1
|
Sharma P, Gupta P, Gill AR, Kumar S, Kumar P, Singhal P, Gupta M, Singh R, Sharma V, Khan S, Dhama K, Sharma A, Ramniwas S, Sharma RK, Sharma AK. Current Paradigms in Understanding Neuron Fluctuations, Factors, Regulation, Pathophysiology of Epilepsy: Advancements in Diagnosis, Treatment and Management—An Update. Indian J Clin Biochem 2024. [DOI: 10.1007/s12291-024-01281-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/11/2024] [Indexed: 01/05/2025]
|
2
|
Roh WS, Yoo JH, Dravid SM, Mannaioni G, Krizman EN, Wahl P, Robinson MB, Traynelis SF, Lee CJ, Han KS. Astrocytic PAR1 and mGluR2/3 control synaptic glutamate time course at hippocampal CA1 synapses. Glia 2024; 72:1707-1724. [PMID: 38864289 PMCID: PMC11410382 DOI: 10.1002/glia.24579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Astrocytes play an essential role in regulating synaptic transmission. This study describes a novel form of modulation of excitatory synaptic transmission in the mouse hippocampus by astrocytic G-protein-coupled receptors (GPCRs). We have previously described astrocytic glutamate release via protease-activated receptor-1 (PAR1) activation, although the regulatory mechanisms for this are complex. Through electrophysiological analysis and modeling, we discovered that PAR1 activation consistently increases the concentration and duration of glutamate in the synaptic cleft. This effect was not due to changes in the presynaptic glutamate release or alteration in glutamate transporter expression. However, blocking group II metabotropic glutamate receptors (mGluR2/3) abolished PAR1-mediated regulation of synaptic glutamate concentration, suggesting a role for this GPCR in mediating the effects of PAR1 activation on glutamate release. Furthermore, activation of mGluR2/3 causes glutamate release through the TREK-1 channel in hippocampal astrocytes. These data show that astrocytic GPCRs engage in a novel regulatory mechanism to shape the time course of synaptically-released glutamate in excitatory synapses of the hippocampus.
Collapse
Affiliation(s)
- Woo Suk Roh
- Department of Biological Sciences, Chungnam National University, Daejeon, South Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea
| | - Jae Hong Yoo
- Department of Biological Sciences, Chungnam National University, Daejeon, South Korea
| | - Shashank M Dravid
- Emory University School of Medicine, Department of Pharmacology and Chemical Biology, Atlanta, Georgia, USA
- Creighton University, Department of Pharmacology, Omaha, Nebraska, USA
| | - Guido Mannaioni
- Emory University School of Medicine, Department of Pharmacology and Chemical Biology, Atlanta, Georgia, USA
- Department of Pharmacology, University of Florence, Florence, GA, Italy
| | - Elizabeth N Krizman
- Departments of Pediatrics and Pharmacology, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Philip Wahl
- Emory University School of Medicine, Department of Pharmacology and Chemical Biology, Atlanta, Georgia, USA
| | - Michael B Robinson
- Departments of Pediatrics and Pharmacology, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen F Traynelis
- Emory University School of Medicine, Department of Pharmacology and Chemical Biology, Atlanta, Georgia, USA
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea
| | - Kyung-Seok Han
- Department of Biological Sciences, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
3
|
Zhang X, Zhang Y, Su Q, Liu Y, Li Z, Yong VW, Xue M. Ion Channel Dysregulation Following Intracerebral Hemorrhage. Neurosci Bull 2024; 40:401-414. [PMID: 37755675 PMCID: PMC10912428 DOI: 10.1007/s12264-023-01118-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/14/2023] [Indexed: 09/28/2023] Open
Abstract
Injury to the brain after intracerebral hemorrhage (ICH) results from numerous complex cellular mechanisms. At present, effective therapy for ICH is limited and a better understanding of the mechanisms of brain injury is necessary to improve prognosis. There is increasing evidence that ion channel dysregulation occurs at multiple stages in primary and secondary brain injury following ICH. Ion channels such as TWIK-related K+ channel 1, sulfonylurea 1 transient receptor potential melastatin 4 and glutamate-gated channels affect ion homeostasis in ICH. They in turn participate in the formation of brain edema, disruption of the blood-brain barrier, and the generation of neurotoxicity. In this review, we summarize the interaction between ions and ion channels, the effects of ion channel dysregulation, and we discuss some therapeutics based on ion-channel modulation following ICH.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Yan Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Qiuyang Su
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Zhe Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
4
|
Mavridis T, Choratta T, Papadopoulou A, Sawafta A, Archontakis-Barakakis P, Laou E, Sakellakis M, Chalkias A. Protease-Activated Receptors (PARs): Biology and Therapeutic Potential in Perioperative Stroke. Transl Stroke Res 2024:10.1007/s12975-024-01233-0. [PMID: 38326662 DOI: 10.1007/s12975-024-01233-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Perioperative stroke is a devastating complication that occurs during surgery or within 30 days following the surgical procedure. Its prevalence ranges from 0.08 to 10% although it is most likely an underestimation, as sedatives and narcotics can substantially mask symptomatology and clinical presentation. Understanding the underlying pathophysiology and identifying potential therapeutic targets are of paramount importance. Protease-activated receptors (PARs), a unique family of G-protein-coupled receptors, are widely expressed throughout the human body and play essential roles in various physiological and pathological processes. This review elucidates the biology and significance of PARs, outlining their diverse functions in health and disease, and their intricate involvement in cerebrovascular (patho)physiology and neuroprotection. PARs exhibit a dual role in cerebral ischemia, which underscores their potential as therapeutic targets to mitigate the devastating effects of stroke in surgical patients.
Collapse
Affiliation(s)
- Theodoros Mavridis
- Department of Neurology, Tallaght University Hospital (TUH)/The Adelaide and Meath Hospital, Dublin, incorporating the National Children's Hospital (AMNCH), Dublin, D24 NR0A, Ireland
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528, Athens, Greece
| | - Theodora Choratta
- Department of General Surgery, Metaxa Hospital, 18537, Piraeus, Greece
| | - Androniki Papadopoulou
- Department of Anesthesiology, G. Gennimatas General Hospital, 54635, Thessaloniki, Greece
| | - Assaf Sawafta
- Department of Cardiology, University Hospital of Larisa, 41110, Larisa, Greece
| | | | - Eleni Laou
- Department of Anesthesiology, Agia Sophia Children's Hospital, 15773, Athens, Greece
| | - Minas Sakellakis
- Department of Medicine, Jacobi Medical Center-North Central Bronx Hospital, Bronx, NY, 10467, USA
| | - Athanasios Chalkias
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104-5158, USA.
- Outcomes Research Consortium, Cleveland, OH, 44195, USA.
| |
Collapse
|
5
|
Savotchenko A, Klymenko M, Shypshyna M, Isaev D. The role of thrombin in early-onset seizures. Front Cell Neurosci 2023; 17:1101006. [PMID: 36970419 PMCID: PMC10034332 DOI: 10.3389/fncel.2023.1101006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
A variety of clinical observations and studies in animal models of temporal lobe epilepsy (TLE) reveal dysfunction of blood-brain barrier (BBB) during seizures. It is accompanied by shifts in ionic composition, imbalance in transmitters and metabolic products, extravasation of blood plasma proteins in the interstitial fluid, causing further abnormal neuronal activity. A significant amount of blood components capable of causing seizures get through the BBB due to its disruption. And only thrombin has been demonstrated to generate early-onset seizures. Using the whole-cell recordings from the single hippocampal neurons we recently showed the induction of epileptiform firing activity immediately after the addition of thrombin to the blood plasma ionic media. In the present work, we mimic some effects of BBB disruption in vitro to examine the effect of modified blood plasma artificial cerebrospinal fluid (ACSF) on the excitability of hippocampal neurons and the role of serum protein thrombin in seizure susceptibility. Comparative analysis of model conditions simulating BBB dysfunction was performed using the lithium-pilocarpine model of TLE, which most clearly reflects the BBB disruption in the acute stage. Our results demonstrate the particular role of thrombin in seizure-onset in conditions of BBB disruption.
Collapse
Affiliation(s)
- Alina Savotchenko
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
- *Correspondence: Alina Savotchenko
| | - Mariia Klymenko
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Mariia Shypshyna
- Laboratory of Synaptic Transmission, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Dmytro Isaev
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| |
Collapse
|
6
|
Lee-Rivera I, López E, López-Colomé AM. Diversification of PAR signaling through receptor crosstalk. Cell Mol Biol Lett 2022; 27:77. [PMID: 36088291 PMCID: PMC9463773 DOI: 10.1186/s11658-022-00382-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Protease activated receptors (PARs) are among the first receptors shown to transactivate other receptors: noticeably, these interactions are not limited to members of the same family, but involve receptors as diverse as receptor kinases, prostanoid receptors, purinergic receptors and ionic channels among others. In this review, we will focus on the evidence for PAR interactions with members of their own family, as well as with other types of receptors. We will discuss recent evidence as well as what we consider as emerging areas to explore; from the signalling pathways triggered, to the physiological and pathological relevance of these interactions, since this additional level of molecular cross-talk between receptors and signaling pathways is only beginning to be explored and represents a novel mechanism providing diversity to receptor function and play important roles in physiology and disease.
Collapse
|
7
|
Emerging Role of Neuron-Glia in Neurological Disorders: At a Glance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3201644. [PMID: 36046684 PMCID: PMC9423989 DOI: 10.1155/2022/3201644] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022]
Abstract
Based on the diverse physiological influence, the impact of glial cells has become much more evident on neurological illnesses, resulting in the origins of many diseases appearing to be more convoluted than previously happened. Since neurological disorders are often random and unknown, hence the construction of animal models is difficult to build, representing a small fraction of people with a gene mutation. As a result, an immediate necessity is grown to work within in vitro techniques for examining these illnesses. As the scientific community recognizes cell-autonomous contributions to a variety of central nervous system illnesses, therapeutic techniques involving stem cells for treating neurological diseases are gaining traction. The use of stem cells derived from a variety of sources is increasingly being used to replace both neuronal and glial tissue. The brain's energy demands necessitate the reliance of neurons on glial cells in order for it to function properly. Furthermore, glial cells have diverse functions in terms of regulating their own metabolic activities, as well as collaborating with neurons via secreted signaling or guidance molecules, forming a complex network of neuron-glial connections in health and sickness. Emerging data reveals that metabolic changes in glial cells can cause morphological and functional changes in conjunction with neuronal dysfunction under disease situations, highlighting the importance of neuron-glia interactions in the pathophysiology of neurological illnesses. In this context, it is required to improve our understanding of disease mechanisms and create potential novel therapeutics. According to research, synaptic malfunction is one of the features of various mental diseases, and glial cells are acting as key ingredients not only in synapse formation, growth, and plasticity but also in neuroinflammation and synaptic homeostasis which creates critical physiological capacity in the focused sensory system. The goal of this review article is to elaborate state-of-the-art information on a few glial cell types situated in the central nervous system (CNS) and highlight their role in the onset and progression of neurological disorders.
Collapse
|
8
|
Thrombin Activity in Rodent and Human Skin: Modified by Inflammation and Correlates with Innervation. Biomedicines 2022; 10:biomedicines10061461. [PMID: 35740482 PMCID: PMC9220157 DOI: 10.3390/biomedicines10061461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 01/03/2023] Open
Abstract
Thrombin is present in peripheral nerves and is involved in the pathogenesis of neuropathy. We evaluated thrombin activity in skin punch biopsies taken from the paws of male mice and rats and from the legs of patients with suspected small-fiber neuropathy (SFN). In mice, inflammation was induced focally by subcutaneous adjuvant injection to one paw and systemically by intraperitoneal lipopolysaccharides (LPS) administration. One day following injection, thrombin activity increased in the skin of the injected compared with the contralateral and non-injected control paws (p = 0.0009). One week following injection, thrombin increased in both injected and contralateral paws compared with the controls (p = 0.026), coupled with increased heat-sensitivity (p = 0.009). Thrombin activity in the footpad skin was significantly increased one week after systemic administration of LPS compared with the controls (p = 0.023). This was not accompanied by increased heat sensitivity. In human skin, a correlation was found between nerve fiber density and thrombin activity. In addition, a lower thrombin activity was measured in patients with evidence of systemic inflammation compared with the controls (p = 0.0035). These results support the modification of skin thrombin activity by regional and systemic inflammation as well as a correlation with nerve fiber density. Skin thrombin activity measurments may aid in the diagnosis and treatment of SFN.
Collapse
|
9
|
Shavit-Stein E, Berkowitz S, Davidy T, Fennig U, Gofrit SG, Dori A, Maggio N. Modulation of the Thrombin Pathway Restores LTP in a Pilocarpine Mice Model of Status Epilepticus. Front Cell Neurosci 2022; 16:900925. [PMID: 35685989 PMCID: PMC9170943 DOI: 10.3389/fncel.2022.900925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/02/2022] [Indexed: 11/28/2022] Open
Abstract
Background Status epilepticus (SE) leads to memory impairment following a seizure, attributed to long-term potentiation (LTP) reduction. Thrombin, a coagulation factor that activates protease-activated receptor 1 (PAR1) is involved in cognitive impairment following traumatic brain injury by reducing hippocampal LTP and in seizures as seen in a SE pilocarpine-induced mice model. Thrombin pathway inhibition prevents this cognitive impairment. We evaluated the effect of thrombin pathway inhibition in the pilocarpine-induced SE mice model, on LTP, hippocampal, and serum markers for inflammation, the PAR1 pathway, and neuronal cell damage. Methods SE was induced by injecting C57BL/6J mice with pilocarpine. Before pilocarpine injection, mice were injected with either the specific thrombin inhibitor α-NAPAP [Nα-(2-naphthalene-sulfonylglycyl)-4-amidino-DL-phenylalaninepiperidide], the PAR1 antagonist SCH79797, or vehicle-only solution. Recordings of excitatory postsynaptic potentials (EPSP) were conducted from hippocampal slices 24 h following pilocarpine injection. Hippocampal real-time PCR for the quantification of the PAR1, prothrombin, and tumor necrosis factor α (TNF-α) mRNA expression levels was conducted. Serum levels of neurofilament light chain (NfL) and TNF-α were measured by a single molecule array assay. Results The EPSP was reduced in the pilocarpine-induced SE mice (p < 0.001). This reduction was prevented by both NAPAP and SCH79797 treatments (p < 0.001 for both treatments). Hippocampal expression of TNF-α was elevated in the pilocarpine-induced SE group compared to the control (p < 0.01), however, serum levels of TNF-α were not changed. NfL levels were elevated in the pilocarpine-induced SE group (p = 0.04) but not in the treated groups. Conclusions Pilocarpine-induced SE reduces LTP, in a thrombin PAR1-related mechanism. Elevation of serum NfL supports neuronal damage accompanying this functional abnormality which may be prevented by PAR1 pathway modulation.
Collapse
Affiliation(s)
- Efrat Shavit-Stein
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The TELEM Rubin Excellence in Biomedical Research Program, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Shani Berkowitz
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tal Davidy
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Uri Fennig
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Shani Guly Gofrit
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Amir Dori
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Ramat Gan, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Nicola Maggio
| |
Collapse
|
10
|
Maoz BM, Asplund M, Maggio N, Vlachos A. Technology-based approaches toward a better understanding of neuro-coagulation in brain homeostasis. Cell Tissue Res 2022; 387:493-498. [PMID: 34850274 PMCID: PMC8975761 DOI: 10.1007/s00441-021-03560-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/12/2021] [Indexed: 12/30/2022]
Abstract
Blood coagulation factors can enter the brain under pathological conditions that affect the blood-brain interface. Besides their contribution to pathological brain states, such as neural hyperexcitability, neurodegeneration, and scar formation, coagulation factors have been linked to several physiological brain functions. It is for example well established that the coagulation factor thrombin modulates synaptic plasticity; it affects neural excitability and induces epileptic seizures via activation of protease-activated receptors in the brain. However, major limitations of current experimental and clinical approaches have prevented us from obtaining a profound mechanistic understanding of "neuro-coagulation" in health and disease. Here, we present how novel human relevant models, i.e., Organ-on-Chips equipped with advanced sensors, can help overcoming some of the limitations in the field, thus providing a perspective toward a better understanding of neuro-coagulation in brain homeostasis.
Collapse
Affiliation(s)
- Ben M Maoz
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Maria Asplund
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Division of Nursing and Medical Technology, Luleå University of Technology, Lulea, Sweden
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Tel Hashomer, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Israel
| | - Andreas Vlachos
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany.
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
11
|
Chen S, Siedhoff HR, Zhang H, Liu P, Balderrama A, Li R, Johnson C, Greenlief CM, Koopmans B, Hoffman T, DePalma RG, Li DP, Cui J, Gu Z. Low-intensity blast induces acute glutamatergic hyperexcitability in mouse hippocampus leading to long-term learning deficits and altered expression of proteins involved in synaptic plasticity and serine protease inhibitors. Neurobiol Dis 2022; 165:105634. [PMID: 35077822 DOI: 10.1016/j.nbd.2022.105634] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 11/26/2022] Open
Abstract
Neurocognitive consequences of blast-induced traumatic brain injury (bTBI) pose significant concerns for military service members and veterans with the majority of "invisible injury." However, the underlying mechanism of such mild bTBI by low-intensity blast (LIB) exposure for long-term cognitive and mental deficits remains elusive. Our previous studies have shown that mice exposed to LIB result in nanoscale ultrastructural abnormalities in the absence of gross or apparent cellular damage in the brain. Here we tested the hypothesis that glutamatergic hyperexcitability may contribute to long-term learning deficits. Using brain slice electrophysiological recordings, we found an increase in averaged frequencies with a burst pattern of miniature excitatory postsynaptic currents (mEPSCs) in hippocampal CA3 neurons in LIB-exposed mice at 1- and 7-days post injury, which was blocked by a specific NMDA receptor antagonist AP5. In addition, cognitive function assessed at 3-months post LIB exposure by automated home-cage monitoring showed deficits in dynamic patterns of discrimination learning and cognitive flexibility in LIB-exposed mice. Collected hippocampal tissue was further processed for quantitative global-proteomic analysis. Advanced data-independent acquisition for quantitative tandem mass spectrometry analysis identified altered expression of proteins involved in synaptic plasticity and serine protease inhibitors in LIB-exposed mice. Some were correlated with the ability of discrimination learning and cognitive flexibility. These findings show that acute glutamatergic hyperexcitability in the hippocampus induced by LIB may contribute to long-term cognitive dysfunction and protein alterations. Studies using this military-relevant mouse model of mild bTBI provide valuable insights into developing a potential therapeutic strategy to ameliorate hyperexcitability-modulated LIB injuries.
Collapse
Affiliation(s)
- Shanyan Chen
- Truman VA Hospital Research Service, Columbia, MO 65201, USA; Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Heather R Siedhoff
- Truman VA Hospital Research Service, Columbia, MO 65201, USA; Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Hua Zhang
- Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Pei Liu
- Charles W. Gehrke Proteomics Center, University of Missouri, Columbia, MO 65211, USA
| | - Ashley Balderrama
- Truman VA Hospital Research Service, Columbia, MO 65201, USA; Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Runting Li
- Truman VA Hospital Research Service, Columbia, MO 65201, USA; Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Catherine Johnson
- Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - C Michael Greenlief
- Charles W. Gehrke Proteomics Center, University of Missouri, Columbia, MO 65211, USA
| | | | - Timothy Hoffman
- Truman VA Hospital Research Service, Columbia, MO 65201, USA; Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Ralph G DePalma
- Office of Research and Development, Department of Veterans Affairs, Washington DC 20420, USA; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - De-Pei Li
- Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Jiankun Cui
- Truman VA Hospital Research Service, Columbia, MO 65201, USA; Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA.
| | - Zezong Gu
- Truman VA Hospital Research Service, Columbia, MO 65201, USA; Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA.
| |
Collapse
|
12
|
Shavit-Stein E, Berkowitz S, Gofrit SG, Altman K, Weinberg N, Maggio N. Neurocoagulation from a Mechanistic Point of View in the Central Nervous System. Semin Thromb Hemost 2022; 48:277-287. [PMID: 35052009 DOI: 10.1055/s-0041-1741569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Coagulation mechanisms are critical for maintaining homeostasis in the central nervous system (CNS). Thrombin, an important player of the coagulation cascade, activates protease activator receptors (PARs), members of the G-protein coupled receptor family. PAR1 is located on neurons and glia. Following thrombin activation, PAR1 signals through the extracellular signal-regulated kinase pathway, causing alterations in neuronal glutamate release and astrocytic morphological changes. Similarly, the anticoagulation factor activated protein C (aPC) can cleave PAR1, following interaction with the endothelial protein C receptor. Both thrombin and aPC are expressed on endothelial cells and pericytes in the blood-brain barrier (BBB). Thrombin-induced PAR1 activation increases cytosolic Ca2+ concentration in brain vessels, resulting in nitric oxide release and increasing F-actin stress fibers, damaging BBB integrity. aPC also induces PAR1 activation and preserves BBB vascular integrity via coupling to sphingosine 1 phosphate receptors. Thrombin-induced PAR1 overactivation and BBB disruption are evident in CNS pathologies. During epileptic seizures, BBB disruption promotes thrombin penetration. Thrombin induces PAR1 activation and potentiates N-methyl-D-aspartate receptors, inducing glutamate-mediated hyperexcitability. Specific PAR1 inhibition decreases status epilepticus severity in vivo. In stroke, the elevation of brain thrombin levels further compromises BBB integrity, with direct parenchymal damage, while systemic factor Xa inhibition improves neurological outcomes. In multiple sclerosis (MS), brain thrombin inhibitory capacity correlates with clinical presentation. Both thrombin inhibition by hirudin and the use of recombinant aPC improve disease severity in an MS animal model. This review presents the mechanisms underlying the effects of coagulation on the physiology and pathophysiology of the CNS.
Collapse
Affiliation(s)
- Efrat Shavit-Stein
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Neurology and Neurosurgery, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Shani Berkowitz
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Neurology and Neurosurgery, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Shany Guly Gofrit
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Keren Altman
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Nitai Weinberg
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Neurology and Neurosurgery, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
13
|
Berkowitz S, Chapman J, Dori A, Gofrit SG, Maggio N, Shavit-Stein E. Complement and Coagulation System Crosstalk in Synaptic and Neural Conduction in the Central and Peripheral Nervous Systems. Biomedicines 2021; 9:biomedicines9121950. [PMID: 34944766 PMCID: PMC8698364 DOI: 10.3390/biomedicines9121950] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
Complement and coagulation are both key systems that defend the body from harm. They share multiple features and are similarly activated. They each play individual roles in the systemic circulation in physiology and pathophysiology, with significant crosstalk between them. Components from both systems are mapped to important structures in the central nervous system (CNS) and peripheral nervous system (PNS). Complement and coagulation participate in critical functions in neuronal development and synaptic plasticity. During pathophysiological states, complement and coagulation factors are upregulated and can modulate synaptic transmission and neuronal conduction. This review summarizes the current evidence regarding the roles of the complement system and the coagulation cascade in the CNS and PNS. Possible crosstalk between the two systems regarding neuroinflammatory-related effects on synaptic transmission and neuronal conduction is explored. Novel treatment based on the modulation of crosstalk between complement and coagulation may perhaps help to alleviate neuroinflammatory effects in diseased states of the CNS and PNS.
Collapse
Affiliation(s)
- Shani Berkowitz
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 5266202, Israel; (S.B.); (J.C.); (A.D.); (S.G.G.); (N.M.)
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Joab Chapman
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 5266202, Israel; (S.B.); (J.C.); (A.D.); (S.G.G.); (N.M.)
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amir Dori
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 5266202, Israel; (S.B.); (J.C.); (A.D.); (S.G.G.); (N.M.)
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Ramat Gan 6997801, Israel
| | - Shany Guly Gofrit
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 5266202, Israel; (S.B.); (J.C.); (A.D.); (S.G.G.); (N.M.)
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 5266202, Israel; (S.B.); (J.C.); (A.D.); (S.G.G.); (N.M.)
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Ramat Gan 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Efrat Shavit-Stein
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 5266202, Israel; (S.B.); (J.C.); (A.D.); (S.G.G.); (N.M.)
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: ; Tel.: +972-50-921-0400
| |
Collapse
|
14
|
Zhao L, Li J, Kälviäinen R, Jolkkonen J, Zhao C. Impact of drug treatment and drug interactions in post-stroke epilepsy. Pharmacol Ther 2021; 233:108030. [PMID: 34742778 DOI: 10.1016/j.pharmthera.2021.108030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 12/21/2022]
Abstract
Stroke is a huge burden on our society and this is expected to grow in the future due to the aging population and the associated co-morbidities. The improvement of acute stroke care has increased the survival rate of stroke patients, and many patients are left with permanent disability, which makes stroke the main cause of adult disability. Unfortunately, many patients face other severe complications such as post-stroke seizures and epilepsy. Acute seizures (ASS) occur within 1 week after the stroke while later occurring unprovoked seizures are diagnosed as post-stroke epilepsy (PSE). Both are associated with a poor prognosis of a functional recovery. The underlying neurobiological mechanisms are complex and poorly understood. There are no universal guidelines on the management of PSE. There is increasing evidence for several risk factors for ASS/PSE, however, the impacts of recanalization, drugs used for secondary prevention of stroke, treatment of stroke co-morbidities and antiseizure medication are currently poorly understood. This review focuses on the common medications that stroke patients are prescribed and potential drug interactions possibly complicating the management of ASS/PSE.
Collapse
Affiliation(s)
- Lanqing Zhao
- Department of Sleep Medicine Center, The Shengjing Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Jinwei Li
- Department of Stroke Center, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Reetta Kälviäinen
- Kuopio Epilepsy Center, Neurocenter, Kuopio University Hospital, Full Member of ERN EpiCARE, Kuopio, Finland; Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jukka Jolkkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Chuansheng Zhao
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
15
|
Grigolashvili MA, Zhuanysheva EM. [Risk factors for post stroke epilepsy]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:35-40. [PMID: 34553579 DOI: 10.17116/jnevro202112108235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Stroke is the leading cause of death and disability in the world. The prevalence of post-stroke epilepsy increases with the increase in the number of stroke cases. Epilepsy may develop in 10% of post-stroke cases and first-diagnosed seizures may develop in 55%. Most often they occur in people who have had intracerebral or subarachnoid haemorrhage. A huge number of factors influence the development of post-stroke seizures and epilepsy. The role of some of them is not in doubt. However, in most cases, the influence of a factor remains controversial and participation in the development of post-stroke epilepsy is not fully proven. The management of post-stroke epilepsy is of great clinical importance, since patients with seizures after a stroke have a higher mortality and disability than those without seizures. Attacks worsen the quality of life of patients, can slow the recovery of functions damaged as a result of a stroke, and aggravate cognitive impairment. Social consequences of post-stroke epilepsy play an important role as well.
Collapse
|
16
|
Kim HN, Triplet EM, Radulovic M, Bouchal S, Kleppe LS, Simon WL, Yoon H, Scarisbrick IA. The thrombin receptor modulates astroglia-neuron trophic coupling and neural repair after spinal cord injury. Glia 2021; 69:2111-2132. [PMID: 33887067 PMCID: PMC8672305 DOI: 10.1002/glia.24012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 12/15/2022]
Abstract
Excessive activation of the thrombin receptor, protease activated receptor 1 (PAR1) is implicated in diverse neuropathologies from neurodegenerative conditions to neurotrauma. PAR1 knockout mice show improved outcomes after experimental spinal cord injury (SCI), however information regarding the underpinning cellular and molecular mechanisms is lacking. Here we demonstrate that genetic blockade of PAR1 in female mice results in improvements in sensorimotor co-ordination after thoracic spinal cord lateral compression injury. We document improved neuron preservation with increases in Synapsin-1 presynaptic proteins and GAP43, a growth cone marker, after a 30 days recovery period. These improvements were coupled to signs of enhanced myelin resiliency and repair, including increases in the number of mature oligodendrocytes, their progenitors and the abundance of myelin basic protein. These significant increases in substrates for neural recovery were accompanied by reduced astrocyte (Serp1) and microglial/monocyte (CD68 and iNOS) pro-inflammatory markers, with coordinate increases in astrocyte (S100A10 and Emp1) and microglial (Arg1) markers reflective of pro-repair activities. Complementary astrocyte-neuron co-culture bioassays suggest astrocytes with PAR1 loss-of-function promote both neuron survival and neurite outgrowth. Additionally, the pro-neurite outgrowth effects of switching off astrocyte PAR1 were blocked by inhibiting TrkB, the high affinity receptor for brain derived neurotrophic factor. Altogether, these studies demonstrate unique modulatory roles for PAR1 in regulating glial-neuron interactions, including the capacity for neurotrophic factor signaling, and underscore its position at neurobiological intersections critical for the response of the CNS to injury and the capacity for regenerative repair and restoration of function.
Collapse
Affiliation(s)
- Ha Neui Kim
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
- Department of Physiology and Biomedical Engineering, Rochester MN 55905
| | - Erin M. Triplet
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
- Department of Physiology and Biomedical Engineering, Rochester MN 55905
- Neuroscience Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester MN 55905
| | - Maja Radulovic
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
- Department of Physiology and Biomedical Engineering, Rochester MN 55905
| | - Samantha Bouchal
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
| | - Laurel S. Kleppe
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
| | - Whitney L. Simon
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
| | - Hyesook Yoon
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
- Department of Physiology and Biomedical Engineering, Rochester MN 55905
| | - Isobel A. Scarisbrick
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
- Department of Physiology and Biomedical Engineering, Rochester MN 55905
- Neuroscience Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester MN 55905
| |
Collapse
|
17
|
Inhibition of protease-activated receptor 1 (PAR1) ameliorates cognitive performance and synaptic plasticity impairments in animal model of Alzheimer's diseases. Psychopharmacology (Berl) 2021; 238:1645-1656. [PMID: 33624157 DOI: 10.1007/s00213-021-05798-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/09/2021] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a progressive brain disorder accompanied with synaptic failures and decline in cognitive and learning processes. Protease-activated receptor 1 (PAR1) is the major thrombin receptor in the brain that is implicated in synaptic plasticity and memory formation. In the current study, we hypothesized that inhibition of PAR1 would theoretically prevent amyloid beta (Aβ) accumulation in the brain and then contribute to reduce risk of AD. The aim of the present study was to evaluate the effect of PAR1 inhibition by using SCH (as an inhibitor of PAR1) on spatial learning, memory, and synaptic plasticity in the CA1 region of the hippocampus in rat model of Alzheimer's disease. METHODS For the induction of Alzheimer's disease, amyloid beta (Aβ) 1-42 was injected in the CA1 region of the hippocampus. The rats were divided into four groups: group I (surgical sham); group II rat mode of Alzheimer's disease (AD); group III (SCH) (25 μg/kg) intraperitoneally (i.p.), and group IV (AD + SCH). After 14 days of protocol, the rats in group III received SCH and 30 min after injection behavioral and electrophysiological tests were performed. Learning and memory ability was assessed by Morris water maze and novel object recognition tests. Extracellular evoked field excitatory postsynaptic potentials (fEPSP) were recorded in the stratum radiatum of the CA1 area. RESULTS Our results showed that AD rats showed impairments in learning and memory, and long-term potentiation (LTP) was not induced in these rats. However, injection of SCH overcame the AD-induced impairment in LTP generation in the CA1 area of the hippocampus and improved learning and memory impairment.
Collapse
|
18
|
Stokum JA, Cannarsa GJ, Wessell AP, Shea P, Wenger N, Simard JM. When the Blood Hits Your Brain: The Neurotoxicity of Extravasated Blood. Int J Mol Sci 2021; 22:5132. [PMID: 34066240 PMCID: PMC8151992 DOI: 10.3390/ijms22105132] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Abstract
Hemorrhage in the central nervous system (CNS), including intracerebral hemorrhage (ICH), intraventricular hemorrhage (IVH), and aneurysmal subarachnoid hemorrhage (aSAH), remains highly morbid. Trials of medical management for these conditions over recent decades have been largely unsuccessful in improving outcome and reducing mortality. Beyond its role in creating mass effect, the presence of extravasated blood in patients with CNS hemorrhage is generally overlooked. Since trials of surgical intervention to remove CNS hemorrhage have been generally unsuccessful, the potent neurotoxicity of blood is generally viewed as a basic scientific curiosity rather than a clinically meaningful factor. In this review, we evaluate the direct role of blood as a neurotoxin and its subsequent clinical relevance. We first describe the molecular mechanisms of blood neurotoxicity. We then evaluate the clinical literature that directly relates to the evacuation of CNS hemorrhage. We posit that the efficacy of clot removal is a critical factor in outcome following surgical intervention. Future interventions for CNS hemorrhage should be guided by the principle that blood is exquisitely toxic to the brain.
Collapse
Affiliation(s)
- Jesse A. Stokum
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
| | - Gregory J. Cannarsa
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
| | - Aaron P. Wessell
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
| | - Phelan Shea
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
| | - Nicole Wenger
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
- Departments of Pathology and Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
19
|
Shlobin NA, Har-Even M, Itsekson-Hayosh Z, Harnof S, Pick CG. Role of Thrombin in Central Nervous System Injury and Disease. Biomolecules 2021; 11:562. [PMID: 33921354 PMCID: PMC8070021 DOI: 10.3390/biom11040562] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022] Open
Abstract
Thrombin is a Na+-activated allosteric serine protease of the chymotrypsin family involved in coagulation, inflammation, cell protection, and apoptosis. Increasingly, the role of thrombin in the brain has been explored. Low concentrations of thrombin are neuroprotective, while high concentrations exert pathological effects. However, greater attention regarding the involvement of thrombin in normal and pathological processes in the central nervous system is warranted. In this review, we explore the mechanisms of thrombin action, localization, and functions in the central nervous system and describe the involvement of thrombin in stroke and intracerebral hemorrhage, neurodegenerative diseases, epilepsy, traumatic brain injury, and primary central nervous system tumors. We aim to comprehensively characterize the role of thrombin in neurological disease and injury.
Collapse
Affiliation(s)
- Nathan A. Shlobin
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Meirav Har-Even
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ze’ev Itsekson-Hayosh
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
- Department of Neurology and Joseph Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer 5262000, Israel
| | - Sagi Harnof
- Department of Neurosurgery, Beilinson Hospital, Rabin Medical Center, Tel Aviv University, Petah Tikva 4941492, Israel;
| | - Chaim G. Pick
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Center for Biology of Addictive Diseases, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
20
|
Price R, Mercuri NB, Ledonne A. Emerging Roles of Protease-Activated Receptors (PARs) in the Modulation of Synaptic Transmission and Plasticity. Int J Mol Sci 2021; 22:E869. [PMID: 33467143 PMCID: PMC7830300 DOI: 10.3390/ijms22020869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/22/2022] Open
Abstract
Protease-activated receptors (PARs) are a class of G protein-coupled receptors (GPCRs) with a unique mechanism of activation, prompted by a proteolytic cleavage in their N-terminal domain that uncovers a tethered ligand, which binds and stimulates the same receptor. PARs subtypes (PAR1-4) have well-documented roles in coagulation, hemostasis, and inflammation, and have been deeply investigated for their function in cellular survival/degeneration, while their roles in the brain in physiological conditions remain less appreciated. Here, we describe PARs' effects in the modulation of neurotransmission and synaptic plasticity. Available evidence, mainly concerning PAR1-mediated and PAR2-mediated regulation of glutamatergic and GABAergic transmission, supports that PARs are important modulators of synaptic efficacy and plasticity in normal conditions.
Collapse
Affiliation(s)
- Rachel Price
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (R.P.); (N.B.M.)
| | - Nicola Biagio Mercuri
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (R.P.); (N.B.M.)
- Department of Systems Medicine, Università di Roma “Tor Vergata”, 00133 Rome, Italy
| | - Ada Ledonne
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (R.P.); (N.B.M.)
| |
Collapse
|
21
|
Al-Eitan LN, Al-Dalala IM, Elshammari AK, Khreisat WH, Nimiri AF, Alnaamneh AH, Aljamal HA, Alghamdi MA. Genetic Association of Epilepsy and Anti-Epileptic Drugs Treatment in Jordanian Patients. Pharmgenomics Pers Med 2020; 13:503-510. [PMID: 33116764 PMCID: PMC7584512 DOI: 10.2147/pgpm.s273125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/06/2020] [Indexed: 12/29/2022] Open
Abstract
Purpose The aim of this study was to investigate the possible effects of single-nucleotide polymorphisms (SNPs) within SLC1A1, SLC6A1, FAM131B, GPLD1, F2, GABRG2, GABRA1, and CACNG5 genes on response to anti-epileptic drugs (AEDs) and the genetic predisposition of epilepsy in Jordanian patients. Patients and Methods A total of 299 healthy individuals and 296 pediatric patients from the Jordanian population were recruited. Blood samples are collected, and genotyping was performed using a custom platform array analysis. Results The SLC1A1 rs10815018 and FAM131B rs4236482 polymorphisms found to be associated with epilepsy susceptibility. Moreover, SLC1A1 rs10815018 and GPLD1 rs1126617 polymorphisms were associated with generalized epilepsy (GE), while FAM131B rs4236482 is associated with the focal phenotype. Regarding the therapeutic response, the genetic polymorphisms of FAM131B rs4236482, GABRA1 rs2279020, and CACNG5 rs740805 are conferred poor response (resistance) to AEDs. There was no linkage of GLPD1 haplotypes to epilepsy, its subtypes, and treatment responsiveness. Conclusion Our findings suggested that SLC1A1, FAM131B, and GPLD1 polymorphisms increasing the risk of generating epilepsy, while FAM131B, GABRA1, and CACNG5 variants may play a role in predicting drug response in patients with epilepsy (PWE).
Collapse
Affiliation(s)
- Laith N Al-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, Jordan.,Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Islam M Al-Dalala
- Department of Blood Banking, King Hussein Medical Centre, Royal Medical Services, Amman, Jordan
| | - Afrah K Elshammari
- Queen Rania Hospital for Children, King Hussein Medical Center, Royal Medical Services, Amman, Jordan
| | - Wael H Khreisat
- Queen Rania Hospital for Children, King Hussein Medical Center, Royal Medical Services, Amman, Jordan
| | - Aseel F Nimiri
- Queen Rania Hospital for Children, King Hussein Medical Center, Royal Medical Services, Amman, Jordan
| | - Adan H Alnaamneh
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Hanan A Aljamal
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Mansour A Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia.,Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
22
|
Price R, Ferrari E, Gardoni F, Mercuri NB, Ledonne A. Protease-activated receptor 1 (PAR1) inhibits synaptic NMDARs in mouse nigral dopaminergic neurons. Pharmacol Res 2020; 160:105185. [PMID: 32891865 DOI: 10.1016/j.phrs.2020.105185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022]
Abstract
Protease-activated receptor 1 (PAR1) is a G protein-coupled receptor (GPCR), whose activation requires a proteolytic cleavage in the extracellular domain exposing a tethered ligand, which binds to the same receptor thus stimulating Gαq/11-, Gαi/o- and Gα12-13 proteins. PAR1, activated by serine proteases and matrix metalloproteases, plays multifaceted roles in neuroinflammation and neurodegeneration, in stroke, brain trauma, Alzheimer's diseases, and Parkinson's disease (PD). Substantia nigra pars compacta (SNpc) is among areas with highest PAR1 expression, but current evidence on its roles herein is restricted to mechanisms controlling dopaminergic (DAergic) neurons survival, with controversial data showing PAR1 either fostering or counteracting degeneration in PD models. Since PAR1 functions on SNpc DAergic neurons activity are unknown, we investigated if PAR1 affects glutamatergic transmission in this neuronal population. We analyzed PAR1's effects on NMDARs and AMPARs by patch-clamp recordings from DAergic neurons from mouse midbrain slices. Then, we explored subunit composition of PAR1-sensitive NMDARs, with selective antagonists, and mechanisms underlying PAR1-induced NMDARs modulation, by quantifying NMDARs surface expression. PAR1 activation inhibits synaptic NMDARs in SNpc DAergic neurons, without affecting AMPARs. PAR1-sensitive NMDARs contain GluN2B/GluN2D subunits. Moreover, PAR1-mediated NMDARs hypofunction is reliant on NMDARs internalization, as PAR1 stimulation increases NMDARs intracellular levels and pharmacological limitation of NMDARs endocytosis prevents PAR1-induced NMDARs inhibition. We reveal that PAR1 regulates glutamatergic transmission in midbrain DAergic cells. This might have implications in brain's DA-dependent functions and in neurological/psychiatric diseases linked to DAergic dysfunctions.
Collapse
Affiliation(s)
- Rachel Price
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Systems Medicine, Università di Roma Tor Vergata, Rome, Italy
| | - Elena Ferrari
- Department of Pharmacological and Biomolecolar Sciences, Università degli Studi di Milano, Milan, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecolar Sciences, Università degli Studi di Milano, Milan, Italy
| | - Nicola Biagio Mercuri
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Systems Medicine, Università di Roma Tor Vergata, Rome, Italy
| | - Ada Ledonne
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
23
|
Shavit-Stein E, Abu Rahal I, Bushi D, Gera O, Sharon R, Gofrit SG, Pollak L, Mindel K, Maggio N, Kloog Y, Chapman J, Dori A. Brain Protease Activated Receptor 1 Pathway: A Therapeutic Target in the Superoxide Dismutase 1 (SOD1) Mouse Model of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2020; 21:E3419. [PMID: 32408605 PMCID: PMC7279358 DOI: 10.3390/ijms21103419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022] Open
Abstract
Glia cells are involved in upper motor neuron degeneration in amyotrophic lateral sclerosis (ALS). Protease activated receptor 1 (PAR1) pathway is related to brain pathologies. Brain PAR1 is located on peri-synaptic astrocytes, adjacent to pyramidal motor neurons, suggesting possible involvement in ALS. Brain thrombin activity in superoxide dismutase 1 (SOD1) mice was measured using a fluorometric assay, and PAR1 levels by western blot. PAR1 was localized using immunohistochemistry staining. Treatment targeted PAR1 pathway on three levels; thrombin inhibitor TLCK (N-Tosyl-Lys-chloromethylketone), PAR1 antagonist SCH-79797 and the Ras intracellular inhibitor FTS (S-trans-trans-farnesylthiosalicylic acid). Mice were weighed and assessed for motor function and survival. SOD1 brain thrombin activity was increased (p < 0.001) particularly in the posterior frontal lobe (p = 0.027) and hindbrain (p < 0.01). PAR1 levels were decreased (p < 0.001, brain, spinal cord, p < 0.05). PAR1 and glial fibrillary acidic protein (GFAP) staining decreased in the cerebellum and cortex. SOD1 mice lost weight (≥17 weeks, p = 0.047), and showed shorter rotarod time (≥14 weeks, p < 0.01). FTS 40mg/kg significantly improved rotarod scores (p < 0.001). Survival improved with all treatments (p < 0.01 for all treatments). PAR1 antagonism was the most efficient, with a median survival improvement of 10 days (p < 0.0001). Our results support PAR1 pathway involvement in ALS.
Collapse
Affiliation(s)
- Efrat Shavit-Stein
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel; (I.A.R.); (D.B.); (O.G.); (R.S.); (S.G.G.); (L.P.); (N.M.); (J.C.); (A.D.)
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ihab Abu Rahal
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel; (I.A.R.); (D.B.); (O.G.); (R.S.); (S.G.G.); (L.P.); (N.M.); (J.C.); (A.D.)
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Doron Bushi
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel; (I.A.R.); (D.B.); (O.G.); (R.S.); (S.G.G.); (L.P.); (N.M.); (J.C.); (A.D.)
| | - Orna Gera
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel; (I.A.R.); (D.B.); (O.G.); (R.S.); (S.G.G.); (L.P.); (N.M.); (J.C.); (A.D.)
| | - Roni Sharon
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel; (I.A.R.); (D.B.); (O.G.); (R.S.); (S.G.G.); (L.P.); (N.M.); (J.C.); (A.D.)
| | - Shany G. Gofrit
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel; (I.A.R.); (D.B.); (O.G.); (R.S.); (S.G.G.); (L.P.); (N.M.); (J.C.); (A.D.)
| | - Lea Pollak
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel; (I.A.R.); (D.B.); (O.G.); (R.S.); (S.G.G.); (L.P.); (N.M.); (J.C.); (A.D.)
| | - Kate Mindel
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel; (I.A.R.); (D.B.); (O.G.); (R.S.); (S.G.G.); (L.P.); (N.M.); (J.C.); (A.D.)
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yoel Kloog
- Department of Neurobiochemistry, Weiss Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Joab Chapman
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel; (I.A.R.); (D.B.); (O.G.); (R.S.); (S.G.G.); (L.P.); (N.M.); (J.C.); (A.D.)
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
- Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amir Dori
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel; (I.A.R.); (D.B.); (O.G.); (R.S.); (S.G.G.); (L.P.); (N.M.); (J.C.); (A.D.)
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
24
|
Ben Shimon M, Shavit-Stein E, Altman K, Pick CG, Maggio N. Thrombin as Key Mediator of Seizure Development Following Traumatic Brain Injury. Front Pharmacol 2020; 10:1532. [PMID: 32009953 PMCID: PMC6971217 DOI: 10.3389/fphar.2019.01532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injury (TBI) commonly leads to development of seizures, accounting for approximately 20% of newly diagnosed epilepsy. Despite the high clinical significance, the mechanisms underlying the development of posttraumatic seizures (PTS) remain unclear, compromising appropriate management of these patients. Accumulating evidence suggest that thrombin, the main serine protease of the coagulation cascade, is involved in PTS genesis by mediating inflammation and hyperexcitability following blood brain barrier breakdown. In order to further understand the role of thrombin in PTS, we generated a combined mild TBI (mTBI) and status epilepticus mice model, by injecting pilocarpine to mice previously submitted to head injury. Interestingly, mTBI was able to reduce seizure onset in the pilocarpine animal model as well as increase the death rate in the treated animals. In turn, pilocarpine worsened spatial orientation of mTBI treated mice. Finally, thrombin activity as well as the expression of IL1-β and TNF-α was significantly increased in the mTBI-pilocarpine treated animals. In conclusion, these observations indicate a synergism between thrombin and mTBI in lowering seizure in the pilocarpine model and possibly aggravating inflammation. We believe that these results will improve the understanding of PTS pathophysiology and contribute to the development of more targeted therapies in the future.
Collapse
Affiliation(s)
- Marina Ben Shimon
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Efrat Shavit-Stein
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Neurology and Neurosurgery, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Keren Altman
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Chaim G Pick
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Neurology and Neurosurgery, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
25
|
Lenz M, Shimon MB, Benninger F, Neufeld MY, Shavit-Stein E, Vlachos A, Maggio N. Systemic thrombin inhibition ameliorates seizures in a mouse model of pilocarpine-induced status epilepticus. J Mol Med (Berl) 2019; 97:1567-1574. [PMID: 31667526 DOI: 10.1007/s00109-019-01837-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/10/2019] [Accepted: 09/20/2019] [Indexed: 10/25/2022]
Abstract
Status epilepticus (SE) is a life-threatening condition characterized by ongoing seizure activity which can lead to severe brain damage and death if not treated properly. Recent work suggests that alterations in blood-brain barrier (BBB) function and subsequent cortical exposure to coagulation factors may initiate, promote, and/or sustain SE. This suggestion is based on the observation that the serine protease thrombin, which plays a fundamental role in the blood coagulation cascade, increases neural excitability through the activation of protease-activated receptor 1 (PAR1). However, it remains unclear whether systemic inhibition of thrombin asserts "anti-epileptic" effects in vivo. We here used the pilocarpine model of SE in adult 3-month-old male mice to address the question whether intraperitoneal injection of the thrombin inhibitor α-NAPAP (0.75 mg/kg) counters SE. Indeed, pharmacological inhibition of thrombin ameliorates the behavioral outcome of pilocarpine-induced SE. Similar results are obtained when the thrombin receptor PAR1 is pharmacologically blocked using intraperitoneal injection of SCH79797 (25 μg/kg) prior to SE induction. Consistent with these results, an increase in thrombin immunofluorescence is detected in the hippocampus of pilocarpine-treated animals. Moreover, increased hippocampal serine protease activity is detected 90 min after SE induction, which is not observed in animals treated with α-NAPAP prior to SE induction. Together, these results corroborate and extend recent studies suggesting that novel oral anticoagulants which target thrombin (and PAR1) may assert anti-epileptic effects in vivo. KEY MESSAGES: Systemic thrombin/PAR1-inhibition ameliorates anticoagulants behavioral seizures. Status epilepticus increases thrombin levels in the hippocampus. Increased serine protease activity in the hippocampus after status epileptic. Anti-epileptic potential of clinically used anticoagulants must be evaluated.
Collapse
Affiliation(s)
- Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Marina Ben Shimon
- Department of Neurology, The Chaim Sheba Medical Center, Tel HaShomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Felix Benninger
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Miri Y Neufeld
- Department of Neurology, The Chaim Sheba Medical Center, Tel HaShomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Efrat Shavit-Stein
- Department of Neurology, The Chaim Sheba Medical Center, Tel HaShomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany. .,Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Tel HaShomer, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Tel HaShomer, Israel. .,Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
26
|
Role of the protease-activated receptor 1 in regulating the function of glial cells within central and peripheral nervous system. J Neural Transm (Vienna) 2019; 126:1259-1271. [DOI: 10.1007/s00702-019-02075-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/31/2019] [Indexed: 02/07/2023]
|
27
|
Shavit-Stein E, Aronovich R, Sylantiev C, Gofrit SG, Chapman J, Dori A. The role of thrombin in the pathogenesis of diabetic neuropathy. PLoS One 2019; 14:e0219453. [PMID: 31276565 PMCID: PMC6611599 DOI: 10.1371/journal.pone.0219453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 06/24/2019] [Indexed: 02/05/2023] Open
Abstract
Diabetic neuropathy is common and disabling despite glycemic control. Novel neuroprotective approaches are needed. Thrombin and hypercoagulability are associated with diabetes and nerve conduction dysfunction. Our aim was to study the role of thrombin in diabetic neuropathy. We measured thrombin activity by a biochemical assay in streptozotocin (STZ)-induced diabetic neuropathy in male Sprague-Dawley rats. Neuropathy severity was assessed by thermal latency and nerve conduction measures. Thermal latencies were longer in diabetic rats, and improved with the non-specific serine-protease inhibitor Tosyl-L-lysine-chloromethyl ketone (TLCK) treatment (p<0.01). The tail nerve of diabetic rats showed slow conduction velocity (p˂0.01), and interestingly, increased thrombin activity was noted in the sciatic nerve (p˂0.001). Sciatic nodes of Ranvier and the thrombin receptor, protease activated receptor 1 (PAR1) reactivity showed abnormal morphology in diabetic animals by immunofluorescence staining (p<0.0001). Treatment of diabetic animals with either the specific thrombin inhibitor, N-alpha 2 naphtalenesulfonylglycyl alpha-4 amidino-phenylalaninepiperidide (NAPAP) or TLCK preserved normal conduction velocity, (p˂0.01 and p = 0.01 respectively), and prevented disruption of morphology (p˂0.05 and p˂0.03). The results establish for the first time an association between diabetic neuropathy and excessive activation of the thrombin pathway. Treatment of diabetic animals with thrombin inhibitors ameliorates both biochemical, structural and electrophysiological deficits. The thrombin pathway inhibition may be a novel neuroprotective therapeutic target in the diabetic neuropathy pathology.
Collapse
Affiliation(s)
- Efrat Shavit-Stein
- Department of Neurology, Sheba Medical Center, Tel HaShomer, Israel
- Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel
- * E-mail:
| | - Ramona Aronovich
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Joab Chapman
- Department of Neurology, Sheba Medical Center, Tel HaShomer, Israel
- Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amir Dori
- Department of Neurology, Sheba Medical Center, Tel HaShomer, Israel
- Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel
- Department of Neurology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Talpiot medical leadership program, Sheba Medical Center, Tel HaShomer, Israel
| |
Collapse
|
28
|
Gofrit SG, Shavit-Stein E. The neuro-glial coagulonome: the thrombin receptor and coagulation pathways as major players in neurological diseases. Neural Regen Res 2019; 14:2043-2053. [PMID: 31397331 PMCID: PMC6788244 DOI: 10.4103/1673-5374.262568] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The neuro-glial interface extends far beyond mechanical support alone and includes interactions through coagulation cascade proteins. Here, we systematically review the evidence indicating that synaptic and node of Ranvier glia cell components modulate synaptic transmission and axonal conduction by a coagulation cascade protein system, leading us to propose the concept of the neuro-glial coagulonome. In the peripheral nervous system, the main thrombin receptor protease activated receptor 1 (PAR1) is located on the Schwann microvilli at the node of Ranvier and at the neuromuscular junction. PAR1 activation effects can be both neuroprotective or harmful, depending on thrombin activity levels. Low physiological levels of thrombin induce neuroprotective effects in the Schwann cells which are mediated by the endothelial protein C receptor. High levels of thrombin induce conduction deficits, as found in experimental autoimmune neuritis, the animal model for Guillaine-Barre syndrome. In the central nervous system, PAR1 is located on the peri-synaptic astrocyte end-feet. Its activation by high thrombin levels is involved in the pathology of primary inflammatory brain diseases such as multiple sclerosis, as well as in other central nervous system insults, including trauma, neoplasms, epilepsy and vascular injury. Following activation of PAR1 by high thrombin levels the seizure threshold is lowered. On the other hand, PAR1 activation by lower levels of thrombin in the central nervous system protects against a future ischemic insult. This review presents the known structure and function of the neuro-glial coagulonome, focusing on coagulation, thrombin and PAR1 in a pathway which may be either physiological (neuroprotective) or detrimental in peripheral nervous system and central nervous system diseases. Understanding the neuro-glial coagulonome may open opportunities for novel pharmacological interventions in neurological diseases.
Collapse
Affiliation(s)
- Shany G Gofrit
- Department of Neurology and Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Efrat Shavit-Stein
- Department of Neurology and Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
29
|
Maggio N, Rubovitch V, Hoffer BJ, Citron BA, Greig NH, Pick CG. Neuronal Hyperexcitability Following mTBI. NEUROSENSORY DISORDERS IN MILD TRAUMATIC BRAIN INJURY 2019:67-81. [DOI: 10.1016/b978-0-12-812344-7.00006-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
30
|
Golderman V, Shavit-Stein E, Gera O, Chapman J, Eisenkraft A, Maggio N. Thrombin and the Protease-Activated Receptor-1 in Organophosphate-Induced Status Epilepticus. J Mol Neurosci 2018; 67:227-234. [PMID: 30515700 DOI: 10.1007/s12031-018-1228-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/21/2018] [Indexed: 12/20/2022]
Abstract
Organophosphates (OP) are a major threat to the health of soldiers and civilians due to their use as chemical weapons in war and in terror attacks. Among the acute manifestations of OP poisoning, status epilepticus (SE) is bearing the highest potential for long-term damages. Current therapies do not prevent brain damage and seizure-related brain injuries in OP-exposed humans. Thrombin is a serine protease known to have a fundamental function in the clotting cascade. It is highly expressed in the brain where we have previously found that it regulates synaptic transmission and plasticity. In addition, we have found that an excess of thrombin in the brain leads to hyperexcitability and therefore seizures through a glutamate-dependent mechanism. In the current study, we carried out in vitro, ex vivo, and in vivo experiments in order to determine the role of thrombin and its receptor PAR-1 in paraoxon-induced SE. Elevated thrombin activity was found in the brain slices from mice that were treated (in vitro and in vivo) with paraoxon. Increased levels of PAR-1 and pERK proteins and decreased prothrombin mRNA were found in the brains of paraoxon-treated mice. Furthermore, ex vivo and in vivo electrophysiological experiments showed that exposure to paraoxon causes elevated electrical activity in CA1 and CA3 regions of the hippocampus. Moreover, a specific PAR-1 antagonist (SCH79797) reduced this activity. Altogether, these results reveal the importance of thrombin and PAR-1 in paraoxon poisoning. In addition, the results indicate that thrombin and PAR-1 may be a possible target for the treatment of paraoxon-induced status epilepticus.
Collapse
Affiliation(s)
- Valery Golderman
- Department of Neurology, The Chaim Sheba Medical Center, Tel HaShomer, 52621, Ramat Gan, Israel. .,Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, 52621, Ramat Gan, Israel.
| | - Efrat Shavit-Stein
- Department of Neurology, The Chaim Sheba Medical Center, Tel HaShomer, 52621, Ramat Gan, Israel
| | - Orna Gera
- Department of Neurology, The Chaim Sheba Medical Center, Tel HaShomer, 52621, Ramat Gan, Israel.,Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, 52621, Ramat Gan, Israel.,Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joab Chapman
- Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, 52621, Ramat Gan, Israel.,Department of Neurology, Sackler School of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.,Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Arik Eisenkraft
- Institute for Research in Military Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Tel HaShomer, 52621, Ramat Gan, Israel.,Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, 52621, Ramat Gan, Israel.,Department of Neurology, Sackler School of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.,Talpiot medical leadership program, Chaim Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel
| |
Collapse
|
31
|
De Luca C, Colangelo AM, Alberghina L, Papa M. Neuro-Immune Hemostasis: Homeostasis and Diseases in the Central Nervous System. Front Cell Neurosci 2018; 12:459. [PMID: 30534057 PMCID: PMC6275309 DOI: 10.3389/fncel.2018.00459] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/12/2018] [Indexed: 01/08/2023] Open
Abstract
Coagulation and the immune system interact in several physiological and pathological conditions, including tissue repair, host defense, and homeostatic maintenance. This network plays a key role in diseases of the central nervous system (CNS) by involving several cells (CNS resident cells, platelets, endothelium, and leukocytes) and molecular pathways (protease activity, complement factors, platelet granule content). Endothelial damage prompts platelet activation and the coagulation cascade as the first physiological step to support the rescue of damaged tissues, a flawed rescuing system ultimately producing neuroinflammation. Leukocytes, platelets, and endothelial cells are sensitive to the damage and indeed can release or respond to chemokines and cytokines (platelet factor 4, CXCL4, TNF, interleukins), and growth factors (including platelet-derived growth factor, vascular endothelial growth factor, and brain-derived neurotrophic factor) with platelet activation, change in capillary permeability, migration or differentiation of leukocytes. Thrombin, plasmin, activated complement factors and matrix metalloproteinase-1 (MMP-1), furthermore, activate intracellular transduction through complement or protease-activated receptors. Impairment of the neuro-immune hemostasis network induces acute or chronic CNS pathologies related to the neurovascular unit, either directly or by the systemic activation of its main steps. Neurons, glial cells (astrocytes and microglia) and the extracellular matrix play a crucial function in a “tetrapartite” synaptic model. Taking into account the neurovascular unit, in this review we thoroughly analyzed the influence of neuro-immune hemostasis on these five elements acting as a functional unit (“pentapartite” synapse) in the adaptive and maladaptive plasticity and discuss the relevance of these events in inflammatory, cerebrovascular, Alzheimer, neoplastic and psychiatric diseases. Finally, based on the solid reviewed data, we hypothesize a model of neuro-immune hemostatic network based on protein–protein interactions. In addition, we propose that, to better understand and favor the maintenance of adaptive plasticity, it would be useful to construct predictive molecular models, able to enlighten the regulating logic of the complex molecular network, which belongs to different cellular domains. A modeling approach would help to define how nodes of the network interact with basic cellular functions, such as mitochondrial metabolism, autophagy or apoptosis. It is expected that dynamic systems biology models might help to elucidate the fine structure of molecular events generated by blood coagulation and neuro-immune responses in several CNS diseases, thereby opening the way to more effective treatments.
Collapse
Affiliation(s)
- Ciro De Luca
- Laboratory of Morphology of Neuronal Network, Department of Public Medicine, University of Campania-Luigi Vanvitelli, Naples, Italy
| | - Anna Maria Colangelo
- Laboratory of Neuroscience "R. Levi-Montalcini", Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Milan, Italy
| | - Lilia Alberghina
- Laboratory of Neuroscience "R. Levi-Montalcini", Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Milan, Italy
| | - Michele Papa
- Laboratory of Morphology of Neuronal Network, Department of Public Medicine, University of Campania-Luigi Vanvitelli, Naples, Italy.,SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
32
|
Feyissa AM, Hasan TF, Meschia JF. Stroke-related epilepsy. Eur J Neurol 2018; 26:18-e3. [PMID: 30320425 DOI: 10.1111/ene.13813] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/19/2018] [Indexed: 01/16/2023]
Abstract
Stroke is the cause of about 10% of all epilepsy and 55% of newly diagnosed seizures among the elderly. Although recent advances in acute stroke therapy have improved longevity, there has been a consequent rise in the prevalence of stroke-related epilepsy (STRE). Many clinical studies make a distinction between early (within 7 days of onset of stroke) and late (beyond 7 days of onset of stroke) seizures based on presumed pathophysiological differences. Although early seizures are thought to be the consequence of local metabolic disturbances without altered neuronal networks, late seizures are thought to occur when the brain has acquired a predisposition for seizures. Overall, STRE has a good prognosis, being well controlled by antiepileptic drugs. However, up to 25% of cases become drug resistant. STRE can also result in increased morbidity, longer hospitalization, greater disability at discharge and greater resource utilization. Additional controlled trials are needed to explore the primary and secondary prevention of STRE as well as to provide high-quality evidence on efficacy and tolerability of antiepileptic drugs to guide treatment of STRE. Robust pre-clinical and clinical prediction models of STRE are also needed to develop treatments to prevent the transformation of infarcted tissue into an epileptic focus.
Collapse
Affiliation(s)
- A M Feyissa
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - T F Hasan
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - J F Meschia
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
33
|
Ghasemi M, Mehranfard N. Mechanisms underlying anticonvulsant and proconvulsant actions of norepinephrine. Neuropharmacology 2018; 137:297-308. [DOI: 10.1016/j.neuropharm.2018.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 01/02/2023]
|
34
|
Thrombin Inhibition Reduces the Expression of Brain Inflammation Markers upon Systemic LPS Treatment. Neural Plast 2018; 2018:7692182. [PMID: 30018633 PMCID: PMC6029482 DOI: 10.1155/2018/7692182] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/02/2018] [Indexed: 12/17/2022] Open
Abstract
Systemic inflammation and brain pathologies are known to be linked. In the periphery, the inflammation and coagulation systems are simultaneously activated upon diseases and infections. Whether this well-established interrelation also counts for neuroinflammation and coagulation factor expression in the brain is still an open question. Our aim was to study whether the interrelationship between coagulation and inflammation factors may occur in the brain in the setting of systemic inflammation. The results indicate that systemic injections of lipopolysaccharide (LPS) upregulate the expression of both inflammatory and coagulation factors in the brain. The activity of the central coagulation factor thrombin was tested by a fluorescent method and found to be significantly elevated in the hippocampus following systemic LPS injection (0.5 ± 0.15 mU/mg versus 0.2 ± 0.03 mU/mg in the control). A panel of coagulation factors and effectors (such as thrombin, FX, PAR1, EPCR, and PC) was tested in the hippocampus, isolated microglia, and N9 microglia cell by Western blot and real-time PCR and found to be modulated by LPS. One central finding is a significant increase in FX expression level following LPS induction both in vivo in the hippocampus and in vitro in N9 microglia cell line (5.5 ± 0.6- and 2.3 ± 0.1-fold of increase, resp.). Surprisingly, inhibition of thrombin activity (by a specific inhibitor NAPAP) immediately after LPS injection results in a reduction of both the inflammatory (TNFα, CXL9, and CCL1; p < 0.006) and coagulation responses (FX and PAR1; p < 0.004) in the brain. We believe that these results may have a profound clinical impact as they might indicate that reducing coagulation activity in the setting of neurological diseases involving neuroinflammation may improve disease outcome and survival.
Collapse
|
35
|
Bushi D, Chapman J, Wohl A, Stein ES, Feingold E, Tanne D. Apixaban decreases brain thrombin activity in a male mouse model of acute ischemic stroke. J Neurosci Res 2018; 96:1406-1411. [PMID: 29761540 DOI: 10.1002/jnr.24253] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 12/31/2022]
Abstract
Factor Xa (FXa) plays a critical role in the coagulation cascade by generation of thrombin. During focal ischemia thrombin levels increase in the brain tissue and cause neural damage. This study examined the hypothesis that administration of the FXa inhibitor, apixaban, following focal ischemic stroke may have therapeutic potential by decreasing brain thrombin activity and infarct volume. Male mice were divided into a treated groups that received different doses of apixaban (2, 20, 100 mg/kg administered I.P.) or saline (controls) immediately after blocking the middle cerebral artery (MCA). Thrombin activity was measured by a fluorescence assay on fresh coronal slices taken from the mice brains 24 hr following the MCA occlusion. Infarct volume was assessed using triphenyltetrazolium chloride staining. A high dose of apixaban (100 mg/kg) significantly decreased thrombin activity levels in the ipsilateral hemisphere compared to the control group (Slice#5, p = .016; Slice#6, p = .016; Slice#7, p = .016; Slice#8, p = .036; by the nonparametric Mann-Whitney test). In addition, treatment with apixaban doses of both 100 mg/kg (32 ± 8% vs. 76 ± 7% in the treatment vs. control groups respectively; p = .005 by the nonparametric Mann-Whitney test) and 20 mg/kg (43 ± 7% vs. 76 ± 7% in the treatment vs. control groups respectively; p = .019 by the nonparametric Mann-Whitney test) decreased infarct volumes in areas surrounding the ischemic core (Slices #3 and #8). No brain hemorrhages were observed either in the treated or control groups. In summary, I.P. administration of high dose of apixaban immediately after MCA occlusion decreases brain thrombin activity and reduces infarct size.
Collapse
Affiliation(s)
- Doron Bushi
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joab Chapman
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anton Wohl
- Department of Neurosurgery, Chaim Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel
| | - Efrat Shavit Stein
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ekaterina Feingold
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Tanne
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel.,Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
36
|
De Luca C, Virtuoso A, Maggio N, Papa M. Neuro-Coagulopathy: Blood Coagulation Factors in Central Nervous System Diseases. Int J Mol Sci 2017; 18:E2128. [PMID: 29023416 PMCID: PMC5666810 DOI: 10.3390/ijms18102128] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 09/30/2017] [Accepted: 10/08/2017] [Indexed: 12/30/2022] Open
Abstract
Blood coagulation factors and other proteins, with modulatory effects or modulated by the coagulation cascade have been reported to affect the pathophysiology of the central nervous system (CNS). The protease-activated receptors (PARs) pathway can be considered the central hub of this regulatory network, mainly through thrombin or activated protein C (aPC). These proteins, in fact, showed peculiar properties, being able to interfere with synaptic homeostasis other than coagulation itself. These specific functions modulate neuronal networks, acting both on resident (neurons, astrocytes, and microglia) as well as circulating immune system cells and the extracellular matrix. The pleiotropy of these effects is produced through different receptors, expressed in various cell types, in a dose- and time-dependent pattern. We reviewed how these pathways may be involved in neurodegenerative diseases (amyotrophic lateral sclerosis, Alzheimer's and Parkinson's diseases), multiple sclerosis, ischemic stroke and post-ischemic epilepsy, CNS cancer, addiction, and mental health. These data open up a new path for the potential therapeutic use of the agonist/antagonist of these proteins in the management of several central nervous system diseases.
Collapse
Affiliation(s)
- Ciro De Luca
- Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Assunta Virtuoso
- Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Tel Hashomer, 52621 Ramat Gan, Israel.
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, 6997801 Tel Aviv, Israel.
| | - Michele Papa
- Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
- SYSBIO, Centre of Systems Biology, University of Milano-Bicocca, 20126 Milano, Italy.
| |
Collapse
|
37
|
Bushi D, Stein ES, Golderman V, Feingold E, Gera O, Chapman J, Tanne D. A Linear Temporal Increase in Thrombin Activity and Loss of Its Receptor in Mouse Brain following Ischemic Stroke. Front Neurol 2017; 8:138. [PMID: 28443061 PMCID: PMC5385331 DOI: 10.3389/fneur.2017.00138] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/24/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Brain thrombin activity is increased following acute ischemic stroke and may play a pathogenic role through the protease-activated receptor 1 (PAR1). In order to better assess these factors, we obtained a novel detailed temporal and spatial profile of thrombin activity in a mouse model of permanent middle cerebral artery occlusion (pMCAo). METHODS Thrombin activity was measured by fluorescence spectroscopy on coronal slices taken from the ipsilateral and contralateral hemispheres 2, 5, and 24 h following pMCAo (n = 5, 6, 5 mice, respectively). Its spatial distribution was determined by punch samples taken from the ischemic core and penumbra and further confirmed using an enzyme histochemistry technique (n = 4). Levels of PAR1 were determined using western blot. RESULTS Two hours following pMCAo, thrombin activity in the stroke core was already significantly higher than the contralateral area (11 ± 5 vs. 2 ± 1 mU/ml). At 5 and 24 h, thrombin activity continued to rise linearly (r = 0.998, p = 0.001) and to expand in the ischemic hemisphere beyond the ischemic core reaching deleterious levels of 271 ± 117 and 123 ± 14 mU/ml (mean ± SEM) in the basal ganglia and ischemic cortex, respectively. The peak elevation of thrombin activity in the ischemic core that was confirmed by fluorescence histochemistry was in good correlation with the infarcts areas. PAR1 levels in the ischemic core decreased as stroke progressed and thrombin activity increased. CONCLUSION In conclusion, there is a time- and space-related increase in brain thrombin activity in acute ischemic stroke that is closely related to the progression of brain damage. These results may be useful in the development of therapeutic strategies for ischemic stroke that involve the thrombin-PAR1 pathway in order to prevent secondary thrombin related brain damage.
Collapse
Affiliation(s)
- Doron Bushi
- Comprehensive Stroke Center, Department of Neurology, The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Efrat Shavit Stein
- Comprehensive Stroke Center, Department of Neurology, The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel
| | - Valery Golderman
- Comprehensive Stroke Center, Department of Neurology, The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ekaterina Feingold
- Comprehensive Stroke Center, Department of Neurology, The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orna Gera
- Comprehensive Stroke Center, Department of Neurology, The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joab Chapman
- Comprehensive Stroke Center, Department of Neurology, The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Tanne
- Comprehensive Stroke Center, Department of Neurology, The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
38
|
Shavit-Stein E, Artan-Furman A, Feingold E, Ben Shimon M, Itzekson-Hayosh Z, Chapman J, Vlachos A, Maggio N. Protease Activated Receptor 2 (PAR2) Induces Long-Term Depression in the Hippocampus through Transient Receptor Potential Vanilloid 4 (TRPV4). Front Mol Neurosci 2017; 10:42. [PMID: 28303089 PMCID: PMC5332813 DOI: 10.3389/fnmol.2017.00042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/07/2017] [Indexed: 11/25/2022] Open
Abstract
Protease activated receptors (PARs) are involved in regulating synaptic transmission and plasticity in the brain. While it is well-accepted that PAR1 mediates long-term potentiation (LTP) of excitatory synaptic strength, the role of PAR2 in synaptic plasticity remains not well-understood. In this study, we assessed the role of PAR2-signaling in plasticity at hippocampal Schaffer collateral-CA1 synapses. Using field potential recordings, we report that PAR2-activation leads to long-term depression (LTD) of synaptic transmission through a protein kinase A -dependent, Transient Receptor Potential Vanilloid 4 -mediated mechanism, which requires the activation of N-methyl-D-aspartate receptors. These results demonstrate that the effects of PAR2 on synaptic plasticity are distinct from what is observed upon PAR1-activation. Thus, we propose that the activation of different classes of PARs, i.e., PAR1 and PAR2, may set the threshold of synaptic plasticity in the hippocampal network by balancing LTP and LTD.
Collapse
Affiliation(s)
- Efrat Shavit-Stein
- Department of Neurology, The Chaim Sheba Medical Center Tel HaShomer, Israel
| | - Avital Artan-Furman
- Department of Neurology, The Chaim Sheba Medical Center Tel HaShomer, Israel
| | - Ekaterina Feingold
- Department of Neurology, The Chaim Sheba Medical Center Tel HaShomer, Israel
| | - Marina Ben Shimon
- Department of Neurology, The Chaim Sheba Medical CenterTel HaShomer, Israel; Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv UniversityTel Aviv, Israel
| | | | - Joab Chapman
- Department of Neurology, The Chaim Sheba Medical CenterTel HaShomer, Israel; Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv UniversityTel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv UniversityTel Aviv, Israel
| | - Andreas Vlachos
- Institute of Anatomy II, Faculty of Medicine, Heinrich-Heine-University Duesseldorf, Germany
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical CenterTel HaShomer, Israel; Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv UniversityTel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv UniversityTel Aviv, Israel; Talpiot Medical Leadership Program, The Chaim Sheba Medical CenterTel HaShomer, Israel
| |
Collapse
|
39
|
Pilocarpine-Induced Status Epilepticus Is Associated with Changes in the Actin-Modulating Protein Synaptopodin and Alterations in Long-Term Potentiation in the Mouse Hippocampus. Neural Plast 2017; 2017:2652560. [PMID: 28154762 PMCID: PMC5244022 DOI: 10.1155/2017/2652560] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 12/28/2022] Open
Abstract
Epilepsy is a complex neurological disorder which can severely affect neuronal function. Some patients may experience status epilepticus, a life-threatening state of ongoing seizure activity associated with postictal cognitive dysfunction. However, the molecular mechanisms by which status epilepticus influences brain function beyond seizure activity remain not well understood. Here, we addressed the question of whether pilocarpine-induced status epilepticus affects synaptopodin (SP), an actin-binding protein, which regulates the ability of neurons to express synaptic plasticity. This makes SP an interesting marker for epilepsy-associated alterations in synaptic function. Indeed, single dose intraperitoneal pilocarpine injection (250 mg/kg) in three-month-old male C57BL/6J mice leads to a rapid reduction in hippocampal SP-cluster sizes and numbers (in CA1 stratum radiatum of the dorsal hippocampus; 90 min after injection). In line with this observation (and previous work using SP-deficient mice), a defect in the ability to induce long-term potentiation (LTP) of Schaffer collateral-CA1 synapses is observed. Based on these findings we propose that status epilepticus could exert its aftereffects on cognition at least in part by perturbing SP-dependent mechanisms of synaptic plasticity.
Collapse
|
40
|
Nie J, Yang X. Modulation of Synaptic Plasticity by Exercise Training as a Basis for Ischemic Stroke Rehabilitation. Cell Mol Neurobiol 2017; 37:5-16. [PMID: 26910247 DOI: 10.1007/s10571-016-0348-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/11/2016] [Indexed: 12/23/2022]
Abstract
In recent years, rehabilitation of ischemic stroke draws more and more attention in the world, and has been linked to changes of synaptic plasticity. Exercise training improves motor function of ischemia as well as cognition which is associated with formation of learning and memory. The molecular basis of learning and memory might be synaptic plasticity. Research has therefore been conducted in an attempt to relate effects of exercise training to neuroprotection and neurogenesis adjacent to the ischemic injury brain. The present paper reviews the current literature addressing this question and discusses the possible mechanisms involved in modulation of synaptic plasticity by exercise training. This review shows the pathological process of synaptic dysfunction in ischemic roughly and then discusses the effects of exercise training on scaffold proteins and regulatory protein expression. The expression of scaffold proteins generally increased after training, but the effects on regulatory proteins were mixed. Moreover, the compositions of postsynaptic receptors were changed and the strength of synaptic transmission was enhanced after training. Finally, the recovery of cognition is critically associated with synaptic remodeling in an injured brain, and the remodeling occurs through a number of local regulations including mRNA translation, remodeling of cytoskeleton, and receptor trafficking into and out of the synapse. We do provide a comprehensive knowledge of synaptic plasticity enhancement obtained by exercise training in this review.
Collapse
Affiliation(s)
- Jingjing Nie
- Department of Neurology, Xiang Ya Hospital, Central South University, Xiang Ya Road 87, Changsha, 410008, Hunan, China
| | - Xiaosu Yang
- Department of Neurology, Xiang Ya Hospital, Central South University, Xiang Ya Road 87, Changsha, 410008, Hunan, China.
| |
Collapse
|
41
|
Schuldt G, Galanis C, Strehl A, Hick M, Schiener S, Lenz M, Deller T, Maggio N, Vlachos A. Inhibition of Protease-Activated Receptor 1 Does not Affect Dendritic Homeostasis of Cultured Mouse Dentate Granule Cells. Front Neuroanat 2016; 10:64. [PMID: 27378862 PMCID: PMC4904007 DOI: 10.3389/fnana.2016.00064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/27/2016] [Indexed: 12/25/2022] Open
Abstract
Protease-activated receptors (PARs) are widely expressed in the central nervous system (CNS). While a firm link between PAR1-activation and functional synaptic and intrinsic neuronal properties exists, studies on the role of PAR1 in neural structural plasticity are scarce. The physiological function of PAR1 in the brain remains not well understood. We here sought to determine whether prolonged pharmacologic PAR1-inhibition affects dendritic morphologies of hippocampal neurons. To address this question we employed live-cell microscopy of mouse dentate granule cell dendrites in 3-week old entorhino-hippocampal slice cultures prepared from Thy1-GFP mice. A subset of cultures were treated with the PAR1-inhibitor SCH79797 (1 μM; up to 3 weeks). No major effects of PAR1-inhibition on static and dynamic parameters of dentate granule cell dendrites were detected under control conditions. Granule cells of PAR1-deficient slice cultures showed unaltered dendritic morphologies, dendritic spine densities and excitatory synaptic strength. Furthermore, we report that PAR1-inhibition does not prevent dendritic retraction following partial deafferentation in vitro. Consistent with this finding, no major changes in PAR1-mRNA levels were detected in the denervated dentate gyrus (DG). We conclude that neural PAR1 is not involved in regulating the steady-state dynamics or deafferentation-induced adaptive changes of cultured dentate granule cell dendrites. These results indicate that drugs targeting neural PAR1-signals may not affect the stability and structural integrity of neuronal networks in healthy brain regions.
Collapse
Affiliation(s)
- Gerlind Schuldt
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt Frankfurt, Germany
| | - Christos Galanis
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt Frankfurt, Germany
| | - Andreas Strehl
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt Frankfurt, Germany
| | - Meike Hick
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt Frankfurt, Germany
| | - Sabine Schiener
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt Frankfurt, Germany
| | - Maximilian Lenz
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University FrankfurtFrankfurt, Germany; Institute of Anatomy II, Faculty of Medicine, Heinrich-Heine-University DüsseldorfDüsseldorf, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt Frankfurt, Germany
| | - Nicola Maggio
- Department of Neurology, The Sagol Center for Neurosciences, Sheba Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv UniversityTel Aviv, Israel; Talpiot Medical Leadership Program, Department of Neurology and J. Sagol Neuroscience Center, The Chaim Sheba Medical CenterTel HaShomer, Israel; Sagol School of Neuroscience, Tel Aviv UniversityTel Aviv, Israel
| | - Andreas Vlachos
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University FrankfurtFrankfurt, Germany; Institute of Anatomy II, Faculty of Medicine, Heinrich-Heine-University DüsseldorfDüsseldorf, Germany
| |
Collapse
|
42
|
Derkus B, Arslan YE, Emregul KC, Emregul E. Enhancement of aptamer immobilization using egg shell-derived nano-sized spherical hydroxyapatite for thrombin detection in neuroclinic. Talanta 2016; 158:100-109. [PMID: 27343583 DOI: 10.1016/j.talanta.2016.05.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/10/2016] [Accepted: 05/14/2016] [Indexed: 01/01/2023]
Abstract
In the present study, we describe the sonochemical isolation of nano-sized spherical hydroxyapatite (nHA) from egg shell and application towards thrombin aptasensing. In addition to the sonochemical method, two conventional methods present in literature were carried out to perform a comparative study. Various analysis methods including Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Energy-Dispersive Analysis of X-Rays (EDAX), and Thermal Gravimetric Analysis (TGA) have been applied for the characterization of nHA and its nanocomposite with marine-derived collagen isolated from Rhizostoma pulmo jellyfish. TEM micrographs revealed the sonochemically synthesized nHA nanoparticles to have a unique porous spherical shape with a diameter of approximately 60-80nm when compared to hydroxyapatite nanoparticles synthesized using the other two methods which had a typical needle shaped morphology. EDAX, XRD and FTIR results demonstrated that the obtained patterns belonged to hydroxyapatite. Electrochemical impedance spectroscopy (EIS) is the main analyzing technique of the developed thrombin aptasensor. The proposed aptasensor has a detection limit of 0.25nM thrombin. For clinical application of the developed aptasensor, thrombin levels in blood and cerebrospinal fluid (CSF) samples obtained from patients with Multiple Sclerosis, Myastenia Gravis, Epilepsy, Parkinson, polyneuropathy and healthy donors were analyzed using both the aptasensor and commercial ELISA kit. The results showed that the proposed system is a promising candidate for clinical analysis of thrombin.
Collapse
Affiliation(s)
- Burak Derkus
- Bioelectrochemistry Lab, Department of Chemistry, Ankara University, Tandogan, Ankara 06100, Turkey
| | - Yavuz Emre Arslan
- Regenerative Biomaterials Laboratory, Department of Bioengineering, Engineering Faculty, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Kaan C Emregul
- Bioelectrochemistry Lab, Department of Chemistry, Ankara University, Tandogan, Ankara 06100, Turkey
| | - Emel Emregul
- Bioelectrochemistry Lab, Department of Chemistry, Ankara University, Tandogan, Ankara 06100, Turkey.
| |
Collapse
|
43
|
Noé FM, Bellistri E, Colciaghi F, Cipelletti B, Battaglia G, de Curtis M, Librizzi L. Kainic acid-induced albumin leak across the blood-brain barrier facilitates epileptiform hyperexcitability in limbic regions. Epilepsia 2016; 57:967-76. [PMID: 27173148 DOI: 10.1111/epi.13394] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2016] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Systemic administration of kainic acid (KA) is a widely used procedure utilized to develop a model of temporal lobe epilepsy (TLE). Despite its ability to induce status epilepticus (SE) in vivo, KA applied to in vitro preparations induces only interictal-like activity and/or isolated ictal discharges. The possibility that extravasation of the serum protein albumin from the vascular compartment enhances KA-induced brain excitability is investigated here. METHODS Epileptiform activity was induced by arterial perfusion of 6 μm KA in the in vitro isolated guinea pig brain preparation. Simultaneous field potential recordings were carried out bilaterally from limbic (CA1, dentate gyrus [DG], and entorhinal cortex) and extralimbic regions (piriform cortex and neocortex). Blood-brain barrier (BBB) breakdown associated with KA-induced epileptiform activity was assessed by parenchymal leakage of intravascular fluorescein-isothiocyanate albumin. Seizure-induced brain inflammation was evaluated by western blot analysis of interleukin (IL)-1β expression in brain tissue. RESULTS KA infusion caused synchronized activity at 15-30 Hz in limbic (but not extralimbic) cortical areas, associated with a brief, single seizure-like event. A second bolus of KA, 60 min after the induction of the first ictal event, did not further enhance excitability. Perfusion of serum albumin between the two administrations of KA enhanced epileptiform discharges and allowed a recurrent ictal event during the second KA infusion. SIGNIFICANCE Our data show that arterial KA administration selectively alters the synchronization of limbic networks. However, KA is not sufficient to generate recurrent seizures unless serum albumin is co-perfused during KA administration. These findings suggest a role of serum albumin in facilitating acute seizure generation.
Collapse
Affiliation(s)
- Francesco M Noé
- Unit of Clinical Epileptology and Experimental Neurophysiology, Carlo Besta Neurological Institute Foundation, Milan, Italy
| | - Elisa Bellistri
- Unit of Clinical Epileptology and Experimental Neurophysiology, Carlo Besta Neurological Institute Foundation, Milan, Italy
| | - Francesca Colciaghi
- Unit of Molecular Neuroanatomy and Pathogenesis, Carlo Besta Neurological Institute Foundation, Milan, Italy
| | - Barbara Cipelletti
- Unit of Clinical Epileptology and Experimental Neurophysiology, Carlo Besta Neurological Institute Foundation, Milan, Italy
| | - Giorgio Battaglia
- Unit of Molecular Neuroanatomy and Pathogenesis, Carlo Besta Neurological Institute Foundation, Milan, Italy
| | - Marco de Curtis
- Unit of Clinical Epileptology and Experimental Neurophysiology, Carlo Besta Neurological Institute Foundation, Milan, Italy
| | - Laura Librizzi
- Unit of Clinical Epileptology and Experimental Neurophysiology, Carlo Besta Neurological Institute Foundation, Milan, Italy
| |
Collapse
|
44
|
Itsekson-Hayosh Z, Shavit-Stein E, Katzav A, Rubovitch V, Maggio N, Chapman J, Harnof S, Pick CG. Minimal Traumatic Brain Injury in Mice: Protease-Activated Receptor 1 and Thrombin-Related Changes. J Neurotrauma 2016; 33:1848-1854. [PMID: 26537880 DOI: 10.1089/neu.2015.4146] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Minimal traumatic brain injury (mTBI) is partially defined by the existence of retrograde amnesia and is associated with microscopic bleeds containing activated coagulation factors. In a previous study, we have found that mTBI immediately releases thrombin-like activity in the brain, which induces amnesia by activating protease-activated receptor 1 (PAR-1) and blocking long-term potentiation (LTP). In the present study, we assessed the effects of mTBI on thrombin and PAR-1 levels in the brain using the same model. After the immediate elevation, thrombin activity returned to baseline 1 h post-trauma and increased again 72 h later (42% relative to control; p < 0.005). These changes were associated with a significant increase in PAR-1 levels 24 (17%; p < 0.05) and 72 h (20%; p < 0.05) post-trauma. Interestingly, the late elevation in thrombin-like activity was also associated with elevation of the major central nervous system thrombin inhibitor, protease nexin-1, 72 h post-mTBI (10%; p < 0.005). When thrombin was injected into brain ventricles, an increased sensitivity to seizure-like activity was detected at 72 h post-mTBI. The results are compatible with astrocyte activation post-mTBI resulting in increased thrombin secretion, PAR-1 expression, and seizure sensitivity.
Collapse
Affiliation(s)
- Zeev Itsekson-Hayosh
- 1 Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv, Israel .,2 Department of Neurology and Joseph Sagol Neuroscience Center, The Chaim Sheba Medical Center , Tel HaShomer, Israel
| | - Efrat Shavit-Stein
- 1 Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv, Israel .,2 Department of Neurology and Joseph Sagol Neuroscience Center, The Chaim Sheba Medical Center , Tel HaShomer, Israel
| | - Aviva Katzav
- 2 Department of Neurology and Joseph Sagol Neuroscience Center, The Chaim Sheba Medical Center , Tel HaShomer, Israel
| | - Vardit Rubovitch
- 4 Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv, Israel
| | - Nicola Maggio
- 2 Department of Neurology and Joseph Sagol Neuroscience Center, The Chaim Sheba Medical Center , Tel HaShomer, Israel .,3 The Talpiot Medical Leadership Program, The Chaim Sheba Medical Center , Tel HaShomer, Israel .,7 Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv, Israel .,8 Sagol School of Neuroscience, Tel Aviv University , Tel Aviv, Israel
| | - Joab Chapman
- 1 Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv, Israel .,2 Department of Neurology and Joseph Sagol Neuroscience Center, The Chaim Sheba Medical Center , Tel HaShomer, Israel .,6 Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv, Israel .,8 Sagol School of Neuroscience, Tel Aviv University , Tel Aviv, Israel
| | - Sagi Harnof
- 5 Department of Neurosurgery, The Chaim Sheba Medical Center , Tel HaShomer, Israel
| | - Chaim G Pick
- 4 Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv, Israel .,8 Sagol School of Neuroscience, Tel Aviv University , Tel Aviv, Israel
| |
Collapse
|
45
|
Novel pharmaceutical treatments for minimal traumatic brain injury and evaluation of animal models and methodologies supporting their development. J Neurosci Methods 2016; 272:69-76. [PMID: 26868733 DOI: 10.1016/j.jneumeth.2016.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 02/01/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND The need for effective pharmaceuticals within animal models of traumatic brain injury (TBI) continues to be paramount, as TBI remains the major cause of brain damage for children and young adults. While preventative measures may act to reduce the incidence of initial blunt trauma, well-tolerated drugs are needed to target the neurologically damaging internal cascade of molecular mechanisms that follow. Such processes, known collectively as the secondary injury phase, include inflammation, excitotoxicity, and apoptosis among other changes still subject to research. In this article positive treatment findings to mitigate this secondary injury in rodent TBI models will be overviewed, and include recent studies on Exendin-4, N-Acetyl-l-cycteine, Salubrinal and Thrombin. CONCLUSIONS These studies provide representative examples of methodologies that can be combined with widely available in vivo rodent models to evaluate therapeutic approaches of translational relevance, as well as drug targets and biochemical cascades that may slow or accelerate the degenerative processes induced by TBI. They employ well-characterized tests such as the novel object recognition task for assessing cognitive deficits. The application of such methodologies provides both decision points and a gateway for implementation of further translational studies to establish the feasibility of clinical efficacy of potential therapeutic interventions.
Collapse
|
46
|
Bushi D, Gera O, Kostenich G, Shavit-Stein E, Weiss R, Chapman J, Tanne D. A novel histochemical method for the visualization of thrombin activity in the nervous system. Neuroscience 2016; 320:93-104. [PMID: 26851772 DOI: 10.1016/j.neuroscience.2016.01.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 01/23/2023]
Abstract
Although thrombin has an important role in both central and peripheral nerve diseases, characterization of the anatomical distribution of its proteolytic activity has been limited by available methods. This study presents the development, challenges, validation and implementation of a novel histochemical method for visualization of thrombin activity in the nervous system. The method is based on the cleavage of the substrate, Boc-Asp(OBzl)-Pro-Arg-4MβNA by thrombin to liberate free 4-methoxy-2-naphthylamine (4MβNA). In the presence of 5-nitrosalicylaldehyde, free 4MβNA is captured, yielding an insoluble yellow fluorescent precipitate which marks the site of thrombin activity. The sensitivity of the method was determined in vitro using known concentrations of thrombin while the specificity was verified using a highly specific thrombin inhibitor. Using this method we determined the spatial distribution of thrombin activity in mouse brain following transient middle cerebral artery occlusion (tMCAo) and in mouse sciatic nerve following crush injury. Fluorescence microscopy revealed well-defined thrombin activity localized to the right ischemic hemisphere in cortical areas and in the striatum compared to negligible thrombin activity contralaterally. The histochemical localization of thrombin activity following tMCAo was in good correlation with the infarct areas per triphenyltetrazolium chloride staining and to thrombin activity measured biochemically in tissue punches (85 ± 35 and 20 ± 3 mU/ml, in the cortical and striatum areas respectively, compared to 7 ± 2 and 13 ± 2 mU/ml, in the corresponding contralateral areas; mean ± SEM; p<0.05). In addition, 24 h following crush injury, focal areas of highly elevated thrombin activity were detected in teased sciatic fibers. This observation was supported by the biochemical assay and western blot technique. The histochemical method developed in this study can serve as an important tool for studying the role of thrombin in physiological and pathological conditions.
Collapse
Affiliation(s)
- D Bushi
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel; Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - O Gera
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel; Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - G Kostenich
- Advanced Technology Center, Chaim Sheba Medical Center, Tel HaShomer, Israel
| | - E Shavit-Stein
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel
| | - R Weiss
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - J Chapman
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel; Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - D Tanne
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel; Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
47
|
Lunko OO, Isaev DS, Krishtal OO, Isaeva EV. Thrombin modulates persistent sodium current in CA1 pyramidal neurons of young and adult rat hippocampus. ACTA ACUST UNITED AC 2015; 61:5-10. [PMID: 26552299 DOI: 10.15407/fz61.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Serine protease thrombin, a key factor of blood coagulation, participates in many neuronal processes important for normal brain functioning and during pathological conditions involving abnormal neuronal synchronization, neurodegeneration and inflammation. Our previous study on CA3 pyramidal neurons showed that application ofthrombin through the activation of specific protease-activated receptor 1 (PAR1) produces a significant hyperpolarizing shift of the activation of the TTX-sensitive persistent voltage-gated Na+ current (I(Nap)) thereby affecting membrane potential and seizure threshold at the network level. It was shown that PAR1 is also expressed in CA1 area of hippocampus and can be implicated in neuronal damage in this area after status epilepticus. The aim of the present study was to evaluate the effect of thrombin on I(NaP) in CA1 pyramidal neurons from adult and young rats. Using whole cell patch-clamp technique we demonstrate that thrombin application results in the hyperpolarization shift of I(NaP) activation as well as increase in the I(NaP) amplitude in both age groups. We have found that I(NaP) in pyramidal neurons of hippocampal CA 1 region is more vulnerable to the thrombin action than I(NaP) in pyramidal neurons of hippocampal CA3 region. We have also found that the immature hippocampus is more sensitive to thrombin action which emphasizes the contribution of thrombin-dependent pathway to the regulation of neuronal activity in immature brain.
Collapse
|
48
|
Bushi D, Ben Shimon M, Shavit Stein E, Chapman J, Maggio N, Tanne D. Increased thrombin activity following reperfusion after ischemic stroke alters synaptic transmission in the hippocampus. J Neurochem 2015; 135:1140-8. [PMID: 26390857 DOI: 10.1111/jnc.13372] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 11/24/2022]
Abstract
Thrombin, a key player in thrombogenesis, affects cells in the brain through activation of its receptors. Low levels of thrombin activity are protective while high levels are toxic. We sought to quantify thrombin activity levels and their spatial distribution in brains of mice following reperfusion after ischemic stroke focusing on infarct, peri-infarct and contralateral areas. In order to find out the contribution of brain-derived thrombin, mRNA levels of both prothrombin and factor X were determined. Furthermore, we assessed the effect of thrombin levels that were measured in the ischemic brain on synaptic transmission. We found that in the brains of mice following transient middle cerebral artery occlusion, thrombin activity is elevated throughout the ischemic hemisphere, including in peri-infarct areas (90 ± 33 and 60 ± 18 mU/mL, in the infarct and peri-infarct areas, respectively, compared to 11 ± 3 and 12 ± 5 mU/mL, in the corresponding contralateral areas; mean ± SE; p < 0.05). Brain mRNA levels of prothrombin and, in particular, factor X are up-regulated in the ischemic core. Hippocampal slices treated with thrombin concentrations as found in the ischemic hemisphere show altered synaptic responses. We conclude that high thrombin activity following reperfusion after ischemic stroke may cause synaptic dysfunction. Following transient middle cerebral artery occlusion in mice, thrombin activity is elevated throughout the ischemic hemisphere, including in peri-infarct areas. Brain mRNA levels of prothrombin and factor X are up-regulated in the ischemic core. Thrombin is known to affect synaptic function in a concentration dependent manner and hippocampal slices treated with the concentrations found in the ischemic hemisphere show altered synaptic responses. We conclude that in ischemic stroke, the high brain thrombin activity found after reperfusion may cause synaptic dysfunction.
Collapse
Affiliation(s)
- Doron Bushi
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marina Ben Shimon
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Efrat Shavit Stein
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel
| | - Joab Chapman
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nicola Maggio
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Talpiot Medical Leadership Program, Chaim Sheba Medical Center, Tel Ha Shomer, Israel
| | - David Tanne
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
49
|
Thrombin decreases expression of the glutamate transporter GLAST and inhibits glutamate uptake in primary cortical astrocytes via the Rho kinase pathway. Exp Neurol 2015; 273:288-300. [PMID: 26391563 DOI: 10.1016/j.expneurol.2015.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/17/2015] [Indexed: 01/08/2023]
Abstract
Astrocyte glutamate transporters GLAST and GLT1 play a key role in regulating neuronal excitation and their levels are altered in patients with epilepsy, and after traumatic brain injury. The mechanisms which regulate their expression are not well understood. We tested the hypothesis that exposure of astrocytes to high levels of thrombin, as may occur after a compromise of the blood-brain barrier, would reduce astrocyte glutamate transporter levels. In isolated rat cortical astrocytes we examined the effects of thrombin on the expression and function of glutamate transporters, and the signaling pathways involved in these responses by using Western blotting and selective inhibitors. Thrombin induced a selective decrease in the expression of GLAST but not GLT1, with a corresponding decrease in the capacity of astrocytes to take up glutamate. Activation of the thrombin receptor PAR-1 with an activating peptide induced a similar decrease in the expression of GLAST and compromise of glutamate uptake. The downregulation of GLAST induced by thrombin was mediated by the mitogen activated protein kinases p38 MAPK, ERK and JNK, but inhibition of these kinases did not prevent the decrease in glutamate uptake induced by thrombin. In contrast, inhibition of the Rho kinase pathway using the specific inhibitor, Y27632, suppressed both the decrease in the expression of GLAST and the decrease in glutamate uptake induced by thrombin. In hippocampal astrocyte cultures, thrombin caused a decrease in both GLAST and GLT1. In tissue resected from brains of children with intractable epilepsy, we found a decrease in the integrity of the blood-brain barrier along with a reduction in immunoreactivity for both transporters which was associated with an increase in cleaved thrombin and reactive astrogliosis. The in vitro results suggest a specific mechanism by which thrombin may lead to a compromise of astrocyte function and enhanced synaptic excitability after the blood-brain barrier is compromised. The human in vivo results provide indirect support evidence linking the compromise of the blood-brain barrier to thrombin-induced reduction in glutamate transporter expression and an increase in neuronal excitation.
Collapse
|
50
|
Wójtowicz T, Brzdąk P, Mozrzymas JW. Diverse impact of acute and long-term extracellular proteolytic activity on plasticity of neuronal excitability. Front Cell Neurosci 2015; 9:313. [PMID: 26321914 PMCID: PMC4530619 DOI: 10.3389/fncel.2015.00313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/28/2015] [Indexed: 12/13/2022] Open
Abstract
Learning and memory require alteration in number and strength of existing synaptic connections. Extracellular proteolysis within the synapses has been shown to play a pivotal role in synaptic plasticity by determining synapse structure, function, and number. Although synaptic plasticity of excitatory synapses is generally acknowledged to play a crucial role in formation of memory traces, some components of neural plasticity are reflected by nonsynaptic changes. Since information in neural networks is ultimately conveyed with action potentials, scaling of neuronal excitability could significantly enhance or dampen the outcome of dendritic integration, boost neuronal information storage capacity and ultimately learning. However, the underlying mechanism is poorly understood. With this regard, several lines of evidence and our most recent study support a view that activity of extracellular proteases might affect information processing in neuronal networks by affecting targets beyond synapses. Here, we review the most recent studies addressing the impact of extracellular proteolysis on plasticity of neuronal excitability and discuss how enzymatic activity may alter input-output/transfer function of neurons, supporting cognitive processes. Interestingly, extracellular proteolysis may alter intrinsic neuronal excitability and excitation/inhibition balance both rapidly (time of minutes to hours) and in long-term window. Moreover, it appears that by cleavage of extracellular matrix (ECM) constituents, proteases may modulate function of ion channels or alter inhibitory drive and hence facilitate active participation of dendrites and axon initial segments (AISs) in adjusting neuronal input/output function. Altogether, a picture emerges whereby both rapid and long-term extracellular proteolysis may influence some aspects of information processing in neurons, such as initiation of action potential, spike frequency adaptation, properties of action potential and dendritic backpropagation.
Collapse
Affiliation(s)
- Tomasz Wójtowicz
- Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University Wroclaw, Poland
| | - Patrycja Brzdąk
- Department of Animal Physiology, Institute of Experimental Biology, Wroclaw University Wroclaw, Poland
| | - Jerzy W Mozrzymas
- Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University Wroclaw, Poland ; Department of Animal Physiology, Institute of Experimental Biology, Wroclaw University Wroclaw, Poland
| |
Collapse
|