1
|
Bao Y, Tong C, Xiong X. CXCL3: A key player in tumor microenvironment and inflammatory diseases. Life Sci 2024; 348:122691. [PMID: 38714265 DOI: 10.1016/j.lfs.2024.122691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/14/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
CXCL3 (C-X-C Motif Chemokine 3), a member of the C-X-C chemokine subfamily, operates as a potent chemoattractant for neutrophils, thereby orchestrating the recruitment and migration of leukocytes alongside eliciting an inflammatory response. Recent inquiries have shed light on the pivotal roles of CXCL3 in the context of carcinogenesis. In the tumor microenvironment, CXCL3 emanating from both tumor and stromal cells intricately modulates cellular behaviors through autocrine and paracrine actions, primarily via interaction with its receptor CXCR2. Activation of signaling cascades such as ERK/MAPK, AKT, and JAK2/STAT3 underscores CXCL3's propensity to favor tumorigenic processes. However, CXCL3 exhibits dualistic behaviors, as evidenced by its capacity to exert anti-tumor effects under specific conditions. Additionally, the involvement of CXCL3 extends to inflammatory disorders like eclampsia, obesity, and asthma. This review encapsulates the structural attributes, biological functionalities, and molecular underpinnings of CXCL3 across both tumorigenesis and inflammatory diseases.
Collapse
Affiliation(s)
- Yuxuan Bao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; Queen Mary School of Nanchang University, Nanchang 330006, China
| | - Chang Tong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
2
|
Andhika Rhaditya PA, Oishi K, Nishimura YV, Motoyama J. [Ca 2+] i fluctuation mediated by T-type Ca 2+ channel is required for the differentiation of cortical neural progenitor cells. Dev Biol 2022; 489:84-97. [PMID: 35690104 DOI: 10.1016/j.ydbio.2022.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 11/17/2022]
Abstract
The fluctuation of intracellular calcium concentration ([Ca2+]i) is known to be involved in various processes in the development of central nervous system, such as the proliferation of neural progenitor cells (NPCs), migration of intermediate progenitor cells (IPCs) from the ventricular zone (VZ) to the subventricular zone (SVZ), and migration of immature neurons from the SVZ to cortical plate. However, the roles of [Ca2+]i fluctuation in NPC development, especially in the differentiation of the self-renewing NPCs into neuron-generating NPCs and immature neurons have not been elucidated. Using calcium imaging of acute cortical slices and cells isolated from mouse embryonic cortex, we examined temporal changes in the pattern of [Ca2+]i fluctuations in VZ cells from E12 to E16. We observed intracellular Ca2+ levels in Pax6-positive self-renewing NPCs decreased with their neural differentiation. In E11, Pax6-positive NPCs and Tuj1-positive immature neurons exhibited characteristic [Ca2+]i fluctuations; few Pax6-positive NPCs exhibited [Ca2+]i transient, but many Tuj1-positive immature neurons did, suggesting that the change in pattern of [Ca2+]i fluctuation correlate to their differentiation. The [Ca2+]i fluctuation during NPCs development was mostly mediated by the T-type calcium channel and blockage of T-type calcium channel in neurosphere cultures increased the number of spheres and inhibited neuronal differentiation. Consistent with this finding, knockdown of Cav3.1 by RNAi in vivo maintained Pax6-positive cells as self-renewing NPCs, and simultaneously suppressing their neuronal differentiation of NPCs into Tbr1-positive immature neurons. These results reveal that [Ca2+]i fluctuation mediated by Cav3.1 is required for the neural differentiation of Pax6-positive self-renewing NPCs.
Collapse
Affiliation(s)
- Putu Adi Andhika Rhaditya
- Laboratory of Developmental Neurobiology, Graduate School of Brain Science, Doshisha University, 1-3, Tatara-miyakodani, Kyotanabe, Kyoto, 610-0394, Japan
| | - Koji Oishi
- Organization of Advanced Research and Education, Doshisha University, 1-3, Tatara-miyakodani, Kyotanabe, Kyoto, 610-0394, Japan
| | - Yoshiaki V Nishimura
- Organization of Advanced Research and Education, Doshisha University, 1-3, Tatara-miyakodani, Kyotanabe, Kyoto, 610-0394, Japan; Division of Neuroscience, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai, Miyagi, 983-8536, Japan
| | - Jun Motoyama
- Laboratory of Developmental Neurobiology, Graduate School of Brain Science, Doshisha University, 1-3, Tatara-miyakodani, Kyotanabe, Kyoto, 610-0394, Japan.
| |
Collapse
|
3
|
Ceccarelli M, D'Andrea G, Micheli L, Gentile G, Cavallaro S, Merlino G, Papoff G, Tirone F. Tumor Growth in the High Frequency Medulloblastoma Mouse Model Ptch1 +/-/Tis21 KO Has a Specific Activation Signature of the PI3K/AKT/mTOR Pathway and Is Counteracted by the PI3K Inhibitor MEN1611. Front Oncol 2021; 11:692053. [PMID: 34395258 PMCID: PMC8362831 DOI: 10.3389/fonc.2021.692053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
We have previously generated a mouse model (Ptch1+/−/Tis21KO), which displays high frequency spontaneous medulloblastoma, a pediatric tumor of the cerebellum. Early postnatal cerebellar granule cell precursors (GCPs) of this model show, in consequence of the deletion of Tis21, a defect of the Cxcl3-dependent migration. We asked whether this migration defect, which forces GCPs to remain in the proliferative area at the cerebellar surface, would be the only inducer of their high frequency transformation. In this report we show, by further bioinformatic analysis of our microarray data of Ptch1+/−/Tis21KO GCPs, that, in addition to the migration defect, they show activation of the PI3K/AKT/mTOR pathway, as the mRNA levels of several activators of this pathway (e.g., Lars, Rraga, Dgkq, Pdgfd) are up-regulated, while some inhibitors (e.g. Smg1) are down-regulated. No such change is observed in the Ptch1+/− or Tis21KO background alone, indicating a peculiar synergy between these two genotypes. Thus we investigated, by mRNA and protein analysis, the role of PI3K/AKT/mTOR signaling in MBs and in nodules from primary Ptch1+/−/Tis21KO MB allografted in the flanks of immunosuppressed mice. Activation of the PI3K/AKT/mTOR pathway is seen in full-blown Ptch1+/−/Tis21KO MBs, relative to Ptch1+/−/Tis21WT MBs. In Ptch1+/−/Tis21KO MBs we observe that the proliferation of neoplastic GCPs increases while apoptosis decreases, in parallel with hyper-phosphorylation of the mTOR target S6, and, to a lower extent, of AKT. In nodules derived from primary Ptch1+/−/Tis21KO MBs, treatment with MEN1611, a novel PI3K inhibitor, causes a dramatic reduction of tumor growth, inhibiting proliferation and, conversely, increasing apoptosis, also of tumor CD15+ stem cells, responsible for long-term relapses. Additionally, the phosphorylation of AKT, S6 and 4EBP1 was significantly inhibited, indicating inactivation of the PI3K/AKT/mTOR pathway. Thus, PI3K/AKT/mTOR pathway activation contributes to Ptch1+/−/Tis21KO MB development and to high frequency tumorigenesis, observed when the Tis21 gene is down-regulated. MEN1611 could provide a promising therapy for MB, especially for patient with down-regulation of Btg2 (human ortholog of the murine Tis21 gene), which is frequently deregulated in Shh-type MBs.
Collapse
Affiliation(s)
- Manuela Ceccarelli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| | - Giorgio D'Andrea
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| | - Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| | - Giulia Gentile
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Catania, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Catania, Italy
| | | | - Giuliana Papoff
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| |
Collapse
|
4
|
Yang K, Wang F, Zhang H, Wang X, Chen L, Su X, Wu X, Han Q, Chen Z, Chen ZS, Fu L. Target Inhibition of CBP Induced Cell Senescence in BCR-ABL- T315I Mutant Chronic Myeloid Leukemia. Front Oncol 2021; 10:588641. [PMID: 33585207 PMCID: PMC7873979 DOI: 10.3389/fonc.2020.588641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/23/2020] [Indexed: 01/08/2023] Open
Abstract
The treatment of chronic myeloid leukemia (CML) with BCR-ABL tyrosine kinase inhibitors (TKIs), such as imatinib, has yielded clinical success. However, the direct targeting of BCR-ABL does not eradicate CML cells expressing mutant BCR-ABL, especially the T315I mutation in BCR-ABL. Moreover, increasing mutations were identified in BCR-ABL domain, resulting in TKIs resistance recently. It is necessary to find BCR-ABL-independent target for treating CML patients with various mutations, including T315I mutation in BCR-ABL. The dichotomous behavior of CREB binding protein (CBP) and E1A protein (p300), recruited by β-catenin associated with self-renewal and differentiation, have been identified in hematopoietic stem cells, respectively. In this study, CBP was aberrantly expressed in CML cells on the basis of Oncomine dataset. The β-catenin bound with much more CBP than p300 in CML cells. Down-regulation of CBP inhibited cell proliferation capacity and increased the binding of β-catenin to p300, thus promoting cell differentiation and p53-dependent cell senescence in CML cells with either wild type or T315I mutant BCR-ABL in vitro and in vivo models. These demonstrate CBP blockage can be developed for the treatment of CML independent of BCR-ABL mutation status including T315I.
Collapse
Affiliation(s)
- Ke Yang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Fang Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hong Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xiaokun Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Likun Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xiaodong Su
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xingping Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qianqian Han
- Department of Research and Development, Guangzhou Handy Biotechnological Co., Ltd., Guangzhou, China
| | - Zhen Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Liwu Fu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
5
|
Molecular Fingerprint and Developmental Regulation of the Tegmental GABAergic and Glutamatergic Neurons Derived from the Anterior Hindbrain. Cell Rep 2020; 33:108268. [PMID: 33053343 DOI: 10.1016/j.celrep.2020.108268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/09/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022] Open
Abstract
Tegmental nuclei in the ventral midbrain and anterior hindbrain control motivated behavior, mood, memory, and movement. These nuclei contain inhibitory GABAergic and excitatory glutamatergic neurons, whose molecular diversity and development remain largely unraveled. Many tegmental neurons originate in the embryonic ventral rhombomere 1 (r1), where GABAergic fate is regulated by the transcription factor (TF) Tal1. We used single-cell mRNA sequencing of the mouse ventral r1 to characterize the Tal1-dependent and independent neuronal precursors. We describe gene expression dynamics during bifurcation of the GABAergic and glutamatergic lineages and show how active Notch signaling promotes GABAergic fate selection in post-mitotic precursors. We identify GABAergic precursor subtypes that give rise to distinct tegmental nuclei and demonstrate that Sox14 and Zfpm2, two TFs downstream of Tal1, are necessary for the differentiation of specific tegmental GABAergic neurons. Our results provide a framework for understanding the development of cellular diversity in the tegmental nuclei.
Collapse
|
6
|
Ceccarelli M, D'Andrea G, Micheli L, Tirone F. Deletion of Btg1 Induces Prmt1-Dependent Apoptosis and Increased Stemness in Shh-Type Medulloblastoma Cells Without Affecting Tumor Frequency. Front Oncol 2020; 10:226. [PMID: 32231994 PMCID: PMC7082329 DOI: 10.3389/fonc.2020.00226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
About 30% of medulloblastomas (MBs), a tumor of the cerebellum, arise from cerebellar granule cell precursors (GCPs) undergoing transformation following activation of the Sonic hedgehog (Shh) pathway. To study this process, we generated a new MB model by crossing Patched1 heterozygous (Ptch1+/−) mice, which develop spontaneous Shh-type MBs, with mice lacking B-cell translocation gene 1 (Btg1), a regulator of cerebellar development. In MBs developing in Ptch1+/− mice, deletion of Btg1 does not alter tumor and lesion frequencies, nor affect the proliferation of neoplastic precursor cells. However, in both tumors and lesions arising in Ptch1+/− mice, ablation of Btg1 increases by about 25% the apoptotic neoplastic precursor cells, as judged by positivity to activated caspase-3. Moreover, although Btg1 ablation in early postnatal GCPs, developing in the external granule cell layer, leads to a significant increase of proliferation, and decrease of differentiation, relative to wild-type, no synergy occurs with the Ptch1+/− mutation. However, Btg1 deletion greatly increases apoptosis in postnatal GCPs, with strong synergy between Btg1-null and Ptch1+/− mutations. That pronounced increase of apoptosis observed in Ptch1+/−/Btg1 knockout young or neoplastic GCPs may be responsible for the lack of effect of Btg1 ablation on tumorigenesis. This increased apoptosis may be a consequence of increased expression of protein arginine methyltransferase 1 (Prmt1) protein that we observe in Btg1 knockout/Ptch1+/− MBs. In fact, apoptotic genes, such as BAD, are targets of Prmt1. Moreover, in Btg1-null MBs, we observed a two-fold increase of cells positive to CD15, which labels tumor stem cells, raising the possibility of activation of quiescent tumor cells, known for their role in long-term resistance to treatment and relapses. Thus, Btg1 appears to play a role in cerebellar tumorigenesis by regulating the balance between apoptosis and proliferation during MB development, also influencing the number of tumor stem cells.
Collapse
Affiliation(s)
- Manuela Ceccarelli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| | - Giorgio D'Andrea
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| | - Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| |
Collapse
|
7
|
Krentz NAJ, Lee MYY, Xu EE, Sproul SLJ, Maslova A, Sasaki S, Lynn FC. Single-Cell Transcriptome Profiling of Mouse and hESC-Derived Pancreatic Progenitors. Stem Cell Reports 2019; 11:1551-1564. [PMID: 30540962 PMCID: PMC6294286 DOI: 10.1016/j.stemcr.2018.11.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 01/06/2023] Open
Abstract
Human embryonic stem cells (hESCs) are a potential unlimited source of insulin-producing β cells for diabetes treatment. A greater understanding of how β cells form during embryonic development will improve current hESC differentiation protocols. All pancreatic endocrine cells, including β cells, are derived from Neurog3-expressing endocrine progenitors. This study characterizes the single-cell transcriptomes of 6,905 mouse embryonic day (E) 15.5 and 6,626 E18.5 pancreatic cells isolated from Neurog3-Cre; Rosa26mT/mG embryos, allowing for enrichment of endocrine progenitors (yellow; tdTomato + EGFP) and endocrine cells (green; EGFP). Using a NEUROG3-2A-eGFP CyT49 hESC reporter line (N5-5), 4,462 hESC-derived GFP+ cells were sequenced. Differential expression analysis revealed enrichment of markers that are consistent with progenitor, endocrine, or previously undescribed cell-state populations. This study characterizes the single-cell transcriptomes of mouse and hESC-derived endocrine progenitors and serves as a resource (https://lynnlab.shinyapps.io/embryonic_pancreas) for improving the formation of functional β-like cells from hESCs. Single-cell transcriptome of embryonic mouse pancreas and hESC-derived cells Identification of novel cell types during mouse pancreas development Pseudotime analysis reveals developmental trajectories of endocrine cell lineage hESC-derived endocrine cells resemble immature β cells
Collapse
Affiliation(s)
- Nicole A J Krentz
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28(th) Avenue West, Vancouver, BC V5Z4H4, Canada.
| | - Michelle Y Y Lee
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Eric E Xu
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28(th) Avenue West, Vancouver, BC V5Z4H4, Canada
| | - Shannon L J Sproul
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28(th) Avenue West, Vancouver, BC V5Z4H4, Canada
| | - Alexandra Maslova
- Graduate Program in Bioinformatics, University of British Columbia, 100-570 7(th) Avenue West, Vancouver, BC V5Z 4S6, Canada
| | - Shugo Sasaki
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28(th) Avenue West, Vancouver, BC V5Z4H4, Canada
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28(th) Avenue West, Vancouver, BC V5Z4H4, Canada.
| |
Collapse
|
8
|
Guan C, Egertová M, Perry CJ, Chittka L, Chittka A. Temporal correlation of elevated PRMT1 gene expression with mushroom body neurogenesis during bumblebee brain development. JOURNAL OF INSECT PHYSIOLOGY 2019; 116:57-69. [PMID: 31039373 DOI: 10.1016/j.jinsphys.2019.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/21/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
Neural development depends on the controlled proliferation and differentiation of neural precursors. In holometabolous insects, these processes must be coordinated during larval and pupal development. Recently, protein arginine methylation has come into focus as an important mechanism of controlling neural stem cell proliferation and differentiation in mammals. Whether a similar mechanism is at work in insects is unknown. We investigated this possibility by determining the expression pattern of three protein arginine methyltransferase mRNAs (PRMT1, 4 and 5) in the developing brain of bumblebees by in situ hybridisation. We detected expression in neural precursors and neurons in functionally important brain areas throughout development. We found markedly higher expression of PRMT1, but not PRMT4 and PRMT5, in regions of mushroom bodies containing dividing cells during pupal stages at the time of active neurogenesis within this brain area. At later stages of development, PRMT1 expression levels were found to be uniform and did not correlate with actively dividing cells. Our study suggests a role for PRMT1 in regulating neural precursor divisions in the mushroom bodies of bumblebees during the period of neurogenesis.
Collapse
Affiliation(s)
- Cui Guan
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Michaela Egertová
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Clint J Perry
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Lars Chittka
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Alexandra Chittka
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
9
|
Lillehaug S, Yetman MJ, Puchades MA, Checinska MM, Kleven H, Jankowsky JL, Bjaalie JG, Leergaard TB. Brain-wide distribution of reporter expression in five transgenic tetracycline-transactivator mouse lines. Sci Data 2019; 6:190028. [PMID: 30806643 PMCID: PMC6390708 DOI: 10.1038/sdata.2019.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 12/19/2018] [Indexed: 11/22/2022] Open
Abstract
The spatial pattern of transgene expression in tetracycline-controlled mouse models is governed primarily by the driver line used to introduce the tetracycline-controlled transactivator (tTA). Detailed maps showing where each tTA driver activates expression are therefore essential for designing and using tet-regulated models, particularly in brain research where cell type and regional specificity determine the circuits affected by conditional gene expression. We have compiled a comprehensive online repository of serial microscopic images showing brain-wide reporter expression for five commonly used tTA driver lines. We have spatially registered all images to a common three-dimensional mouse brain anatomical reference atlas for direct comparison of spatial distribution across lines. The high-resolution images and associated metadata are shared via the web page of the EU Human Brain Project. Images can be inspected using an interactive viewing tool that includes an optional overlay feature providing anatomical delineations and reference atlas coordinates. Interactive viewing is supplemented by semi-quantitative analyses of expression levels within anatomical subregions for each tTA driver line.
Collapse
Affiliation(s)
- Sveinung Lillehaug
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Michael J. Yetman
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Maja A. Puchades
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Martyna M. Checinska
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Heidi Kleven
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Joanna L. Jankowsky
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Departments of Molecular and Cellular Biology, Neurology, and Neurosurgery, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Jan G. Bjaalie
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B. Leergaard
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Presutti D, Ceccarelli M, Micheli L, Papoff G, Santini S, Samperna S, Lalli C, Zentilin L, Ruberti G, Tirone F. Tis21-gene therapy inhibits medulloblastoma growth in a murine allograft model. PLoS One 2018. [PMID: 29538458 PMCID: PMC5851620 DOI: 10.1371/journal.pone.0194206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Medulloblastoma (MB), the tumor of the cerebellum, is the most frequent brain cancer in childhood and a major cause of pediatric mortality. Based on gene profiling, four MB subgroups have been identified, i.e., Wnt or Sonic Hedgehog (Shh) types, and subgroup 3 or 4. The Shh-type MB has been shown to arise from the cerebellar precursors of granule neurons (GCPs), where a hyperactivation of the Shh pathway leads to their neoplastic transformation. We have previously shown that the gene Tis21 (PC3/Btg2) inhibits the proliferation and promotes the differentiation and migration of GCPs. Moreover, the overexpression or the deletion of Tis21 in Patched1 heterozygous mice, a model of spontaneous Shh-type MB, highly reduces or increases, respectively, the frequency of MB. Here we tested whether Tis21 can inhibit MB allografts. Athymic nude mice were subcutaneously grafted with MB cells explanted from Patched1 heterozygous mice. MB allografts were then injected with adeno-associated viruses either carrying Tis21 (AAV-Tis21) or empty (AAV-CBA). We observed that the treatment with AAV-Tis21 significantly inhibited the growth of tumor nodules, as judged by their volume, and reduced the number of proliferating tumor cells (labeled with Ki67 or BrdU), relative to AAV-CBA-treated control mice. In parallel, AAV-Tis21 increased significantly tumor cells labeled with early and late neural differentiation markers. Overall the results suggest that Tis21-gene therapy slows down MB tumor growth through inhibition of proliferation and enhancement of neural differentiation. These results validate Tis21 as a relevant target for MB therapy.
Collapse
Affiliation(s)
- Dario Presutti
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Monterotondo, Rome, Italy
| | - Manuela Ceccarelli
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Fondazione Santa Lucia, Rome, Italy
| | - Laura Micheli
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Fondazione Santa Lucia, Rome, Italy
| | - Giuliana Papoff
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Monterotondo, Rome, Italy
| | - Simonetta Santini
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Monterotondo, Rome, Italy
| | - Simone Samperna
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Monterotondo, Rome, Italy
| | - Cristiana Lalli
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Monterotondo, Rome, Italy
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste, Italy
| | - Giovina Ruberti
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Monterotondo, Rome, Italy
- * E-mail: (GR); (FT)
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Fondazione Santa Lucia, Rome, Italy
- * E-mail: (GR); (FT)
| |
Collapse
|
11
|
Ohtomo R, Bannai T, Ohtomo G, Shindo A, Tomimoto H, Tsuji S, Iwata A. Cilostazol alleviates white matter degeneration caused by chronic cerebral hypoperfusion in mice: Implication of its mechanism from gene expression analysis. Neurosci Lett 2017; 662:247-252. [PMID: 29080698 DOI: 10.1016/j.neulet.2017.10.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 11/18/2022]
Abstract
Cilostazol is known to alleviate white matter demyelination due to chronic cerebral hypoperfusion in rodent models, although their pharmacological mechanisms remain unclear. In this study, we investigated the protective effect of cilostazol in relation to gene expression profile. Bilateral common carotid artery stenosis (BCAS) mice were treated with oral administration of cilostazol or placebo starting from a week after the surgery. Demyelination of the cingulum was compared between the 2 groups 2, 6, and 10 weeks after initial drug administration. Also, to examine temporal gene expression change during demyelination, DNA microarray analysis was conducted using samples from the corpus callosum of 2nd and 6th week BCAS mice. For genes that showed more than 2-fold up-regulation, their increase was validated by qPCR. Finally, to determine the effect of cilostazol towards those genes, their expression in the corpus callosum of 6-week placebo-treated and cilostazol-treated BCAS mice was compared by qPCR. Amelioration of myelin loss was observed in cilostazol-treated group, showing significant difference with those observed in placebo group after 10-week treatment. Gene ontology analysis of the 17 up-regulated (FDR<0.01) genes showed that majority of the genes were related to cell development processes. Among the validated genes, expression of Btg2 was significantly promoted in the corpus callosum of BCAS mice by administration of cilostazol. Results of this study suggest that activation of Btg2 may be one of the key pharmacological effects of cilostazol towards the white matter during chronic ischemia.
Collapse
Affiliation(s)
- Ryo Ohtomo
- Department of Neurology, The University of Tokyo Graduate School of Medicine, Japan.
| | - Taro Bannai
- Department of Neurology, The University of Tokyo Graduate School of Medicine, Japan
| | - Gaku Ohtomo
- Department of Neurology, The University of Tokyo Graduate School of Medicine, Japan
| | - Akihiro Shindo
- Department of Neurology, Mie University Graduate School of Medicine, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, Japan
| | - Shoji Tsuji
- Department of Neurology, The University of Tokyo Graduate School of Medicine, Japan
| | - Atsushi Iwata
- Department of Neurology, The University of Tokyo Graduate School of Medicine, Japan
| |
Collapse
|
12
|
The doublesex-related Dmrta2 safeguards neural progenitor maintenance involving transcriptional regulation of Hes1. Proc Natl Acad Sci U S A 2017; 114:E5599-E5607. [PMID: 28655839 DOI: 10.1073/pnas.1705186114] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanisms that determine whether a neural progenitor cell (NPC) reenters the cell cycle or exits and differentiates are pivotal for generating cells in the correct numbers and diverse types, and thus dictate proper brain development. Combining gain-of-function and loss-of-function approaches in an embryonic stem cell-derived cortical differentiation model, we report that doublesex- and mab-3-related transcription factor a2 (Dmrta2, also known as Dmrt5) plays an important role in maintaining NPCs in the cell cycle. Temporally controlled expression of transgenic Dmrta2 in NPCs suppresses differentiation without affecting their neurogenic competence. In contrast, Dmrta2 knockout accelerates the cell cycle exit and differentiation into postmitotic neurons of NPCs derived from embryonic stem cells and in Emx1-cre conditional mutant mice. Dmrta2 function is linked to the regulation of Hes1 and other proneural genes, as demonstrated by genome-wide RNA-seq and direct binding of Dmrta2 to the Hes1 genomic locus. Moreover, transient Hes1 expression rescues precocious neurogenesis in Dmrta2 knockout NPCs. Our study thus establishes a link between Dmrta2 modulation of Hes1 expression and the maintenance of NPCs during cortical development.
Collapse
|
13
|
Micheli L, D'Andrea G, Leonardi L, Tirone F. HDAC1, HDAC4, and HDAC9 Bind to PC3/Tis21/Btg2 and Are Required for Its Inhibition of Cell Cycle Progression and Cyclin D1 Expression. J Cell Physiol 2017; 232:1696-1707. [PMID: 27333946 DOI: 10.1002/jcp.25467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/21/2016] [Indexed: 01/23/2023]
Abstract
PC3/Tis21 is a transcriptional cofactor that inhibits proliferation in several cell types, including neural progenitors. Here, we report that PC3/Tis21 associates with HDAC1, HDAC4, and HDAC9 in vivo, in fibroblast cells. Furthermore, when HDAC1, HDAC4, or HDAC9 are silenced in fibroblasts or in a line of cerebellar progenitor cells, the ability of PC3/Tis21 to inhibit proliferation is significantly reduced. Overexpression of HDAC1, HDAC4, or HDAC9 in fibroblasts and in cerebellar precursor cells synergizes with PC3/Tis21 in inhibiting the expression of cyclin D1, a cyclin selectively inhibited by PC3/Tis21. Conversely, the depletion of HDAC1 or HDAC4 (but not HDAC9) in fibroblasts and in cerebellar precursor cells significantly impairs the ability of PC3/Tis21 to inhibit cyclin D1 expression. An analysis of HDAC4 deletion mutants shows that both the amino-terminal moiety and the catalytic domain of HDAC4 associate to PC3/Tis21, but neither alone is sufficient to potentiate the inhibition of cyclin D1 by PC3/Tis21. As a whole, our findings indicate that PC3/Tis21 inhibits cell proliferation in a way dependent on the presence of HDACs, in fibroblasts as well as in neural cells. Considering that several reports have demonstrated that HDACs can act as transcriptional corepressors on the cyclin D1 promoter, our data suggest that the association of PC3/Tis21 to HDACs is functional to recruit them to target genes, such as cyclin D1, for repression of their expression. J. Cell. Physiol. 232: 1696-1707, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia, Rome, Italy
| | - Giorgio D'Andrea
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia, Rome, Italy
| | - Luca Leonardi
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia, Rome, Italy
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
14
|
Ceccarelli M, Micheli L, Tirone F. Suppression of Medulloblastoma Lesions by Forced Migration of Preneoplastic Precursor Cells with Intracerebellar Administration of the Chemokine Cxcl3. Front Pharmacol 2016; 7:484. [PMID: 28018222 PMCID: PMC5159413 DOI: 10.3389/fphar.2016.00484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/28/2016] [Indexed: 12/14/2022] Open
Abstract
Medulloblastoma (MB), tumor of the cerebellum, remains a leading cause of cancer-related mortality in childhood. We previously showed, in a mouse model of spontaneous MB (Ptch1+/-/Tis21-/-), that a defect of the migration of cerebellar granule neuron precursor cells (GCPs) correlates with an increased frequency of MB. This occurs because GCPs, rather than migrating internally and differentiating, remain longer in the proliferative area at the cerebellar surface, becoming targets of transforming insults. Furthermore, we identified the chemokine Cxcl3 as responsible for the inward migration of GCPs. As it is known that preneoplastic GCPs (pGCPs) can still migrate and differentiate like normal GCPs, thus exiting the neoplastic program, in this study we tested the hypothesis that pGCPs within a MB lesion could be induced by Cxcl3 to migrate and differentiate. We observed that the administration of Cxcl3 for 28 days within the cerebellum of 1-month-old Ptch1+/-/Tis21-/- mice, i.e., when MB lesions are already formed, leads to complete disappearance of the lesions. However, a shorter treatment with Cxcl3 (2 weeks) was ineffective, suggesting that the suppression of MB lesions is dependent on the duration of Cxcl3 application. We verified that the treatment with Cxcl3 causes a massive migration of pGCPs from the lesion to the internal granular layer, where they differentiate. Thus, the induction of migration of pGCPs in MB lesions may open new ways to treat MB that exploit the plasticity of the pGCPs, forcing their differentiation. It remains to be tested whether this plasticity continues at advanced stages of MB. If so, these findings would set a potential use of the chemokine Cxcl3 as therapeutic agent against MB development in human preclinical studies.
Collapse
Affiliation(s)
- Manuela Ceccarelli
- Genetic Control of Development, Institute of Cell Biology and Neurobiology – National Research Council, Fondazione Santa LuciaRome, Italy
| | | | - Felice Tirone
- Genetic Control of Development, Institute of Cell Biology and Neurobiology – National Research Council, Fondazione Santa LuciaRome, Italy
| |
Collapse
|
15
|
Btg2 is a Negative Regulator of Cardiomyocyte Hypertrophy through a Decrease in Cytosolic RNA. Sci Rep 2016; 6:28592. [PMID: 27346836 PMCID: PMC4921833 DOI: 10.1038/srep28592] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/06/2016] [Indexed: 12/27/2022] Open
Abstract
Under hypertrophic stimulation, cardiomyocytes enter a hypermetabolic state and accelerate biomass accumulation. Although the molecular pathways that regulate protein levels are well-studied, the functional implications of RNA accumulation and its regulatory mechanisms in cardiomyocytes remain elusive. Here, we have elucidated the quantitative kinetics of RNA in cardiomyocytes through single cell imaging and c-Myc (Myc)-mediated hypermetabolic analytical model using cultured cardiomyocytes. Nascent RNA labeling combined with single cell imaging demonstrated that Myc protein significantly increased the amount of global RNA production per cardiomyocyte. Chromatin immunoprecipitation with high-throughput sequencing clarified that overexpressed Myc bound to a specific set of genes and recruits RNA polymerase II. Among these genes, we identified Btg2 as a novel target of Myc. Btg2 overexpression significantly reduced cardiomyocyte surface area. Conversely, shRNA-mediated knockdown of Btg2 accelerated adrenergic stimulus-induced hypertrophy. Using mass spectrometry analysis, we determined that Btg2 binds a series of proteins that comprise mRNA deadenylation complexes. Intriguingly, Btg2 specifically suppresses cytosolic, but not nuclear, RNA levels. Btg2 knockdown further enhances cytosolic RNA accumulation in cardiomyocytes under adrenergic stimulation, suggesting that Btg2 negatively regulates reactive hypertrophy by negatively regulating RNA accumulation. Our findings provide insight into the functional significance of the mechanisms regulating RNA levels in cardiomyocytes.
Collapse
|
16
|
Stupfler B, Birck C, Séraphin B, Mauxion F. BTG2 bridges PABPC1 RNA-binding domains and CAF1 deadenylase to control cell proliferation. Nat Commun 2016; 7:10811. [PMID: 26912148 PMCID: PMC4773420 DOI: 10.1038/ncomms10811] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 01/24/2016] [Indexed: 12/12/2022] Open
Abstract
While BTG2 plays an important role in cellular differentiation and cancer, its precise molecular function remains unclear. BTG2 interacts with CAF1 deadenylase through its APRO domain, a defining feature of BTG/Tob factors. Our previous experiments revealed that expression of BTG2 promoted mRNA poly(A) tail shortening through an undefined mechanism. Here we report that the APRO domain of BTG2 interacts directly with the first RRM domain of the poly(A)-binding protein PABPC1. Moreover, PABPC1 RRM and BTG2 APRO domains are sufficient to stimulate CAF1 deadenylase activity in vitro in the absence of other CCR4–NOT complex subunits. Our results unravel thus the mechanism by which BTG2 stimulates mRNA deadenylation, demonstrating its direct role in poly(A) tail length control. Importantly, we also show that the interaction of BTG2 with the first RRM domain of PABPC1 is required for BTG2 to control cell proliferation. BTG2 promotes mRNA poly(A) tail shortening and regulates cellular differentiation. Here, Stupfler et al. show that the BTG2 APRO domain interacts with PABPC1 RRM1, allowing the former to recruit and stimulate the poly(A) tail shortening activity of CAF1 deadenylase and to control cell proliferation.
Collapse
Affiliation(s)
- Benjamin Stupfler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Catherine Birck
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Bertrand Séraphin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Fabienne Mauxion
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
17
|
B cell translocation gene 2 (Btg2) is regulated by Stat3 signaling and inhibits adipocyte differentiation. Mol Cell Biochem 2016; 413:145-53. [DOI: 10.1007/s11010-015-2648-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/23/2015] [Indexed: 11/26/2022]
|
18
|
Ceccarelli M, Micheli L, D'Andrea G, De Bardi M, Scheijen B, Ciotti M, Leonardi L, Luvisetto S, Tirone F. Altered cerebellum development and impaired motor coordination in mice lacking the Btg1 gene: Involvement of cyclin D1. Dev Biol 2015; 408:109-25. [DOI: 10.1016/j.ydbio.2015.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/03/2015] [Accepted: 10/04/2015] [Indexed: 10/22/2022]
|
19
|
Farioli-Vecchioli S, Tirone F. Control of the Cell Cycle in Adult Neurogenesis and its Relation with Physical Exercise. Brain Plast 2015; 1:41-54. [PMID: 29765834 PMCID: PMC5928538 DOI: 10.3233/bpl-150013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the adult brain the neurogenesis is mainly restricted to two neurogenic regions: newly generated neurons arise at the subventricular zone (SVZ) of the lateral ventricle and at the subgranular zone of the hippocampal subregion named the dentate gyrus. The hippocampus is involved in learning and memory paradigms and the generation of new hippocampal neurons has been hypothesized to be a pivotal form of plasticity involved in the process. Moreover the dysregulation of hippocampal adult neurogenesis has been recognized and could anticipate several varieties of brain disease such as Alzheimer disease, epilepsy and depression. Over the last few decades numerous intrinsic, epigenetic and environmental factors have been revealed to deeply influence the process of adult neurogenesis, although the underlying mechanisms remain largely unknown. Growing evidence indicates that physical exercise represents one of the main extrinsic factor able to profoundly increase hippocampal adult neurogenesis, by altering neurochemistry and function of newly generated neurons. The present review surveys how neurogenesis can be modulated by cell cycle kinetics and highlights the putative role of the cell cycle length as a key component of the beneficial effect of running for hippocampal adult neurogenesis, both in physiological conditions and in the presence of defective neurogenesis.
Collapse
Affiliation(s)
- Stefano Farioli-Vecchioli
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione S.Lucia, Rome, Italy
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione S.Lucia, Rome, Italy
| |
Collapse
|
20
|
Micheli L, Ceccarelli M, Farioli-Vecchioli S, Tirone F. Control of the Normal and Pathological Development of Neural Stem and Progenitor Cells by the PC3/Tis21/Btg2 and Btg1 Genes. J Cell Physiol 2015; 230:2881-90. [DOI: 10.1002/jcp.25038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/05/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Laura Micheli
- Institute of Cell Biology and Neurobiology; National Research Council; Fondazione S.Lucia Rome Italy
| | - Manuela Ceccarelli
- Institute of Cell Biology and Neurobiology; National Research Council; Fondazione S.Lucia Rome Italy
| | - Stefano Farioli-Vecchioli
- Institute of Cell Biology and Neurobiology; National Research Council; Fondazione S.Lucia Rome Italy
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology; National Research Council; Fondazione S.Lucia Rome Italy
| |
Collapse
|
21
|
Janesick A, Wu SC, Blumberg B. Retinoic acid signaling and neuronal differentiation. Cell Mol Life Sci 2015; 72:1559-76. [PMID: 25558812 PMCID: PMC11113123 DOI: 10.1007/s00018-014-1815-9] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 01/13/2023]
Abstract
The identification of neurological symptoms caused by vitamin A deficiency pointed to a critical, early developmental role of vitamin A and its metabolite, retinoic acid (RA). The ability of RA to induce post-mitotic, neural phenotypes in various stem cells, in vitro, served as early evidence that RA is involved in the switch between proliferation and differentiation. In vivo studies have expanded this "opposing signal" model, and the number of primary neurons an embryo develops is now known to depend critically on the levels and spatial distribution of RA. The proneural and neurogenic transcription factors that control the exit of neural progenitors from the cell cycle and allow primary neurons to develop are partly elucidated, but the downstream effectors of RA receptor (RAR) signaling (many of which are putative cell cycle regulators) remain largely unidentified. The molecular mechanisms underlying RA-induced primary neurogenesis in anamniote embryos are starting to be revealed; however, these data have been not been extended to amniote embryos. There is growing evidence that bona fide RARs are found in some mollusks and other invertebrates, but little is known about their necessity or functions in neurogenesis. One normal function of RA is to regulate the cell cycle to halt proliferation, and loss of RA signaling is associated with dedifferentiation and the development of cancer. Identifying the genes and pathways that mediate cell cycle exit downstream of RA will be critical for our understanding of how to target tumor differentiation. Overall, elucidating the molecular details of RAR-regulated neurogenesis will be decisive for developing and understanding neural proliferation-differentiation switches throughout development.
Collapse
Affiliation(s)
- Amanda Janesick
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, 92697-2300 USA
| | - Stephanie Cherie Wu
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, 92697-2300 USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, 92697-2300 USA
- Department of Pharmaceutical Sciences, University of California, Irvine, USA
| |
Collapse
|
22
|
Yamada T, Minoda R, Miwa T, Ise M, Takeda H, Yumoto E. Neurogenesis of the spiral ganglion cells in the cochlea requires the transcriptional cofactor TIS21. Neurosci Lett 2014; 584:265-9. [PMID: 25451728 DOI: 10.1016/j.neulet.2014.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 09/29/2014] [Accepted: 10/01/2014] [Indexed: 12/25/2022]
Abstract
The molecular mechanisms controlling the proliferation and differentiation of spiral ganglion cells (SGCs) in the inner ear are still largely unknown. TIS21 is a transcriptional cofactor that shows antiproliferative, antiapoptotic, and prodifferentiative effects on neural progenitor cells. To investigate the function of TIS21 during SGC development, we analyzed SGC neurogenesis from embryonic day 13.5 (E13.5) to postnatal day 4 (P4) in Tis21-GFP knock-in mice, in which the protein-encoding exon of the Tis21 gene was replaced by EGFP. Through E13.5 to P4, we found fewer SGCs in homozygous Tis21-GFP knock-in mice than in wild-type mice. Our results suggest that TIS21 is required for development of SGCs. Deleting Tis21 may affect progenitor cells or neuroblasts at the beginning of cochlear-vestibular ganglion formation and would consequently lead to a decrease in the number of SGCs.
Collapse
Affiliation(s)
- Takao Yamada
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University, Graduate School of Medicine, 1-1-1 Honjo Chuouku, Kumamoto city, Kumamoto 860-8556, Japan
| | - Ryosei Minoda
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University, Graduate School of Medicine, 1-1-1 Honjo Chuouku, Kumamoto city, Kumamoto 860-8556, Japan.
| | - Toru Miwa
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University, Graduate School of Medicine, 1-1-1 Honjo Chuouku, Kumamoto city, Kumamoto 860-8556, Japan
| | - Momoko Ise
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University, Graduate School of Medicine, 1-1-1 Honjo Chuouku, Kumamoto city, Kumamoto 860-8556, Japan
| | - Hiroki Takeda
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University, Graduate School of Medicine, 1-1-1 Honjo Chuouku, Kumamoto city, Kumamoto 860-8556, Japan
| | - Eiji Yumoto
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University, Graduate School of Medicine, 1-1-1 Honjo Chuouku, Kumamoto city, Kumamoto 860-8556, Japan
| |
Collapse
|
23
|
Mruthyunjaya S, Parveen D, Shah RD, Manchanda R, Godbole R, Vasudevan M, Shastry P. Gene expression analysis of laminin-1-induced neurite outgrowth in human mesenchymal stem cells derived from bone marrow. J Biomed Mater Res A 2014; 103:746-61. [DOI: 10.1002/jbm.a.35221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/15/2014] [Accepted: 05/02/2014] [Indexed: 11/06/2022]
Affiliation(s)
- S. Mruthyunjaya
- National centre for Cell Science (NCCS); University of Pune; Ganeshkhind Pune 411007 India
| | - D. Parveen
- National centre for Cell Science (NCCS); University of Pune; Ganeshkhind Pune 411007 India
| | - Reecha D. Shah
- National centre for Cell Science (NCCS); University of Pune; Ganeshkhind Pune 411007 India
| | | | | | | | - Padma Shastry
- National centre for Cell Science (NCCS); University of Pune; Ganeshkhind Pune 411007 India
| |
Collapse
|
24
|
Farioli-Vecchioli S, Ceccarelli M, Saraulli D, Micheli L, Cannas S, D'Alessandro F, Scardigli R, Leonardi L, Cinà I, Costanzi M, Mattera A, Cestari V, Tirone F. Tis21 is required for adult neurogenesis in the subventricular zone and for olfactory behavior regulating cyclins, BMP4, Hes1/5 and Ids. Front Cell Neurosci 2014; 8:98. [PMID: 24744701 PMCID: PMC3977348 DOI: 10.3389/fncel.2014.00098] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 03/14/2014] [Indexed: 12/18/2022] Open
Abstract
Bone morphogenic proteins (BMPs) and the Notch pathway regulate quiescence and self-renewal of stem cells of the subventricular zone (SVZ), an adult neurogenic niche. Here we analyze the role at the intersection of these pathways of Tis21 (Btg2/PC3), a gene regulating proliferation and differentiation of adult SVZ stem and progenitor cells. In Tis21-null SVZ and cultured neurospheres, we observed a strong decrease in the expression of BMP4 and its effectors Smad1/8, while the Notch anti-neural mediators Hes1/5 and the basic helix-loop-helix (bHLH) inhibitors Id1-3 increased. Consistently, expression of the proneural bHLH gene NeuroD1 decreased. Moreover, cyclins D1/2, A2, and E were strongly up-regulated. Thus, in the SVZ Tis21 activates the BMP pathway and inhibits the Notch pathway and the cell cycle. Correspondingly, the Tis21-null SVZ stem cells greatly increased; nonetheless, the proliferating neuroblasts diminished, whereas the post-mitotic neuroblasts paradoxically accumulated in SVZ, failing to migrate along the rostral migratory stream to the olfactory bulb. The ability, however, of neuroblasts to migrate from SVZ explants was not affected, suggesting that Tis21-null neuroblasts do not migrate to the olfactory bulb because of a defect in terminal differentiation. Notably, BMP4 addition or Id3 silencing rescued the defective differentiation observed in Tis21-null neurospheres, indicating that they mediate the Tis21 pro-differentiative action. The reduced number of granule neurons in the Tis21-null olfactory bulb led to a defect in olfactory detection threshold, without effect on olfactory memory, also suggesting that within olfactory circuits new granule neurons play a primary role in odor sensitivity rather than in memory.
Collapse
Affiliation(s)
- Stefano Farioli-Vecchioli
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia Rome, Italy
| | - Manuela Ceccarelli
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia Rome, Italy
| | - Daniele Saraulli
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia Rome, Italy
| | - Laura Micheli
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia Rome, Italy
| | - Sara Cannas
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia Rome, Italy ; Department of Psychology and "Daniel Bovet" Center, Sapienza University of Rome Rome, Italy
| | - Francesca D'Alessandro
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia Rome, Italy ; Department of Psychology and "Daniel Bovet" Center, Sapienza University of Rome Rome, Italy
| | - Raffaella Scardigli
- Institute of Translational Pharmacology, National Research Council, Fondazione EBRI Rome, Italy
| | - Luca Leonardi
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia Rome, Italy
| | - Irene Cinà
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia Rome, Italy
| | - Marco Costanzi
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia Rome, Italy ; Libera Università Maria Sartissima Assunta Rome, Italy
| | - Andrea Mattera
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia Rome, Italy
| | - Vincenzo Cestari
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia Rome, Italy ; Department of Psychology and "Daniel Bovet" Center, Sapienza University of Rome Rome, Italy
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia Rome, Italy
| |
Collapse
|
25
|
Fei JF, Haffner C, Huttner W. 3′ UTR-Dependent, miR-92-Mediated Restriction of Tis21 Expression Maintains Asymmetric Neural Stem Cell Division to Ensure Proper Neocortex Size. Cell Rep 2014; 7:398-411. [DOI: 10.1016/j.celrep.2014.03.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 01/09/2014] [Accepted: 03/09/2014] [Indexed: 10/25/2022] Open
|
26
|
Huang HY, Liu DD, Chang HF, Chen WF, Hsu HR, Kuo JS, Wang MJ. Histone deacetylase inhibition mediates urocortin-induced antiproliferation and neuronal differentiation in neural stem cells. Stem Cells 2013; 30:2760-73. [PMID: 22961741 DOI: 10.1002/stem.1226] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 08/14/2012] [Indexed: 01/15/2023]
Abstract
During cortical development, cell proliferation and cell cycle exit are carefully regulated to ensure that the appropriate numbers of cells are produced. Urocortin (UCN) is a member of the corticotrophin releasing hormone (CRH) family of neuropeptides that regulates stress responses. UCN is widely distributed in adult rat brain. However, the expression and function of UCN in embryonic brain is, as yet, unclear. Here, we show that UCN is endogenously expressed in proliferative zones of the developing cerebral cortex and its receptors are exhibited in neural stem cells (NSCs), thus implicating the neuropeptide in cell cycle regulation. Treatment of cultured NSCs or organotypic slice cultures with UCN markedly reduced cell proliferation. Furthermore, blocking of endogenous UCN/CRHRs system either by treatment with CRHRs antagonists or by neutralization of secreted UCN with anti-UCN antibody increased NSCs proliferation. Cell cycle kinetics analysis demonstrated that UCN lengthened the total cell cycle duration via increasing the G1 phase and accelerated cell cycle exit. UCN directly inhibited the histone deacetylase (HDAC) activity and induced a robust increase in histone H3 acetylation levels. Using pharmacological and RNA interference approaches, we further demonstrated that antiproliferative action of UCN appeared to be mediated through a HDAC inhibition-induced p21 upregulation. Moreover, UCN treatment in vitro and in vivo led to an increase in neuronal differentiation of NSCs. These findings suggest that UCN might contribute to regulate NSCs proliferation and differentiation during cortical neurogenesis.
Collapse
Affiliation(s)
- Hsin-Yi Huang
- Department of Medical Research, Neuro-Medical Scientific Center, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | | | | | | | | | | | | |
Collapse
|
27
|
Iacono G, Altafini C, Torre V. Early phase of plasticity-related gene regulation and SRF dependent transcription in the hippocampus. PLoS One 2013; 8:e68078. [PMID: 23935853 PMCID: PMC3720722 DOI: 10.1371/journal.pone.0068078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 05/25/2013] [Indexed: 02/07/2023] Open
Abstract
Hippocampal organotypic cultures are a highly reliable in vitro model for studying neuroplasticity: in this paper, we analyze the early phase of the transcriptional response induced by a 20 µM gabazine treatment (GabT), a GABA-Ar antagonist, by using Affymetrix oligonucleotide microarray, RT-PCR based time-course and chromatin-immuno-precipitation. The transcriptome profiling revealed that the pool of genes up-regulated by GabT, besides being strongly related to the regulation of growth and synaptic transmission, is also endowed with neuro-protective and pro-survival properties. By using RT-PCR, we quantified a time-course of the transient expression for 33 of the highest up-regulated genes, with an average sampling rate of 10 minutes and covering the time interval [10∶90] minutes. The cluster analysis of the time-course disclosed the existence of three different dynamical patterns, one of which proved, in a statistical analysis based on results from previous works, to be significantly related with SRF-dependent regulation (p-value<0.05). The chromatin immunoprecipitation (chip) assay confirmed the rich presence of working CArG boxes in the genes belonging to the latter dynamical pattern and therefore validated the statistical analysis. Furthermore, an in silico analysis of the promoters revealed the presence of additional conserved CArG boxes upstream of the genes Nr4a1 and Rgs2. The chip assay confirmed a significant SRF signal in the Nr4a1 CArG box but not in the Rgs2 CArG box.
Collapse
Affiliation(s)
- Giovanni Iacono
- Department of Functional Analysis, International School for Advanced Studies, Trieste, Italy
| | - Claudio Altafini
- Department of Functional Analysis, International School for Advanced Studies, Trieste, Italy
| | - Vincent Torre
- Department of Functional Analysis, International School for Advanced Studies, Trieste, Italy
- IIT Italian Institute of Technology, Genova, Italy
- * E-mail:
| |
Collapse
|
28
|
Nandhikonda P, Yasgar A, Baranowski AM, Sidhu PS, McCallum MM, Pawlak AJ, Teske K, Feleke B, Yuan NY, Kevin C, Bikle DD, Ayers SD, Webb P, Rai G, Simeonov A, Jadhav A, Maloney D, Arnold LA. Peroxisome proliferation-activated receptor δ agonist GW0742 interacts weakly with multiple nuclear receptors, including the vitamin D receptor. Biochemistry 2013; 52:4193-203. [PMID: 23713684 DOI: 10.1021/bi400321p] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A high-throughput screening campaign was conducted to identify small molecules with the ability to inhibit the interaction between the vitamin D receptor (VDR) and steroid receptor coactivator 2. These inhibitors represent novel molecular probes for modulating gene regulation mediated by VDR. Peroxisome proliferator-activated receptor (PPAR) δ agonist GW0742 was among the identified VDR-coactivator inhibitors and has been characterized herein as a pan nuclear receptor antagonist at concentrations of > 12.1 μM. The highest antagonist activity for GW0742 was found for VDR and the androgen receptor. Surprisingly, GW0742 behaved as a PPAR agonist and antagonist, activating transcription at lower concentrations and inhibiting this effect at higher concentrations. A unique spectroscopic property of GW0742 was identified as well. In the presence of rhodamine-derived molecules, GW0742 increased the fluorescence intensity and level of fluorescence polarization at an excitation wavelength of 595 nm and an emission wavelength of 615 nm in a dose-dependent manner. The GW0742-inhibited NR-coactivator binding resulted in a reduced level of expression of five different NR target genes in LNCaP cells in the presence of agonist. Especially VDR target genes CYP24A1, IGFBP-3, and TRPV6 were negatively regulated by GW0742. GW0742 is the first VDR ligand inhibitor lacking the secosteroid structure of VDR ligand antagonists. Nevertheless, the VDR-meditated downstream process of cell differentiation was antagonized by GW0742 in HL-60 cells that were pretreated with the endogenous VDR agonist 1,25-dihydroxyvitamin D3.
Collapse
Affiliation(s)
- Premchendar Nandhikonda
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tirone F, Farioli-Vecchioli S, Micheli L, Ceccarelli M, Leonardi L. Genetic control of adult neurogenesis: interplay of differentiation, proliferation and survival modulates new neurons function, and memory circuits. Front Cell Neurosci 2013; 7:59. [PMID: 23734097 PMCID: PMC3653098 DOI: 10.3389/fncel.2013.00059] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/15/2013] [Indexed: 01/23/2023] Open
Abstract
Within the hippocampal circuitry, the basic function of the dentate gyrus is to transform the memory input coming from the enthorinal cortex into sparse and categorized outputs to CA3, in this way separating related memory information. New neurons generated in the dentate gyrus during adulthood appear to facilitate this process, allowing a better separation between closely spaced memories (pattern separation). The evidence underlying this model has been gathered essentially by ablating the newly adult-generated neurons. This approach, however, does not allow monitoring of the integration of new neurons into memory circuits and is likely to set in motion compensatory circuits, possibly leading to an underestimation of the role of new neurons. Here we review the background of the basic function of the hippocampus and of the known properties of new adult-generated neurons. In this context, we analyze the cognitive performance in mouse models generated by us and others, with modified expression of the genes Btg2 (PC3/Tis21), Btg1, Pten, BMP4, etc., where new neurons underwent a change in their differentiation rate or a partial decrease of their proliferation or survival rate rather than ablation. The effects of these modifications are equal or greater than full ablation, suggesting that the architecture of circuits, as it unfolds from the interaction between existing and new neurons, can have a greater functional impact than the sheer number of new neurons. We propose a model which attempts to measure and correlate the set of cellular changes in the process of neurogenesis with the memory function.
Collapse
Affiliation(s)
- Felice Tirone
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa LuciaRome, Italy
| | | | | | | | | |
Collapse
|
30
|
Conti F, Ghigo E. PC3 (BTG2/TIS21) possible role in chromosome instability syndromes. Med Hypotheses 2013; 81:82-5. [PMID: 23639285 DOI: 10.1016/j.mehy.2013.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 03/12/2013] [Accepted: 03/25/2013] [Indexed: 11/18/2022]
Abstract
Chromosome instability syndromes (CIS) are autosomal recessive genetic disorders associated with defects in cell cycle regulation following DNA damage. Although most of the proteins involved in these syndromes have been identified as part of the MRN complex, little is known about their physiological functions and their interactions with other molecules that might explain the wide clinical presentation found in CIS patients. Here we discuss several observations suggesting that PC3 (BTG2/TIS21) - a protein involved in G1-S checkpoint progression control - might play a role in these pathologies.
Collapse
Affiliation(s)
- Filippo Conti
- Equipe Infections, Genre et Grossesse, URMITE-IRD198, CNRS UMR7278, INSERM U1095, Faculté de Médecine, 27 boulevard Jean Moulin, 13385 Marseille Cedex 05, France.
| | | |
Collapse
|
31
|
Keenan TM, Grinager JR, Procak AA, Svendsen CN. In vitro localization of human neural stem cell neurogenesis by engineered FGF-2 gradients. Integr Biol (Camb) 2013; 4:1522-31. [PMID: 23147909 DOI: 10.1039/c2ib20074k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The development of effective stem cell-based therapies for treating brain disorders is keenly dependent upon an understanding of how to generate specific neural cell types and organize them into functional, higher-order tissues analogous to those of the cerebral cortex. Studies of cortical development have revealed that the proper formation of the human cerebral cortex results from specific intercellular interactions and soluble signaling between the highly-proliferative region occupied by dividing neural stem cells and an adjacent region of active neurogenesis and neural migration. However, the factors responsible for establishing this key asymmetrical proliferative-neurogenic architecture are not entirely known. Fibroblast growth factor 2 (FGF-2) is observed in a ventricular-pial gradient during in vivo development and has been previously shown to have effects on both human neural stem cell (hNSC) proliferation and neurogenesis. Here we have adapted a microfluidic approach for creating stable concentration gradients in 3D hydrogels to explore whether FGF-2 gradients can establish defined regions of proliferation and neurogenesis in hNSC cultures. Exponential but not linear FGF-2 gradients between 0-2 ng mL(-1) were able to preferentially boost the percentage of TuJ1(+) neurons in the low concentration regions of the gradient and at levels significantly higher than in non-gradient controls. However, no gradient-dependent localization was observed for dividing hNSCs or hNSC-derived intermediate progenitors. These data suggest that exponential FGF2 gradients are useful for generating asymmetric neuron cultures, but require contributions from other factors to recapitulate the highly-proliferative ventricular zone niche. The relevance of the findings of this study to in vivo cortical development must be more cautiously stated given the artifactual nature of hNSCs and the inability of any in vitro system to fully recapitulate the chemical complexity of the developing cortex. However, it is quite possible that exponential FGF2 gradients are employed in vivo to establish or maintain an asymmetric distribution of neurons in the ventricular-pial axis of the developing cerebral cortex.
Collapse
Affiliation(s)
- T M Keenan
- Stem Cell and Regenerative Medicine Center, University of Wisconsin, 1111 Highland Ave., Madison, WI 53705, USA.
| | | | | | | |
Collapse
|
32
|
Farioli-Vecchioli S, Micheli L, Leonardi L, Ceccarelli M, Cavallaro S, Tirone F. Medulloblastoma or not? Crucial role in tumorigenesis of the timing of migration of cerebellar granule precursor cells, regulated by Nos2 and Tis21. Front Neurosci 2013; 6:198. [PMID: 23355800 PMCID: PMC3553397 DOI: 10.3389/fnins.2012.00198] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/30/2012] [Indexed: 12/11/2022] Open
Affiliation(s)
- Stefano Farioli-Vecchioli
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia Rome, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Tis21 knock-out enhances the frequency of medulloblastoma in Patched1 heterozygous mice by inhibiting the Cxcl3-dependent migration of cerebellar neurons. J Neurosci 2013; 32:15547-64. [PMID: 23115191 DOI: 10.1523/jneurosci.0412-12.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A failure in the control of proliferation of cerebellar granule neuron precursor cells (GCPs), located in the external granular layer (EGL) of the cerebellum, gives rise to medulloblastoma. To investigate the process of neoplastic transformation of GCPs, we generated a new medulloblastoma model by crossing Patched1 heterozygous mice, which develop medulloblastomas with low frequency, with mice lacking the Tis21 gene. Overexpression of Tis21 is known to inhibit proliferation and trigger differentiation of GCPs; its expression decreases in human medulloblastomas. Double-knock-out mice show a striking increase in the frequency of medulloblastomas and hyperplastic EGL lesions, formed by preneoplastic GCPs. Tis21 deletion does not affect the proliferation of GCPs but inhibits their differentiation and, chiefly, their intrinsic ability to migrate outside the EGL. This defect of migration may represent an important step in medulloblastoma formation, as GCPs, remaining longer in the EGL proliferative niche, may become more prone to transformation. By genome-wide analysis, we identified the chemokine Cxcl3 as a target of Tis21. Cxcl3 is downregulated in Tis21-null GCPs of EGL and lesions; addition of Cxcl3 to cerebellar slices rescues the defective migration of Tis21-null GCPs and, remarkably, reduces the area of hyperplastic lesions. As Tis21 activates Cxcl3 transcription, our results suggest that Tis21 induces migration of GCPs through Cxcl3, which may represent a novel target for medulloblastoma therapy.
Collapse
|
34
|
Imran M, Park TJ, Lim IK. TIS21/BTG2/PC3 enhances downregulation of c-Myc during differentiation of HL-60 cells by activating Erk1/2 and inhibiting Akt in response to all-trans-retinoic acid. Eur J Cancer 2012; 48:2474-85. [DOI: 10.1016/j.ejca.2012.01.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 12/29/2011] [Accepted: 01/24/2012] [Indexed: 10/14/2022]
|
35
|
Shao J, Sun C, Su L, Zhao J, Zhang S, Miao J. Phosphatidylcholine-specific phospholipase C/heat shock protein 70 (Hsp70)/transcription factor B-cell translocation gene 2 signaling in rat bone marrow stromal cell differentiation to cholinergic neuron-like cells. Int J Biochem Cell Biol 2012; 44:2253-60. [PMID: 23000394 DOI: 10.1016/j.biocel.2012.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 08/31/2012] [Accepted: 09/14/2012] [Indexed: 12/22/2022]
Abstract
Although bone marrow stromal cells (BMSCs) can differentiate into neuron-like cells, the mechanisms underlying neuronal differentiation are not well understood. We recently found that inhibition of phosphatidylcholine-specific phospholipase C (PC-PLC) by its inhibitor D609 promoted BMSCs' differentiation into cholinergic neuron-like cells. Using the effective small molecule D609 and gene microarray technology, we investigated the change of gene expression profile to identify key mediators involved in the neuronal differentiation. We selected heat shock protein 70 (Hsp70) and transcription factor B-cell translocation gene 2 (Btg2) that were maximally up-regulated for further study. We found that functional suppression of Hsp70 blocked D609-induced increase of Btg2 expression and cholinergic neuronal differentiation of BMSCs. These results demonstrated that Hsp70 was the pivotal factor in PC-PLC-medicated neuronal differentiation of BMSCs, and Btg2 might be its downstream target. Our findings provide new clues for controlling BMSCs' differentiation into cholinergic neuron-like cells and provide a putative strategy for neurodegenerative diseases therapies.
Collapse
Affiliation(s)
- Jing Shao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | | | | | | | | | | |
Collapse
|
36
|
Farioli-Vecchioli S, Micheli L, Saraulli D, Ceccarelli M, Cannas S, Scardigli R, Leonardi L, Cinà I, Costanzi M, Ciotti MT, Moreira P, Rouault JP, Cestari V, Tirone F. Btg1 is Required to Maintain the Pool of Stem and Progenitor Cells of the Dentate Gyrus and Subventricular Zone. Front Neurosci 2012; 6:124. [PMID: 22969701 PMCID: PMC3431174 DOI: 10.3389/fnins.2012.00124] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 08/03/2012] [Indexed: 11/13/2022] Open
Abstract
Btg1 belongs to a family of cell cycle inhibitory genes. We observed that Btg1 is highly expressed in adult neurogenic niches, i.e., the dentate gyrus and subventricular zone (SVZ). Thus, we generated Btg1 knockout mice to analyze the role of Btg1 in the process of generation of adult new neurons. Ablation of Btg1 causes a transient increase of the proliferating dentate gyrus stem and progenitor cells at post-natal day 7; however, at 2 months of age the number of these proliferating cells, as well as of mature neurons, greatly decreases compared to wild-type controls. Remarkably, adult dentate gyrus stem and progenitor cells of Btg1-null mice exit the cell cycle after completing the S phase, express p53 and p21 at high levels and undergo apoptosis within 5 days. In the SVZ of adult (two-month-old) Btg1-null mice we observed an equivalent decrease, associated to apoptosis, of stem cells, neuroblasts, and neurons; furthermore, neurospheres derived from SVZ stem cells showed an age-dependent decrease of the self-renewal and expansion capacity. We conclude that ablation of Btg1 reduces the pool of dividing adult stem and progenitor cells in the dentate gyrus and SVZ by decreasing their proliferative capacity and inducing apoptosis, probably reflecting impairment of the control of the cell cycle transition from G1 to S phase. As a result, the ability of Btg1-null mice to discriminate among overlapping contextual memories was affected. Btg1 appears, therefore, to be required for maintaining adult stem and progenitor cells quiescence and self-renewal.
Collapse
Affiliation(s)
- Stefano Farioli-Vecchioli
- Institute of Cell Biology and Neurobiology, National Research Council Fondazione Santa Lucia, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kurumaji A, Nishikawa T. An anxiogenic drug, FG 7142, induced an increase in mRNA of Btg2 and Adamts1 in the hippocampus of adult mice. Behav Brain Funct 2012; 8:43. [PMID: 22913326 PMCID: PMC3541064 DOI: 10.1186/1744-9081-8-43] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 08/09/2012] [Indexed: 01/03/2023] Open
Abstract
Background Anxiety and stress-related disorders are among the most common psychiatric disorders. The hippocampus is a crucial brain area involved in the neural circuits of the pathophysiology of anxiety and stress-related disorders, and GABA is one of most important neurotransmitters related to these disorders. An anxiogenic drug and a pharmacological stressor, FG7142 (N-methyl-ß-carboline-3-carboxamide), produces anxiety in humans and experimental animals, acting at the benzodiazepine sites of the GABAA receptors as a partial inverse agonist. This drug as well as immobilization stress produced an increased mRNA in a number of genes, e.g., Btg2 and Adamsts1, in the cortex of rodents. The present study was carried out to clarify the effect of the anxiogenic drug on the gene expressions in the hippocampus and to obtain a new insight into the GABAergic system involved in the pathophysiology of the disorders. Method We examined the effects of FG7142 on the gene expression of Btg2 and Adamts1 in the hippocampus of mice using a quantitative RT-PCR method as well as an in situ hybridization method. Results The intraperitoneal administration of FG7142 at a dose of 20 mg/kg, but not 10 mg/kg, induced a statistically significant increase in the hippocampal mRNA of both genes in adult mice (postnatal days 56), being blocked by co-administrations of flumazenil (twice of 10 mg/kg, i.p.), an antagonist at the benzodiazepine binding site, while FG7142 failed to produce any change in the gene expressions in infant mice (postnatal days 8). In addition, the in situ hybridization experiment demonstrated an upregulation of the gene expressions restricted to the dentate gyrus of the hippocampus in adult mice. Conclusions The present study suggests a functional coupling between the GABAergic system and the transcriptional regulation of the two genes (Btg2 and Adamsts1) in the hippocampus of adult mice, which may play a role in the brain function related to anxiety and stress such as memory of fear.
Collapse
Affiliation(s)
- Akeo Kurumaji
- Section of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | | |
Collapse
|
38
|
Hirai S, Miwa A, Ohtaka-Maruyama C, Kasai M, Okabe S, Hata Y, Okado H. RP58 controls neuron and astrocyte differentiation by downregulating the expression of Id1-4 genes in the developing cortex. EMBO J 2012; 31:1190-202. [PMID: 22234186 PMCID: PMC3297993 DOI: 10.1038/emboj.2011.486] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 12/13/2011] [Indexed: 01/03/2023] Open
Abstract
Appropriate number of neurons and glial cells is generated from neural stem cells (NSCs) by the regulation of cell cycle exit and subsequent differentiation. Although the regulatory mechanism remains obscure, Id (inhibitor of differentiation) proteins are known to contribute critically to NSC proliferation by controlling cell cycle. Here, we report that a transcriptional factor, RP58, negatively regulates all four Id genes (Id1-Id4) in developing cerebral cortex. Consistently, Rp58 knockout (KO) mice demonstrated enhanced astrogenesis accompanied with an excess of NSCs. These phenotypes were mimicked by the overexpression of all Id genes in wild-type cortical progenitors. Furthermore, Rp58 KO phenotypes were rescued by the knockdown of all Id genes in mutant cortical progenitors but not by the knockdown of each single Id gene. Finally, we determined p57 as an effector gene of RP58-Id-mediated cell fate control. These findings establish RP58 as a novel key regulator that controls the self-renewal and differentiation of NSCs and restriction of astrogenesis by repressing all Id genes during corticogenesis.
Collapse
Affiliation(s)
- Shinobu Hirai
- Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Medical Biochemistry, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akiko Miwa
- Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Chiaki Ohtaka-Maruyama
- Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masataka Kasai
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yutaka Hata
- Department of Medical Biochemistry, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Haruo Okado
- Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
39
|
Jones DTW, Mulholland SA, Pearson DM, Malley DS, Openshaw SWS, Lambert SR, Liu L, Bäcklund LM, Ichimura K, Collins VP. Adult grade II diffuse astrocytomas are genetically distinct from and more aggressive than their paediatric counterparts. Acta Neuropathol 2011; 121:753-61. [PMID: 21327941 DOI: 10.1007/s00401-011-0810-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/31/2011] [Accepted: 02/06/2011] [Indexed: 12/17/2022]
Abstract
Diffuse astrocytomas (WHO grade II) typically present as slow-growing tumours showing significant cellular differentiation, but possessing a tendency towards malignant progression. They account for ~10% of all astrocytic tumours, with a peak incidence between 30 and 40 years of age. Median survival is reported as around 6-8 years. Mutations of TP53 and IDH1 have been described as genetic hallmarks, while copy number alterations are also relatively common. However, there is some evidence to suggest that these characteristics may vary with age. Here, we present an integrated clinicopathologic, genomic and transcriptomic analysis suggesting that paediatric and adult tumours are associated with distinct genetic signatures. For example, no childhood tumour showed mutation of IDH1/2 or TP53, virtually no copy number changes were seen, and MGMT methylation was absent. In contrast, adult tumours showed IDH1/2 mutation in 94% and TP53 mutation in 69% of cases, with multiple copy number alterations per case and hypermethylation of MGMT in the majority of tumours. These differences were associated with a worse prognosis in the adult patients. The expression array data also revealed a significant difference in the expression of a number of genes putatively involved in neural stem cell maintenance and CNS development, including DLL3, HES5, BMP2, TIMP1 and BAMBI. Genes involved in DNA replication and the cell cycle were also enriched in the adult tumours, suggesting that their more aggressive behaviour may be due to derivation from a more rapidly dividing, less differentiated cell type.
Collapse
Affiliation(s)
- David T W Jones
- Division of Molecular Histopathology, Department of Pathology, University of Cambridge, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tanori M, Santone M, Mancuso M, Pasquali E, Leonardi S, Di Majo V, Rebessi S, Saran A, Pazzaglia S. Developmental and oncogenic effects of insulin-like growth factor-I in Ptc1+/- mouse cerebellum. Mol Cancer 2010; 9:53. [PMID: 20214787 PMCID: PMC2846887 DOI: 10.1186/1476-4598-9-53] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 03/09/2010] [Indexed: 02/07/2023] Open
Abstract
Background Medulloblastoma is amongst the most common malignant brain tumors in childhood, arising from neoplastic transformation of granule neuron precursors (GNPs) of the cerebellum via deregulation of pathways involved in cerebellar development. Deregulation of the Sonic hedgehog/Patched1 (Shh/Ptc1) signaling pathway predisposes humans and mice to medulloblastoma. In the brain, insulin-like growth factor (IGF-I) plays a critical role during development as a neurotrophic and neuroprotective factor, and in tumorigenesis, as IGF-I receptor is often activated in medulloblastomas. Results To investigate the mechanisms of genetic interactions between Shh and IGF signaling in the cerebellum, we crossed nestin/IGF-I transgenic (IGF-I Tg) mice, in which transgene expression occurs in neuron precursors, with Ptc1+/- knockout mice, a model of medulloblastoma in which cancer develops in a multistage process. The IGF-I transgene produced a marked brain overgrowth, and significantly accelerated tumor development, increasing the frequency of pre-neoplastic lesions as well as full medulloblastomas in Ptc1+/-/IGF-I Tg mice. Mechanistically, tumor promotion by IGF-I mainly affected preneoplastic stages through de novo formation of lesions, while not influencing progression rate to full tumors. We also identified a marked increase in survival and proliferation, and a strong suppression of differentiation in neural precursors. Conclusions As a whole, our findings indicate that IGF-I overexpression in neural precursors leads to brain overgrowth and fosters external granular layer (EGL) proliferative lesions through a mechanism favoring proliferation over terminal differentiation, acting as a landscape for tumor growth. Understanding the molecular events responsible for cerebellum development and their alterations in tumorigenesis is critical for the identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Mirella Tanori
- Section of Toxicology and Biomedical Sciences, ENEA CR-Casaccia, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Martín-Ibáñez R, Crespo E, Urbán N, Sergent-Tanguy S, Herranz C, Jaumot M, Valiente M, Long JE, Pineda JR, Andreu C, Rubenstein JLR, Marín O, Georgopoulos K, Mengod G, Fariñas I, Bachs O, Alberch J, Canals JM. Ikaros-1 couples cell cycle arrest of late striatal precursors with neurogenesis of enkephalinergic neurons. J Comp Neurol 2010; 518:329-51. [PMID: 19950118 DOI: 10.1002/cne.22215] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During central nervous system development, several transcription factors regulate the differentiation of progenitor cells to postmitotic neurons. Here we describe a novel role for Ikaros-1 in the generation of late-born striatal neurons. Our results show that Ikaros-1 is expressed in the boundary of the striatal germinal zone (GZ)/mantle zone (MZ), where it induces cell cycle arrest of neural progenitors by up-regulation of the cyclin-dependent kinase inhibitor (CDKi) p21(Cip1/Waf1). This effect is coupled with the neuronal differentiation of late precursors, which in turn is critical for the second wave of striatal neurogenesis that gives rise to matrix neurons. Consistently, Ikaros(-/-) mice had fewer striatal projecting neurons and, in particular, enkephalin (ENK)-positive neurons. In addition, overexpression of Ikaros-1 in primary striatal cultures increases the number of calbindin- and ENK-positive neurons. Our results also show that Ikaros-1 acts downstream of the Dlx family of transcription factors, insofar as its expression is lost in Dlx1/2 double knockout mice. However, we demonstrate that Ikaros-1 and Ebf-1 independently regulate the final determination of the two populations of striatal projection neurons of the matrix compartment, ENK- and substance P-positive neurons. In conclusion, our findings identify Ikaros-1 as a modulator of cell cycle exit of neural progenitors that gives rise to the neurogenesis of ENK-positive striatal neurons.
Collapse
Affiliation(s)
- Raquel Martín-Ibáñez
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Salomoni P, Calegari F. Cell cycle control of mammalian neural stem cells: putting a speed limit on G1. Trends Cell Biol 2010; 20:233-43. [PMID: 20153966 DOI: 10.1016/j.tcb.2010.01.006] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 01/13/2010] [Accepted: 01/13/2010] [Indexed: 01/06/2023]
Abstract
The potential to increase unlimitedly in number and to generate differentiated cell types is a key feature of somatic stem cells. Within the nervous system, cellular and environmental determinants tightly control the expansion and differentiation of neural stem cells. Importantly, a number of studies have indicated that changes in cell cycle length can influence development and physiopathology of the nervous system, and might have played a role during evolution of the mammalian brain. Specifically, it has been suggested that the length of G1 can directly influence the differentiation of neural precursors. This has prompted the proposal of a model to explain how manipulation of G1 length can be used to expand neural stem cells. If validated in non-neural systems, this model might provide the means to control the proliferation vs. differentiation of somatic stem cells, which will represent a significant advance in the field.
Collapse
Affiliation(s)
- Paolo Salomoni
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, 72 Huntley Street, London WC1E 6BT, UK.
| | | |
Collapse
|
43
|
Farioli-Vecchioli S, Saraulli D, Costanzi M, Leonardi L, Cinà I, Micheli L, Nutini M, Longone P, Oh SP, Cestari V, Tirone F. Impaired terminal differentiation of hippocampal granule neurons and defective contextual memory in PC3/Tis21 knockout mice. PLoS One 2009; 4:e8339. [PMID: 20020054 PMCID: PMC2791842 DOI: 10.1371/journal.pone.0008339] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 11/23/2009] [Indexed: 12/11/2022] Open
Abstract
Neurogenesis in the dentate gyrus of the adult hippocampus has been implicated in neural plasticity and memory, but the molecular mechanisms controlling the proliferation and differentiation of newborn neurons and their integration into the synaptic circuitry are still largely unknown. To investigate this issue, we have analyzed the adult hippocampal neurogenesis in a PC3/Tis21-null mouse model. PC3/Tis21 is a transcriptional co-factor endowed with antiproliferative and prodifferentiative properties; indeed, its upregulation in neural progenitors has been shown to induce exit from cell cycle and differentiation. We demonstrate here that the deletion of PC3/Tis21 causes an increased proliferation of progenitor cells in the adult dentate gyrus and an arrest of their terminal differentiation. In fact, in the PC3/Tis21-null hippocampus postmitotic undifferentiated neurons accumulated, while the number of terminally differentiated neurons decreased of 40%. As a result, PC3/Tis21-null mice displayed a deficit of contextual memory. Notably, we observed that PC3/Tis21 can associate to the promoter of Id3, an inhibitor of proneural gene activity, and negatively regulates its expression, indicating that PC3/Tis21 acts upstream of Id3. Our results identify PC3/Tis21 as a gene required in the control of proliferation and terminal differentiation of newborn neurons during adult hippocampal neurogenesis and suggest its involvement in the formation of contextual memories.
Collapse
Affiliation(s)
- Stefano Farioli-Vecchioli
- Institute of Neurobiology and Molecular Medicine, Consiglio Nazionale delle Ricerche, Fondazione S.Lucia, Rome, Italy
| | - Daniele Saraulli
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Rome, Italy
- LUMSA University, Faculty of Educational Science, Rome, Italy
| | - Marco Costanzi
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Rome, Italy
- LUMSA University, Faculty of Educational Science, Rome, Italy
| | - Luca Leonardi
- Institute of Neurobiology and Molecular Medicine, Consiglio Nazionale delle Ricerche, Fondazione S.Lucia, Rome, Italy
| | - Irene Cinà
- Institute of Neurobiology and Molecular Medicine, Consiglio Nazionale delle Ricerche, Fondazione S.Lucia, Rome, Italy
| | - Laura Micheli
- Institute of Neurobiology and Molecular Medicine, Consiglio Nazionale delle Ricerche, Fondazione S.Lucia, Rome, Italy
| | - Michele Nutini
- Molecular Neurobiology Unit, Fondazione S.Lucia, Rome, Italy
| | | | - S. Paul Oh
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, United States of America
| | - Vincenzo Cestari
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Rome, Italy
- LUMSA University, Faculty of Educational Science, Rome, Italy
- * E-mail: (FT); (VC)
| | - Felice Tirone
- Institute of Neurobiology and Molecular Medicine, Consiglio Nazionale delle Ricerche, Fondazione S.Lucia, Rome, Italy
- * E-mail: (FT); (VC)
| |
Collapse
|
44
|
Lange C, Huttner WB, Calegari F. Cdk4/cyclinD1 overexpression in neural stem cells shortens G1, delays neurogenesis, and promotes the generation and expansion of basal progenitors. Cell Stem Cell 2009; 5:320-31. [PMID: 19733543 DOI: 10.1016/j.stem.2009.05.026] [Citation(s) in RCA: 426] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 04/23/2009] [Accepted: 05/29/2009] [Indexed: 11/16/2022]
Abstract
During mouse embryonic development, neural progenitors lengthen the G1 phase of the cell cycle and this has been suggested to be a cause, rather than a consequence, of neurogenesis. To investigate whether G1 lengthening alone may cause the switch of cortical progenitors from proliferation to neurogenesis, we manipulated the expression of cdk/cyclin complexes and found that cdk4/cyclinD1 overexpression prevents G1 lengthening without affecting cell growth, cleavage plane, or cell cycle synchrony with interkinetic nuclear migration. Specifically, overexpression of cdk4/cyclinD1 inhibited neurogenesis while increasing the generation and expansion of basal (intermediate) progenitors, resulting in a thicker subventricular zone and larger surface area of the postnatal cortex originating from cdk4/cyclinD1-transfected progenitors. Conversely, lengthening of G1 by cdk4/cyclinD1-RNAi displayed the opposite effects. Thus, G1 lengthening is necessary and sufficient to switch neural progenitors to neurogenesis, and overexpression of cdk4/cyclinD1 can be used to increase progenitor expansion and, perhaps, cortical surface area.
Collapse
Affiliation(s)
- Christian Lange
- DFG-Research Center and Cluster of Excellence for Regenerative Therapies Dresden (CRTD), Medical Faculty, Technische Universität Dresden c/o Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | |
Collapse
|
45
|
Porterfield VM, Mintz EM. Temporal patterns of light-induced immediate-early gene expression in the suprachiasmatic nucleus. Neurosci Lett 2009; 463:70-3. [PMID: 19638298 DOI: 10.1016/j.neulet.2009.07.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 07/06/2009] [Accepted: 07/23/2009] [Indexed: 12/11/2022]
Abstract
Exposing an animal to light during the normal dark period of its daily cycle induces shifts in the animal's circadian rhythm of activity. These shifts are preceded by an increase in the expression of an array of immediate early genes in the suprachiasmatic nucleus, the location of the primary circadian clock in the brain. For most of these genes, little is known about the physiological significance of their expression in the SCN. In order to characterize the expression of these genes, laser capture microscopy, and real-time PCR were used to measure the time course of expression of immediate-early genes in the SCN after a 30-min light pulse during the early portion of the night. Most of the measured genes show peak expression shortly after the end of the stimulus and then decline back to baseline after 2h. However, a few genes, including Rrad, Egr3, and Jun, show a more sustained elevation in expression. Analysis of the function of light-induced genes in other cellular systems suggests a possible role for these genes in reducing the SCN to subsequent photic stimuli and in protecting the SCN from excitotoxicity.
Collapse
|
46
|
Attardo A, Fabel K, Krebs J, Haubensak W, Huttner WB, Kempermann G. Tis21 expression marks not only populations of neurogenic precursor cells but also new postmitotic neurons in adult hippocampal neurogenesis. ACTA ACUST UNITED AC 2009; 20:304-14. [PMID: 19482889 PMCID: PMC2803732 DOI: 10.1093/cercor/bhp100] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
During embryonic cortical development, expression of Tis21 is associated with cell cycle lengthening and neurogenic divisions of progenitor cells. We here investigated if the expression pattern of Tis21 also correlates with the generation of new neurons in the adult hippocampus. We used Tis21 knock-in mice expressing green fluorescent protein (GFP) and studied Tis21-GFP expression together with markers of adult hippocampal neurogenesis in newly generated cells. We found that Tis21-GFP 1) was absent from the radial glia–like putative stem cells (type-1 cells), 2) first appeared in transient amplifying progenitor cells (type-2 and 3 cells), 3) did not colocalize with markers of early postmitotic maturation stage, 4) was expressed again in maturing neurons, and 5) finally decreased in mature granule cells. Our data show that, in the course of adult neurogenesis, Tis21 is expressed in a phase additional to the one of the embryonic neurogenesis. This additional phase of expression might be associated with a new and different function of Tis21 than during embryonic brain development, where no Tis21 is expressed in mature neurons. We hypothesize that this function is related to the final functional integration of the newborn neurons. Tis21 can thus serve as new marker for key stages of adult neurogenesis.
Collapse
Affiliation(s)
- Alessio Attardo
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Farioli-Vecchioli S, Saraulli D, Costanzi M, Pacioni S, Cinà I, Aceti M, Micheli L, Bacci A, Cestari V, Tirone F. The timing of differentiation of adult hippocampal neurons is crucial for spatial memory. PLoS Biol 2008; 6:e246. [PMID: 18842068 PMCID: PMC2561078 DOI: 10.1371/journal.pbio.0060246] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 08/29/2008] [Indexed: 11/19/2022] Open
Abstract
Adult neurogenesis in the dentate gyrus plays a critical role in hippocampus-dependent spatial learning. It remains unknown, however, how new neurons become functionally integrated into spatial circuits and contribute to hippocampus-mediated forms of learning and memory. To investigate these issues, we used a mouse model in which the differentiation of adult-generated dentate gyrus neurons can be anticipated by conditionally expressing the pro-differentiative gene PC3 (Tis21/BTG2) in nestin-positive progenitor cells. In contrast to previous studies that affected the number of newly generated neurons, this strategy selectively changes their timing of differentiation. New, adult-generated dentate gyrus progenitors, in which the PC3 transgene was expressed, showed accelerated differentiation and significantly reduced dendritic arborization and spine density. Functionally, this genetic manipulation specifically affected different hippocampus-dependent learning and memory tasks, including contextual fear conditioning, and selectively reduced synaptic plasticity in the dentate gyrus. Morphological and functional analyses of hippocampal neurons at different stages of differentiation, following transgene activation within defined time-windows, revealed that the new, adult-generated neurons up to 3-4 weeks of age are required not only to acquire new spatial information but also to use previously consolidated memories. Thus, the correct unwinding of these key memory functions, which can be an expression of the ability of adult-generated neurons to link subsequent events in memory circuits, is critically dependent on the correct timing of the initial stages of neuron maturation and connection to existing circuits.
Collapse
Affiliation(s)
- Stefano Farioli-Vecchioli
- Institute of Neurobiology and Molecular Medicine, Consiglio Nazionale delle Ricerche, Fondazione S. Lucia, Rome, Italy
| | - Daniele Saraulli
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Rome, Italy
- LUMSA University, Faculty of Educational Science, Rome, Italy
| | - Marco Costanzi
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Rome, Italy
- LUMSA University, Faculty of Educational Science, Rome, Italy
| | | | - Irene Cinà
- Institute of Neurobiology and Molecular Medicine, Consiglio Nazionale delle Ricerche, Fondazione S. Lucia, Rome, Italy
| | - Massimiliano Aceti
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Laura Micheli
- Institute of Neurobiology and Molecular Medicine, Consiglio Nazionale delle Ricerche, Fondazione S. Lucia, Rome, Italy
| | | | - Vincenzo Cestari
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Rome, Italy
- LUMSA University, Faculty of Educational Science, Rome, Italy
| | - Felice Tirone
- Institute of Neurobiology and Molecular Medicine, Consiglio Nazionale delle Ricerche, Fondazione S. Lucia, Rome, Italy
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
48
|
Yang X, Morita M, Wang H, Suzuki T, Yang W, Luo Y, Zhao C, Yu Y, Bartlam M, Yamamoto T, Rao Z. Crystal structures of human BTG2 and mouse TIS21 involved in suppression of CAF1 deadenylase activity. Nucleic Acids Res 2008; 36:6872-81. [PMID: 18974182 PMCID: PMC2588512 DOI: 10.1093/nar/gkn825] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BTG2 is the prototypical member of the TOB family and is known to be involved in cell growth, differentiation and DNA repair. As a transcriptional co-regulator, BTG2 interacts with CCR4-associated factor 1 (CAF1) and POP2 (CALIF), which are key components of the general CCR4/NOT multi-subunit transcription complex, and which are reported to play distinct roles as nucleases involved in mRNA deadenylation. Here we report the crystal structures of human BTG2 and mouse TIS21 to 2.3 Å and 2.2 Å resolution, respectively. The structures reveal the putative CAF1 binding site. CAF1 deadenylase assays were performed with wild-type BTG2 and mutants that disrupt the interaction with CAF1. The results reveal the suppressive role of BTG2 in the regulation of CAF1 deadenylase activity. Our study provides insights into the formation of the BTG2-CAF1 complex and the potential role of BTG2 in the regulation of CAF1.
Collapse
Affiliation(s)
- Xiuna Yang
- Laboratory of Structural Biology, Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kamaid A, Giráldez F. Btg1 and Btg2 gene expression during early chick development. Dev Dyn 2008; 237:2158-69. [PMID: 18651656 DOI: 10.1002/dvdy.21616] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Btg/Tob genes encode for a new family of proteins with antiproliferative functions, which are also able to stimulate cell differentiation. Btg1 and Btg2 are the most closely related members in terms of gene sequence. We analyzed their expression patterns in avian embryos by in situ hybridization, from embryonic day 1 to 3. Btg1 was distinctively expressed in the Hensen's node, the notochord, the cardiogenic mesoderm, the lens vesicle, and in the apical ectodermal ridge and mesenchyme of the limb buds. On the other hand, Btg2 expression domains included the neural plate border, presomitic mesoderm, trigeminal placode, and mesonephros. Both genes were commonly expressed in the myotome, epibranchial placodes, and dorsal neural tube. The results suggest that Btg1 and Btg2 are involved in multiple developmental processes. Overlapping expression of Btg1 and Btg2 may imply redundant functions, but unique expression patterns suggest also differential regulation and function.
Collapse
Affiliation(s)
- Andrés Kamaid
- Developmental Biology Group, DCEXS, Universitat Pompeu Fabra, Barcelona, Spain.
| | | |
Collapse
|
50
|
Dagai L, Peri-Naor R, Birk RZ. Docosahexaenoic acid significantly stimulates immediate early response genes and neurite outgrowth. Neurochem Res 2008; 34:867-75. [PMID: 18781386 DOI: 10.1007/s11064-008-9845-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2008] [Accepted: 08/27/2008] [Indexed: 11/26/2022]
Abstract
Docosahexaenoic acid (22:6n - 3, DHA) is known to enhance neurogenesis. However, the immediate-early effect of DHA on neurogenesis is not fully elucidated. We studied the effect of DHA supplementation (10 and 30 microM) on morphological and molecular changes at different time points of nerve growth factor (NGF, 50 ng/ml)-induced differentiation of PC12 (pheochromocytoma) cells. Cells were analyzed throughout the differentiation process (2 h, 1, 2, 3, 4, and 10 days), for neurite outgrowth (light microscopy and computer image analysis), and for mRNA levels of the immediate molecular differentiation markers Egr1, Egr3, PC3 and PC4 (quantitative real-time PCR). DHA induced significant accelerated neurite outgrowth beginning as early as 2 h post-DHA supplementation and throughout differentiation. Transcripts of the neurogenesis immediate early biomarkers Egr3 and PC3 were significantly (P < 0.05) elevated following DHA supplementation within 0.5 and 1 h post-supplementation (respectively). In conclusion, we show that DHA significantly stimulates immediate-early neurogenesis events, as is evident by both morphological and molecular markers.
Collapse
Affiliation(s)
- L Dagai
- Ben Gurion University of the Negev, Beer-Sheva, Israel
| | | | | |
Collapse
|