1
|
Moore L, Pakalnis A. Calcitonin Gene-Related Peptide Inhibitors in the Treatment of Migraine in the Pediatric and Adolescent Populations: A Review. Pediatr Neurol 2024; 157:87-95. [PMID: 38905744 DOI: 10.1016/j.pediatrneurol.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 06/23/2024]
Abstract
There are limited well-studied treatments for migraine in the pediatric population. Calcitonin gene-related peptide (CGRP) inhibitors are an established safe and effective treatment in adults, and use may be appropriate for pediatric patients in certain clinical situations. We describe migraine pathophysiology as it relates to CGRP, provide an overview of available medications, and discuss clinical usage in this population.
Collapse
Affiliation(s)
- Lisa Moore
- Department of Neurology, Nationwide Children's Hospital, Columbus, Ohio; Department of Neurology, Ohio State University Wexner Medical Center, Columbus, Ohio.
| | - Ann Pakalnis
- Department of Neurology, Nationwide Children's Hospital, Columbus, Ohio; Department of Neurology, Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
2
|
Viticchi G, Di Stefano V, Altamura C, Falsetti L, Torrente A, Brunelli N, Salvemini S, Alonge P, Bartolini M, Di Felice C, Adragna MS, Moroncini G, Vernieri F, Brighina F, Silvestrini M. Effects of prophylactic drug therapies and anti-calcitonin peptide-related monoclonal antibodies on subjective sleep quality: An Italian multicenter study. Sleep Med 2024; 117:87-94. [PMID: 38518587 DOI: 10.1016/j.sleep.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/28/2024] [Accepted: 03/16/2024] [Indexed: 03/24/2024]
Abstract
OBJECTIVE/BACKGROUND sleep alterations strongly influence migraine severity. Prophylactic therapies have a major impact on migraine frequency and associated symptoms. The study purpose was to compare the impact of oral drug therapies or gene-related anti-calcitonin monoclonal antibodies (anti-CGRP mAbs) on sleep alterations. We also evaluated which drug therapies are more effective on sleep quality and the different impact on migraine frequency and life quality. PATIENTS/METHODS this is a multicenter, prospective study conducted in three specialized headache centers (Marche Polytechnic University, Ancona; University of Palermo, Palermo; Fondazione Policlinico Campus Bio-Medico, Rome). At baseline, we assigned migraine patients to preventive therapy with first-line drugs or anti-CGRP mAbs. The Pittsburgh Sleep Quality Index (PSQI) and Migraine Disability Assessment (MIDAS) scales were administered. After three months, we re-evaluated the patients with the same scales. RESULTS 214 patients were enrolled. Any prophylaxis was significantly associated with a reduction in PSQI score (mean difference 1.841; 95%CI:1.413-2.269; p < 0.0001), most significantly in the anti-CGRP mAb group (mean difference 1.49; 95%CI:2.617-0.366; p = 0.010). Anti-CGRP mAbs resulted in significant improvement in migraine severity and MIDAS scores. Among oral therapies, calcium antagonists and antidepressants were the most effective in reducing PSQI score between T0 and T1 (p = 0.042; p = 0.049; p < 0.0001, respectively). CONCLUSIONS anti-CGRP mAbs revitalized the management of migraine with stable and well-documented efficacy. Our data also suggest that anti-CGRP mAbs result in a positive effect on sleep quality, with a significant improvement in PSQI scores. Knowing the relevant impact of sleep disruption on migraine severity, these data could help for the management of migraine patients.
Collapse
Affiliation(s)
- Giovanna Viticchi
- Neurological Clinic, Experimental and Clinical Medicine Department, Marche Polytechnic University, Via Conca 1, 60020, Ancona, Italy.
| | - Vincenzo Di Stefano
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Claudia Altamura
- Unit of Headache and Neurosonology, Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128, Roma, Italy
| | - Lorenzo Falsetti
- Clinica Medica, Department of Clinical and Molecular Sciences, Marche Polytechnic University, Via Conca 1, 60100, Ancona, Italy
| | - Angelo Torrente
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Nicoletta Brunelli
- Unit of Headache and Neurosonology, Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128, Roma, Italy
| | - Sergio Salvemini
- Neurological Clinic, Experimental and Clinical Medicine Department, Marche Polytechnic University, Via Conca 1, 60020, Ancona, Italy
| | - Paolo Alonge
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Marco Bartolini
- Neurological Clinic, Experimental and Clinical Medicine Department, Marche Polytechnic University, Via Conca 1, 60020, Ancona, Italy
| | - Chiara Di Felice
- Neurological Clinic, Experimental and Clinical Medicine Department, Marche Polytechnic University, Via Conca 1, 60020, Ancona, Italy
| | - Maria Stella Adragna
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Gianluca Moroncini
- Clinica Medica, Department of Clinical and Molecular Sciences, Marche Polytechnic University, Via Conca 1, 60100, Ancona, Italy
| | - Fabrizio Vernieri
- Unit of Headache and Neurosonology, Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128, Roma, Italy
| | - Filippo Brighina
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Mauro Silvestrini
- Neurological Clinic, Experimental and Clinical Medicine Department, Marche Polytechnic University, Via Conca 1, 60020, Ancona, Italy
| |
Collapse
|
3
|
Hashikawa-Hobara N, Fujiwara K, Hashikawa N. CGRP causes anxiety via HP1γ-KLF11-MAOB pathway and dopamine in the dorsal hippocampus. Commun Biol 2024; 7:322. [PMID: 38503899 PMCID: PMC10951359 DOI: 10.1038/s42003-024-05937-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide that causes anxiety behavior; however, the underlying mechanisms remain unclear. We found that CGRP modulates anxiety behavior by epigenetically regulating the HP1γ-KLF-11-MAOB pathway and depleting dopamine in the dorsal hippocampus. Intracerebroventricular administration of CGRP (0.5 nmol) elicited anxiety-like behaviors in open field, hole-board, and plus-maze tests. Additionally, we observed an increase in monoamine oxidase B (MAOB) levels and a concurrent decrease in dopamine levels in the dorsal hippocampus of mice following CGRP administration. Moreover, CGRP increased abundance the transcriptional regulator of MAOB, Krüppel-like factor 11 (KLF11), and increased levels of phosphorylated heterochromatin protein (p-HP1γ), which is involved in gene silencing, by methylating histone H3 in the dorsal hippocampus. Chromatin immunoprecipitation assay showed that HP1γ was recruited to the Klf11 enhancer by CGRP. Furthermore, infusion of CGRP (1 nmol) into the dorsal hippocampus significantly increased MAOB expression as well as anxiety-like behaviors, which were suppressed by the pharmacological inhibition or knockdown of MAOB. Together, these findings suggest that CGRP reduces dopamine levels and induces anxiety-like behavior through epigenetic regulation in the dorsal hippocampus.
Collapse
Affiliation(s)
- Narumi Hashikawa-Hobara
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan.
| | - Kyoshiro Fujiwara
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| | - Naoya Hashikawa
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| |
Collapse
|
4
|
Powell K, Lin K, Tambo W, Saavedra AP, Sciubba D, Al Abed Y, Li C. Trigeminal nerve stimulation: a current state-of-the-art review. Bioelectron Med 2023; 9:30. [PMID: 38087375 PMCID: PMC10717521 DOI: 10.1186/s42234-023-00128-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/04/2023] [Indexed: 09/26/2024] Open
Abstract
Nearly 5 decades ago, the effect of trigeminal nerve stimulation (TNS) on cerebral blood flow was observed for the first time. This implication directly led to further investigations and TNS' success as a therapeutic intervention. Possessing unique connections with key brain and brainstem regions, TNS has been observed to modulate cerebral vasodilation, brain metabolism, cerebral autoregulation, cerebral and systemic inflammation, and the autonomic nervous system. The unique range of effects make it a prime therapeutic modality and have led to its clinical usage in chronic conditions such as migraine, prolonged disorders of consciousness, and depression. This review aims to present a comprehensive overview of TNS research and its broader therapeutic potentialities. For the purpose of this review, PubMed and Google Scholar were searched from inception to August 28, 2023 to identify a total of 89 relevant studies, both clinical and pre-clinical. TNS harnesses the release of vasoactive neuropeptides, modulation of neurotransmission, and direct action upon the autonomic nervous system to generate a suite of powerful multitarget therapeutic effects. While TNS has been applied clinically to chronic pathological conditions, these powerful effects have recently shown great potential in a number of acute/traumatic pathologies. However, there are still key mechanistic and methodologic knowledge gaps to be solved to make TNS a viable therapeutic option in wider clinical settings. These include bimodal or paradoxical effects and mechanisms, questions regarding its safety in acute/traumatic conditions, the development of more selective stimulation methods to avoid potential maladaptive effects, and its connection to the diving reflex, a trigeminally-mediated protective endogenous reflex. The address of these questions could overcome the current limitations and allow TNS to be applied therapeutically to an innumerable number of pathologies, such that it now stands at the precipice of becoming a ground-breaking therapeutic modality.
Collapse
Affiliation(s)
- Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Kanheng Lin
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Emory University, Atlanta, GA, USA
| | - Willians Tambo
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Daniel Sciubba
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Yousef Al Abed
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
- Elmezzi Graduate School of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
5
|
Maita I, Roepke TA, Samuels BA. Chronic stress-induced synaptic changes to corticotropin-releasing factor-signaling in the bed nucleus of the stria terminalis. Front Behav Neurosci 2022; 16:903782. [PMID: 35983475 PMCID: PMC9378865 DOI: 10.3389/fnbeh.2022.903782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/05/2022] [Indexed: 11/22/2022] Open
Abstract
The sexually dimorphic bed nucleus of the stria terminalis (BNST) is comprised of several distinct regions, some of which act as a hub for stress-induced changes in neural circuitry and behavior. In rodents, the anterodorsal BNST is especially affected by chronic exposure to stress, which results in alterations to the corticotropin-releasing factor (CRF)-signaling pathway, including CRF receptors and upstream regulators. Stress increases cellular excitability in BNST CRF+ neurons by potentiating miniature excitatory postsynaptic current (mEPSC) amplitude, altering the resting membrane potential, and diminishing M-currents (a voltage-gated K+ current that stabilizes membrane potential). Rodent anterodorsal and anterolateral BNST neurons are also critical regulators of behavior, including avoidance of aversive contexts and fear learning (especially that of sustained threats). These rodent behaviors are historically associated with anxiety. Furthermore, BNST is implicated in stress-related mood disorders, including anxiety and Post-Traumatic Stress Disorders in humans, and may be linked to sex differences found in mood disorders.
Collapse
Affiliation(s)
- Isabella Maita
- Samuels Laboratory, Department of Psychology, Behavioral and Systems Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States,Neuroscience Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Troy A. Roepke
- Roepke Laboratory, Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Benjamin A. Samuels
- Samuels Laboratory, Department of Psychology, Behavioral and Systems Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States,*Correspondence: Benjamin A. Samuels,
| |
Collapse
|
6
|
Jaramillo AA, Brown JA, Winder DG. Danger and distress: Parabrachial-extended amygdala circuits. Neuropharmacology 2021; 198:108757. [PMID: 34461068 DOI: 10.1016/j.neuropharm.2021.108757] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 12/21/2022]
Abstract
Our understanding of the role of the parabrachial nucleus (PBN) has evolved as technology has advanced, in part due to cell-specific studies and complex behavioral assays. This is reflected in the heterogeneous neuronal populations within the PBN to the extended amygdala (EA) circuits which encompass the bed nucleus of the stria terminalis (BNST) and central amygdala (CeA) circuitry, as they differentially modulate aspects of behavior in response to diverse threat-like contexts necessary for survival. Here we review how the PBN→CeA and PBN→BNST pathways differentially modulate fear-like behavior, innate and conditioned, through unique changes in neurotransmission in response to stress-inducing contexts. Furthermore, we hypothesize how in specific instances the PBN→CeA and PBN→BNST circuits are redundant and in part intertwined with their respective reciprocal projections. By deconstructing the interoceptive and exteroceptive components of affect- and stress related behavioral paradigms, evidence suggests that the PBN→CeA circuit modulates innate response to physical stimuli and fear conditioning. Conversely, the PBN→BNST circuit modulates distress-like stress in unpredictable contexts. Thereby, the PBN provides a pathway for alarming interoceptive and exteroceptive stimuli to be processed and relayed to the EA to induce stress-relevant affect. Additionally, we provide a framework for future studies to detail the cell-type specific intricacies of PBN→EA circuits in mediating behavioral responses to threats, and the relevance of the PBN in drug-use as it relates to threat and negative reinforcement. This article is part of the special Issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.
Collapse
Affiliation(s)
- A A Jaramillo
- Vanderbilt University School of Medicine, Nashville, TN, USA; Dept. Mol. Phys. & Biophysics, USA; Vanderbilt Brain Institute, USA; Vanderbilt Center for Addiction Research, USA
| | - J A Brown
- Vanderbilt University School of Medicine, Nashville, TN, USA; Dept. Mol. Phys. & Biophysics, USA; Vanderbilt Brain Institute, USA; Vanderbilt Center for Addiction Research, USA; Department of Pharmacology, USA
| | - D G Winder
- Vanderbilt University School of Medicine, Nashville, TN, USA; Dept. Mol. Phys. & Biophysics, USA; Vanderbilt Brain Institute, USA; Vanderbilt Center for Addiction Research, USA; Department of Pharmacology, USA; Vanderbilt Kennedy Center, USA; Department of Psychiatry & Behavioral Sciences, USA.
| |
Collapse
|
7
|
Wang LL, Wang HB, Fu FH, Yu LC. Role of calcitonin gene-related peptide in pain regulation in the parabrachial nucleus of naive rats and rats with neuropathic pain. Toxicol Appl Pharmacol 2021; 414:115428. [PMID: 33524449 DOI: 10.1016/j.taap.2021.115428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 01/14/2023]
Abstract
Researches have shown that calcitonin gene-related peptide (CGRP) plays a pivotal role in pain modulation. Nociceptive information from the periphery is relayed from parabrachial nucleus (PBN) to brain regions implicated involved in pain. This study investigated the effects and mechanisms of CGRP and CGRP receptors in pain regulation in the PBN of naive and neuropathic pain rats. Chronic sciatic nerve ligation was used to model neuropathic pain, CGRP and CGRP 8-37 were injected into the PBN of the rats, and calcitonin receptor-like receptor (CLR), a main structure of CGRP receptor, was knocked down by lentivirus-coated CLR siRNA. The hot plate test (HPT) and the Randall Selitto Test (RST) was used to determine the latency of the rat hindpaw response. The expression of CLR was detected with RT-PCR and western blotting. We found that intra-PBN injecting of CGRP induced an obvious anti-nociceptive effect in naive and neuropathic pain rats in a dose-dependent manner, the CGRP-induced antinociception was significantly reduced after injection of CGRP 8-37, Moreover, the mRNA and protein levels of CLR, in PBN decreased significantly and the antinociception CGRP-induced was also significantly lower in neuropathic pain rats than that in naive rats. Knockdown CLR in PBN decreased the expression of CLR and the antinociception induced by CGRP was observably decreased. Our results demonstrate that CGRP induced antinociception in PBN of naive or neuropathic pain rats, CGRP receptor mediates this effect. Neuropathic pain induced decreases in the expression of CGRP receptor, as well as in CGRP-induced antinociception in PBN.
Collapse
Affiliation(s)
- Lin-Lin Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Hong-Bo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Feng-Hua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| | - Long-Chuan Yu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China; Neurobiology Laboratory, School of Life Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
8
|
Araya EI, Turnes JDM, Barroso AR, Chichorro JG. Contribution of intraganglionic CGRP to migraine-like responses in male and female rats. Cephalalgia 2019; 40:689-700. [DOI: 10.1177/0333102419896539] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective To evaluate whether intraganglionic calcitonin gene-related peptide induced differential migraine-like responses in male and female rats. Methods Calcitonin gene-related peptide was injected in the trigeminal ganglion of male and female rats followed by assessment of periorbital mechanical allodynia with von Frey hairs. The influence of systemic treatment with sumatriptan or intraganglionic treatment with minocycline and propentofylline was determined on the calcitonin gene-related peptide-induced mechanical allodynia in male and female rats. One additional group was exposed to an aversive light 24 h after calcitonin gene-related peptide priming, followed by evaluation of periorbital mechanical threshold, and another group was tested in the elevated-plus maze. Results Intraganglionar calcitonin gene-related peptide-induced periorbital mechanical allodynia in female (0.5 to 6 h) and male rats (0.5 to 4 h). Systemic sumatriptan briefly attenuated the mechanical allodynia, but intraganglionar minocycline or propentofylline injection was effective only in male rats. Calcitonin gene-related peptide induced photic sensitivity in female and male rats (lasting 4 h and 1 h, respectively), as well as anxiety-like behavior. Conclusions Intraganglionar calcitonin gene-related peptide may play a major role in migraine-like responses, including periorbital mechanical allodynia, light sensitivity and anxiety like-behavior. Female rats are likely to be more susceptible to calcitonin gene-related peptide effects and a better understanding of the sexual dimorphism in calcitonin gene-related peptide signaling may help to improve migraine therapy.
Collapse
Affiliation(s)
- Erika Ivanna Araya
- Department of Pharmacology, Biological Sciences Building, Federal University of Parana, Curitiba, PR, Brazil
| | - Joelle de Melo Turnes
- Department of Pharmacology, Biological Sciences Building, Federal University of Parana, Curitiba, PR, Brazil
| | - Amanda Ribeiro Barroso
- Department of Pharmacology, Biological Sciences Building, Federal University of Parana, Curitiba, PR, Brazil
| | - Juliana Geremias Chichorro
- Department of Pharmacology, Biological Sciences Building, Federal University of Parana, Curitiba, PR, Brazil
| |
Collapse
|
9
|
Dopfel D, Perez PD, Verbitsky A, Bravo-Rivera H, Ma Y, Quirk GJ, Zhang N. Individual variability in behavior and functional networks predicts vulnerability using an animal model of PTSD. Nat Commun 2019; 10:2372. [PMID: 31147546 PMCID: PMC6543038 DOI: 10.1038/s41467-019-09926-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 04/08/2019] [Indexed: 12/31/2022] Open
Abstract
Only a minority of individuals experiencing trauma subsequently develop post-traumatic stress disorder (PTSD). However, whether differences in vulnerability to PTSD result from a predisposition or trauma exposure remains unclear. A major challenge in differentiating these possibilities is that clinical studies focus on individuals already exposed to trauma without pre-trauma conditions. Here, using the predator scent model of PTSD in rats and a longitudinal design, we measure pre-trauma brain-wide neural circuit functional connectivity, behavioral and corticosterone responses to trauma exposure, and post-trauma anxiety. Freezing during predator scent exposure correlates with functional connectivity in a set of neural circuits, indicating pre-existing circuit function can predispose animals to differential fearful responses to threats. Counterintuitively, rats with lower freezing show more avoidance of the predator scent, a prolonged corticosterone response, and higher anxiety long after exposure. This study provides a framework of pre-existing circuit function that determines threat responses, which might directly relate to PTSD-like behaviors.
Collapse
Affiliation(s)
- David Dopfel
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Pablo D Perez
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Alexander Verbitsky
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, 16802, USA
| | - Hector Bravo-Rivera
- Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, 00936, Puerto Rico
| | - Yuncong Ma
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Gregory J Quirk
- Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, 00936, Puerto Rico
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, 00936, Puerto Rico
| | - Nanyin Zhang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
10
|
Li XH, Matsuura T, Liu RH, Xue M, Zhuo M. Calcitonin gene-related peptide potentiated the excitatory transmission and network propagation in the anterior cingulate cortex of adult mice. Mol Pain 2019; 15:1744806919832718. [PMID: 30717631 PMCID: PMC6396051 DOI: 10.1177/1744806919832718] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The neuropeptide of calcitonin gene-related peptide (CGRP) plays critical roles in chronic pain, especially in migraine. Immunohistochemistry and in situ hybridization studies have shown that CGRP and its receptors are expressed in cortical areas including pain perception-related prefrontal anterior cingulate cortex. However, less information is available for the functional roles of CGRP in cortical regions such as the anterior cingulate cortex (ACC). Recent studies have consistently demonstrated that long-term potentiation is a key cellular mechanism for chronic pain in the ACC. In the present study, we used 64-electrode array field recording system to investigate the effect of CGRP on excitatory transmission in the ACC. We found that CGRP induced potentiation of synaptic transmission in a dose-dependently manner (1, 10, 50, and 100 nM). CGRP also recruited inactive circuit in the ACC. An application of the calcitonin receptor-like receptor antagonist CGRP8-37 blocked CGRP-induced chemical long-term potentiation and the recruitment of inactive channels. CGRP-induced long-term potentiation was also blocked by N-methyl-D-aspartate (NMDA) receptor antagonist AP-5. Consistently, the application of CGRP increased NMDA receptor-mediated excitatory postsynaptic currents. Finally, we found that CGRP-induced long-term potentiation required the activation of calcium-stimulated adenylyl cyclase subtype 1 (AC1) and protein kinase A. Genetic deletion of AC1 using AC1−/− mice, an AC1 inhibitor NB001 or a protein kinase A inhibitor KT5720, all reduced or blocked CGRP-induced potentiation. Our results provide direct evidence that CGRP may contribute to synaptic potentiation in important physiological and pathological conditions in the ACC, an AC1 inhibitor NB001 may be beneficial for the treatment of chronic headache.
Collapse
Affiliation(s)
- Xu-Hui Li
- 1 Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,2 Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, Ontario, Canada
| | - Takanori Matsuura
- 2 Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, Ontario, Canada.,3 Department of Orthopaedics, School of Medicine, University of Occupational and Environmental Health, Yahatanishi-ku, Kitakyushu, Japan
| | - Ren-Hao Liu
- 1 Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Man Xue
- 1 Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Min Zhuo
- 1 Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,2 Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Rossetti I, Zambusi L, Maccioni P, Sau R, Provini L, Castelli MP, Gonciarz K, Colombo G, Morara S. Predisposition to Alcohol Drinking and Alcohol Consumption Alter Expression of Calcitonin Gene-Related Peptide, Neuropeptide Y, and Microglia in Bed Nucleus of Stria Terminalis in a Subnucleus-Specific Manner. Front Cell Neurosci 2019; 13:158. [PMID: 31114482 PMCID: PMC6502997 DOI: 10.3389/fncel.2019.00158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/08/2019] [Indexed: 01/01/2023] Open
Abstract
Excessive alcohol consumption is often linked to anxiety states and has a major relay center in the anterior part of bed nucleus of stria terminalis (BNST). We analyzed the impact of (i) genetic predisposition to high alcohol preference and consumption, and (ii) alcohol intake on anterior BNST, namely anterolateral (AL), anteromedial (AM), and anteroventral (lateral + medial subdivisions: AVl, AVm) subnuclei. We used two rat lines selectively bred for low- and high-alcohol preference and consumption, named Sardinian alcohol-non preferring (sNP) and -preferring (sP), respectively, the latter showing also inherent anxiety-related behaviors. We analyzed the modulation of calcitonin gene-related peptide (CGRP; exerting anxiogenic effects in BNST), neuropeptide Y (NPY; exerting mainly anxiolytic effects), and microglia activation (neuroinflammation marker, thought to increase anxiety). Calcitonin gene-related peptide-immunofluorescent fibers/terminals did not differ between alcohol-naive sP and sNP rats. Fiber/terminal NPY-immunofluorescent intensity was lower in BNST-AM and BNST-AVm of alcohol-naive sP rats. Activation of microglia (revealed by morphological analysis) was decreased in BNST-AM and increased in BNST-AVm of alcohol-naive sP rats. Prolonged (30 consecutive days), voluntary alcohol intake under the homecage 2-bottle “alcohol vs. water” regimen strongly increased CGRP intensity in BNST of sP rats in a subnucleus-specific manner: in BNST-AL, BNST-AVm, and BNST-AM. CGRP area sum, however, decreased in BNST-AM, without changes in other subnuclei. Alcohol consumption increased NPY expression, in a subnucleus-specific manner, in BNST-AL, BNST-AVl, and BNST-AVm. Alcohol consumption increased many size/shapes parameters in microglial cells, indicative of microglia de-activation. Finally, microglia density was increased in ventral anterior BNST (BNST-AVl, BNST-AVm) by alcohol consumption. In conclusion, genetic predisposition of sP rats to high alcohol intake could be in part mediated by anterior BNST subnuclei showing lower NPY expression and differential microglia activation. Alcohol intake in sP rats produced complex subnucleus-specific changes in BNST, affecting CGRP/NPY expression and microglia and leading to hypothesize that these changes might contribute to the anxiolytic effects of voluntarily consumed alcohol repeatedly observed in sP rats.
Collapse
Affiliation(s)
- Ilaria Rossetti
- Institute of Neuroscience, National Research Council of Italy, Milan, Italy
| | - Laura Zambusi
- Institute of Neuroscience, National Research Council of Italy, Milan, Italy
| | - Paola Maccioni
- Institute of Neuroscience, National Research Council of Italy, Milan, Italy
| | - Roberta Sau
- Institute of Neuroscience, National Research Council of Italy, Milan, Italy
| | - Luciano Provini
- Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - M Paola Castelli
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Krzysztof Gonciarz
- Center for Systems Biology Dresden, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Giancarlo Colombo
- Institute of Neuroscience, National Research Council of Italy, Milan, Italy
| | - Stefano Morara
- Institute of Neuroscience, National Research Council of Italy, Milan, Italy.,Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
12
|
Harris NA, Winder DG. Synaptic Plasticity in the Bed Nucleus of the Stria Terminalis: Underlying Mechanisms and Potential Ramifications for Reinstatement of Drug- and Alcohol-Seeking Behaviors. ACS Chem Neurosci 2018; 9:2173-2187. [PMID: 29851347 PMCID: PMC6146063 DOI: 10.1021/acschemneuro.8b00169] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The bed nucleus of the stria terminalis (BNST) is a component of the extended amygdala that shows significant changes in activity and plasticity through chronic exposure to drugs and stress. The region is critical for stress- and cue-induced reinstatement of drug-seeking behaviors and is thus a candidate region for the plastic changes that occur in abstinence that prime addicted patients for reinstatement behaviors. Here, we discuss the various forms of long-term potentiation (LTP) and long-term depression (LTD) in the rodent BNST and highlight the way that these changes in excitatory transmission interact with exposure to alcohol and other drugs of abuse, as well as other stressors. In addition, we highlight potential areas for future research in this area, including investigating input- and cell-specific bidirectional changes in activity. As we continue to accrue foundational knowledge in the mechanisms and effects of plasticity in the BNST, molecular targets and treatment strategies that are relevant to reinstatement behaviors will also begin to emerge. Here, we briefly discuss the effects of catecholamine receptor modulators on synaptic plasticity in the BNST due to the role of norepinephrine in LTD and dopamine on the short-term component of LTP as well as the role that signaling at these receptors plays in reinstatement of drug- and alcohol-seeking behaviors. We hope that insights gained on the specific changes in plasticity that occur within the BNST during abstinence from alcohol and other drugs of abuse will provide insight into the biological underpinnings of relapse behavior in human addicts and inform future treatment modalities for addiction that tackle this complex biological problem.
Collapse
Affiliation(s)
- Nicholas A. Harris
- Vanderbilt Center for Addiction Research
- Department of Molecular Physiology & Biophysics
| | - Danny G. Winder
- Vanderbilt Center for Addiction Research
- Department of Molecular Physiology & Biophysics
- Vanderbilt J.F. Kennedy Center for Research on Human Development
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
13
|
VanderPluym J, Dodick DW, Lipton RB, Ma Y, Loupe PS, Bigal ME. Fremanezumab for preventive treatment of migraine: Functional status on headache-free days. Neurology 2018; 91:e1152-e1165. [PMID: 30120138 PMCID: PMC6161555 DOI: 10.1212/01.wnl.0000544321.19316.40] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 06/25/2018] [Indexed: 12/14/2022] Open
Abstract
Objective To evaluate the effect of fremanezumab on the functional status on headache-free days in phase 2 episodic migraine (EM) and chronic migraine (CM) studies. Methods Functional status data were collected prospectively via the electronic headache diary on all headache-free days by patients answering questions regarding work/school/household chore performance, speed of work completion, concentration, and feeling of fatigue. Individuals with EM receiving monthly doses of fremanezumab 225 mg (n = 96) or 675 mg (n = 97) or placebo (n = 104) were compared. Individuals with CM receiving fremanezumab 675 mg followed by monthly 225 mg (n = 88) and 900 mg (n = 86) were also independently compared to those receiving placebo (n = 89). Results In patients with EM, compared to patients receiving placebo, those receiving fremanezumab experienced an increased number of headache-free days with normal function in work/school/household chore performance and concentration/mental fatigue measures compared to their baseline over the entire treatment period (all p < 0.005). An increased number of headache-free days with normal functional performance for some measures was also found in the CM group in those treated with fremanezumab. Conclusion There was an increased number of headache-free days with normal functional performance on all measures for the patients with EM and some measures for patients with CM in the fremanezumab-treated groups. Further research is required to confirm these findings in a prospective study and to clarify the underlying mechanism(s). ClinicalTrials.gov identifier: NCT02025556 and NCT02021773. Classification of evidence This study provides Class II evidence that for patients with migraine, fremanezumab increases normal functional performance on headache-free days.
Collapse
Affiliation(s)
- Juliana VanderPluym
- From the Mayo Clinic (J.V., D.W.D.), Phoenix, AZ; Montefiore Headache Center (R.B.L.), Albert Einstein College of Medicine, New York, NY; Teva Pharmaceuticals Ltd (Y.M., P.S.L.), Netanya, Israel; and Teva Pharmaceuticals Ltd (M.E.B.), Frazer, PA. Dr. Bigal is now at Purdue Pharma, Stamford, CT.
| | - David W Dodick
- From the Mayo Clinic (J.V., D.W.D.), Phoenix, AZ; Montefiore Headache Center (R.B.L.), Albert Einstein College of Medicine, New York, NY; Teva Pharmaceuticals Ltd (Y.M., P.S.L.), Netanya, Israel; and Teva Pharmaceuticals Ltd (M.E.B.), Frazer, PA. Dr. Bigal is now at Purdue Pharma, Stamford, CT
| | - Richard B Lipton
- From the Mayo Clinic (J.V., D.W.D.), Phoenix, AZ; Montefiore Headache Center (R.B.L.), Albert Einstein College of Medicine, New York, NY; Teva Pharmaceuticals Ltd (Y.M., P.S.L.), Netanya, Israel; and Teva Pharmaceuticals Ltd (M.E.B.), Frazer, PA. Dr. Bigal is now at Purdue Pharma, Stamford, CT
| | - Yuju Ma
- From the Mayo Clinic (J.V., D.W.D.), Phoenix, AZ; Montefiore Headache Center (R.B.L.), Albert Einstein College of Medicine, New York, NY; Teva Pharmaceuticals Ltd (Y.M., P.S.L.), Netanya, Israel; and Teva Pharmaceuticals Ltd (M.E.B.), Frazer, PA. Dr. Bigal is now at Purdue Pharma, Stamford, CT
| | - Pippa S Loupe
- From the Mayo Clinic (J.V., D.W.D.), Phoenix, AZ; Montefiore Headache Center (R.B.L.), Albert Einstein College of Medicine, New York, NY; Teva Pharmaceuticals Ltd (Y.M., P.S.L.), Netanya, Israel; and Teva Pharmaceuticals Ltd (M.E.B.), Frazer, PA. Dr. Bigal is now at Purdue Pharma, Stamford, CT
| | - Marcelo E Bigal
- From the Mayo Clinic (J.V., D.W.D.), Phoenix, AZ; Montefiore Headache Center (R.B.L.), Albert Einstein College of Medicine, New York, NY; Teva Pharmaceuticals Ltd (Y.M., P.S.L.), Netanya, Israel; and Teva Pharmaceuticals Ltd (M.E.B.), Frazer, PA. Dr. Bigal is now at Purdue Pharma, Stamford, CT
| |
Collapse
|
14
|
Okutsu Y, Takahashi Y, Nagase M, Shinohara K, Ikeda R, Kato F. Potentiation of NMDA receptor-mediated synaptic transmission at the parabrachial-central amygdala synapses by CGRP in mice. Mol Pain 2018; 13:1744806917709201. [PMID: 28604219 PMCID: PMC5470654 DOI: 10.1177/1744806917709201] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The capsular part of the central amygdala (CeC) is called the “nociceptive amygdala,” as it receives nociceptive information from various pathways, including monosynaptic input from the lateral part of the parabrachial nucleus (LPB), a major target of ascending neurons in the spinal and medullary dorsal horn. LPB-CeC synaptic transmission is mediated by glutamate but the fibers from the LPB also contain calcitonin gene-related peptide (CGRP) and the CeC is rich in CGRP-binding sites. CGRP might be released in response to strong nociception and activate these CGRP receptors. Though it has been shown that CGRP affects the excitatory postsynaptic current (EPSC) amplitude at this synapse in a manner sensitive to NMDA receptor (NMDA-R) blockers, the effect of CGRP on postsynaptic NMDA-R-mediated current recorded in isolation has never been directly examined. Thus, we evaluated the effects of CGRP on NMDA-R-mediated EPSCs that were pharmacologically isolated in brain slices from naïve mice. CGRP significantly increased the amplitude of EPSCs mediated by NMDA-Rs in a manner dependent on protein kinase A activation, but not that mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, in concentration-dependent and antagonist-sensitive manners. This CGRP-induced potentiation of synaptic NMDA-R function would have a potent impact on the strengthening of the nociception-emotion link in persistent pain.
Collapse
Affiliation(s)
- Yuya Okutsu
- 1 Department of Neuroscience, Jikei University School of Medicine, Minato-ku, Tokyo, Japan.,2 Department of Orthopaedic Surgery, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Yukari Takahashi
- 1 Department of Neuroscience, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Masashi Nagase
- 1 Department of Neuroscience, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Kei Shinohara
- 1 Department of Neuroscience, Jikei University School of Medicine, Minato-ku, Tokyo, Japan.,2 Department of Orthopaedic Surgery, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Ryo Ikeda
- 2 Department of Orthopaedic Surgery, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Fusao Kato
- 1 Department of Neuroscience, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| |
Collapse
|
15
|
Functional Heterogeneity in the Bed Nucleus of the Stria Terminalis. J Neurosci 2017; 36:8038-49. [PMID: 27488624 DOI: 10.1523/jneurosci.0856-16.2016] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/05/2016] [Indexed: 11/21/2022] Open
Abstract
Early work stressed the differing involvement of the central amygdala (CeA) and bed nucleus of the stria terminalis (BNST) in the genesis of fear versus anxiety, respectively. In 2009, Walker, Miles, and Davis proposed a model of amygdala-BNST interactions to explain these functional differences. This model became extremely influential and now guides a new wave of studies on the role of BNST in humans. Here, we consider evidence for and against this model, in the process highlighting central principles of BNST organization. This analysis leads us to conclude that BNST's influence is not limited to the generation of anxiety-like responses to diffuse threats, but that it also shapes the impact of discrete threatening stimuli. It is likely that BNST-CeA interactions are involved in modulating responses to such threats. In addition, whereas current views emphasize the contributions of the anterolateral BNST region in anxiety, accumulating data indicate that the anteromedial and anteroventral regions also play a critical role. The presence of multiple functional subregions within the small volume of BNST raises significant technical obstacles for functional imaging studies in humans.
Collapse
|
16
|
Ranjan V, Singh S, Siddiqui SA, Tripathi S, Khan MY, Prakash A. Differential Histone Acetylation in Sub-Regions of Bed Nucleus of the Stria Terminalis Underlies Fear Consolidation and Extinction. Psychiatry Investig 2017; 14:350-359. [PMID: 28539954 PMCID: PMC5440438 DOI: 10.4306/pi.2017.14.3.350] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/31/2016] [Accepted: 07/06/2016] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The hallmark of anxiety disorders is excessive fear. Previous studies have suggested that selective neural projections from Basal nucleus of stria terminalis (BNST) to amygdala and vice-versa precisely control the fear learning process. However the exact mechanism how the BNST controls fear consolidation and its extinction is largely unknown. In the present study we observed the changes in the BNST sub-regions following fear conditioning and its extinction. METHODS The change in the number of positive neurons was determined by immunohistochemistry for Acetyl H3 (Histone 3), Acetyl H4 (Histone 4), cAMP response element binding Protein (CBP) and c-fos in three sub-regions of the BNST namely the anterio-lateral BNST (STLP) and anterio-medial BNST (STMA), and lateral-ventral BNST (STLV) of rats subjected to auditory fear conditioning and extinction. RESULTS We found significant increase in the number of CBP, acetyl H3 and acetyl H4 positive neurons in the STMA and STLV but not in the STLP after fear conditioning. However, following fear extinction the number of CBP, acetyl H3 and acetyl H4 positive neurons increased significantly in the STLP but not in the STMA and STLV. Similar changes were observed in the number of c-fos positive neurons after fear consolidation and extinction. CONCLUSION The results from this study suggest that the differential histone acetylation in the different sub-regions of the BNST following fear learning and its extinction may be responsible for changes in the neuronal activation patterns resulting in either fear or less fear.
Collapse
Affiliation(s)
- Vandana Ranjan
- Department of Biochemistry, Dr. R M L Avadh University, Lucknow, India
| | - Sanjay Singh
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | | | - Sukanya Tripathi
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Mohd Yahiya Khan
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Anand Prakash
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
17
|
Acca GM, Mathew AS, Jin J, Maren S, Nagaya N. Allopregnanolone induces state-dependent fear via the bed nucleus of the stria terminalis. Horm Behav 2017; 89:137-144. [PMID: 28104355 PMCID: PMC5381271 DOI: 10.1016/j.yhbeh.2017.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 01/09/2017] [Accepted: 01/15/2017] [Indexed: 12/22/2022]
Abstract
Gonadal steroids and their metabolites have been shown to be important modulators of emotional behavior. Allopregnanolone (ALLO), for example, is a metabolite of progesterone that has been linked to anxiety-related disorders such as posttraumatic stress disorder. In rodents, it has been shown to reduce anxiety in a number of behavioral paradigms including Pavlovian fear conditioning. We have recently found that expression of conditioned contextual (but not auditory) freezing in rats can be suppressed by infusion of ALLO into the bed nucleus of the stria terminalis (BNST). To further explore the nature of this effect, we infused ALLO into the BNST of male rats prior to both conditioning and testing. We found that suppression of contextual fear occurred when the hormone was present during either conditioning or testing but not during both procedures, suggesting that ALLO acts in a state-dependent manner within the BNST. A shift in interoceptive context during testing for animals conditioned under ALLO provided further support for this mechanism of hormonal action on contextual fear. Interestingly, infusions of ALLO into the basolateral amygdala produced a state-independent suppression of both conditioned contextual and auditory freezing. Altogether, these results suggest that ALLO can influence the acquisition and expression of fear memories by both state-dependent and state-independent mechanisms.
Collapse
Affiliation(s)
- Gillian M Acca
- Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Abel S Mathew
- Department of Psychology, Texas A&M University, College Station, TX, USA
| | - Jingji Jin
- Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Stephen Maren
- Institute for Neuroscience, Texas A&M University, College Station, TX, USA; Department of Psychology, Texas A&M University, College Station, TX, USA
| | - Naomi Nagaya
- Institute for Neuroscience, Texas A&M University, College Station, TX, USA; Department of Psychology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
18
|
Diverse Physiological Roles of Calcitonin Gene-Related Peptide in Migraine Pathology: Modulation of Neuronal-Glial-Immune Cells to Promote Peripheral and Central Sensitization. Curr Pain Headache Rep 2017; 20:48. [PMID: 27334137 DOI: 10.1007/s11916-016-0578-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The neuropeptide calcitonin gene-related peptide (CGRP) is implicated in the underlying pathology of migraine by promoting the development of a sensitized state of primary and secondary nociceptive neurons. The ability of CGRP to initiate and maintain peripheral and central sensitization is mediated by modulation of neuronal, glial, and immune cells in the trigeminal nociceptive signaling pathway. There is accumulating evidence to support a key role of CGRP in promoting cross excitation within the trigeminal ganglion that may help to explain the high co-morbidity of migraine with rhinosinusitis and temporomandibular joint disorder. In addition, there is emerging evidence that CGRP facilitates and sustains a hyperresponsive neuronal state in migraineurs mediated by reported risk factors such as stress and anxiety. In this review, the significant role of CGRP as a modulator of the trigeminal system will be discussed to provide a better understanding of the underlying pathology associated with the migraine phenotype.
Collapse
|
19
|
Nakaya K, Nagura Y, Hasegawa R, Ito H, Fukudo S. Dai-Kenchu-To, a Herbal Medicine, Attenuates Colorectal Distention-induced Visceromotor Responses in Rats. J Neurogastroenterol Motil 2016; 22:686-693. [PMID: 27095743 PMCID: PMC5056579 DOI: 10.5056/jnm15190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/16/2016] [Accepted: 03/05/2016] [Indexed: 01/14/2023] Open
Abstract
Background/Aims Dai-kenchu-to (DKT), a traditional Japanese herbal medicine, is known to increase gastrointestinal motility and improve ileal function. We tested our hypotheses that (1) pretreatment with DKT would block the colorectal distention-induced visceromotor response in rats, and (2) pretreatment with DKT would attenuate colorectal distention-induced adrenocorticotropic hormone (ACTH) release and anxiety-related behavior. Methods Rats were pretreated with vehicle or DKT (300 mg/kg/5 mL, per os). Visceromotor responses were analyzed using electromyography in response to colorectal distention (10, 20, 40, 60, and 80 mmHg for 20 seconds at 3-minutes intervals). Anxiety-related behavior was measured during exposure to an elevated-plus maze after colorectal distention. Plasma ACTH and serum corticosterone levels were measured after exposure to the elevated-plus maze. Results Colorectal distention produced robust contractions of the abdominal musculature, graded according to stimulus intensity, in vehicle-treated rats. At 40, 60, and 80 mmHg of colorectal distention, the visceromotor responses of DKT-treated rats was significantly lower than that of vehicle-treated rats. At 80 mmHg, the amplitude was suppressed to approximately one-third in DKT-treated rats, compared with that in vehicle-treated rats. Smooth muscle compliance and the velocity of accommodation to 60 mmHg of stretching did not significantly differ between the vehicle-treated and DKT-treated rats. Similarly, the DKT did not influence colorectal distention-induced ACTH release, corticosterone levels, or anxiety-related behavior in rats. Conclusions Our results suggest that DKT attenuates the colorectal distention-induced visceromotor responses, without increasing smooth muscle compliance, ACTH release or anxiety-related behavior in rats.
Collapse
Affiliation(s)
- Kumi Nakaya
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yohko Nagura
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryoko Hasegawa
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hitomi Ito
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shin Fukudo
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
20
|
Rodríguez-Sierra OE, Goswami S, Turesson HK, Pare D. Altered responsiveness of BNST and amygdala neurons in trauma-induced anxiety. Transl Psychiatry 2016; 6:e857. [PMID: 27434491 PMCID: PMC5545714 DOI: 10.1038/tp.2016.128] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/18/2016] [Accepted: 05/08/2016] [Indexed: 12/31/2022] Open
Abstract
A highly conserved network of brain structures regulates the expression of fear and anxiety in mammals. Many of these structures display abnormal activity levels in post-traumatic stress disorder (PTSD). However, some of them, like the bed nucleus of the stria terminalis (BNST) and amygdala, are comprised of several small sub-regions or nuclei that cannot be resolved with human neuroimaging techniques. Therefore, we used a well-characterized rat model of PTSD to compare neuronal properties in resilient vs PTSD-like rats using patch recordings obtained from different BNST and amygdala regions in vitro. In this model, a persistent state of extreme anxiety is induced in a subset of susceptible rats following predatory threat. Previous animal studies have revealed that the central amygdala (CeA) and BNST are differentially involved in the genesis of fear and anxiety-like states, respectively. Consistent with these earlier findings, we found that between resilient and PTSD-like rats were marked differences in the synaptic responsiveness of neurons in different sectors of BNST and CeA, but whose polarity was region specific. In light of prior data about the role of these regions, our results suggest that control of fear/anxiety expression is altered in PTSD-like rats such that the influence of CeA is minimized whereas that of BNST is enhanced. A model of the amygdalo-BNST interactions supporting the PTSD-like state is proposed.
Collapse
Affiliation(s)
- O E Rodríguez-Sierra
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, NJ, USA
| | - S Goswami
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - H K Turesson
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, NJ, USA
| | - D Pare
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, NJ, USA
| |
Collapse
|
21
|
Waraczynski M. Toward a systems-oriented approach to the role of the extended amygdala in adaptive responding. Neurosci Biobehav Rev 2016; 68:177-194. [PMID: 27216212 DOI: 10.1016/j.neubiorev.2016.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 04/02/2016] [Accepted: 05/19/2016] [Indexed: 11/19/2022]
Abstract
Research into the structure and function of the basal forebrain macrostructure called the extended amygdala (EA) has recently seen considerable growth. This paper reviews that work, with the objectives of identifying underlying themes and developing a common goal towards which investigators of EA function might work. The paper begins with a brief review of the structure and the ontological and phylogenetic origins of the EA. It continues with a review of research into the role of the EA in both aversive and appetitive states, noting that these two seemingly disparate avenues of research converge on the concept of reinforcement - either negative or positive - of adaptive responding. These reviews lead to a proposal as to where the EA may fit in the organization of the basal forebrain, and an invitation to investigators to place their findings in a unifying conceptual framework of the EA as a collection of neural ensembles that mediate adaptive responding.
Collapse
Affiliation(s)
- Meg Waraczynski
- Department of Psychology, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI 53190, USA.
| |
Collapse
|
22
|
Anacker C, Scholz J, O’Donnell KJ, Allemang-Grand R, Diorio J, Bagot RC, Nestler EJ, Hen R, Lerch JP, Meaney MJ. Neuroanatomic Differences Associated With Stress Susceptibility and Resilience. Biol Psychiatry 2016; 79:840-849. [PMID: 26422005 PMCID: PMC5885767 DOI: 10.1016/j.biopsych.2015.08.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND We examined the neurobiological mechanisms underlying stress susceptibility using structural magnetic resonance imaging and diffusion tensor imaging to determine neuroanatomic differences between stress-susceptible and resilient mice. We also examined synchronized anatomic differences between brain regions to gain insight into the plasticity of neural networks underlying stress susceptibility. METHODS C57BL/6 mice underwent 10 days of social defeat stress and were subsequently tested for social avoidance. For magnetic resonance imaging, brains of stressed (susceptible, n = 11; resilient, n = 8) and control (n = 12) mice were imaged ex vivo at 56 µm resolution using a T2-weighted sequence. We tested for behavior-structure correlations by regressing social avoidance z-scores against local brain volume. For diffusion tensor imaging, brains were scanned with a diffusion-weighted fast spin echo sequence at 78 μm isotropic voxels. Structural covariance was assessed by correlating local volume between brain regions. RESULTS Social avoidance correlated negatively with local volume of the cingulate cortex, nucleus accumbens, thalamus, raphe nuclei, and bed nucleus of the stria terminals. Social avoidance correlated positively with volume of the ventral tegmental area (VTA), habenula, periaqueductal gray, cerebellum, hypothalamus, and hippocampal CA3. Fractional anisotropy was increased in the hypothalamus and hippocampal CA3. We observed synchronized anatomic differences between the VTA and cingulate cortex, hippocampus and VTA, hippocampus and cingulate cortex, and hippocampus and hypothalamus. These correlations revealed different structural covariance between brain regions in susceptible and resilient mice. CONCLUSIONS Stress-integrative brain regions shape the neural architecture underlying individual differences in susceptibility and resilience to chronic stress.
Collapse
|
23
|
Gungor NZ, Yamamoto R, Paré D. Optogenetic study of the projections from the bed nucleus of the stria terminalis to the central amygdala. J Neurophysiol 2015; 114:2903-11. [PMID: 26400259 DOI: 10.1152/jn.00677.2015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/21/2015] [Indexed: 12/22/2022] Open
Abstract
It has been proposed that the central amygdala (CeA), particularly its medial sector (CeM), generates brief fear responses to discrete conditioned cues, whereas the bed nucleus of the stria terminalis (BNST) promotes long-lasting, anxiety-like states in response to more diffuse contingencies. Although it is believed that BNST-CeA interactions determine the transition between short- and long-duration responses, the nature of these interactions remains unknown. To shed light on this question, we used a double viral strategy to drive the expression of channelrhodopsin (ChR2) in BNST cells that project to CeA. Next, using patch-clamp recordings in vitro, we investigated the connectivity of infected cells to noninfected cells in BNST and compared the influence of BNST axons on neurons in the medial and lateral (CeL) parts of CeA. CeA-projecting BNST cells were concentrated in the anterolateral (AL) and anteroventral (AV) sectors of BNST. Dense plexuses of BNST axons were observed throughout CeA. In CeA and BNST, light-evoked excitatory postsynaptic potentials accounted for a minority of responses (0-9% of tested cells); inhibition prevailed. The incidence of inhibitory responses was higher in CeM than in CeL (66% and 43% of tested cells, respectively). Within BNST, the connections from CeA-projecting to non-CeA-targeting cells varied as a function of the BNST sector: 50% vs. 9% of tested cells exhibited light-evoked responses in BNST-AL vs. BNST-AV, respectively. Overall, these results suggest that via its projection to CeA, BNST exerts an inhibitory influence over cued fear and that BNST neurons projecting to CeA form contrasting connections in different BNST subnuclei.
Collapse
Affiliation(s)
- Nur Zeynep Gungor
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| | - Ryo Yamamoto
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| | - Denis Paré
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| |
Collapse
|
24
|
Wood J, Verma D, Lach G, Bonaventure P, Herzog H, Sperk G, Tasan RO. Structure and function of the amygdaloid NPY system: NPY Y2 receptors regulate excitatory and inhibitory synaptic transmission in the centromedial amygdala. Brain Struct Funct 2015; 221:3373-91. [PMID: 26365505 PMCID: PMC4696156 DOI: 10.1007/s00429-015-1107-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 09/04/2015] [Indexed: 12/14/2022]
Abstract
The amygdala is essential for generating emotional-affective behaviors. It consists of several nuclei with highly selective, elaborate functions. In particular, the central extended amygdala, consisting of the central amygdala (CEA) and the bed nucleus of the stria terminalis (BNST) is an essential component actively controlling efferent connections to downstream effectors like hypothalamus and brain stem. Both, CEA and BNST contain high amounts of different neuropeptides that significantly contribute to synaptic transmission. Among these, neuropeptide Y (NPY) has emerged as an important anxiolytic and fear-reducing neuromodulator. Here, we characterized the expression, connectivity and electrophysiological function of NPY and Y2 receptors within the CEA. We identified several NPY-expressing neuronal populations, including somatostatin- and calretinin-expressing neurons. Furthermore, in the main intercalated nucleus, NPY is expressed primarily in dopamine D1 receptor-expressing neurons but also in interspersed somatostatin-expressing neurons. Interestingly, NPY neurons did not co-localize with the Y2 receptor. Retrograde tract tracing experiments revealed that NPY neurons reciprocally connect the CEA and BNST. Functionally, the Y2 receptor agonist PYY3-36, reduced both, inhibitory as well as excitatory synaptic transmission in the centromedial amygdala (CEm). However, we also provide evidence that lack of NPY or Y2 receptors results in increased GABA release specifically at inhibitory synapses in the CEm. Taken together, our findings suggest that NPY expressed by distinct populations of neurons can modulate afferent and efferent projections of the CEA via presynaptic Y2 receptors located at inhibitory and excitatory synapses.
Collapse
Affiliation(s)
- J Wood
- Department of Pharmacology, Medical University Innsbruck, Peter-Mayr-Strasse 1a, 6020, Innsbruck, Austria
| | - D Verma
- Department of Pharmacology, Medical University Innsbruck, Peter-Mayr-Strasse 1a, 6020, Innsbruck, Austria.,Institute of Physiology I (Neurophysiology), Westfälische Wilhelms-Universität, Munster, Germany
| | - G Lach
- Department of Pharmacology, Medical University Innsbruck, Peter-Mayr-Strasse 1a, 6020, Innsbruck, Austria.,Capes Foundation, Ministry of Education of Brazil, Brasília, DF, 70040-020, Brazil
| | - P Bonaventure
- Janssen Research & Development, LLC, San Diego, CA, USA
| | - H Herzog
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
| | - G Sperk
- Department of Pharmacology, Medical University Innsbruck, Peter-Mayr-Strasse 1a, 6020, Innsbruck, Austria
| | - R O Tasan
- Department of Pharmacology, Medical University Innsbruck, Peter-Mayr-Strasse 1a, 6020, Innsbruck, Austria.
| |
Collapse
|
25
|
Verma D, Wood J, Lach G, Mietzsch M, Weger S, Heilbronn R, Herzog H, Bonaventure P, Sperk G, Tasan RO. NPY Y2 receptors in the central amygdala reduce cued but not contextual fear. Neuropharmacology 2015; 99:665-74. [PMID: 26314208 DOI: 10.1016/j.neuropharm.2015.08.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/18/2015] [Accepted: 08/21/2015] [Indexed: 10/23/2022]
Abstract
The amygdala is fundamental for associative fear and extinction learning. Recently, also the central nucleus of the amygdala (CEA) has emerged as a site of plasticity actively controlling efferent connections to downstream effector brain areas. Although synaptic transmission is primarily mediated by glutamate and GABA, neuropeptides critically influence the overall response. While neuropeptide Y (NPY) acting via postsynaptic Y1 receptors exerts an important anxiolytic and fear-reducing action, the role of the predominantly presynaptic Y2 receptors is less defined. To investigate the role of Y2 receptors in the CEA we employed viral-vector mediated over-expression of the Y2 selective agonist NPY3-36 in fear conditioning and extinction experiments. NPY3-36 over-expression in the CEA resulted in reduced fear expression during fear acquisition and recall. Interestingly, this effect was blocked by intraperitoneal injection of a brain-penetrant Y2 receptor antagonist. Furthermore, over-expression of NPY3-36 in the CEA also reduced fear expression during fear extinction of CS-induced but not context-related fear. Again, fear extinction appeared delayed by peripheral injection of a Y2 receptor antagonist JNJ-31020028. Importantly, mice with over-expression of NPY3-36 in the CEA also displayed reduced spontaneous recovery and reinstatement, suggesting that Y2 receptor activation supports a permanent suppression of fear. Local deletion of Y2 receptors in the CEA, on the other hand, increased the expression of CS-induced freezing during fear recall and fear extinction. Thus, NPY inhibits fear learning and promotes cued extinction by reducing fear expression also via activation of presynaptic Y2 receptors on CEA neurons.
Collapse
Affiliation(s)
- D Verma
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - J Wood
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - G Lach
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria; Capes Foundation, Ministry of Education of Brazil, 70040-020 Brasília, DF, Brazil
| | - M Mietzsch
- Institute of Virology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - S Weger
- Institute of Virology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - R Heilbronn
- Institute of Virology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - H Herzog
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - P Bonaventure
- Janssen Research & Development, LLC, San Diego, CA, USA
| | - G Sperk
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - R O Tasan
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
26
|
Kunst M, Hughes ME, Raccuglia D, Felix M, Li M, Barnett G, Duah J, Nitabach MN. Calcitonin gene-related peptide neurons mediate sleep-specific circadian output in Drosophila. Curr Biol 2014; 24:2652-64. [PMID: 25455031 DOI: 10.1016/j.cub.2014.09.077] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 09/05/2014] [Accepted: 09/26/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND Imbalances in amount and timing of sleep are harmful to physical and mental health. Therefore, the study of the underlying mechanisms is of great biological importance. Proper timing and amount of sleep are regulated by both the circadian clock and homeostatic sleep drive. However, very little is known about the cellular and molecular mechanisms by which the circadian clock regulates sleep. In this study, we describe a novel role for diuretic hormone 31 (DH31), the fly homolog of the vertebrate neuropeptide calcitonin gene-related peptide, as a circadian wake-promoting signal that awakens the fly in anticipation of dawn. RESULTS Analysis of loss-of-function and gain-of-function Drosophila mutants demonstrates that DH31 suppresses sleep late at night. DH31 is expressed by a subset of dorsal circadian clock neurons that also express the receptor for the circadian neuropeptide pigment-dispersing factor (PDF). PDF secreted by the ventral pacemaker subset of circadian clock neurons acts on PDF receptors in the DH31-expressing dorsal clock neurons to increase DH31 secretion before dawn. Activation of PDF receptors in DH31-positive DN1 specifically affects sleep and has no effect on circadian rhythms, thus constituting a dedicated locus for circadian regulation of sleep. CONCLUSIONS We identified a novel signaling molecule (DH31) as part of a neuropeptide relay mechanism for circadian control of sleep. Our results indicate that outputs of the clock controlling sleep and locomotor rhythms are mediated via distinct neuronal pathways.
Collapse
Affiliation(s)
- Michael Kunst
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Michael E Hughes
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Davide Raccuglia
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Mario Felix
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Michael Li
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Gregory Barnett
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Janelle Duah
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Michael N Nitabach
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Genetics, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
27
|
α(2A)-adrenergic receptors filter parabrachial inputs to the bed nucleus of the stria terminalis. J Neurosci 2014; 34:9319-31. [PMID: 25009265 DOI: 10.1523/jneurosci.0822-14.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
α2-adrenergic receptors (AR) within the bed nucleus of the stria terminalis (BNST) reduce stress-reward interactions in rodent models. In addition to their roles as autoreceptors, BNST α(2A)-ARs suppress glutamatergic transmission. One prominent glutamatergic input to the BNST originates from the parabrachial nucleus (PBN) and consists of asymmetric axosomatic synapses containing calcitonin gene-related peptide (CGRP) and vGluT2. Here we provide immunoelectron microscopic data showing that many asymmetric axosomatic synapses in the BNST contain α(2A)-ARs. Further, we examined optically evoked glutamate release ex vivo in BNST from mice with virally delivered channelrhodopsin2 (ChR2) expression in PBN. In BNST from these animals, ChR2 partially colocalized with CGRP, and activation generated EPSCs in dorsal anterolateral BNST neurons that elicited two cell-type-specific outcomes: (1) feedforward inhibition or (2) an EPSP that elicited firing. We found that the α(2A)-AR agonist guanfacine selectively inhibited this PBN input to the BNST, preferentially reducing the excitatory response in ex vivo mouse brain slices. To begin to assess the overall impact of α(2A)-AR control of this PBN input on BNST excitatory transmission, we used a Thy1-COP4 mouse line with little postsynaptic ChR2 expression nor colocalization of ChR2 with CGRP in the BNST. In slices from these mice, we found that guanfacine enhanced, rather than suppressed, optogenetically initiated excitatory drive in BNST. Thus, our study reveals distinct actions of PBN afferents within the BNST and suggests that α(2A)-AR agonists may filter excitatory transmission in the BNST by inhibiting a component of the PBN input while enhancing the actions of other inputs.
Collapse
|