC), particularly in the ventral dentate gyrus (vDG) subfield. After a selectively removal of the PVIs in PV-ires-Cre::Ai14 mice, we confirmed that ablation of PVIs from the vDG induced depression-like behavior. Furthermore, we found that the removal of vDG-PVIs induced depression likely to be accounted for upregulation of neuroinflammation. These findings facilitate us better understand the role of hippocampal PVIs in depression.
Collapse
Affiliation(s)
- Shijia Chen
- Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; Institute of Neuroscience, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Fengpei Chen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Nashwa Amin
- Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; Institute of Neuroscience, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China; Department of Zoology, Faculty of Science, Aswan University, Aswan 81521, Egypt
| | - Qiannan Ren
- Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; Institute of Neuroscience, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shan Ye
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhiying Hu
- Obstetrics & Gynecology Department, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou 310003, China
| | - Xiaoning Tan
- Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; Institute of Neuroscience, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Mizu Jiang
- Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Marong Fang
- Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
| |
Collapse
|
35
|
Abstract
Temporal lobe epilepsy is considered to be one of the most common and severe forms of focal epilepsies. Patients frequently develop cognitive deficits and emotional blunting along progression of the disease. The high incidence of refractoriness to antiepileptic drugs and a frequent lack of admissibility to surgery pose an unmet medical challenge. In the urgent quest for novel treatment strategies, neuropeptides and their receptors are interesting candidates. However, their therapeutic potential has not yet been fully exploited. This chapter focuses on the functional role of the dynorphins (Dyns) and the kappa opioid receptor (KOR) system in temporal lobe epilepsy and the hippocampus.Genetic polymorphisms in the prepro-dynorphin (pDyn) gene causing lower levels of Dyns in humans and pDyn gene knockout in mice increase the risk to develop epilepsy. This suggests a role of Dyns and KOR as modulators of neuronal excitability. Indeed, KOR agonists induce inhibition of presynaptic neurotransmitter release, as well as postsynaptic hyperpolarization in glutamatergic neurons, both producing anticonvulsant effects.The development of new approaches to modulate the complex KOR signalling cascade (e.g. biased agonism and gene therapy) opens up new exciting therapeutic opportunities with regard to seizure control and epilepsy. Potential adverse side effects of KOR agonists may be minimized through functional selectivity or locally restricted treatment. Preclinical data suggest a high potential of such approaches to control seizures.
Collapse
Affiliation(s)
- Luca Zangrandi
- Institute of Virology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Christoph Schwarzer
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
36
|
Emerging strategies for the genetic dissection of gene functions, cell types, and neural circuits in the mammalian brain. Mol Psychiatry 2022; 27:422-435. [PMID: 34561609 DOI: 10.1038/s41380-021-01292-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
The mammalian brain is composed of a large number of highly diverse cell types with different molecular, anatomical, and functional features. Distinct cellular identities are generated during development under the regulation of intricate genetic programs and manifested through unique combinations of gene expression. Recent advancements in our understanding of the molecular and cellular mechanisms underlying the assembly, function, and pathology of the brain circuitry depend on the invention and application of genetic strategies that engage intrinsic gene regulatory mechanisms. Here we review the strategies for gene regulation on DNA, RNA, and protein levels and their applications in cell type targeting and neural circuit dissection. We highlight newly emerged strategies and emphasize the importance of combinatorial approaches. We also discuss the potential caveats and pitfalls in current methods and suggest future prospects to improve their comprehensiveness and versatility.
Collapse
|
37
|
Jones EAA, Rao A, Zilberter M, Djukic B, Bant JS, Gillespie AK, Koutsodendris N, Nelson M, Yoon SY, Huang K, Yuan H, Gill TM, Huang Y, Frank LM. Dentate gyrus and CA3 GABAergic interneurons bidirectionally modulate signatures of internal and external drive to CA1. Cell Rep 2021; 37:110159. [PMID: 34965435 PMCID: PMC9069800 DOI: 10.1016/j.celrep.2021.110159] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 10/04/2021] [Accepted: 12/01/2021] [Indexed: 01/19/2023] Open
Abstract
Specific classes of GABAergic neurons play specific roles in regulating information processing in the brain. In the hippocampus, two major classes, parvalbumin-expressing (PV+) and somatostatin-expressing (SST+), differentially regulate endogenous firing patterns and target subcellular compartments of principal cells. How these classes regulate the flow of information throughout the hippocampus is poorly understood. We hypothesize that PV+ and SST+ interneurons in the dentate gyrus (DG) and CA3 differentially modulate CA3 patterns of output, thereby altering the influence of CA3 on CA1. We find that while suppressing either interneuron class increases DG and CA3 output, the effects on CA1 were very different. Suppressing PV+ interneurons increases local field potential signatures of coupling from CA3 to CA1 and decreases signatures of coupling from entorhinal cortex to CA1; suppressing SST+ interneurons has the opposite effect. Thus, DG and CA3 PV+ and SST+ interneurons bidirectionally modulate the flow of information through the hippocampal circuit.
Collapse
Affiliation(s)
- Emily A. Aery Jones
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA
| | - Antara Rao
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA.,Developmental & Stem Cell Biology Graduate Program, University of California, San Francisco, CA 94143, USA
| | - Misha Zilberter
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Biljana Djukic
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Jason S. Bant
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Anna K. Gillespie
- Kavli Institute for Fundamental Neuroscience and Department of Physiology, University of California, San Francisco, CA 94143, USA
| | - Nicole Koutsodendris
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA.,Developmental & Stem Cell Biology Graduate Program, University of California, San Francisco, CA 94143, USA
| | - Maxine Nelson
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA
| | - Seo Yeon Yoon
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Ky Huang
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Heidi Yuan
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Theodore M. Gill
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA,Developmental & Stem Cell Biology Graduate Program, University of California, San Francisco, CA 94143, USA,Departments of Neurology and Pathology, University of California, San Francisco, CA 94143, USA,Gladstone Center for Translational Advancement, San Francisco, CA 94158, USA,Correspondence should be addressed to: Loren Frank () or Yadong Huang ()
| | - Loren M. Frank
- Kavli Institute for Fundamental Neuroscience and Department of Physiology, University of California, San Francisco, CA 94143, USA,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA,Lead contact,Correspondence should be addressed to: Loren Frank () or Yadong Huang ()
| |
Collapse
|
38
|
Hiltunen J, Ndode-Ekane XE, Lipponen A, Drexel M, Sperk G, Puhakka N, Pitkänen A. Regulation of Parvalbumin Interactome in the Perilesional Cortex after Experimental Traumatic Brain Injury. Neuroscience 2021; 475:52-72. [PMID: 34455012 DOI: 10.1016/j.neuroscience.2021.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Traumatic brain injury (TBI) causes 10-20% of structural epilepsy, with seizures typically originating in the cortex. Alterations in the neuronal microcircuits in the cortical epileptogenic zone, however, are poorly understood. Here, we assessed TBI-induced changes in perisomatic gamma aminobutyric acid (GABA)-ergic innervation in the perilesional cortex. We hypothesized that TBI will damage parvalbumin (PV)-immunoreactive inhibitory neurons and induce regulation of the associated GABAergic molecular interactome. TBI was induced in adult male Sprague-Dawley rats by lateral fluid-percussion injury. At 1-month post-TBI, the number of PV-positive somata was plotted on unfolded cortical maps and the distribution and density of immunopositive terminals analyzed. Qualitative analysis revealed either patchy microlesions of several hundred micrometers in diameter or diffuse neuronal loss. Quantitative analysis demonstrated a reduction in the number of PV-positive interneurons in patches down to 0% of that in sham-operated controls in the perilesional cortex. In the majority of patches, the cell numbers ranged from 71% to 90% that of the controls. The loss of PV-positive somata was accompanied by decreased axonal labeling. In situ hybridization revealed downregulated PV mRNA expression in the perilesional cortex. Gene Set Enrichment Analysis indicated a robustly downregulated expression profile of PV-related genes, which was confirmed by quantitative reverse transcriptase polymerase chain reaction. Specifically, we found that genes encoding postsynaptic GABA-A receptor genes, Gabrg2 and Gabrd, were downregulated in TBI animals compared with controls. Our data suggests that patchy reduction in PV-positive perisomatic inhibitory innervation contributes to the development of focal cortical inhibitory deficit after TBI.
Collapse
Affiliation(s)
- Johanna Hiltunen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland
| | - Xavier Ekolle Ndode-Ekane
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland
| | - Anssi Lipponen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland
| | - Meinrad Drexel
- Institute of Molecular and Cellular Pharmacology, Medical University Innsbruck, Peter-Mayr-Str. 1, 6020 Innsbruck, Austria
| | - Günther Sperk
- Department of Pharmacology, Medical University Innsbruck, Peter-Mayr-Str. 1a, 6020 Innsbruck, Austria
| | - Noora Puhakka
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland
| | - Asla Pitkänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland.
| |
Collapse
|
39
|
Dudok B, Klein PM, Soltesz I. Toward Understanding the Diverse Roles of Perisomatic Interneurons in Epilepsy. Epilepsy Curr 2021; 22:54-60. [PMID: 35233202 PMCID: PMC8832350 DOI: 10.1177/15357597211053687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Epileptic seizures are associated with excessive neuronal spiking. Perisomatic
γ-aminobutyric acid (GABA)ergic interneurons specifically innervate the subcellular
domains of postsynaptic excitatory cells that are critical for spike generation. With a
revolution in transcriptomics-based cell taxonomy driving the development of novel
transgenic mouse lines, selectively monitoring and modulating previously elusive
interneuron types is becoming increasingly feasible. Emerging evidence suggests that the
three types of hippocampal perisomatic interneurons, axo-axonic cells, along with
parvalbumin- and cholecystokinin-expressing basket cells, each follow unique activity
patterns in vivo, suggesting distinctive roles in regulating epileptic networks.
Collapse
Affiliation(s)
- Barna Dudok
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Peter M. Klein
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
40
|
Sun W, Choi I, Stoyanov S, Senkov O, Ponimaskin E, Winter Y, Pakan JMP, Dityatev A. Context value updating and multidimensional neuronal encoding in the retrosplenial cortex. Nat Commun 2021; 12:6045. [PMID: 34663792 PMCID: PMC8523535 DOI: 10.1038/s41467-021-26301-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 09/24/2021] [Indexed: 11/26/2022] Open
Abstract
The retrosplenial cortex (RSC) has diverse functional inputs and is engaged by various sensory, spatial, and associative learning tasks. We examine how multiple functional aspects are integrated on the single-cell level in the RSC and how the encoding of task-related parameters changes across learning. Using a visuospatial context discrimination paradigm and two-photon calcium imaging in behaving mice, a large proportion of dysgranular RSC neurons was found to encode multiple task-related dimensions while forming context-value associations across learning. During reversal learning requiring increased cognitive flexibility, we revealed an increased proportion of multidimensional encoding neurons that showed higher decoding accuracy for behaviorally relevant context-value associations. Chemogenetic inactivation of RSC led to decreased behavioral context discrimination during learning phases in which context-value associations were formed, while recall of previously formed associations remained intact. RSC inactivation resulted in a persistent positive behavioral bias in valuing contexts, indicating a role for the RSC in context-value updating.
Collapse
Affiliation(s)
- Weilun Sun
- grid.424247.30000 0004 0438 0426Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany ,grid.418723.b0000 0001 2109 6265Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Ilseob Choi
- grid.424247.30000 0004 0438 0426Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany ,grid.418723.b0000 0001 2109 6265Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Stoyan Stoyanov
- grid.424247.30000 0004 0438 0426Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Oleg Senkov
- grid.424247.30000 0004 0438 0426Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Evgeni Ponimaskin
- grid.10423.340000 0000 9529 9877Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - York Winter
- grid.7468.d0000 0001 2248 7639Institute for Biology, Humboldt University, Berlin, Germany
| | - Janelle M. P. Pakan
- grid.418723.b0000 0001 2109 6265Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany ,grid.5807.a0000 0001 1018 4307Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Alexander Dityatev
- grid.424247.30000 0004 0438 0426Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany ,grid.418723.b0000 0001 2109 6265Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany ,grid.5807.a0000 0001 1018 4307Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
41
|
Pinna A, Colasanti A. The Neurometabolic Basis of Mood Instability: The Parvalbumin Interneuron Link-A Systematic Review and Meta-Analysis. Front Pharmacol 2021; 12:689473. [PMID: 34616292 PMCID: PMC8488267 DOI: 10.3389/fphar.2021.689473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022] Open
Abstract
The neurobiological bases of mood instability are poorly understood. Neuronal network alterations and neurometabolic abnormalities have been implicated in the pathophysiology of mood and anxiety conditions associated with mood instability and hence are candidate mechanisms underlying its neurobiology. Fast-spiking parvalbumin GABAergic interneurons modulate the activity of principal excitatory neurons through their inhibitory action determining precise neuronal excitation balance. These interneurons are directly involved in generating neuronal networks activities responsible for sustaining higher cerebral functions and are especially vulnerable to metabolic stress associated with deficiency of energy substrates or mitochondrial dysfunction. Parvalbumin interneurons are therefore candidate key players involved in mechanisms underlying the pathogenesis of brain disorders associated with both neuronal networks' dysfunction and brain metabolism dysregulation. To provide empirical support to this hypothesis, we hereby report meta-analytical evidence of parvalbumin interneurons loss or dysfunction in the brain of patients with Bipolar Affective Disorder (BPAD), a condition primarily characterized by mood instability for which the pathophysiological role of mitochondrial dysfunction has recently emerged as critically important. We then present a comprehensive review of evidence from the literature illustrating the bidirectional relationship between deficiency in mitochondrial-dependent energy production and parvalbumin interneuron abnormalities. We propose a mechanistic explanation of how alterations in neuronal excitability, resulting from parvalbumin interneurons loss or dysfunction, might manifest clinically as mood instability, a poorly understood clinical phenotype typical of the most severe forms of affective disorders. The evidence we report provides insights on the broader therapeutic potential of pharmacologically targeting parvalbumin interneurons in psychiatric and neurological conditions characterized by both neurometabolic and neuroexcitability abnormalities.
Collapse
Affiliation(s)
- Antonello Pinna
- School of Life Sciences, University of Sussex, Brighton, United Kingdom.,Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Alessandro Colasanti
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
42
|
Lentini C, d'Orange M, Marichal N, Trottmann MM, Vignoles R, Foucault L, Verrier C, Massera C, Raineteau O, Conzelmann KK, Rival-Gervier S, Depaulis A, Berninger B, Heinrich C. Reprogramming reactive glia into interneurons reduces chronic seizure activity in a mouse model of mesial temporal lobe epilepsy. Cell Stem Cell 2021; 28:2104-2121.e10. [PMID: 34592167 PMCID: PMC8657801 DOI: 10.1016/j.stem.2021.09.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 07/20/2021] [Accepted: 09/03/2021] [Indexed: 12/03/2022]
Abstract
Reprogramming brain-resident glial cells into clinically relevant induced neurons (iNs) is an emerging strategy toward replacing lost neurons and restoring lost brain functions. A fundamental question is now whether iNs can promote functional recovery in pathological contexts. We addressed this question in the context of therapy-resistant mesial temporal lobe epilepsy (MTLE), which is associated with hippocampal seizures and degeneration of hippocampal GABAergic interneurons. Using a MTLE mouse model, we show that retrovirus-driven expression of Ascl1 and Dlx2 in reactive hippocampal glia in situ, or in cortical astroglia grafted in the epileptic hippocampus, causes efficient reprogramming into iNs exhibiting hallmarks of interneurons. These induced interneurons functionally integrate into epileptic networks and establish GABAergic synapses onto dentate granule cells. MTLE mice with GABAergic iNs show a significant reduction in both the number and cumulative duration of spontaneous recurrent hippocampal seizures. Thus glia-to-neuron reprogramming is a potential disease-modifying strategy to reduce seizures in therapy-resistant epilepsy. Retroviruses target reactive hippocampal glia proliferating in a mouse model of mesial temporal lobe epilepsy Ascl1 and Dlx2 reprogram reactive glia into GABAergic interneurons in the epileptic hippocampus Induced interneurons establish GABAergic synapses onto dentate granule cells Induced interneurons reduce chronic epileptic activity in the hippocampus
Collapse
Affiliation(s)
- Célia Lentini
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Marie d'Orange
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Nicolás Marichal
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Marie-Madeleine Trottmann
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Rory Vignoles
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Louis Foucault
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Charlotte Verrier
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Céline Massera
- Univ Grenoble Alpes, Inserm U1216, Grenoble Institut des Neurosciences, 38000 Grenoble, France
| | - Olivier Raineteau
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Karl-Klaus Conzelmann
- Max von Pettenkofer-Institute Virology, Medical Faculty & Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Sylvie Rival-Gervier
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute U1208, CSC USC1361, 69500 Bron, France
| | - Antoine Depaulis
- Univ Grenoble Alpes, Inserm U1216, Grenoble Institut des Neurosciences, 38000 Grenoble, France
| | - Benedikt Berninger
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK; Institute of Physiological Chemistry, University Medical Center, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Christophe Heinrich
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France.
| |
Collapse
|
43
|
Righes Marafiga J, Vendramin Pasquetti M, Calcagnotto ME. GABAergic interneurons in epilepsy: More than a simple change in inhibition. Epilepsy Behav 2021; 121:106935. [PMID: 32035792 DOI: 10.1016/j.yebeh.2020.106935] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/20/2022]
Abstract
The pathophysiology of epilepsy has been historically grounded on hyperexcitability attributed to the oversimplified imbalance between excitation (E) and inhibition (I) in the brain. The decreased inhibition is mostly attributed to deficits in gamma-aminobutyric acid-containing (GABAergic) interneurons, the main source of inhibition in the central nervous system. However, the cell diversity, the wide range of spatiotemporal connectivity, and the distinct effects of the neurotransmitter GABA especially during development, must be considered to critically revisit the concept of hyperexcitability caused by decreased inhibition as a key characteristic in the development of epilepsy. Here, we will discuss that behind this known mechanism, there is a heterogeneity of GABAergic interneurons with distinct functions and sources, which have specific roles in controlling the neural network activity within the recruited microcircuit and altered network during the epileptogenic process. This article is part of the Special Issue "NEWroscience 2018.
Collapse
Affiliation(s)
- Joseane Righes Marafiga
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Mayara Vendramin Pasquetti
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre 90046-900, RS, Brazil.
| |
Collapse
|
44
|
Wang X, Zhang Y, Cheng W, Gao Y, Li S. Decreased excitatory drive onto hilar neuronal nitric oxide synthase expressing interneurons in chronic models of epilepsy. Brain Res 2021; 1764:147467. [PMID: 33831408 DOI: 10.1016/j.brainres.2021.147467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/29/2022]
Abstract
Excitation-inhibition imbalance of GABAergic interneurons is predisposed to develop chronic temporal lobe epilepsy (TLE). We have previously shown that virtually every neuronal nitric oxide synthase (nNOS)-positive cell is a GABAergic inhibitory interneuron in the denate gyrus. The present study was designed to quantify the number of nNOS-containing hilar interneurons using stereology in pilocapine- and kainic acid (KA)-exposed transgenic adult mice that expressed GFP under the nNOS promoter. In addition, we studied the properties of miniature excitatory postsynaptic current (mEPSC) and paired-pulse response ratio (PPR) of evoked EPSC in nNOS interneurons using whole cell recording techniques. Results showed that there were fewer nNOS-immunoreactive interneurons of chronically epileptic animals. Importantly, patch-clamp recordings revealed reduction in mEPSC frequency, indicating diminished global excitatory input. In contrast, PPR of evoked EPSC following the granule cell layer stimulation was increased in epileptic animals suggesting reduced neurotransmitter release from granule cell input. In summary, we propose that impaired excitatory drive onto hippocampal nNOS interneurons may be implicated in the development of refractory epilepsy.
Collapse
Affiliation(s)
- Xiaona Wang
- Henan Neurodevelopment Engineering Research Center for Children, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Outer Circle Dong Road, Zhengzhou, 450018, Henan, China.
| | - Yaodong Zhang
- Henan Neurodevelopment Engineering Research Center for Children, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Outer Circle Dong Road, Zhengzhou, 450018, Henan, China
| | - Weyland Cheng
- Department of Orthopaedics, Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Outer Circle Dong Road, Zhengzhou 450018, Henan, China
| | - Yinbo Gao
- Henan Neurodevelopment Engineering Research Center for Children, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Outer Circle Dong Road, Zhengzhou, 450018, Henan, China
| | - Shao Li
- Department of Physiology, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| |
Collapse
|
45
|
Szalak R, Kukula-Koch W, Matysek M, Kruk-Słomka M, Koch W, Czernicka L, Khurelbat D, Biała G, Arciszewski MB. Effect of Berberine Isolated from Barberry Species by Centrifugal Partition Chromatography on Memory and the Expression of Parvalbumin in the Mouse Hippocampus Proper. Int J Mol Sci 2021; 22:ijms22094487. [PMID: 33925781 PMCID: PMC8123463 DOI: 10.3390/ijms22094487] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 11/30/2022] Open
Abstract
Neurodegenerative diseases associated with memory disturbances are important health issues occurring due to a prolonged life span. This article presents the results of a study targeting the emergence of a drug candidate with antiamnesic properties. The effect of berberine (BBR), an isoquinoline alkaloid isolated from the overground parts of Berberis sibirica Pall., on memory and expression of parvalbumin in the mouse hippocampus proper were determined. High-purity BBR was isolated by centrifugal partition chromatography from a methanolic extract from B. sibirica by using a methyl-tert-butyl ether and water (1:1 v/v) solvent system with 10 mmol/L of triethylamine and hydrochloric acid. In an in vivo study, we assessed the influence of the chronic administration of BBR on different stages of memory-related responses in mice. Our results indicated that the chronic administration of BBR in a higher dose (5 mg/kg) improves long-term memory acquisition in mice, as determined in the passive avoidance test. The hippocampal CA1–CA3 fields showed an increased number of parvalbumin-immunoreactive neurons (PV-IR) and nerve fibers as compared to the control. No significant changes in the dentate gyrus were observed between the groups. The HPLC-ESI-QTOF-MS/MS analysis of the biological material revealed the content of BBR as 363.4 ± 15.0 ng (4.11% of RSD) per brain, 15.06 ± 0.89 ng (5.91% of RSD) per hippocampus, and 54.45 ± 1.40 (4.05% of RSD) ng in 100 µL plasma. The study showed that BBR could be a factor influencing the expression of PV in hippocampal neurons. We speculate that BBR may modulate the level of Ca2+ in neurons and thus potentially act as a neuroprotective factor against neuronal damages.
Collapse
Affiliation(s)
- Radosław Szalak
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 12 Akademicka Str., 20-950 Lublin, Poland; (M.M.); (M.B.A.)
- Correspondence: (R.S.); (W.K.-K.)
| | - Wirginia Kukula-Koch
- Chair and Department of Pharmacognosy, Medical University in Lublin, 1 Chodźki Str., 20-093 Lublin, Poland
- Correspondence: (R.S.); (W.K.-K.)
| | - Małgorzata Matysek
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 12 Akademicka Str., 20-950 Lublin, Poland; (M.M.); (M.B.A.)
| | - Marta Kruk-Słomka
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland; (M.K.-S.); (G.B.)
| | - Wojciech Koch
- Chair and Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland; (W.K.); (L.C.)
| | - Lidia Czernicka
- Chair and Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland; (W.K.); (L.C.)
| | - Daariimaa Khurelbat
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, Mongolian National University of Medical Sciences, Zorig Str., Ulaanbaatar 14210, Mongolia;
| | - Grażyna Biała
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland; (M.K.-S.); (G.B.)
| | - Marcin B. Arciszewski
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 12 Akademicka Str., 20-950 Lublin, Poland; (M.M.); (M.B.A.)
| |
Collapse
|
46
|
Marshall P, Garton DR, Taira T, Võikar V, Vilenius C, Kulesskaya N, Rivera C, Andressoo JO. Elevated expression of endogenous glial cell line-derived neurotrophic factor impairs spatial memory performance and raises inhibitory tone in the hippocampus. Eur J Neurosci 2021; 53:2469-2482. [PMID: 33481269 DOI: 10.1111/ejn.15126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 01/16/2023]
Abstract
Parvalbumin-positive interneurons (PV+) are a key component of inhibitory networks in the brain and are known to modulate memory and learning by shaping network activity. The mechanisms of PV+ neuron generation and maintenance are not fully understood, yet current evidence suggests that signalling via the glial cell line-derived neurotrophic factor (GDNF) receptor GFRα1 positively modulates the migration and differentiation of PV+ interneurons in the cortex. Whether GDNF also regulates PV+ cells in the hippocampus is currently unknown. In this study, we utilized a Gdnf "hypermorph" mouse model where GDNF is overexpressed from the native gene locus, providing greatly increased spatial and temporal specificity of protein expression over established models of ectopic expression. Gdnfwt/hyper mice demonstrated impairments in long-term memory performance in the Morris water maze test and an increase in inhibitory tone in the hippocampus measured electrophysiologically in acute brain slice preparations. Increased PV+ cell number was confirmed immunohistochemically in the hippocampus and in discrete cortical areas and an increase in epileptic seizure threshold was observed in vivo. The data consolidate prior evidence for the actions of GDNF as a regulator of PV+ cell development in the cortex and demonstrate functional effects upon network excitability via modulation of functional GABAergic signalling and under epileptic challenge.
Collapse
Affiliation(s)
- Pepin Marshall
- HiLIFE Neuroscience Centre, University of Helsinki, Helsinki, Finland
| | - Daniel R Garton
- Department of Pharmacology, Faculty of Medicine & Helsinki Institute of Life Science (HiLIFE) Helsinki, University of Helsinki, Helsinki, Finland
| | - Tomi Taira
- HiLIFE Neuroscience Centre, University of Helsinki, Helsinki, Finland.,Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Vootele Võikar
- HiLIFE Neuroscience Centre, University of Helsinki, Helsinki, Finland
| | - Carolina Vilenius
- HiLIFE Neuroscience Centre, University of Helsinki, Helsinki, Finland
| | | | - Claudio Rivera
- HiLIFE Neuroscience Centre, University of Helsinki, Helsinki, Finland.,Institut de Neurobiologie de la Méditerranée, INMED UMR901, Marseille, France
| | - Jaan-Olle Andressoo
- Department of Pharmacology, Faculty of Medicine & Helsinki Institute of Life Science (HiLIFE) Helsinki, University of Helsinki, Helsinki, Finland.,Karolinska Institute, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Stockholm, Sweden
| |
Collapse
|
47
|
Goossens MG, Boon P, Wadman W, Van den Haute C, Baekelandt V, Verstraete AG, Vonck K, Larsen LE, Sprengers M, Carrette E, Desloovere J, Meurs A, Delbeke J, Vanhove C, Raedt R. Long-term chemogenetic suppression of seizures in a multifocal rat model of temporal lobe epilepsy. Epilepsia 2021; 62:659-670. [PMID: 33570167 DOI: 10.1111/epi.16840] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 01/14/2023]
Abstract
OBJECTIVE One third of epilepsy patients do not become seizure-free using conventional medication. Therefore, there is a need for alternative treatments. Preclinical research using designer receptors exclusively activated by designer drugs (DREADDs) has demonstrated initial success in suppressing epileptic activity. Here, we evaluated whether long-term chemogenetic seizure suppression could be obtained in the intraperitoneal kainic acid rat model of temporal lobe epilepsy, when DREADDs were selectively expressed in excitatory hippocampal neurons. METHODS Epileptic male Sprague Dawley rats received unilateral hippocampal injections of adeno-associated viral vector encoding the inhibitory DREADD hM4D(Gi), preceded by a cell-specific promotor targeting excitatory neurons. The effect of clozapine-mediated DREADD activation on dentate gyrus evoked potentials and spontaneous electrographic seizures was evaluated. Animals were systemically treated with single (.1 mg/kg/24 h) or repeated (.1 mg/kg/6 h) injections of clozapine. In addition, long-term continuous release of clozapine and olanzapine (2.8 mg/kg/7 days) using implantable minipumps was evaluated. All treatments were administered during the chronic epileptic phase and between 1.5 and 13.5 months after viral transduction. RESULTS In the DREADD group, dentate gyrus evoked potentials were inhibited after clozapine treatment. Only in DREADD-expressing animals, clozapine reduced seizure frequency during the first 6 h postinjection. When administered repeatedly, seizures were suppressed during the entire day. Long-term treatment with clozapine and olanzapine both resulted in significant seizure-suppressing effects for multiple days. Histological analysis revealed DREADD expression in both hippocampi and some cortical regions. However, lesions were also detected at the site of vector injection. SIGNIFICANCE This study shows that inhibition of the hippocampus using chemogenetics results in potent seizure-suppressing effects in the intraperitoneal kainic acid rat model, even 1 year after viral transduction. Despite a need for further optimization, chemogenetic neuromodulation represents a promising treatment prospect for temporal lobe epilepsy.
Collapse
Affiliation(s)
| | - Paul Boon
- 4BRAIN, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Wytse Wadman
- 4BRAIN, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Center for Molecular Medicine and Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Leuven Viral Vector Core, Center for Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Center for Molecular Medicine and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Alain G Verstraete
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Kristl Vonck
- 4BRAIN, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Lars E Larsen
- 4BRAIN, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Mathieu Sprengers
- 4BRAIN, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Evelien Carrette
- 4BRAIN, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Jana Desloovere
- 4BRAIN, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Alfred Meurs
- 4BRAIN, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Jean Delbeke
- 4BRAIN, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Christian Vanhove
- IBiTech, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Robrecht Raedt
- 4BRAIN, Department of Head and Skin, Ghent University, Ghent, Belgium
| |
Collapse
|
48
|
Hattiangady B, Kuruba R, Shuai B, Grier R, Shetty AK. Hippocampal Neural Stem Cell Grafting after Status Epilepticus Alleviates Chronic Epilepsy and Abnormal Plasticity, and Maintains Better Memory and Mood Function. Aging Dis 2020; 11:1374-1394. [PMID: 33269095 PMCID: PMC7673840 DOI: 10.14336/ad.2020.1020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022] Open
Abstract
Hippocampal damage after status epilepticus (SE) leads to multiple epileptogenic changes, which lead to chronic temporal lobe epilepsy (TLE). Morbidities such as spontaneous recurrent seizures (SRS) and memory and mood impairments are seen in a significant fraction of SE survivors despite the administration of antiepileptic drugs after SE. We examined the efficacy of bilateral intra-hippocampal grafting of neural stem/progenitor cells (NSCs) derived from the embryonic day 19 rat hippocampi, six days after SE for restraining SE-induced SRS, memory, and mood impairments in the chronic phase. Grafting of NSCs curtailed the progression of SRS at 3-5 months post-SE and reduced the frequency and severity of SRS activity when examined at eight months post-SE. Reduced SRS activity was also associated with improved memory function. Graft-derived cells migrated into different hippocampal cell layers, differentiated into GABA-ergic interneurons, astrocytes, and oligodendrocytes. Significant percentages of graft-derived cells also expressed beneficial neurotrophic factors such as the fibroblast growth factor-2, brain-derived neurotrophic factor, insulin-like growth factor-1 and glial cell line-derived neurotrophic factor. NSC grafting protected neuropeptide Y- and parvalbumin-positive host interneurons, diminished the abnormal migration of newly born neurons, and rescued the reelin+ interneurons in the dentate gyrus. Besides, grafting led to the maintenance of a higher level of normal neurogenesis in the chronic phase after SE and diminished aberrant mossy fiber sprouting in the dentate gyrus. Thus, intrahippocampal grafting of hippocampal NSCs shortly after SE considerably curbed the progression of epileptogenic processes and SRS, which eventually resulted in less severe chronic epilepsy devoid of significant cognitive and mood impairments.
Collapse
Affiliation(s)
- Bharathi Hattiangady
- 1Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.,2Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA.,3Department of Surgery (Neurosurgery) Duke University Medical Center, Durham, NC, USA.,4Research and Surgery Services, Durham Veterans Affairs Medical Center, Durham, NC, USA
| | - Ramkumar Kuruba
- 3Department of Surgery (Neurosurgery) Duke University Medical Center, Durham, NC, USA.,4Research and Surgery Services, Durham Veterans Affairs Medical Center, Durham, NC, USA
| | - Bing Shuai
- 1Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.,2Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA.,3Department of Surgery (Neurosurgery) Duke University Medical Center, Durham, NC, USA.,4Research and Surgery Services, Durham Veterans Affairs Medical Center, Durham, NC, USA
| | - Remedios Grier
- 3Department of Surgery (Neurosurgery) Duke University Medical Center, Durham, NC, USA.,4Research and Surgery Services, Durham Veterans Affairs Medical Center, Durham, NC, USA
| | - Ashok K Shetty
- 1Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.,2Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA.,3Department of Surgery (Neurosurgery) Duke University Medical Center, Durham, NC, USA.,4Research and Surgery Services, Durham Veterans Affairs Medical Center, Durham, NC, USA
| |
Collapse
|
49
|
Tóth E, Bokodi V, Somogyvári Z, Maglóczky Z, Wittner L, Ulbert I, Erőss L, Fabó D. Laminar distribution of electrically evoked hippocampal short latency ripple activity highlights the importance of the subiculum in vivo in human epilepsy, an intraoperative study. Epilepsy Res 2020; 169:106509. [PMID: 33310654 DOI: 10.1016/j.eplepsyres.2020.106509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/04/2020] [Accepted: 11/21/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE The goal of this study was to define the pathology and anesthesia dependency of single pulse electrical stimulation (SPES) dependent high-frequency oscillations (HFOs, ripples, fast ripples) in the hippocampal formation. METHODS Laminar profile of electrically evoked short latency (<100 ms) high-frequency oscillations (80-500 Hz) was examined in the hippocampus of therapy-resistant epileptic patients (6 female, 2 male) in vivo, under general anesthesia. RESULTS Parahippocampal SPES evoked HFOs in all recorded hippocampal subregions (Cornu Ammonis 2-3, dentate gyrus, and subiculum) were not uniform, rather the combination of ripples, fast ripples, sharp transients, and multiple unit activities. Mild and severe hippocampal sclerosis (HS) differed in the probability to evoke fast ripples: it decreased with the severity of sclerosis in CA2-3 but increased in the subiculum. Modulation in the ripple spectrum was observed only in the subiculum with increased fast HFO rate and frequency in severe HS. Inhalational anesthetics (isoflurane) suppressed the chance to evoke HFOs compared to propofol. CONCLUSION The presence of early HFOs in the dentate gyrus and early fast HFOs (>250 Hz) in the other subregions indicate the pathological nature of these evoked oscillations. Subiculum was found to be active producing HFOs in parallel with the cell loss in the hippocampus proper, which emphasize the role of this region in the generation of epileptic activity.
Collapse
Affiliation(s)
- Emília Tóth
- Epilepsy Centrum, Dept of Neurology, National Institute of Clinical Neurosciences, Budapest, 1145, Hungary; Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, 77030, USA (present affiliation)
| | - Virág Bokodi
- Epilepsy Centrum, Dept of Neurology, National Institute of Clinical Neurosciences, Budapest, 1145, Hungary; Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, 1083, Hungary
| | - Zoltán Somogyvári
- Department of Computational Sciences, Wigner Research Centre, Eötvös Loránd Research Network, Budapest, 1121, Hungary
| | - Zsófia Maglóczky
- Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Eötvös Loránd Research Network, Budapest, 1083, Hungary; Human Brain Research Laboratory, Institute of Experimental Medicine, Eötvös Loránd Research Network, Budapest, 1083, Hungary
| | - Lucia Wittner
- Epilepsy Centrum, Dept of Neurology, National Institute of Clinical Neurosciences, Budapest, 1145, Hungary; Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, 1083, Hungary; Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Eötvös Loránd Research Network, Budapest, 1117, Hungary
| | - István Ulbert
- Epilepsy Centrum, Dept of Neurology, National Institute of Clinical Neurosciences, Budapest, 1145, Hungary; Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, 1083, Hungary; Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Eötvös Loránd Research Network, Budapest, 1117, Hungary
| | - Loránd Erőss
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, 1083, Hungary; Department of Functional Neurosurgery, National Institute of Clinical Neurosciences, Budapest, 1145, Hungary
| | - Dániel Fabó
- Epilepsy Centrum, Dept of Neurology, National Institute of Clinical Neurosciences, Budapest, 1145, Hungary.
| |
Collapse
|
50
|
Ekins TG, Mahadevan V, Zhang Y, D'Amour JA, Akgül G, Petros TJ, McBain CJ. Emergence of non-canonical parvalbumin-containing interneurons in hippocampus of a murine model of type I lissencephaly. eLife 2020; 9:e62373. [PMID: 33150866 PMCID: PMC7673787 DOI: 10.7554/elife.62373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
Type I lissencephaly is a neuronal migration disorder caused by haploinsuffiency of the PAFAH1B1 (mouse: Pafah1b1) gene and is characterized by brain malformation, developmental delays, and epilepsy. Here, we investigate the impact of Pafah1b1 mutation on the cellular migration, morphophysiology, microcircuitry, and transcriptomics of mouse hippocampal CA1 parvalbumin-containing inhibitory interneurons (PV+INTs). We find that WT PV+INTs consist of two physiological subtypes (80% fast-spiking (FS), 20% non-fast-spiking (NFS)) and four morphological subtypes. We find that cell-autonomous mutations within interneurons disrupts morphophysiological development of PV+INTs and results in the emergence of a non-canonical 'intermediate spiking (IS)' subset of PV+INTs. We also find that now dominant IS/NFS cells are prone to entering depolarization block, causing them to temporarily lose the ability to initiate action potentials and control network excitation, potentially promoting seizures. Finally, single-cell nuclear RNAsequencing of PV+INTs revealed several misregulated genes related to morphogenesis, cellular excitability, and synapse formation.
Collapse
Affiliation(s)
- Tyler G Ekins
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
- NIH-Brown University Graduate Partnership ProgramProvidenceUnited States
| | - Vivek Mahadevan
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Yajun Zhang
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - James A D'Amour
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
- Postdoctoral Research Associate Training Program, National Institute of General Medical SciencesBethesdaUnited States
| | - Gülcan Akgül
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Timothy J Petros
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Chris J McBain
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| |
Collapse
|