1
|
Miyamoto K, Setsuie R, Miyashita Y. Conversion of concept-specific decision confidence into integrative introspection in primates. Cell Rep 2022; 38:110581. [PMID: 35354028 DOI: 10.1016/j.celrep.2022.110581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 12/21/2021] [Accepted: 03/07/2022] [Indexed: 11/26/2022] Open
Abstract
Introspection based on the integration of uncertain evidence is critical for acting upon abstract thinking and imagining future scenarios. However, it is unknown how confidence read-outs from multiple sources of different concepts are integrated, especially considering the relationships among the concepts. In this study, monkeys performed wagering based on an estimation of their performance in a preceding mnemonic decision. We found that the longer the response times for post-decision wagering, the more relieved the impairments having been caused by frontal disruption. This suggests the existence of a time-consuming compensatory metacognitive process. We found posterior inferior parietal lobe (pIPL) as its candidate, which was not coding the wagering per se (i.e., just high bet or low bet), but became more active when monkeys successfully chose the optimal bet option based on mnemonic decision performance. Thereafter, the pIPL prompts dorsal anterior cingulate cortex to carry the chosen wagering option. Our findings suggest a role for the pIPL in metacognitive concept integration.
Collapse
Affiliation(s)
- Kentaro Miyamoto
- Department of Physiology, The University of Tokyo School of Medicine, Bunkyo-ku, Tokyo 113-0033, Japan; Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Experimental Psychology, University of Oxford, Oxford, OXON OX1 3TA, UK; Laboratory for Imagination and Executive Functions, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | - Rieko Setsuie
- Department of Physiology, The University of Tokyo School of Medicine, Bunkyo-ku, Tokyo 113-0033, Japan; Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan; Laboratory for Cognition Circuit Dynamics, RIKEN Center for Brain Science, Wako-shi, Saitama 351-0198, Japan; Brain Functional Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Wako-shi, Saitama 351-0198, Japan
| | - Yasushi Miyashita
- Department of Physiology, The University of Tokyo School of Medicine, Bunkyo-ku, Tokyo 113-0033, Japan; Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan; Laboratory for Cognition Circuit Dynamics, RIKEN Center for Brain Science, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
2
|
Tallman CW, Clark RE, Smith CN. Human brain activity and functional connectivity as memories age from one hour to one month. Cogn Neurosci 2022; 13:115-133. [DOI: 10.1080/17588928.2021.2021164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Catherine W. Tallman
- Department of Psychology, UCSD, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Robert E. Clark
- Department of Psychiatry, UCSD, San Diego, CA, USA
- Center for the Neurobiology of Learning and Memory, UCI, San Diego, CA, USA
| | - Christine N. Smith
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, UCSD, San Diego, CA, USA
- Center for the Neurobiology of Learning and Memory, UCI, San Diego, CA, USA
| |
Collapse
|
3
|
Mariani V, Balestrini S, Gozzo F, Pelliccia V, Mai R, Francione S, Sartori I, Cardinale F, Tassi L. Intracerebral electrical stimulations of the temporal lobe: A stereoelectroencephalography study. Eur J Neurosci 2021; 54:5368-5383. [PMID: 34192818 DOI: 10.1111/ejn.15377] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/06/2021] [Accepted: 06/17/2021] [Indexed: 11/28/2022]
Abstract
The functional anatomy of the anteromesial portion of the temporal lobe and its involvement in epilepsy can be explored by means of intracerebral electrical stimulations. Here, we aimed to expand the knowledge of its physiological and pathophysiological symptoms by conducting the first large-sample systematic analysis of 1529 electrical stimulations of this anatomical region. We retrospectively analysed all clinical manifestations induced by intracerebral electrical stimulations in 173 patients with drug-resistant focal epilepsy with at least one electrode implanted in this area. We found that high-frequency stimulations were more likely to evoke electroclinical manifestations (p < .0001) and also provoked 'false positive' seizures. Multimodal symptoms were associated with EEG electrical modification (after discharge) (p < .0001). Visual symptoms were not associated with after discharge (p = .0002) and were mainly evoked by stimulation of the hippocampus (p = .009) and of the parahippocampal gyrus (p = .0212). 'False positive seizures' can be evoked by stimulation of the hippocampus, parahippocampal gyrus and amygdala, likely due to their intrinsic low epileptogenic threshold. Visual symptoms evoked in the hippocampus and parahippocampal gyrus, without EEG changes, are physiological symptoms and suggest involvement of these areas in the visual ventral stream. Our findings provide meaningful guidance in the interpretation of intracranial EEG studies of the temporal lobe.
Collapse
Affiliation(s)
- Valeria Mariani
- Neurology and Stroke Unit Divison, Circolo Hospital ASST Settelaghi University of Insubria, Varese, Italy.,"Claudio Munari" Epilepsy Surgery Centre, ASST GOM Niguarda, Milan, Italy
| | - Simona Balestrini
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology and Chalfont Centre for Epilepsy, London, UK.,Neuroscience Department, Meyer Children's Hospital-University of Florence, Florence, Italy
| | - Francesca Gozzo
- "Claudio Munari" Epilepsy Surgery Centre, ASST GOM Niguarda, Milan, Italy
| | - Veronica Pelliccia
- "Claudio Munari" Epilepsy Surgery Centre, ASST GOM Niguarda, Milan, Italy
| | - Roberto Mai
- "Claudio Munari" Epilepsy Surgery Centre, ASST GOM Niguarda, Milan, Italy
| | - Stefano Francione
- "Claudio Munari" Epilepsy Surgery Centre, ASST GOM Niguarda, Milan, Italy
| | - Ivana Sartori
- "Claudio Munari" Epilepsy Surgery Centre, ASST GOM Niguarda, Milan, Italy
| | | | - Laura Tassi
- "Claudio Munari" Epilepsy Surgery Centre, ASST GOM Niguarda, Milan, Italy
| |
Collapse
|
4
|
Patel GH, Sestieri C, Corbetta M. The evolution of the temporoparietal junction and posterior superior temporal sulcus. Cortex 2019; 118:38-50. [PMID: 30808550 DOI: 10.1016/j.cortex.2019.01.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/04/2019] [Accepted: 01/14/2019] [Indexed: 12/20/2022]
Abstract
The scale at which humans can handle complex social situations is massively increased compared to other animals. However, the neural substrates of this scaling remain poorly understood. In this review, we discuss how the expansion and rearrangement of the temporoparietal junction and posterior superior temporal sulcus (TPJ-pSTS) may have played a key role in the growth of human social abilities. Comparing the function and anatomy of the TPJ-pSTS in humans and macaques, which are thought to be separated by 25 million years of evolution, we find that the expansion of this region in humans has shifted the architecture of the dorsal and ventral processing streams. The TPJ-pSTS contains areas related to face-emotion processing, attention, theory of mind operations, and memory; its expansion has allowed for the elaboration and rearrangement of the cortical areas contained within, and potentially the introduction of new cortical areas. Based on the arrangement and the function of these areas in the human, we propose that the TPJ-pSTS is the basis of a third frontoparietal processing stream that underlies the increased social abilities in humans. We then describe a model of how the TPJ-pSTS areas interact as a hub that coordinates the activities of multiple brain networks in the exploration of the complex dynamic social scenes typical of the human social experience.
Collapse
Affiliation(s)
- Gaurav H Patel
- Columbia University, USA; New York State Psychiatric Institute, USA.
| | | | - Maurizio Corbetta
- University of Padova, Italy; Washington University School of Medicine, USA
| |
Collapse
|
5
|
Visual memory, the long and the short of it: A review of visual working memory and long-term memory. Atten Percept Psychophys 2018; 80:1035-1056. [DOI: 10.3758/s13414-018-1522-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Reversible Silencing of the Frontopolar Cortex Selectively Impairs Metacognitive Judgment on Non-experience in Primates. Neuron 2018; 97:980-989.e6. [DOI: 10.1016/j.neuron.2017.12.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/04/2017] [Accepted: 12/22/2017] [Indexed: 01/24/2023]
|
7
|
Miyamoto K, Osada T, Setsuie R, Takeda M, Tamura K, Adachi Y, Miyashita Y. Causal neural network of metamemory for retrospection in primates. Science 2017; 355:188-193. [DOI: 10.1126/science.aal0162] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/14/2016] [Indexed: 11/02/2022]
|
8
|
Sun Y, Zhang L, Ancharaz SS, Cheng S, Sun W, Wang H, Sun Y. Decreased fractional anisotropy values in two clusters of white matter in patients with schizotypal personality disorder: A DTI study. Behav Brain Res 2016; 310:68-75. [DOI: 10.1016/j.bbr.2016.05.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/16/2016] [Accepted: 05/09/2016] [Indexed: 11/24/2022]
|
9
|
Febo M, Foster TC. Preclinical Magnetic Resonance Imaging and Spectroscopy Studies of Memory, Aging, and Cognitive Decline. Front Aging Neurosci 2016; 8:158. [PMID: 27468264 PMCID: PMC4942756 DOI: 10.3389/fnagi.2016.00158] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/16/2016] [Indexed: 01/14/2023] Open
Abstract
Neuroimaging provides for non-invasive evaluation of brain structure and activity and has been employed to suggest possible mechanisms for cognitive aging in humans. However, these imaging procedures have limits in terms of defining cellular and molecular mechanisms. In contrast, investigations of cognitive aging in animal models have mostly utilized techniques that have offered insight on synaptic, cellular, genetic, and epigenetic mechanisms affecting memory. Studies employing magnetic resonance imaging and spectroscopy (MRI and MRS, respectively) in animal models have emerged as an integrative set of techniques bridging localized cellular/molecular phenomenon and broader in vivo neural network alterations. MRI methods are remarkably suited to longitudinal tracking of cognitive function over extended periods permitting examination of the trajectory of structural or activity related changes. Combined with molecular and electrophysiological tools to selectively drive activity within specific brain regions, recent studies have begun to unlock the meaning of fMRI signals in terms of the role of neural plasticity and types of neural activity that generate the signals. The techniques provide a unique opportunity to causally determine how memory-relevant synaptic activity is processed and how memories may be distributed or reconsolidated over time. The present review summarizes research employing animal MRI and MRS in the study of brain function, structure, and biochemistry, with a particular focus on age-related cognitive decline.
Collapse
Affiliation(s)
- Marcelo Febo
- Department of Psychiatry, William L. and Evelyn F. McKnight Brain Institute, University of Florida Gainesville, FL, USA
| | - Thomas C Foster
- Department of Neuroscience, William L. and Evelyn F. McKnight Brain Institute, University of Florida Gainesville, FL, USA
| |
Collapse
|
10
|
Osada T, Adachi Y, Miyamoto K, Jimura K, Setsuie R, Miyashita Y. Dynamically Allocated Hub in Task-Evoked Network Predicts the Vulnerable Prefrontal Locus for Contextual Memory Retrieval in Macaques. PLoS Biol 2015; 13:e1002177. [PMID: 26125513 PMCID: PMC4488377 DOI: 10.1371/journal.pbio.1002177] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 05/11/2015] [Indexed: 11/21/2022] Open
Abstract
Neuroimaging and neurophysiology have revealed that multiple areas in the prefrontal cortex (PFC) are activated in a specific memory task, but severity of impairment after PFC lesions is largely different depending on which activated area is damaged. The critical relationship between lesion sites and impairments has not yet been given a clear mechanistic explanation. Although recent works proposed that a whole-brain network contains hubs that play integrative roles in cortical information processing, this framework relying on an anatomy-based structural network cannot account for the vulnerable locus for a specific task, lesioning of which would bring impairment. Here, we hypothesized that (i) activated PFC areas dynamically form an ordered network centered at a task-specific “functional hub” and (ii) the lesion-effective site corresponds to the “functional hub,” but not to a task-invariant “structural hub.” To test these hypotheses, we conducted functional magnetic resonance imaging experiments in macaques performing a temporal contextual memory task. We found that the activated areas formed a hierarchical hub-centric network based on task-evoked directed connectivity, differently from the anatomical network reflecting axonal projection patterns. Using a novel simulated-lesion method based on support vector machine, we estimated severity of impairment after lesioning of each area, which accorded well with a known dissociation in contextual memory impairment in macaques (impairment after lesioning in area 9/46d, but not in area 8Ad). The predicted severity of impairment was proportional to the network “hubness” of the virtually lesioned area in the task-evoked directed connectivity network, rather than in the anatomical network known from tracer studies. Our results suggest that PFC areas dynamically and cooperatively shape a functional hub-centric network to reallocate the lesion-effective site depending on the cognitive processes, apart from static anatomical hubs. These findings will be a foundation for precise prediction of behavioral impacts of damage or surgical intervention in human brains. Patterns of whole-brain activity while macaques perform a memory retrieval task show that the task-specific functional hub in the dynamic cortical network predicts the task-specific consequences of brain damage better than a task-invariant structural hub does. Patients with lesions in the front part of the brain’s frontal lobe—the prefrontal cortex—suffer from severe memory deficits. Neuroimaging and neurophysiology studies have revealed that multiple areas in the prefrontal cortex are activated during a specific memory task. However, the severity of the memory deficit after a lesion in the prefrontal cortex largely depends on which of the activated areas is damaged; lesions in only a fraction of the activated areas actually lead to memory deficits. It is currently unknown why some activated areas are “lesion effective” and others are not. Here, by using functional magnetic resonance imaging (fMRI) to measure macaque whole-brain activity during a memory task, we found that the activated areas and the task-specific functional connectivity among them formed a hierarchical network centered on a hub. The task-specific “functional hub” in this dynamic network accurately corresponds to the well-documented lesion-effective site and avoids the neighboring non-lesion-effective sites. Quantitatively, the predicted severity of memory impairment is proportional to the network “hubness” of the lesioned area in the functional network, rather than in the anatomical network, which is statically determined by axonal projection patterns. Our results suggest that the areas of the prefrontal cortex dynamically shape a hub-centric network, reallocating the lesion-effective site apart from the static anatomical hubs depending on the cognitive requirements of the specific memory task.
Collapse
Affiliation(s)
- Takahiro Osada
- Department of Physiology, The University of Tokyo School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
- Department of Physiology, Juntendo University School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yusuke Adachi
- Department of Physiology, The University of Tokyo School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Kentaro Miyamoto
- Department of Physiology, The University of Tokyo School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Koji Jimura
- Precision and Intelligence Laboratory, Tokyo Institute of Technology, Yokohama, Japan
| | - Rieko Setsuie
- Department of Physiology, The University of Tokyo School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yasushi Miyashita
- Department of Physiology, The University of Tokyo School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
- CREST, JST, Kawaguchi, Saitama, Japan
- * E-mail:
| |
Collapse
|
11
|
Blockade of glutamatergic transmission in perirhinal cortex impairs object recognition memory in macaques. J Neurosci 2015; 35:5043-50. [PMID: 25810533 DOI: 10.1523/jneurosci.4307-14.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The perirhinal cortex (PRc) is essential for visual recognition memory, as shown by electrophysiological recordings and lesion studies in a variety of species. However, relatively little is known about the functional contributions of perirhinal subregions. Here we used a systematic mapping approach to identify the critical subregions of PRc through transient, focal blockade of glutamate receptors by intracerebral infusion of kynurenic acid. Nine macaques were tested for visual recognition memory using the delayed nonmatch-to-sample task. We found that inactivation of medial PRc (consisting of Area 35 together with the medial portion of Area 36), but not lateral PRc (the lateral portion of Area 36), resulted in a significant delay-dependent impairment. Significant impairment was observed with 30 and 60 s delays but not with 10 s delays. The magnitude of impairment fell within the range previously reported after PRc lesions. Furthermore, we identified a restricted area located within the most anterior part of medial PRc as critical for this effect. Moreover, we found that focal blockade of either NMDA receptors by the receptor-specific antagonist AP-7 or AMPA receptors by the receptor-specific antagonist NBQX was sufficient to disrupt object recognition memory. The present study expands the knowledge of the role of PRc in recognition memory by identifying a subregion within this area that is critical for this function. Our results also indicate that, like in the rodent, both NMDA and AMPA-mediated transmission contributes to object recognition memory.
Collapse
|
12
|
Nauer RK, Whiteman AS, Dunne MF, Stern CE, Schon K. Hippocampal subfield and medial temporal cortical persistent activity during working memory reflects ongoing encoding. Front Syst Neurosci 2015; 9:30. [PMID: 25859188 PMCID: PMC4372545 DOI: 10.3389/fnsys.2015.00030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/18/2015] [Indexed: 11/13/2022] Open
Abstract
Previous neuroimaging studies support a role for the medial temporal lobes in maintaining novel stimuli over brief working memory (WM) delays, and suggest delay period activity predicts subsequent memory. Additionally, slice recording studies have demonstrated neuronal persistent spiking in entorhinal cortex, perirhinal cortex (PrC), and hippocampus (CA1, CA3, subiculum). These data have led to computational models that suggest persistent spiking in parahippocampal regions could sustain neuronal representations of sensory information over many seconds. This mechanism may support both WM maintenance and encoding of information into long term episodic memory. The goal of the current study was to use high-resolution fMRI to elucidate the contributions of the MTL cortices and hippocampal subfields to WM maintenance as it relates to later episodic recognition memory. We scanned participants while they performed a delayed match to sample task with novel scene stimuli, and assessed their memory for these scenes post-scan. We hypothesized stimulus-driven activation that persists into the delay period-a putative correlate of persistent spiking-would predict later recognition memory. Our results suggest sample and delay period activation in the parahippocampal cortex (PHC), PrC, and subiculum (extending into DG/CA3 and CA1) was linearly related to increases in subsequent memory strength. These data extend previous neuroimaging studies that have constrained their analysis to either the sample or delay period by modeling these together as one continuous ongoing encoding process, and support computational frameworks that predict persistent activity underlies both WM and episodic encoding.
Collapse
Affiliation(s)
- Rachel K. Nauer
- Department of Psychological and Brain Sciences and Center for Memory and Brain, Boston University, Boston, MAUSA
- Brain Plasticity and Neuroimaging Laboratory, Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MAUSA
| | - Andrew S. Whiteman
- Department of Psychological and Brain Sciences and Center for Memory and Brain, Boston University, Boston, MAUSA
| | - Matthew F. Dunne
- Brain Plasticity and Neuroimaging Laboratory, Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MAUSA
| | - Chantal E. Stern
- Brain Plasticity and Neuroimaging Laboratory, Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MAUSA
| | - Karin Schon
- Department of Psychological and Brain Sciences and Center for Memory and Brain, Boston University, Boston, MAUSA
- Brain Plasticity and Neuroimaging Laboratory, Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MAUSA
| |
Collapse
|
13
|
In search of a recognition memory engram. Neurosci Biobehav Rev 2014; 50:12-28. [PMID: 25280908 PMCID: PMC4382520 DOI: 10.1016/j.neubiorev.2014.09.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 09/18/2014] [Accepted: 09/22/2014] [Indexed: 01/06/2023]
Abstract
The role of the perirhinal cortex in familiarity discrimination is reviewed. Behavioural, pharmacological and electrophysiological evidence is considered. The cortex is found to be essential for memory acquisition, retrieval and storage. The evidence indicates that perirhinal synaptic weakening is critically involved.
A large body of data from human and animal studies using psychological, recording, imaging, and lesion techniques indicates that recognition memory involves at least two separable processes: familiarity discrimination and recollection. Familiarity discrimination for individual visual stimuli seems to be effected by a system centred on the perirhinal cortex of the temporal lobe. The fundamental change that encodes prior occurrence within the perirhinal cortex is a reduction in the responses of neurones when a stimulus is repeated. Neuronal network modelling indicates that a system based on such a change in responsiveness is potentially highly efficient in information theoretic terms. A review is given of findings indicating that perirhinal cortex acts as a storage site for recognition memory of objects and that such storage depends upon processes producing synaptic weakening.
Collapse
|
14
|
Miyamoto K, Osada T, Adachi Y. Remapping of memory encoding and retrieval networks: insights from neuroimaging in primates. Behav Brain Res 2014; 275:53-61. [PMID: 25192634 DOI: 10.1016/j.bbr.2014.08.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 08/21/2014] [Accepted: 08/23/2014] [Indexed: 01/02/2023]
Abstract
Advancements in neuroimaging techniques have allowed for the investigation of the neural correlates of memory functions in the whole human brain. Thus, the involvement of various cortical regions, including the medial temporal lobe (MTL) and posterior parietal cortex (PPC), has been repeatedly reported in the human memory processes of encoding and retrieval. However, the functional roles of these sites could be more fully characterized utilizing nonhuman primate models, which afford the potential for well-controlled, finer-scale experimental procedures that are inapplicable to humans, including electrophysiology, histology, genetics, and lesion approaches. Yet, the presence and localization of the functional counterparts of these human memory-related sites in the macaque monkey MTL or PPC were previously unknown. Therefore, to bridge the inter-species gap, experiments were required in monkeys using functional magnetic resonance imaging (fMRI), the same methodology adopted in human studies. Here, we briefly review the history of experimentation on memory systems using a nonhuman primate model and our recent fMRI studies examining memory processing in monkeys performing recognition memory tasks. We will discuss the memory systems common to monkeys and humans and future directions of finer cell-level characterization of memory-related processes using electrophysiological recording and genetic manipulation approaches.
Collapse
Affiliation(s)
- Kentaro Miyamoto
- Department of Physiology, The University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Takahiro Osada
- Department of Physiology, The University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yusuke Adachi
- Department of Physiology, The University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
15
|
Orban GA, Zhu Q, Vanduffel W. The transition in the ventral stream from feature to real-world entity representations. Front Psychol 2014; 5:695. [PMID: 25071663 PMCID: PMC4079243 DOI: 10.3389/fpsyg.2014.00695] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/16/2014] [Indexed: 11/29/2022] Open
Abstract
We propose that the ventral visual pathway of human and non-human primates is organized into three levels: (1) ventral retinotopic cortex including what is known as TEO in the monkey but corresponds to V4A and PITd/v, and the phPIT cluster in humans, (2) area TE in the monkey and its homolog LOC and neighboring fusiform regions, and more speculatively, (3) TGv in the monkey and its possible human equivalent, the temporal pole. We attribute to these levels the visual representations of features, partial real-world entities (RWEs), and known, complete RWEs, respectively. Furthermore, we propose that the middle level, TE and its homolog, is organized into three parallel substreams, lower bank STS, dorsal convexity of TE, and ventral convexity of TE, as are their corresponding human regions. These presumably process shape in depth, 2D shape and material properties, respectively, to construct RWE representations.
Collapse
Affiliation(s)
- Guy A Orban
- Department of Neuroscience, University of Parma Parma, Italy
| | - Qi Zhu
- Laboratorium voor Neuro-en Psychofysiologie, Department of Neuroscience KU Leuven, Leuven, Belgium
| | - Wim Vanduffel
- Laboratorium voor Neuro-en Psychofysiologie, Department of Neuroscience KU Leuven, Leuven, Belgium
| |
Collapse
|