1
|
Qin X, Fu L, Li C, Tan X, Yin X. Optimized inner ear organoids for efficient hair cell generation and ototoxicity response modeling. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2803-1. [PMID: 39862345 DOI: 10.1007/s11427-024-2803-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/02/2024] [Indexed: 01/27/2025]
Abstract
Hair cells in the mammalian cochlea are highly vulnerable to damage from drug toxicity, noise exposure, aging, and genetic mutations, with no capacity for regeneration. Progress in hair cell protection research has been limited by the scarcity of cochlear tissue and suitable in vitro models. Here, we present a novel one-step, self-organizing inner ear organoid system optimized with small molecules, which bypasses the need for multi-step expansion and forced differentiation protocols. This approach efficiently generates hair cells and supporting cells that recapitulate the molecular, cellular, and structural characteristics of the inner ear. Single-cell RNA sequencing revealed the diversity and fidelity of cell populations within the organoids. Utilizing this platform, we validated the protective effects of candidate compounds against hair cell damage, highlighting its potential as a powerful tool for drug discovery and mechanistic studies of hair cell protection.
Collapse
Affiliation(s)
- Xuanhe Qin
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Liping Fu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Chunying Li
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xilin Tan
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xiaolei Yin
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
2
|
Lin Y, Zhang Q, Tong W, Wang Y, Wu L, Xiao H, Tang X, Dai M, Ye Z, Chai R, Zhang S. Conditional Overexpression of Net1 Enhances the Trans-Differentiation of Lgr5 + Progenitors into Hair Cells in the Neonatal Mouse Cochlea. Cell Prolif 2024:e13787. [PMID: 39675772 DOI: 10.1111/cpr.13787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
Sensorineural hearing loss is mainly caused by damage to hair cells (HC), which cannot be regenerated spontaneously in adult mammals once damaged. Cochlear Lgr5+ progenitors are characterised by HC regeneration capacity in neonatal mice, and we previously screened several new genes that might induce HC regeneration from Lgr5+ progenitors. Net1, a guanine nucleotide exchange factor, is one of the screened new genes and is particularly active in cancer cells and is involved in cell proliferation and differentiation. Here, to explore in vivo roles of Net1 in HC regeneration, Net1loxp/loxp mice were constructed and crossed with Lgr5CreER/+ mice to conditionally overexpress (cOE) Net1 in cochlear Lgr5+ progenitors. We observed a large number of ectopic HCs in Lgr5CreER/+Net1loxp/loxp mouse cochlea, which showed a dose-dependent effect. Moreover, the EdU assay was unable to detect any EdU+/Sox2+ supporting cells, while lineage tracing showed significantly more regenerated tdTomato+ HCs in Lgr5CreER/+Net1loxp/loxptdTomato mice, which indicated that Net1 cOE enhanced HC regeneration by inducing the direct trans-differentiation of Lgr5+ progenitors rather than mitotic HC regeneration. Additionally, qPCR results showed that the transcription factors related to HC regeneration, including Atoh1, Gfi1 and Pou4f3, were significantly upregulated and are probably the mechanism behind the HC regeneration induced by Net1. In conclusion, our study provides new evidence for the role of Net1 in enhancing HC regeneration in the neonatal mouse cochlea.
Collapse
Affiliation(s)
- Yanqin Lin
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Southeast University Shenzhen Research Institute, Shenzhen, China
| | - Qiuyue Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Southeast University Shenzhen Research Institute, Shenzhen, China
| | - Wei Tong
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Southeast University Shenzhen Research Institute, Shenzhen, China
| | - Yintao Wang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Southeast University Shenzhen Research Institute, Shenzhen, China
| | - Leilei Wu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Southeast University Shenzhen Research Institute, Shenzhen, China
| | - Hairong Xiao
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Southeast University Shenzhen Research Institute, Shenzhen, China
| | - Xujun Tang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Southeast University Shenzhen Research Institute, Shenzhen, China
| | - Mingchen Dai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Southeast University Shenzhen Research Institute, Shenzhen, China
| | - Zixuan Ye
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Southeast University Shenzhen Research Institute, Shenzhen, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Southeast University Shenzhen Research Institute, Shenzhen, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Shasha Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Southeast University Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
3
|
Gil Y, Ryu J, Yang H, Ma Y, Nam KH, Jang SW, Shim S. Molecular Characterization of Subdomain Specification of Cochlear Duct Based on Foxg1 and Gata3. Int J Mol Sci 2024; 25:12700. [PMID: 39684410 DOI: 10.3390/ijms252312700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The inner ear is one of the sensory organs of vertebrates and is largely composed of the vestibule, which controls balance, and the cochlea, which is responsible for hearing. In particular, a problem in cochlear development can lead to hearing loss. Although numerous studies have been conducted on genes involved in the development of the cochlea, many areas still need to be discovered regarding factors that control the patterning of the early cochlear duct. Herein, based on the dynamic expression pattern of FOXG1 in the apical and basal regions of the E13.5 cochlear duct, we identified detailed expression regions through an open-source analysis of single-cell RNA analysis data and demonstrated a clinical correlation with hearing loss. The distinct expression patterns of FOXG1 and GATA3 during the patterning process of the cochlear duct provide important clues to understanding how the fates of the apical and basal regions are divided. These results are expected to be extremely important not only for understanding the molecular mechanisms involved in the early development of the cochlear duct, but also for identifying potential genes that cause hearing loss.
Collapse
Affiliation(s)
- Yongjin Gil
- Department of Biochemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jiho Ryu
- Department of Biochemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hayoung Yang
- Department of Biochemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yechan Ma
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Sung-Wuk Jang
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Sungbo Shim
- Department of Biochemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
4
|
Chung K, Millet M, Rouillon L, Zine A. Timing and Graded BMP Signalling Determines Fate of Neural Crest and Ectodermal Placode Derivatives from Pluripotent Stem Cells. Biomedicines 2024; 12:2262. [PMID: 39457575 PMCID: PMC11504183 DOI: 10.3390/biomedicines12102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Pluripotent stem cells (PSCs) offer many potential research and clinical benefits due to their ability to differentiate into nearly every cell type in the body. They are often used as model systems to study early stages of ontogenesis to better understand key developmental pathways, as well as for drug screening. However, in order to fully realise the potential of PSCs and their translational applications, a deeper understanding of developmental pathways, especially in humans, is required. Several signalling molecules play important roles during development and are required for proper differentiation of PSCs. The concentration and timing of signal activation are important, with perturbations resulting in improper development and/or pathology. Bone morphogenetic proteins (BMPs) are one such key group of signalling molecules involved in the specification and differentiation of various cell types and tissues in the human body, including those related to tooth and otic development. In this review, we describe the role of BMP signalling and its regulation, the consequences of BMP dysregulation in disease and differentiation, and how PSCs can be used to investigate the effects of BMP modulation during development, mainly focusing on otic development. Finally, we emphasise the unique role of BMP4 in otic specification and how refined understanding of controlling its regulation could lead to the generation of more robust and reproducible human PSC-derived otic organoids for research and translational applications.
Collapse
Affiliation(s)
- Keshi Chung
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| | - Malvina Millet
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
- Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Ludivine Rouillon
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| | - Azel Zine
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| |
Collapse
|
5
|
Young CA, Burt E, Munnamalai V. A cochlear progenitor pool influences patterning of the mammalian sensory epithelium via MYBL2. Development 2024; 151:dev202635. [PMID: 39254648 PMCID: PMC11423912 DOI: 10.1242/dev.202635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/01/2024] [Indexed: 09/11/2024]
Abstract
During embryonic development, Wnt signaling influences both proliferation and sensory formation in the cochlea. How this dual nature of Wnt signaling is coordinated is unknown. In this study, we define a novel role for a Wnt-regulated gene, Mybl2, which was already known to be important for proliferation, in determining the size and patterning of the sensory epithelium in the murine cochlea. Using a quantitative spatial analysis approach and analyzing Mybl2 loss-of-function, we show that Mybl2 promoted proliferation in the inner sulcus domain but limited the size of the sensory domain by influencing their adjoining boundary position via Jag1 regulation during development. Mybl2 loss-of-function simultaneously decreased proliferation in the inner sulcus and increased the size of the sensory domain, resulting in a wider sensory epithelium with ectopic inner hair cell formation during late embryonic stages. These data suggest that progenitor cells in the inner sulcus determine boundary formation and pattern the sensory epithelium via MYBL2.
Collapse
Affiliation(s)
- Caryl A. Young
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Emily Burt
- Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
| | - Vidhya Munnamalai
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| |
Collapse
|
6
|
Powers KG, Wilkerson BA, Beach KE, Seo SS, Rodriguez JS, Baxter AN, Hunter SE, Bermingham-McDonogh O. Deletion of the Ebf1, a mouse deafness gene, causes a dramatic increase in hair cells and support cells of the organ of Corti. Development 2024; 151:dev202816. [PMID: 39037017 PMCID: PMC11361633 DOI: 10.1242/dev.202816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
Following up on our previous observation that early B cell factor (EBF) sites are enriched in open chromatin of the developing sensory epithelium of the mouse cochlea, we investigated the effect of deletion of Ebf1 on inner ear development. We used a Cre driver to delete Ebf1 at the otocyst stage before development of the cochlea. We examined the cochlea at postnatal day (P) 1 and found that the sensory epithelium had doubled in size but the length of the cochlear duct was unaffected. We also found that deletion of Ebf1 led to ectopic sensory patches in the Kölliker's organ. Innervation of the developing organ of Corti was disrupted with no obvious spiral bundles. The ectopic patches were also innervated. All the extra hair cells (HCs) within the sensory epithelium and Kölliker's organ contained mechanoelectrical transduction channels, as indicated by rapid uptake of FM1-43. The excessive numbers of HCs were still present in the adult Ebf1 conditional knockout (cKO) animal. The animals had significantly elevated auditory brainstem response thresholds, suggesting that this gene is essential for hearing development.
Collapse
Affiliation(s)
- Kathryn G. Powers
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195, USA
- Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA
| | - Brent A. Wilkerson
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kylie E. Beach
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Sophie S. Seo
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jose S. Rodriguez
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Ashton N. Baxter
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sarah E. Hunter
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
7
|
Wang S, Chakraborty S, Fu Y, Lee MP, Liu J, Waldhaus J. 3D reconstruction of the mouse cochlea from scRNA-seq data suggests morphogen-based principles in apex-to-base specification. Dev Cell 2024; 59:1538-1552.e6. [PMID: 38593801 PMCID: PMC11187690 DOI: 10.1016/j.devcel.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/03/2023] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
In the mammalian auditory system, frequency discrimination depends on numerous morphological and physiological properties of the organ of Corti, which gradually change along the apex-to-base (tonotopic) axis of the organ. For example, the basilar membrane stiffness changes tonotopically, thus affecting the tuning properties of individual hair cells. At the molecular level, those frequency-specific characteristics are mirrored by gene expression gradients; however, the molecular mechanisms controlling tonotopic gene expression in the mouse cochlea remain elusive. Through analyzing single-cell RNA sequencing (scRNA-seq) data from E12.5 and E14.5 time points, we predicted that morphogens, rather than a cell division-associated mechanism, confer spatial identity in the extending cochlea. Subsequently, we reconstructed the developing cochlea in 3D space from scRNA-seq data to investigate the molecular pathways mediating positional information. The retinoic acid (RA) and hedgehog pathways were found to form opposing apex-to-base gradients, and functional interrogation using mouse cochlear explants suggested that both pathways jointly specify the longitudinal axis.
Collapse
Affiliation(s)
- Shuze Wang
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Saikat Chakraborty
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yujuan Fu
- Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98195, USA
| | - Mary P Lee
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jie Liu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joerg Waldhaus
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
8
|
Shah JJ, Jimenez-Jaramillo CA, Lybrand ZR, Yuan TT, Erbele ID. Modern In Vitro Techniques for Modeling Hearing Loss. Bioengineering (Basel) 2024; 11:425. [PMID: 38790292 PMCID: PMC11118046 DOI: 10.3390/bioengineering11050425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 05/26/2024] Open
Abstract
Sensorineural hearing loss (SNHL) is a prevalent and growing global health concern, especially within operational medicine, with limited therapeutic options available. This review article explores the emerging field of in vitro otic organoids as a promising platform for modeling hearing loss and developing novel therapeutic strategies. SNHL primarily results from the irreversible loss or dysfunction of cochlear mechanosensory hair cells (HCs) and spiral ganglion neurons (SGNs), emphasizing the need for innovative solutions. Current interventions offer symptomatic relief but do not address the root causes. Otic organoids, three-dimensional multicellular constructs that mimic the inner ear's architecture, have shown immense potential in several critical areas. They enable the testing of gene therapies, drug discovery for sensory cell regeneration, and the study of inner ear development and pathology. Unlike traditional animal models, otic organoids closely replicate human inner ear pathophysiology, making them invaluable for translational research. This review discusses methodological advances in otic organoid generation, emphasizing the use of human pluripotent stem cells (hPSCs) to replicate inner ear development. Cellular and molecular characterization efforts have identified key markers and pathways essential for otic organoid development, shedding light on their potential in modeling inner ear disorders. Technological innovations, such as 3D bioprinting and microfluidics, have further enhanced the fidelity of these models. Despite challenges and limitations, including the need for standardized protocols and ethical considerations, otic organoids offer a transformative approach to understanding and treating auditory dysfunctions. As this field matures, it holds the potential to revolutionize the treatment landscape for hearing and balance disorders, moving us closer to personalized medicine for inner ear conditions.
Collapse
Affiliation(s)
- Jamie J. Shah
- Department of Pathology, San Antonio Uniformed Services Health Education Consortium, JBSA, Fort Sam Houston, TX 78234, USA;
| | - Couger A. Jimenez-Jaramillo
- Department of Pathology, San Antonio Uniformed Services Health Education Consortium, JBSA, Fort Sam Houston, TX 78234, USA;
| | - Zane R. Lybrand
- Division of Biology, Texas Woman’s University, Denton, TX 76204, USA;
| | - Tony T. Yuan
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.T.Y.); (I.D.E.)
| | - Isaac D. Erbele
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.T.Y.); (I.D.E.)
- Department of Otolaryngology, San Antonio Uniformed Services Health Education Consortium, JBSA, Fort Sam Houston, TX 78234, USA
| |
Collapse
|
9
|
Feng Y, Zhang J, Li Y, Chen G, Zhang X, Ning G, Wu S. Inhibition of Pi4kb activity causes malformation of vestibular apparatus in zebrafish by downregulating hey1. Gene 2024; 898:148105. [PMID: 38135256 DOI: 10.1016/j.gene.2023.148105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
Phosphatidylinositol 4 kinase-β (PI4KB) plays critical roles in human genetic diseases. In zebrafish, Pi4kb is strongly expressed in hair cells (HCs), which are necessary for detecting sound vibrations, head movements, and water motion. However, the role of PI4KB in HC or semicircular canal development is unclear. Herein, we report that pi4kb morphants exhibit insensitivity to sound stimulation and abnormal morphological vestibular organs, including cilium loss in HCs of the cristae and semicircular canal malformation. As bone morphogenetic protein (BMP) signaling is associated with HC and semicircular canal development, we analyzed the expression of BMP-related genes; the phosphorylated Smad1/5/9 (p-Smad1/5/9) expression was markedly reduced in otic HCs. RNA-sequencing data indicated that the transcriptional levels of BMP membrane receptor 2 (bmpr2a and bmpr2b) and hes-related family of bHLH transcription factors with YRPW motif 1 (hey1), a direct downstream target gene of p-Smad, were significantly reduced in the pi4kb morphants, as verified using quantitative reverse transcription-polymerase chain reaction and in situ hybridization. Co-injection of hey1 mRNA and pi4kb morpholino notably recovered vestibular apparatus development, including the number and length of cilia in HCs of the cristae and semicircular canal formation. Collectively, these results suggest that Pi4kb is involved in vestibular apparatus development in zebrafish by regulating BMP membrane receptor 2 and p-Smad1/5/9 levels, thereby affecting the transcriptional activation of the target gene hey1. This study sheds light on the interaction between Pi4kb and the BMP-Hey1 signaling axis, which is critical for HC and semicircular canal formation.
Collapse
Affiliation(s)
- Yufei Feng
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Jiaqi Zhang
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, China; Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, HeilongJiang, China
| | - Yuzhen Li
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Gengrong Chen
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Xiaoting Zhang
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Guozhu Ning
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Shuilong Wu
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China.
| |
Collapse
|
10
|
Kagoshima H, Ohnishi H, Yamamoto R, Yasumoto A, Tona Y, Nakagawa T, Omori K, Yamamoto N. EBF1 Limits the Numbers of Cochlear Hair and Supporting Cells and Forms the Scala Tympani and Spiral Limbus during Inner Ear Development. J Neurosci 2024; 44:e1060232023. [PMID: 38176908 PMCID: PMC10869149 DOI: 10.1523/jneurosci.1060-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/12/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024] Open
Abstract
Early B-cell factor 1 (EBF1) is a basic helix-loop-helix transcription factor essential for the differentiation of various tissues. Our single-cell RNA sequencing data suggest that Ebf1 is expressed in the sensory epithelium of the mouse inner ear. Here, we found that the murine Ebf1 gene and its protein are expressed in the prosensory domain of the inner ear, medial region of the cochlear duct floor, otic mesenchyme, and cochleovestibular ganglion. Ebf1 deletion in mice results in incomplete formation of the spiral limbus and scala tympani, increased number of cells in the organ of Corti and Kölliker's organ, and aberrant course of the spiral ganglion axons. Ebf1 deletion in the mouse cochlear epithelia caused the proliferation of SOX2-positive cochlear cells at E13.5, indicating that EBF1 suppresses the proliferation of the prosensory domain and cells of Kölliker's organ to facilitate the development of appropriate numbers of hair and supporting cells. Furthermore, mice with deletion of cochlear epithelium-specific Ebf1 showed poor postnatal hearing function. Our results suggest that Ebf1 is essential for normal auditory function in mammals.
Collapse
Affiliation(s)
- Hiroki Kagoshima
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroe Ohnishi
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Ryosuke Yamamoto
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | - Akiyoshi Yasumoto
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yosuke Tona
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takayuki Nakagawa
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Koichi Omori
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Norio Yamamoto
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Department of Otolaryngology, Kobe City Medical Center General Hospital, Hyogo 650-0047, Japan
| |
Collapse
|
11
|
Young CA, Burt E, Munnamalai V. Sensory progenitors influence patterning of the mammalian auditory sensory epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566920. [PMID: 38014307 PMCID: PMC10680690 DOI: 10.1101/2023.11.13.566920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
During embryonic development Wnt signaling has been shown to influence proliferation and sensory formation in the cochlea. How the dual nature of Wnt signaling is coordinated is unknown. In this study, we define a novel role for a Wnt regulated gene, Mybl2, which was already known to be important for proliferation, in influencing patterning and determining the size of the sensory epithelium in the murine cochlea. Using a quantitative spatial analysis approach and analyzing Mybl2 loss-of-function cochleas, we show that Mybl2 simultaneously specifies the progenitor niche and the size of the sensory domain, and influences the positioning of the medial sensory domain boundary via Jag1 regulation during the mid-gestational stages. Mybl2 conditional knockout resulted in a decrease of proliferation within the progenitor niche. During the late embryonic stages, conditional knockout of Mybl2 produced a wider sensory epithelium across the radial axis with an increase in ectopic inner hair cell formation. These data suggest that Mybl2 -positive progenitors play a role in boundary formation and patterning the sensory epithelium. Summary Statement Mybl2 is a Wnt-regulated gene encoding a transcription factor that is expressed in the cochlear progenitor niche and influences the boundary formation between the niche and the sensory domain during mid-cochlear developmental stages, thereby impacting the size of the sensory epithelium.
Collapse
|
12
|
Li X, Morgan C, Nadar‐Ponniah PT, Kolanus W, Doetzlhofer A. TRIM71 reactivation enhances the mitotic and hair cell-forming potential of cochlear supporting cells. EMBO Rep 2023; 24:e56562. [PMID: 37492931 PMCID: PMC10481673 DOI: 10.15252/embr.202256562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/27/2023] Open
Abstract
Cochlear hair cell loss is a leading cause of deafness in humans. Neighboring supporting cells have some capacity to regenerate hair cells. However, their regenerative potential sharply declines as supporting cells undergo maturation (postnatal day 5 in mice). We recently reported that reactivation of the RNA-binding protein LIN28B restores the hair cell-regenerative potential of P5 cochlear supporting cells. Here, we identify the LIN28B target Trim71 as a novel and equally potent enhancer of supporting cell plasticity. TRIM71 is a critical regulator of stem cell behavior and cell reprogramming; however, its role in cell regeneration is poorly understood. Employing an organoid-based assay, we show that TRIM71 re-expression increases the mitotic and hair cell-forming potential of P5 cochlear supporting cells by facilitating their de-differentiation into progenitor-like cells. Our mechanistic work indicates that TRIM71's RNA-binding activity is essential for such ability, and our transcriptomic analysis identifies gene modules that are linked to TRIM71 and LIN28B-mediated supporting cell reprogramming. Furthermore, our study uncovers that the TRIM71-LIN28B target Hmga2 is essential for supporting cell self-renewal and hair cell formation.
Collapse
Affiliation(s)
- Xiao‐Jun Li
- The Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
- Present address:
Frontier Institute of Science and TechnologyXi'an Jiaotong UniversityXi'an710054China
| | - Charles Morgan
- The Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Prathamesh T Nadar‐Ponniah
- The Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Waldemar Kolanus
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES)University of BonnBonnGermany
| | - Angelika Doetzlhofer
- The Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of Otolaryngology and Center for Hearing and BalanceJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
13
|
Maunsell HR, Ellis K, Kelley MW, Driver EC. Lrrn1 Regulates Medial Boundary Formation in the Developing Mouse Organ of Corti. J Neurosci 2023; 43:5305-5318. [PMID: 37369584 PMCID: PMC10359035 DOI: 10.1523/jneurosci.2141-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/12/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
One of the most striking aspects of the sensory epithelium of the mammalian cochlea, the organ of Corti (OC), is the presence of precise boundaries between sensory and nonsensory cells at its medial and lateral edges. A particular example of this precision is the single row of inner hair cells (IHCs) and associated supporting cells along the medial (neural) boundary. Despite the regularity of this boundary, the developmental processes and genetic factors that contribute to its specification are poorly understood. In this study we demonstrate that Leucine Rich Repeat Neuronal 1 (Lrrn1), which codes for a single-pass, transmembrane protein, is expressed before the development of the mouse organ of Corti in the row of cells that will form its medial border. Deletion of Lrrn1 in mice of mixed sex leads to disruptions in boundary formation that manifest as ectopic inner hair cells and supporting cells. Genetic and pharmacological manipulations demonstrate that Lrrn1 interacts with the Notch signaling pathway and strongly suggest that Lrrn1 normally acts to enhance Notch signaling across the medial boundary. This interaction is required to promote formation of the row of inner hair cells and suppress the conversion of adjacent nonsensory cells into hair cells and supporting cells. These results identify Lrrn1 as an important regulator of boundary formation and cellular patterning during development of the organ of Corti.SIGNIFICANCE STATEMENT Patterning of the developing mammalian cochlea into distinct sensory and nonsensory regions and the specification of multiple different cell fates within those regions are critical for proper auditory function. Here, we report that the transmembrane protein Leucine Rich Repeat Neuronal 1 (LRRN1) is expressed along the sharp medial boundary between the single row of mechanosensory inner hair cells (IHCs) and adjacent nonsensory cells. Formation of this boundary is mediated in part by Notch signaling, and loss of Lrrn1 leads to disruptions in boundary formation similar to those caused by a reduction in Notch activity, suggesting that LRRN1 likely acts to enhance Notch signaling. Greater understanding of sensory/nonsensory cell fate decisions in the cochlea will help inform the development of regenerative strategies aimed at restoring auditory function.
Collapse
Affiliation(s)
- Helen R Maunsell
- Porter Neuroscience Research Center, Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, Bethesda, Maryland 20892
| | - Kathryn Ellis
- Porter Neuroscience Research Center, Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, Bethesda, Maryland 20892
| | - Matthew W Kelley
- Porter Neuroscience Research Center, Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, Bethesda, Maryland 20892
| | - Elizabeth Carroll Driver
- Porter Neuroscience Research Center, Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, Bethesda, Maryland 20892
| |
Collapse
|
14
|
van der Valk WH, van Beelen ESA, Steinhart MR, Nist-Lund C, Osorio D, de Groot JCMJ, Sun L, van Benthem PPG, Koehler KR, Locher H. A single-cell level comparison of human inner ear organoids with the human cochlea and vestibular organs. Cell Rep 2023; 42:112623. [PMID: 37289589 PMCID: PMC10592453 DOI: 10.1016/j.celrep.2023.112623] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/21/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023] Open
Abstract
Inner ear disorders are among the most common congenital abnormalities; however, current tissue culture models lack the cell type diversity to study these disorders and normal otic development. Here, we demonstrate the robustness of human pluripotent stem cell-derived inner ear organoids (IEOs) and evaluate cell type heterogeneity by single-cell transcriptomics. To validate our findings, we construct a single-cell atlas of human fetal and adult inner ear tissue. Our study identifies various cell types in the IEOs including periotic mesenchyme, type I and type II vestibular hair cells, and developing vestibular and cochlear epithelium. Many genes linked to congenital inner ear dysfunction are confirmed to be expressed in these cell types. Additional cell-cell communication analysis within IEOs and fetal tissue highlights the role of endothelial cells on the developing sensory epithelium. These findings provide insights into this organoid model and its potential applications in studying inner ear development and disorders.
Collapse
Affiliation(s)
- Wouter H van der Valk
- OtoBiology Leiden, Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA.
| | - Edward S A van Beelen
- OtoBiology Leiden, Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Matthew R Steinhart
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Carl Nist-Lund
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Osorio
- Research Computing, Department of Information Technology, Boston Children's Hospital, Boston, MA 02115, USA
| | - John C M J de Groot
- OtoBiology Leiden, Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Liang Sun
- Research Computing, Department of Information Technology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Peter Paul G van Benthem
- OtoBiology Leiden, Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Karl R Koehler
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA; Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Heiko Locher
- OtoBiology Leiden, Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
15
|
Ueda Y, Nakamura T, Nie J, Solivais AJ, Hoffman JR, Daye BJ, Hashino E. Defining developmental trajectories of prosensory cells in human inner ear organoids at single-cell resolution. Development 2023; 150:dev201071. [PMID: 37381908 PMCID: PMC10323240 DOI: 10.1242/dev.201071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
The inner ear sensory epithelia contain mechanosensitive hair cells and supporting cells. Both cell types arise from SOX2-expressing prosensory cells, but the mechanisms underlying the diversification of these cell lineages remain unclear. To determine the transcriptional trajectory of prosensory cells, we established a SOX2-2A-ntdTomato human embryonic stem cell line using CRISPR/Cas9, and performed single-cell RNA-sequencing analyses with SOX2-positive cells isolated from inner ear organoids at various time points between differentiation days 20 and 60. Our pseudotime analysis suggests that vestibular type II hair cells arise primarily from supporting cells, rather than bi-fated prosensory cells in organoids. Moreover, ion channel- and ion-transporter-related gene sets were enriched in supporting cells versus prosensory cells, whereas Wnt signaling-related gene sets were enriched in hair cells versus supporting cells. These findings provide valuable insights into how prosensory cells give rise to hair cells and supporting cells during human inner ear development, and may provide a clue to promote hair cell regeneration from resident supporting cells in individuals with hearing loss or balance disorders.
Collapse
Affiliation(s)
- Yoshitomo Ueda
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Takashi Nakamura
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Jing Nie
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alexander J. Solivais
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - John R. Hoffman
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Becca J. Daye
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Eri Hashino
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
16
|
Fritzsch B, Schultze HP, Elliott KL. The evolution of the various structures required for hearing in Latimeria and tetrapods. IBRO Neurosci Rep 2023; 14:325-341. [PMID: 37006720 PMCID: PMC10063410 DOI: 10.1016/j.ibneur.2023.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Sarcopterygians evolved around 415 Ma and have developed a unique set of features, including the basilar papilla and the cochlear aqueduct of the inner ear. We provide an overview that shows the morphological integration of the various parts needed for hearing, e.g., basilar papilla, tectorial membrane, cochlear aqueduct, lungs, and tympanic membranes. The lagena of the inner ear evolved from a common macula of the saccule several times. It is near this lagena where the basilar papilla forms in Latimeria and tetrapods. The basilar papilla is lost in lungfish, certain caecilians and salamanders, but is transformed into the cochlea of mammals. Hearing in bony fish and tetrapods involves particle motion to improve sound pressure reception within the ear but also works without air. Lungs evolved after the chondrichthyans diverged and are present in sarcopterygians and actinopterygians. Lungs open to the outside in tetraposomorph sarcopterygians but are transformed from a lung into a swim bladder in ray-finned fishes. Elasmobranchs, polypterids, and many fossil fishes have open spiracles. In Latimeria, most frogs, and all amniotes, a tympanic membrane covering the spiracle evolved independently. The tympanic membrane is displaced by pressure changes and enabled tetrapods to perceive airborne sound pressure waves. The hyomandibular bone is associated with the spiracle/tympanic membrane in actinopterygians and piscine sarcopterygians. In tetrapods, it transforms into the stapes that connects the oval window of the inner ear with the tympanic membrane and allows hearing at higher frequencies by providing an impedance matching and amplification mechanism. The three characters-basilar papilla, cochlear aqueduct, and tympanic membrane-are fluid related elements in sarcopterygians, which interact with a set of unique features in Latimeria. Finally, we explore the possible interaction between the unique intracranial joint, basicranial muscle, and an enlarged notochord that allows fluid flow to the foramen magnum and the cochlear aqueduct which houses a comparatively small brain.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology & Department of Otolaryngology, University of Iowa, IA, USA
- Correspondence to: Department of Biology & Department of Otolaryngology, University of Iowa, Iowa City, IA, 52242, USA.
| | | | - Karen L. Elliott
- Department of Biology & Department of Otolaryngology, University of Iowa, IA, USA
| |
Collapse
|
17
|
Thompson MJ, Young CA, Munnamalai V, Umulis DM. Early radial positional information in the cochlea is optimized by a precise linear BMP gradient and enhanced by SOX2. Sci Rep 2023; 13:8567. [PMID: 37237002 PMCID: PMC10219982 DOI: 10.1038/s41598-023-34725-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Positional information encoded in signaling molecules is essential for early patterning in the prosensory domain of the developing cochlea. The sensory epithelium, the organ of Corti, contains an exquisite repeating pattern of hair cells and supporting cells. This requires precision in the morphogen signals that set the initial radial compartment boundaries, but this has not been investigated. To measure gradient formation and morphogenetic precision in developing cochlea, we developed a quantitative image analysis procedure measuring SOX2 and pSMAD1/5/9 profiles in mouse embryos at embryonic day (E)12.5, E13.5, and E14.5. Intriguingly, we found that the pSMAD1/5/9 profile forms a linear gradient up to the medial ~ 75% of the PSD from the pSMAD1/5/9 peak in the lateral edge during E12.5 and E13.5. This is a surprising activity readout for a diffusive BMP4 ligand secreted from a tightly constrained lateral region since morphogens typically form exponential or power-law gradient shapes. This is meaningful for gradient interpretation because while linear profiles offer the theoretically highest information content and distributed precision for patterning, a linear morphogen gradient has not yet been observed. Furthermore, this is unique to the cochlear epithelium as the pSMAD1/5/9 gradient is exponential in the surrounding mesenchyme. In addition to the information-optimized linear profile, we found that while pSMAD1/5/9 is stable during this timeframe, an accompanying gradient of SOX2 shifts dynamically. Last, through joint decoding maps of pSMAD1/5/9 and SOX2, we see that there is a high-fidelity mapping between signaling activity and position in the regions that will become Kölliker's organ and the organ of Corti. Mapping is ambiguous in the prosensory domain precursory to the outer sulcus. Altogether, this research provides new insights into the precision of early morphogenetic patterning cues in the radial cochlea prosensory domain.
Collapse
Affiliation(s)
- Matthew J Thompson
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr, West Lafayette, IN, 47907, USA
| | - Caryl A Young
- University of Maine, 168 College Ave, Orono, ME, 04469, USA
| | - Vidhya Munnamalai
- University of Maine, 168 College Ave, Orono, ME, 04469, USA.
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| | - David M Umulis
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr, West Lafayette, IN, 47907, USA.
| |
Collapse
|
18
|
Smith-Cortinez N, Tan AK, Stokroos RJ, Versnel H, Straatman LV. Regeneration of Hair Cells from Endogenous Otic Progenitors in the Adult Mammalian Cochlea: Understanding Its Origins and Future Directions. Int J Mol Sci 2023; 24:ijms24097840. [PMID: 37175547 PMCID: PMC10177935 DOI: 10.3390/ijms24097840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Sensorineural hearing loss is caused by damage to sensory hair cells and/or spiral ganglion neurons. In non-mammalian species, hair cell regeneration after damage is observed, even in adulthood. Although the neonatal mammalian cochlea carries regenerative potential, the adult cochlea cannot regenerate lost hair cells. The survival of supporting cells with regenerative potential after cochlear trauma in adults is promising for promoting hair cell regeneration through therapeutic approaches. Targeting these cells by manipulating key signaling pathways that control mammalian cochlear development and non-mammalian hair cell regeneration could lead to regeneration of hair cells in the mammalian cochlea. This review discusses the pathways involved in the development of the cochlea and the impact that trauma has on the regenerative capacity of the endogenous progenitor cells. Furthermore, it discusses the effects of manipulating key signaling pathways targeting supporting cells with progenitor potential to promote hair cell regeneration and translates these findings to the human situation. To improve hearing recovery after hearing loss in adults, we propose a combined approach targeting (1) the endogenous progenitor cells by manipulating signaling pathways (Wnt, Notch, Shh, FGF and BMP/TGFβ signaling pathways), (2) by manipulating epigenetic control, and (3) by applying neurotrophic treatments to promote reinnervation.
Collapse
Affiliation(s)
- Natalia Smith-Cortinez
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - A Katherine Tan
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Robert J Stokroos
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Huib Versnel
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Louise V Straatman
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
19
|
Zine A, Fritzsch B. Early Steps towards Hearing: Placodes and Sensory Development. Int J Mol Sci 2023; 24:6994. [PMID: 37108158 PMCID: PMC10139157 DOI: 10.3390/ijms24086994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Sensorineural hearing loss is the most prevalent sensory deficit in humans. Most cases of hearing loss are due to the degeneration of key structures of the sensory pathway in the cochlea, such as the sensory hair cells, the primary auditory neurons, and their synaptic connection to the hair cells. Different cell-based strategies to replace damaged inner ear neurosensory tissue aiming at the restoration of regeneration or functional recovery are currently the subject of intensive research. Most of these cell-based treatment approaches require experimental in vitro models that rely on a fine understanding of the earliest morphogenetic steps that underlie the in vivo development of the inner ear since its initial induction from a common otic-epibranchial territory. This knowledge will be applied to various proposed experimental cell replacement strategies to either address the feasibility or identify novel therapeutic options for sensorineural hearing loss. In this review, we describe how ear and epibranchial placode development can be recapitulated by focusing on the cellular transformations that occur as the inner ear is converted from a thickening of the surface ectoderm next to the hindbrain known as the otic placode to an otocyst embedded in the head mesenchyme. Finally, we will highlight otic and epibranchial placode development and morphogenetic events towards progenitors of the inner ear and their neurosensory cell derivatives.
Collapse
Affiliation(s)
- Azel Zine
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| | - Bernd Fritzsch
- Department of Biology, CLAS, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
20
|
Song H, Morrow BE. Tbx2 and Tbx3 regulate cell fate progression of the otic vesicle for inner ear development. Dev Biol 2023; 494:71-84. [PMID: 36521641 PMCID: PMC9870991 DOI: 10.1016/j.ydbio.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
The morphogenesis of the otic vesicle (OV) to form inner ear organs serves as an excellent model system to understand cell fate acquisition on a single cell level. Tbx2 and Tbx3 (Tbx2/3) encode closely related T-box transcription factors that are expressed widely in the mammalian OV. Inactivation of both genes in the OV (Tbx2/3cKO) results in failed morphogenesis into inner ear organs. To understand the basis of these defects, single cell RNA-sequencing (scRNA-seq) was performed on the OV lineage, in controls versus Tbx2/3cKO embryos. We identified a multipotent population termed otic progenitors in controls that are marked by expression of the known otic placode markers Eya1, Sox2, and Sox3 as well as new markers Fgf18, Cxcl12, and Pou3f3. The otic progenitor population was increased three-fold in Tbx2/3cKO embryos, concomitant with dysregulation of genes in these cells as well as reduced progression to more differentiated states of prosensory and nonsensory cells. An ectopic neural population of cells was detected in the posterior OV of Tbx2/3cKO embryos but had reduced maturation to delaminated neural cells. As all three cell fates were affected in Tbx2/3cKO embryos, we suggest that Tbx2/3 promotes progression of multipotent otic progenitors to more differentiated cell types in the OV.
Collapse
Affiliation(s)
- Hansoo Song
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY, USA
| | - Bernice E Morrow
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY, USA.
| |
Collapse
|
21
|
Li XJ, Morgan C, Nadar-Ponniah PT, Kolanus W, Doetzlhofer A. Reactivation of the progenitor gene Trim71 enhances the mitotic and hair cell-forming potential of cochlear supporting cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523802. [PMID: 36711735 PMCID: PMC9882147 DOI: 10.1101/2023.01.12.523802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cochlear hair cell loss is a leading cause of deafness in humans. Neighboring supporting cells have some capacity to regenerate hair cells. However, their regenerative potential sharply declines as supporting cells undergo maturation (postnatal day 5 in mice). We recently reported that reactivation of the RNA-binding protein LIN28B restores the hair cell-regenerative potential of P5 cochlear supporting cells. Here, we identify the LIN28B target Trim71 as a novel and equally potent enhancer of supporting cell plasticity. TRIM71 is a critical regulator of stem cell behavior and cell reprogramming, however, its role in cell regeneration is poorly understood. Employing an organoid-based assay, we show that TRIM71 reactivation increases the mitotic and hair cell-forming potential of P5 cochlear supporting cells by facilitating their de-differentiation into progenitor-like cells. Our mechanistic work indicates that TRIM71’s RNA-binding activity is essential for such ability, and our transcriptomic analysis identifies gene modules that are linked to TRIM71 and LIN28B-mediated supporting cell reprogramming. Furthermore, our study uncovers that the TRIM71-LIN28B target Hmga2 is essential for supporting cell self-renewal and hair cell formation.
Collapse
|
22
|
Connolly K, Gonzalez-Cordero A. Modelling inner ear development and disease using pluripotent stem cells - a pathway to new therapeutic strategies. Dis Model Mech 2022; 15:dmm049593. [PMID: 36331565 PMCID: PMC10621662 DOI: 10.1242/dmm.049593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
The sensory epithelia of the mammalian inner ear enable sound and movement to be perceived. Damage to these epithelia can cause irreversible sensorineural hearing loss and vestibular dysfunction because they lack regenerative capacity. The human inner ear cannot be biopsied without causing permanent damage, significantly limiting the tissue samples available for research. Investigating disease pathology and therapeutic developments have therefore traditionally relied on animal models, which often cannot completely recapitulate the human otic systems. These challenges are now being partly addressed using induced pluripotent stem cell-derived cultures, which generate the sensory epithelial-like tissues of the inner ear. Here, we review how pluripotent stem cells have been used to produce two-dimensional and three-dimensional otic cultures, the strengths and limitations of these new approaches, and how they have been employed to investigate genetic and acquired forms of audiovestibular dysfunction. This Review provides an overview of the progress in pluripotent stem cell-derived otic cultures thus far, focusing on their applications in disease modelling and therapeutic trials. We survey their current limitations and future directions, highlighting their prospective utility for high-throughput drug screening and developing personalised medicine approaches.
Collapse
Affiliation(s)
- Keeva Connolly
- Stem Cell Medicine Group, Children's Medical Research Institute, Westmead, 2145 NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, 2145 NSW, Australia
| | - Anai Gonzalez-Cordero
- Stem Cell Medicine Group, Children's Medical Research Institute, Westmead, 2145 NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, 2145 NSW, Australia
| |
Collapse
|
23
|
Glover JC, Fritzsch B. Molecular mechanisms governing development of the hindbrain choroid plexus and auditory projection: A validation of the seminal observations of Wilhelm His. IBRO Neurosci Rep 2022; 13:306-313. [PMID: 36247525 PMCID: PMC9561746 DOI: 10.1016/j.ibneur.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
Studies by His from 1868 to 1904 delineated the critical role of the dorsal roof plate in the development of the hindbrain choroid plexus, and of the rhombic lips in the development of hindbrain auditory centers. Modern molecular studies have confirmed these observations and placed them in a mechanistic context. Expression of the transcription factor Lmx1a/b is crucial to the development of the hindbrain choroid plexus, and also regulates the expression of Atoh1, a transcription factor that is essential for the formation of the cochlear hair cells and auditory nuclei. By contrast, development of the vestibular hair cells, vestibular ganglion and vestibular nuclei does not depend on Lmx1a/b. These findings demonstrate a common dependence on a specific gene for the hindbrain choroid plexus and the primary auditory projection from hair cells to sensory neurons to hindbrain nuclei. Thus, His' conclusions regarding the origins of specific hindbrain structures are borne out by molecular genetic experiments conducted more than a hundred years later.
Collapse
Affiliation(s)
- Joel C. Glover
- Department of Molecular Medicine, University of Oslo, Oslo, Norway
- Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Corresponding author at: Department of Molecular Medicine, University of Oslo, Oslo, Norway.
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa, IA 52242, USA
- Corresponding author.
| |
Collapse
|
24
|
Abstract
Cochlear hair cells (HCs) in the inner ear are responsible for sound detection. For HC fate specification, the master transcription factor Atoh1 is both necessary and sufficient. Atoh1 expression is dynamic and tightly regulated during development, but the cis-regulatory elements mediating this regulation remain unresolved. Unexpectedly, we found that deleting the only recognized Atoh1 enhancer, defined here as Eh1, failed to impair HC development. By using the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), we discovered two additional Atoh1 enhancers: Eh2 and Eh3. Notably, Eh2 deletion was sufficient for impairing HC development, and concurrent deletion of Eh1 and Eh2 or all three enhancers resulted in nearly complete absence of HCs. Lastly, we showed that Atoh1 binds to all three enhancers, consistent with its autoregulatory function. Our findings reveal that the cooperative action of three distinct enhancers underpins effective Atoh1 regulation during HC development, indicating potential therapeutic approaches for HC regeneration.
Collapse
|
25
|
Kelley MW. Cochlear Development; New Tools and Approaches. Front Cell Dev Biol 2022; 10:884240. [PMID: 35813214 PMCID: PMC9260282 DOI: 10.3389/fcell.2022.884240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 12/21/2022] Open
Abstract
The sensory epithelium of the mammalian cochlea, the organ of Corti, is comprised of at least seven unique cell types including two functionally distinct types of mechanosensory hair cells. All of the cell types within the organ of Corti are believed to develop from a population of precursor cells referred to as prosensory cells. Results from previous studies have begun to identify the developmental processes, lineage restrictions and signaling networks that mediate the specification of many of these cell types, however, the small size of the organ and the limited number of each cell type has hampered progress. Recent technical advances, in particular relating to the ability to capture and characterize gene expression at the single cell level, have opened new avenues for understanding cellular specification in the organ of Corti. This review will cover our current understanding of cellular specification in the cochlea, discuss the most commonly used methods for single cell RNA sequencing and describe how results from a recent study using single cell sequencing provided new insights regarding cellular specification.
Collapse
|
26
|
Riley BB. Comparative assessment of Fgf's diverse roles in inner ear development: A zebrafish perspective. Dev Dyn 2021; 250:1524-1551. [PMID: 33830554 DOI: 10.1002/dvdy.343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/21/2023] Open
Abstract
Progress in understanding mechanisms of inner ear development has been remarkably rapid in recent years. The research community has benefited from the availability of several diverse model organisms, including zebrafish, chick, and mouse. The complexity of the inner ear has proven to be a challenge, and the complexity of the mammalian cochlea in particular has been the subject of intense scrutiny. Zebrafish lack a cochlea and exhibit a number of other differences from amniote species, hence they are sometimes seen as less relevant for inner ear studies. However, accumulating evidence shows that underlying cellular and molecular mechanisms are often highly conserved. As a case in point, consideration of the diverse functions of Fgf and its downstream effectors reveals many similarities between vertebrate species, allowing meaningful comparisons the can benefit the entire research community. In this review, I will discuss mechanisms by which Fgf controls key events in early otic development in zebrafish and provide direct comparisons with chick and mouse.
Collapse
Affiliation(s)
- Bruce B Riley
- Biology Department, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
27
|
Kwan KY, White PM. Understanding the differentiation and epigenetics of cochlear sensory progenitors in pursuit of regeneration. Curr Opin Otolaryngol Head Neck Surg 2021; 29:366-372. [PMID: 34374667 PMCID: PMC8452321 DOI: 10.1097/moo.0000000000000741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW Sensory hair cells (HCs) of the inner ear are responsible for our ability to hear and balance. Loss of these cells results in hearing loss. Stem cell replacement and in situ regeneration have the potential to replace lost HCs. Newly discovered contributions of transcription factor regulatory networks and epigenetic mechanisms in regulating HC differentiation and regeneration are placed into context of the literature. RECENT FINDINGS A wealth of new data has helped to define cochlear sensory progenitors in their developmental trajectories. This includes transcription factor networks, epigenetic manipulations, and cochlear HC subtype specification. SUMMARY Understanding how sensory progenitors differ and how HC subtypes arise will substantially inform efforts in hearing restoration.
Collapse
Affiliation(s)
- Kelvin Y. Kwan
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, New Jersey
| | - Patricia M. White
- Department of Neuroscience, Ernest J. Del Monte Institute of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
28
|
Oliver BL, Young CA, Munnamalai V. Spatial and temporal expression of PORCN is highly dynamic in the developing mouse cochlea. Gene Expr Patterns 2021; 42:119214. [PMID: 34547456 DOI: 10.1016/j.gep.2021.119214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/08/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
The mammalian organ of Corti is a highly specialized sensory organ of the cochlea with a fine-grained pattern that is essential for auditory function. The sensory epithelium, the organ of Corti consists of a single row of inner hair cells and three rows of outer hair cells that are intercalated by support cells in a mosaic pattern. Previous studies show that the Wnt pathway regulates proliferation, promotes medial compartment formation in the cochlea, differentiation of the mechanosensory hair cells and axon guidance of Type II afferent neurons. WNT ligand expressions are highly dynamic throughout development but are insufficient to explain the roles of the Wnt pathway. We address a potential way for how WNTs specify the medial compartment by characterizing the expression of Porcupine (PORCN), an O-acyltransferase that is required for WNT secretion. We show PORCN expression across embryonic ages (E)12.5 - E14.5, E16.5, and postnatal day (P)1. Our results showed enriched PORCN in the medial domains during early stages of development, indicating that WNTs have a stronger influence on patterning of the medial compartment. PORCN was rapidly downregulated after E14.5, following the onset of sensory cell differentiation; residual expression remained in some hair cells and supporting cells. On E14.5 and E16.5, we also examined the spatial expression of Gsk3β, an inhibitor of canonical Wnt signaling to determine its potential role in radial patterning of the cochlea. Gsk3β was broadly expressed across the radial axis of the epithelium; therefore, unlikely to control WNT-mediated medial specification. In conclusion, the spatial expression of PORCN enriches WNT secretion from the medial domains of the cochlea to influence the specification of cell fates in the medial sensory domain.
Collapse
Affiliation(s)
| | - Caryl A Young
- The Jackson Laboratory, Bar Harbor, ME, 04609, United States; The University of Maine, Graduate School of Biomedical Sciences and Engineering, Orono, ME, 04469, United States
| | - Vidhya Munnamalai
- The Jackson Laboratory, Bar Harbor, ME, 04609, United States; The University of Maine, Graduate School of Biomedical Sciences and Engineering, Orono, ME, 04469, United States.
| |
Collapse
|
29
|
Fritzsch B. An Integrated Perspective of Evolution and Development: From Genes to Function to Ear, Lateral Line and Electroreception. DIVERSITY 2021; 13:364. [PMID: 35505776 PMCID: PMC9060560 DOI: 10.3390/d13080364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Four sensory systems (vestibular, lateral line, electroreception, auditory) are unique and project exclusively to the brainstem of vertebrates. All sensory neurons depend on a common set of genes (Eya1, Sox2, Neurog1, Neurod1) that project to a dorsal nucleus and an intermediate nucleus, which differentiate into the vestibular ear, lateral line and electroreception in vertebrates. In tetrapods, a loss of two sensory systems (lateral line, electroreception) leads to the development of a unique ear and auditory system in amniotes. Lmx1a/b, Gdf7, Wnt1/3a, BMP4/7 and Atoh1 define the lateral line, electroreception and auditory nuclei. In contrast, vestibular nuclei depend on Neurog1/2, Ascl1, Ptf1a and Olig3, among others, to develop an independent origin of the vestibular nuclei. A common origin of hair cells depends on Eya1, Sox2 and Atoh1, which generate the mechanosensory cells. Several proteins define the polarity of hair cells in the ear and lateral line. A unique connection of stereocilia requires CDH23 and PCDH15 for connections and TMC1/2 proteins to perceive mechanosensory input. Electroreception has no polarity, and a different system is used to drive electroreceptors. All hair cells function by excitation via ribbons to activate neurons that innervate the distinct target areas. An integrated perspective is presented to understand the gain and loss of different sensory systems.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology & Department of Otolaryngology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
30
|
Miwa T, Ito N, Ohta K. Tsukushi is essential for the formation of the posterior semicircular canal that detects gait performance. J Cell Commun Signal 2021; 15:581-594. [PMID: 34061311 DOI: 10.1007/s12079-021-00627-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/25/2021] [Indexed: 11/27/2022] Open
Abstract
Tsukushi is a small, leucine-rich repeat proteoglycan that interacts with and regulates essential cellular signaling cascades in the chick retina and murine subventricular zone, hippocampus, dermal hair follicles, and the cochlea. However, its function in the vestibules of the inner ear remains unknown. Here, we investigated the function of Tsukushi in the vestibules and found that Tsukushi deficiency in mice resulted in defects in posterior semicircular canal formation in the vestibules, but did not lead to vestibular hair cell loss. Furthermore, Tsukushi accumulated in the non-prosensory and prosensory regions during the embryonic and postnatal developmental stages. The downregulation of Tsukushi altered the expression of key genes driving vestibule differentiation in the non-prosensory regions. Our results indicate that Tsukushi interacts with Wnt2b, bone morphogenetic protein 4, fibroblast growth factor 10, and netrin 1, thereby controlling semicircular canal formation. Therefore, Tsukushi may be an essential component of the molecular pathways regulating vestibular development.
Collapse
Affiliation(s)
- Toru Miwa
- Department of Otolaryngology-Head and Neck Surgery, Kitano Hospital, Tazuke Kofukai Medical Research Institute, Ougimaci, Kita-ku, Osaka, Japan.
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan.
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kumamoto University, Honjo, Kumamoto, Japan.
| | - Naofumi Ito
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, Honjo, Kumamoto, Japan
- K.K. Sciex Japan, Shinagawa, Tokyo, Japan
| | - Kunimasa Ohta
- Department of Stem Cell Biology, Faculty of Arts and Science, Kyushu University, Motooka, Nishi-ku, Fukuoka, Japan
| |
Collapse
|
31
|
Stojkovic M, Han D, Jeong M, Stojkovic P, Stankovic KM. Human induced pluripotent stem cells and CRISPR/Cas-mediated targeted genome editing: Platforms to tackle sensorineural hearing loss. STEM CELLS (DAYTON, OHIO) 2021; 39:673-696. [PMID: 33586253 DOI: 10.1002/stem.3353] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/13/2020] [Indexed: 11/09/2022]
Abstract
Hearing loss (HL) is a major global health problem of pandemic proportions. The most common type of HL is sensorineural hearing loss (SNHL) which typically occurs when cells within the inner ear are damaged. Human induced pluripotent stem cells (hiPSCs) can be generated from any individual including those who suffer from different types of HL. The development of new differentiation protocols to obtain cells of the inner ear including hair cells (HCs) and spiral ganglion neurons (SGNs) promises to expedite cell-based therapy and screening of potential pharmacologic and genetic therapies using human models. Considering age-related, acoustic, ototoxic, and genetic insults which are the most frequent causes of irreversible damage of HCs and SGNs, new methods of genome editing (GE), especially the CRISPR/Cas9 technology, could bring additional opportunities to understand the pathogenesis of human SNHL and identify novel therapies. However, important challenges associated with both hiPSCs and GE need to be overcome before scientific discoveries are correctly translated to effective and patient-safe applications. The purpose of the present review is (a) to summarize the findings from published reports utilizing hiPSCs for studies of SNHL, hence complementing recent reviews focused on animal studies, and (b) to outline promising future directions for deciphering SNHL using disruptive molecular and genomic technologies.
Collapse
Affiliation(s)
- Miodrag Stojkovic
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Dongjun Han
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Minjin Jeong
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Petra Stojkovic
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Konstantina M Stankovic
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA.,Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, Massachusetts, USA.,Harvard Program in Therapeutic Science, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
32
|
Kubota M, Scheibinger M, Jan TA, Heller S. Greater epithelial ridge cells are the principal organoid-forming progenitors of the mouse cochlea. Cell Rep 2021; 34:108646. [PMID: 33472062 PMCID: PMC7847202 DOI: 10.1016/j.celrep.2020.108646] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/01/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
In mammals, hearing loss is irreversible due to the lack of regenerative potential of non-sensory cochlear cells. Neonatal cochlear cells, however, can grow into organoids that harbor sensory epithelial cells, including hair cells and supporting cells. Here, we purify different cochlear cell types from neonatal mice, validate the composition of the different groups with single-cell RNA sequencing (RNA-seq), and assess the various groups' potential to grow into inner ear organoids. We find that the greater epithelial ridge (GER), a transient cell population that disappears during post-natal cochlear maturation, harbors the most potent organoid-forming cells. We identified three distinct GER cell groups that correlate with a specific spatial distribution of marker genes. Organoid formation was synergistically enhanced when the cells were cultured at increasing density. This effect is not due to diffusible signals but requires direct cell-to-cell contact. Our findings improve the development of cell-based assays to study culture-generated inner ear cell types.
Collapse
Affiliation(s)
- Marie Kubota
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Mirko Scheibinger
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Taha A Jan
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Otolaryngology - Head & Neck Surgery, University of California San Francisco, San Francisco, CA 94115, USA
| | - Stefan Heller
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
33
|
Karimi-Boroujeni M, Zahedi-Amiri A, Coombs KM. Embryonic Origins of Virus-Induced Hearing Loss: Overview of Molecular Etiology. Viruses 2021; 13:71. [PMID: 33419104 PMCID: PMC7825458 DOI: 10.3390/v13010071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/19/2022] Open
Abstract
Hearing loss, one of the most prevalent chronic health conditions, affects around half a billion people worldwide, including 34 million children. The World Health Organization estimates that the prevalence of disabling hearing loss will increase to over 900 million people by 2050. Many cases of congenital hearing loss are triggered by viral infections during different stages of pregnancy. However, the molecular mechanisms by which viruses induce hearing loss are not sufficiently explored, especially cases that are of embryonic origins. The present review first describes the cellular and molecular characteristics of the auditory system development at early stages of embryogenesis. These developmental hallmarks, which initiate upon axial specification of the otic placode as the primary root of the inner ear morphogenesis, involve the stage-specific regulation of several molecules and pathways, such as retinoic acid signaling, Sonic hedgehog, and Wnt. Different RNA and DNA viruses contributing to congenital and acquired hearing loss are then discussed in terms of their potential effects on the expression of molecules that control the formation of the auditory and vestibular compartments following otic vesicle differentiation. Among these viruses, cytomegalovirus and herpes simplex virus appear to have the most effect upon initial molecular determinants of inner ear development. Moreover, of the molecules governing the inner ear development at initial stages, SOX2, FGFR3, and CDKN1B are more affected by viruses causing either congenital or acquired hearing loss. Abnormalities in the function or expression of these molecules influence processes like cochlear development and production of inner ear hair and supporting cells. Nevertheless, because most of such virus-host interactions were studied in unrelated tissues, further validations are needed to confirm whether these viruses can mediate the same effects in physiologically relevant models simulating otic vesicle specification and growth.
Collapse
Affiliation(s)
- Maryam Karimi-Boroujeni
- School of Rehabilitation Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Ali Zahedi-Amiri
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, MB R3E 3P4, Canada
| | - Kevin M. Coombs
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, MB R3E 3P4, Canada
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
34
|
van der Valk WH, Steinhart MR, Zhang J, Koehler KR. Building inner ears: recent advances and future challenges for in vitro organoid systems. Cell Death Differ 2020; 28:24-34. [PMID: 33318601 PMCID: PMC7853146 DOI: 10.1038/s41418-020-00678-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
While inner ear disorders are common, our ability to intervene and recover their sensory function is limited. In vitro models of the inner ear, like the organoid system, could aid in identifying new regenerative drugs and gene therapies. Here, we provide a perspective on the status of in vitro inner ear models and guidance on how to improve their applicability in translational research. We highlight the generation of inner ear cell types from pluripotent stem cells as a particularly promising focus of research. Several exciting recent studies have shown how the developmental signaling cues of embryonic and fetal development can be mimicked to differentiate stem cells into “inner ear organoids” containing otic progenitor cells, hair cells, and neurons. However, current differentiation protocols and our knowledge of embryonic and fetal inner ear development in general, have a bias toward the sensory epithelia of the inner ear. We propose that a more holistic view is needed to better model the inner ear in vitro. Moving forward, attention should be made to the broader diversity of neuroglial and mesenchymal cell types of the inner ear, and how they interact in space or time during development. With improved control of epithelial, neuroglial, and mesenchymal cell fate specification, inner ear organoids would have the ability to truly recapitulate neurosensory function and dysfunction. We conclude by discussing how single-cell atlases of the developing inner ear and technical innovations will be critical tools to advance inner ear organoid platforms for future pre-clinical applications.
Collapse
Affiliation(s)
- Wouter H van der Valk
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, Netherlands.,Department of Otolaryngology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Matthew R Steinhart
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jingyuan Zhang
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, 02115, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Karl R Koehler
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, 02115, USA. .,Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, 02115, USA. .,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA. .,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
35
|
Yamamoto R, Ohnishi H, Omori K, Yamamoto N. In silico analysis of inner ear development using public whole embryonic body single-cell RNA-sequencing data. Dev Biol 2020; 469:160-171. [PMID: 33131705 DOI: 10.1016/j.ydbio.2020.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 02/02/2023]
Abstract
The inner ear comprises four epithelial domains: the cochlea, vestibule, semicircular canals, and endolymphatic duct/sac. These structures are segregated at embryonic day 13.5 (E13.5). However, these four anatomical structures remain undefined at E10.5. Here, we aimed to identify lineage-specific genes in the early developing inner ear using published data obtained from single-cell RNA-sequencing (scRNA-seq) of embryonic mice. We downloaded 5000 single-cell transcriptome data, named 'auditory epithelial trajectory', from the Mouse Organogenesis Cell Atlas. The dataset was supposed to include otic epithelial cells at E9.5-13.5. We projected the 5000 cells onto a two-dimensional space encoding the transcriptional state and visualised the pattern of otic epithelial cell differentiation. We identified 15 clusters, which were annotated as one of the four components of the inner ear epithelium using known genes that characterise the four different tissues. Additionally, we classified 15 clusters into sub-regions of the four inner ear components. By comparing transcriptomes between these 15 clusters, we identified several candidates of lineage-specific genes. Characterising these new candidate genes will help future studies about inner ear development.
Collapse
Affiliation(s)
- Ryosuke Yamamoto
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 6068507, Japan.
| | - Hiroe Ohnishi
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 6068507, Japan.
| | - Koichi Omori
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 6068507, Japan.
| | - Norio Yamamoto
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 6068507, Japan.
| |
Collapse
|
36
|
Magariños M, Barajas-Azpeleta R, Varela-Nieto I, R Aburto M. Otic Neurogenesis Is Regulated by TGFβ in a Senescence-Independent Manner. Front Cell Neurosci 2020; 14:217. [PMID: 32973450 PMCID: PMC7461926 DOI: 10.3389/fncel.2020.00217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/18/2020] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence has classically been associated with aging. Intriguingly, recent studies have also unraveled key roles for senescence in embryonic development, regeneration, and reprogramming. Developmental senescence has been reported during embryonic development in different organisms and structures, such as the endolymphatic duct during inner ear development of mammals and birds. However, there is no study addressing the possible role of senescence on otic neurogenesis. TGFβ/SMAD is the best-known pathway linked to the induction of developmentally programmed cell senescence. Here, we studied if TGFβ2 induces cellular senescence during acoustic-vestibular-ganglion (AVG) formation. Using organotypic cultures of AVG, and characterizing different stages of otic neurogenesis in the presence of TGFβ2 and a selective TGF-β receptor type-I inhibitor, we show that TGFβ2 exerts a powerful action in inner ear neurogenesis but, contrary to what we recently observed during endolymphatic duct development, these actions are independent of cellular senescence. We show that TGFβ2 reduces proliferation, and induces differentiation and neuritogenesis of neuroblasts, without altering cell death. Our studies highlight the roles of TGFβ2 and cellular senescence in the precise regulation of cell fate within the developing inner ear and its different cell types, being their mechanisms of action highly cell-type dependent.
Collapse
Affiliation(s)
- Marta Magariños
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research (CIBER) on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain.,Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Raquel Barajas-Azpeleta
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Isabel Varela-Nieto
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research (CIBER) on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Maria R Aburto
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
37
|
Abstract
The cochlea, a coiled structure located in the ventral region of the inner ear, acts as the primary structure for the perception of sound. Along the length of the cochlear spiral is the organ of Corti, a highly derived and rigorously patterned sensory epithelium that acts to convert auditory stimuli into neural impulses. The development of the organ of Corti requires a series of inductive events that specify unique cellular characteristics and axial identities along its three major axes. Here, we review recent studies of the cellular and molecular processes regulating several aspects of cochlear development, such as axial patterning, cochlear outgrowth and cellular differentiation. We highlight how the precise coordination of multiple signaling pathways is required for the successful formation of a complete organ of Corti.
Collapse
Affiliation(s)
- Elizabeth Carroll Driver
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew W Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
38
|
Zhang S, Qiang R, Dong Y, Zhang Y, Chen Y, Zhou H, Gao X, Chai R. Hair cell regeneration from inner ear progenitors in the mammalian cochlea. AMERICAN JOURNAL OF STEM CELLS 2020; 9:25-35. [PMID: 32699655 PMCID: PMC7364385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Cochlear hair cells (HCs) are the mechanoreceptors of the auditory system, and because these cells cannot be spontaneously regenerated in adult mammals, hearing loss due to HC damage is permanent. However, cochleae of neonatal mice harbor some progenitor cells that retain limited ability to give rise to new HCs in vivo. Here we review the regulatory factors, signaling pathways, and epigenetic factors that have been reported to play roles in HC regeneration in the neonatal mammalian cochlea.
Collapse
Affiliation(s)
- Shasha Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing 210096, China
| | - Ruiying Qiang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing 210096, China
| | - Ying Dong
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing 210096, China
| | - Yuan Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing 210096, China
| | - Yin Chen
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)Nanjing 210008, China
| | - Han Zhou
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)Nanjing 210008, China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)Nanjing 210008, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong UniversityNantong 226001, China
- Institute for Stem Cell and Regeneration, Chinese Academy of ScienceBeijing, China
- Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast UniversityNanjing 211189, China
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)Nanjing 210008, China
| |
Collapse
|
39
|
Yang LM, Stout L, Rauchman M, Ornitz DM. Analysis of FGF20-regulated genes in organ of Corti progenitors by translating ribosome affinity purification. Dev Dyn 2020; 249:1217-1242. [PMID: 32492250 DOI: 10.1002/dvdy.211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Understanding the mechanisms that regulate hair cell (HC) differentiation in the organ of Corti (OC) is essential to designing genetic therapies for hearing loss due to HC loss or damage. We have previously identified Fibroblast Growth Factor 20 (FGF20) as having a key role in HC and supporting cell differentiation in the mouse OC. To investigate the genetic landscape regulated by FGF20 signaling in OC progenitors, we employ Translating Ribosome Affinity Purification combined with Next Generation RNA Sequencing (TRAPseq) in the Fgf20 lineage. RESULTS We show that TRAPseq targeting OC progenitors effectively enriched for RNA from this rare cell population. TRAPseq identified differentially expressed genes (DEGs) downstream of FGF20, including Etv4, Etv5, Etv1, Dusp6, Hey1, Hey2, Heyl, Tectb, Fat3, Cpxm2, Sall1, Sall3, and cell cycle regulators such as Cdc20. Analysis of Cdc20 conditional-null mice identified decreased cochlea length, while analysis of Sall1-null and Sall1-ΔZn2-10 mice, which harbor a mutation that causes Townes-Brocks syndrome, identified a decrease in outer hair cell number. CONCLUSIONS We present two datasets: genes with enriched expression in OC progenitors, and DEGs downstream of FGF20 in the embryonic day 14.5 cochlea. We validate select DEGs via in situ hybridization and in vivo functional studies in mice.
Collapse
Affiliation(s)
- Lu M Yang
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lisa Stout
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael Rauchman
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
40
|
Nichols DH, Bouma JE, Kopecky BJ, Jahan I, Beisel KW, He DZZ, Liu H, Fritzsch B. Interaction with ectopic cochlear crista sensory epithelium disrupts basal cochlear sensory epithelium development in Lmx1a mutant mice. Cell Tissue Res 2020; 380:435-448. [PMID: 31932950 PMCID: PMC7393901 DOI: 10.1007/s00441-019-03163-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022]
Abstract
The LIM homeodomain transcription factor Lmx1a shows a dynamic expression in the developing mouse ear that stabilizes in the non-sensory epithelium. Previous work showed that Lmx1a functional null mutants have an additional sensory hair cell patch in the posterior wall of a cochlear duct and have a mix of vestibular and cochlear hair cells in the basal cochlear sensory epithelium. In E13.5 mutants, Sox2-expressing posterior canal crista is continuous with an ectopic "crista sensory epithelium" located in the outer spiral sulcus of the basal cochlear duct. The medial margin of cochlear crista is in contact with the adjacent Sox2-expressing basal cochlear sensory epithelium. By E17.5, this contact has been interrupted by the formation of an intervening non-sensory epithelium, and Atoh1 is expressed in the hair cells of both the cochlear crista and the basal cochlear sensory epithelium. Where cochlear crista was formerly associated with the basal cochlear sensory epithelium, the basal cochlear sensory epithelium lacks an outer hair cell band, and gaps are present in its associated Bmp4 expression. Further apically, where cochlear crista was never present, the cochlear sensory epithelium forms a poorly ordered but complete organ of Corti. We propose that the core prosensory posterior crista is enlarged in the mutant when the absence of Lmx1a expression allows JAG1-NOTCH signaling to propagate into the adjacent epithelium and down the posterior wall of the cochlear duct. We suggest that the cochlear crista propagates in the mutant outer spiral sulcus because it expresses Lmo4 in the absence of Lmx1a.
Collapse
Affiliation(s)
- David H Nichols
- Department of Biomedical Sciences, Creighton University, Omaha, NE, USA
| | - Judith E Bouma
- Department of Biomedical Sciences, Creighton University, Omaha, NE, USA
| | - Benjamin J Kopecky
- Department of Biology, University of Iowa, Iowa City, IA, 52242-1324, USA
| | - Israt Jahan
- Department of Biology, University of Iowa, Iowa City, IA, 52242-1324, USA
| | - Kirk W Beisel
- Department of Biomedical Sciences, Creighton University, Omaha, NE, USA
| | - David Z Z He
- Department of Biomedical Sciences, Creighton University, Omaha, NE, USA
| | - Huizhan Liu
- Department of Biomedical Sciences, Creighton University, Omaha, NE, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, 52242-1324, USA.
| |
Collapse
|
41
|
Kolla L, Kelly MC, Mann ZF, Anaya-Rocha A, Ellis K, Lemons A, Palermo AT, So KS, Mays JC, Orvis J, Burns JC, Hertzano R, Driver EC, Kelley MW. Characterization of the development of the mouse cochlear epithelium at the single cell level. Nat Commun 2020; 11:2389. [PMID: 32404924 PMCID: PMC7221106 DOI: 10.1038/s41467-020-16113-y] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 04/10/2020] [Indexed: 12/14/2022] Open
Abstract
Mammalian hearing requires the development of the organ of Corti, a sensory epithelium comprising unique cell types. The limited number of each of these cell types, combined with their close proximity, has prevented characterization of individual cell types and/or their developmental progression. To examine cochlear development more closely, we transcriptionally profile approximately 30,000 isolated mouse cochlear cells collected at four developmental time points. Here we report on the analysis of those cells including the identification of both known and unknown cell types. Trajectory analysis for OHCs indicates four phases of gene expression while fate mapping of progenitor cells suggests that OHCs and their surrounding supporting cells arise from a distinct (lateral) progenitor pool. Tgfβr1 is identified as being expressed in lateral progenitor cells and a Tgfβr1 antagonist inhibits OHC development. These results provide insights regarding cochlear development and demonstrate the potential value and application of this data set. How the development of the cochlear epithelium is regulated is unclear. Here, the authors use single cell RNAseq analysis to provide insight into the transcriptional changes arising during development of the murine cochlear inner and outer hair cells.
Collapse
Affiliation(s)
- Likhitha Kolla
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael C Kelly
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zoe F Mann
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Alejandro Anaya-Rocha
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kathryn Ellis
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Abigail Lemons
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Adam T Palermo
- Decibel Therapeutics, 1325 Boylston, Str., Suite 500, Boston, MA, 02215, USA
| | - Kathy S So
- Decibel Therapeutics, 1325 Boylston, Str., Suite 500, Boston, MA, 02215, USA
| | - Joseph C Mays
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Joshua Orvis
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Joseph C Burns
- Decibel Therapeutics, 1325 Boylston, Str., Suite 500, Boston, MA, 02215, USA
| | - Ronna Hertzano
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Otorhinolaryngology Head and Neck Surgery, Anatomy and Neurobiology, and Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Elizabeth C Driver
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Matthew W Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
42
|
Yamoah EN, Li M, Shah A, Elliott KL, Cheah K, Xu PX, Phillips S, Young SM, Eberl DF, Fritzsch B. Using Sox2 to alleviate the hallmarks of age-related hearing loss. Ageing Res Rev 2020; 59:101042. [PMID: 32173536 PMCID: PMC7261488 DOI: 10.1016/j.arr.2020.101042] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023]
Abstract
Age-related hearing loss (ARHL) is the most prevalent sensory deficit. ARHL reduces the quality of life of the growing population, setting seniors up for the enhanced mental decline. The size of the needy population, the structural deficit, and a likely research strategy for effective treatment of chronic neurosensory hearing in the elderly are needed. Although there has been profound advancement in auditory regenerative research, there remain multiple challenges to restore hearing loss. Thus, additional investigations are required, using novel tools. We propose how the (1) flat epithelium, remaining after the organ of Corti has deteriorated, can be converted to the repaired-sensory epithelium, using Sox2. This will include (2) developing an artificial gene regulatory network transmitted by (3) large viral vectors to the flat epithelium to stimulate remnants of the organ of Corti to restore hair cells. We hope to unite with our proposal toward the common goal, eventually restoring a functional human hearing organ by transforming the flat epithelial cells left after the organ of Corti loss.
Collapse
Affiliation(s)
- Ebenezer N Yamoah
- Department of Physiology and Cell Biology, University of Nevada, Reno, USA
| | - Mark Li
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, USA
| | - Anit Shah
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, USA
| | - Karen L Elliott
- Department of Biology, CLAS, University of Iowa, Iowa City, USA
| | - Kathy Cheah
- Department of Biochemistry, Hong Kong University, Hong Kong, China
| | - Pin-Xian Xu
- Department of Biochemistry, Hong Kong University, Hong Kong, China
| | - Stacia Phillips
- Department of Biochemistry, Hong Kong University, Hong Kong, China
| | - Samuel M Young
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, USA; Department of Otolaryngology, Iowa Neuroscience Institute, University of Iowa, Iowa City, USA
| | - Daniel F Eberl
- Department of Biology, CLAS, University of Iowa, Iowa City, USA
| | - Bernd Fritzsch
- Department of Biology, CLAS, University of Iowa, Iowa City, USA.
| |
Collapse
|
43
|
Sakamoto S, Tateya T, Omori K, Kageyama R. Idgenes are required for morphogenesis and cellular patterning in the developing mammalian cochlea. Dev Biol 2020; 460:164-175. [PMID: 31843520 DOI: 10.1016/j.ydbio.2019.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022]
Abstract
Inhibitor of differentiation and DNA-binding (Id) proteins, Id1 to Id4, function in the regulation of cellular proliferation and differentiation. Id proteins have been shown to interact with bHLH proteins and other proteins involved in regulating cellular proliferation and differentiation, suggesting a widespread regulatory function. Id1-3 are known to be expressed in the prosensory domain of developing cochlea. However, the roles of Id genes in cochlear development are not fully elucidated. The deficiency of any of the Id1-3 genes individually has little effect on the cochlear development, and therefore the functional redundancy among these genes have been presumed to explain the absence of phenotype. Here, we show that conditional knockout of Id1/2/3 genes (Id TKO) causes major defects in morphogenesis and cellular patterning in the development of mammalian cochlea. Id TKO cochlea was 82% shorter than control, and both decreased proliferation and increased cell death caused the hypomorph. Sox2-positive prosensory domain was formed in Id TKO cochlea, but the formation of the medial-lateral (central-peripheral) axis was disturbed; the boundary between the medial and lateral compartments in the prosensory domain was partially doubled; the number of inner hair cells per unit length increased, and the number of outer hair cells decreased. Furthermore, the lateral non-sensory compartment expressing Bmp4 and Lmo3 was missing. Thus, the patterning of the lateral epithelium was more affected than the medial epithelium. These results suggested that Id genes are crucial for morphogenesis of the cochlea duct and patterning of the lateral epithelium in the developing cochlea. Further analyses by quantitative RT-PCR and immunostaining using cochlear explants with a Bmp pathway inhibitor revealed that the Bmp-Id pathway originates from the lateral non-sensory compartment and promotes outer hair cell differentiation.
Collapse
Affiliation(s)
- Susumu Sakamoto
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan; Kyoto University of Advanced Science, Kyoto, 615-8577, Japan
| | - Tomoko Tateya
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan; Kyoto University of Advanced Science, Kyoto, 615-8577, Japan; Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.
| | - Koichi Omori
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan; Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
44
|
Notch-mediated lateral induction is necessary to maintain vestibular prosensory identity during inner ear development. Dev Biol 2020; 462:74-84. [PMID: 32147304 DOI: 10.1016/j.ydbio.2020.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 01/24/2023]
Abstract
The five vestibular organs of the inner ear derive from patches of prosensory cells that express the transcription factor SOX2 and the Notch ligand JAG1. Previous work suggests that JAG1-mediated Notch signaling is both necessary and sufficient for prosensory formation and that the separation of developing prosensory patches is regulated by LMX1a, which antagonizes Notch signaling. We used an inner ear-specific deletion of the Rbpjκ gene in which Notch signaling is progressively lost from the inner ear to show that Notch signaling, is continuously required for the maintenance of prosensory fate. Loss of Notch signaling in prosensory patches causes them to shrink and ultimately disappear. We show this loss of prosensory fate is not due to cell death, but rather to the conversion of prosensory tissue into non-sensory tissue that expresses LMX1a. Notch signaling is therefore likely to stabilize, rather than induce prosensory fate.
Collapse
|
45
|
Miwa T, Ohta K, Ito N, Hattori S, Miyakawa T, Takeo T, Nakagata N, Song WJ, Minoda R. Tsukushi is essential for the development of the inner ear. Mol Brain 2020; 13:29. [PMID: 32127020 PMCID: PMC7053050 DOI: 10.1186/s13041-020-00570-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/20/2020] [Indexed: 11/21/2022] Open
Abstract
Tsukushi (TSK)—a small, secreted, leucine-rich-repeat proteoglycan—interacts with and regulates essential cellular signaling cascades. However, its functions in the mouse inner ear are unknown. In this study, measurement of auditory brainstem responses, fluorescence microscopy, and scanning electron microscopy revealed that TSK deficiency in mice resulted in the formation of abnormal stereocilia in the inner hair cells and hearing loss but not in the loss of these cells. TSK accumulated in nonprosensory regions during early embryonic stages and in both nonprosensory and prosensory regions in late embryonic stages. In adult mice, TSK was localized in the organ of Corti, spiral ganglion cells, and the stria vascularis. Moreover, loss of TSK caused dynamic changes in the expression of key genes that drive the differentiation of the inner hair cells in prosensory regions. Finally, our results revealed that TSK interacted with Sox2 and BMP4 to control stereocilia formation in the inner hair cells. Hence, TSK appears to be an essential component of the molecular pathways that regulate inner ear development.
Collapse
Affiliation(s)
- Toru Miwa
- Department of Otolaryngology-Head and Neck Surgery, Kitano Hospital, Tazuke Kofukai Medical Research Institute, 2-4-20 Ougimaci, Kita-ku, Osaka, 5308084, Japan. .,Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 6068507, Japan. .,Departments of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kumamoto University, 1-1-1 Honjo, Kumamoto, 8608556, Japan. .,Otolaryngology-Head and Neck Surgery, JCHO Kumamoto General Hospital, 10-10 Toricho, Yatsushiro, 8668660, Japan.
| | - Kunimasa Ohta
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 8608556, Japan.,Program for Leading Graduate Schools HIGO Program, Kumamoto University, 2-2-1 Honjo, Kumamoto, 8608556, Japan.,Global COE Cell Fate Regulation Research and Education Unit, Kumamoto University, 2-2-1 Honjo, Kumamoto, 8600881, Japan.,Japan Agency for Medical Research and Development (AMED), Tokyo, 1000004, Japan
| | - Naofumi Ito
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 8608556, Japan
| | - Satoko Hattori
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukak, Toyoake, 4701192, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukak, Toyoake, 4701192, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, 2-2-1 Honjo, Kumamoto, 8600881, Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, 2-2-1 Honjo, Kumamoto, 8600881, Japan
| | - Wen-Jie Song
- Program for Leading Graduate Schools HIGO Program, Kumamoto University, 2-2-1 Honjo, Kumamoto, 8608556, Japan.,Department of Sensory and Cognitive Physiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 8608556, Japan
| | - Ryosei Minoda
- Otolaryngology-Head and Neck Surgery, JCHO Kumamoto General Hospital, 10-10 Toricho, Yatsushiro, 8668660, Japan
| |
Collapse
|
46
|
Brown R, Groves AK. Hear, Hear for Notch: Control of Cell Fates in the Inner Ear by Notch Signaling. Biomolecules 2020; 10:biom10030370. [PMID: 32121147 PMCID: PMC7175228 DOI: 10.3390/biom10030370] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023] Open
Abstract
The vertebrate inner ear is responsible for detecting sound, gravity, and head motion. These mechanical forces are detected by mechanosensitive hair cells, arranged in a series of sensory patches in the vestibular and cochlear regions of the ear. Hair cells form synapses with neurons of the VIIIth cranial ganglion, which convey sound and balance information to the brain. They are surrounded by supporting cells, which nourish and protect the hair cells, and which can serve as a source of stem cells to regenerate hair cells after damage in non-mammalian vertebrates. The Notch signaling pathway plays many roles in the development of the inner ear, from the earliest formation of future inner ear ectoderm on the side of the embryonic head, to regulating the production of supporting cells, hair cells, and the neurons that innervate them. Notch signaling is re-deployed in non-mammalian vertebrates during hair cell regeneration, and attempts have been made to manipulate the Notch pathway to promote hair cell regeneration in mammals. In this review, we summarize the different modes of Notch signaling in inner ear development and regeneration, and describe how they interact with other signaling pathways to orchestrate the fine-grained cellular patterns of the ear.
Collapse
Affiliation(s)
- Rogers Brown
- Program in Developmental Biology; Baylor College of Medicine, Houston, TX 77030, USA;
| | - Andrew K. Groves
- Program in Developmental Biology; Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Neuroscience; Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-798-8743
| |
Collapse
|
47
|
Novel insights into inner ear development and regeneration for targeted hearing loss therapies. Hear Res 2019; 397:107859. [PMID: 31810596 DOI: 10.1016/j.heares.2019.107859] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/06/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
Sensorineural hearing loss is the most common sensory deficit in humans. Despite the global scale of the problem, only limited treatment options are available today. The mammalian inner ear is a highly specialized postmitotic organ, which lacks proliferative or regenerative capacity. Since the discovery of hair cell regeneration in non-mammalian species however, much attention has been placed on identifying possible strategies to reactivate similar responses in humans. The development of successful regenerative approaches for hearing loss strongly depends on a detailed understanding of the mechanisms that control human inner ear cellular specification, differentiation and function, as well as on the development of robust in vitro cellular assays, based on human inner ear cells, to study these processes and optimize therapeutic interventions. We summarize here some aspects of inner ear development and strategies to induce regeneration that have been investigated in rodents. Moreover, we discuss recent findings in human inner ear development and compare the results with findings from animal models. Finally, we provide an overview of strategies for in vitro generation of human sensory cells from pluripotent and somatic progenitors that may provide a platform for drug development and validation of therapeutic strategies in vitro.
Collapse
|
48
|
Tateya T, Sakamoto S, Ishidate F, Hirashima T, Imayoshi I, Kageyama R. Three-dimensional live imaging of Atoh1 reveals the dynamics of hair cell induction and organization in the developing cochlea. Development 2019; 146:146/21/dev177881. [PMID: 31676552 DOI: 10.1242/dev.177881] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/27/2019] [Indexed: 01/06/2023]
Abstract
During cochlear development, hair cells (HCs) and supporting cells differentiate in the prosensory domain to form the organ of Corti, but how one row of inner HCs (IHCs) and three rows of outer HCs (OHCs) are organized is not well understood. Here, we investigated the process of HC induction by monitoring Atoh1 expression in cochlear explants of Atoh1-EGFP knock-in mouse embryos and showed that only the cells that express Atoh1 over a certain threshold are selected for HC fate determination. HC induction initially occurs at the medial edge of the prosensory domain to form IHCs and subsequently at the lateral edge to form OHCs, while Hedgehog signaling maintains a space between IHCs and OHCs, leading to formation of the tunnel of Corti. These results reveal dynamic Atoh1 expression in HC fate control and suggest that multi-directional signals regulate OHC induction, thereby organizing the prototype of the organ of Corti.
Collapse
Affiliation(s)
- Tomoko Tateya
- Department of Otolaryngology - Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan .,Department of Speech and Hearing Sciences and Disorders, Faculty of Health and Medical Science, Kyoto University of Advanced Science, Kyoto 615-8577, Japan.,Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Susumu Sakamoto
- Department of Otolaryngology - Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.,Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Fumiyoshi Ishidate
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Tsuyoshi Hirashima
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Itaru Imayoshi
- Research Center for Systemic Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Ryoichiro Kageyama
- Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan .,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8501, Japan.,Department of Growth Regulation, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.,Department of Molecular and Cellular Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
49
|
Munnamalai V, Fekete DM. The acquisition of positional information across the radial axis of the cochlea. Dev Dyn 2019; 249:281-297. [PMID: 31566832 DOI: 10.1002/dvdy.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Vidhya Munnamalai
- The Jackson Laboratory Bar Harbor Maine
- Graduate Program of Biomedical Sciences and EngineeringUniversity of Maine Orono Maine
- The Neuroscience ProgramSackler School of Biomedical Sciences, Tufts University Boston Massachusetts
| | - Donna M. Fekete
- Department of Biological SciencesPurdue University West Lafayette Indiana
- Purdue Institute for Integrative Neuroscience West Lafayette Indiana
- Purdue Center for Cancer Research West Lafayette Indiana
| |
Collapse
|
50
|
β-Catenin is required for radial cell patterning and identity in the developing mouse cochlea. Proc Natl Acad Sci U S A 2019; 116:21054-21060. [PMID: 31570588 DOI: 10.1073/pnas.1910223116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Development of multicellular organs requires the coordination of cell differentiation and patterning. Critical for sound detection, the mammalian organ of Corti contains functional units arranged tonotopically along the cochlear turns. Each unit consists of sensory hair cells intercalated by nonsensory supporting cells, both specified and radially patterned with exquisite precision during embryonic development. However, how cell identity and radial patterning are jointly controlled is poorly understood. Here we show that β-catenin is required for specification of hair cell and supporting cell subtypes and radial patterning of the cochlea in vivo. In 2 mouse models of conditional β-catenin deletion, early specification of Myosin7-expressing hair cells and Prox1-positive supporting cells was preserved. While β-catenin-deficient cochleae expressed FGF8 and FGFR3, both of which are essential for pillar cell specification, the radial patterning of organ of Corti was disrupted, revealed by aberrant expression of cadherins and the pillar cell markers P75 and Lgr6. Moreover, β-catenin ablation caused duplication of FGF8-positive inner hair cells and reduction of outer hair cells without affecting the overall hair cell density. In contrast, in another transgenic model with suppressed transcriptional activity of β-catenin but preserved cell adhesion function, both specification and radial patterning of the organ of Corti were intact. Our study reveals specific functions of β-catenin in governing cell identity and patterning mediated through cell adhesion in the developing cochlea.
Collapse
|