1
|
Thirouin ZS, Bourque CW. Mechanism and function of phasic firing in vasopressin-releasing magnocellular neurosecretory cells. J Neuroendocrinol 2021; 33:e13048. [PMID: 34672042 DOI: 10.1111/jne.13048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/29/2022]
Abstract
Magnocellular neurosecretory cells that release vasopressin (MNCVP ) from axon terminals in the neurohypophysis display a unique pattern of action potential firing termed phasic firing. Under basal conditions, only a small proportion of MNCVP display spontaneous phasic firing. However, acute and chronic conditions that stimulate vasopressin release, such as hemorrhage and dehydration, greatly enhance the number of MNCVP that fire phasically. Phasic firing optimizes VP neurosecretion at axon terminals by allowing action potential broadening to promote calcium-dependent frequency-facilitation, at the same time as preventing the secretory fatigue caused by spike inactivation that occurs during prolonged continuous stimulation. This review provides an update on our mechanistic understanding of these processes and highlights important gaps in our knowledge that must be addressed in future experiments.
Collapse
Affiliation(s)
- Zahra S Thirouin
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Charles W Bourque
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
2
|
MacGregor DJ. Phasic spiking in vasopressin neurons: How and Why. J Neuroendocrinol 2021; 33:e13042. [PMID: 34748249 PMCID: PMC11475727 DOI: 10.1111/jne.13042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 01/25/2023]
Abstract
The plain title might have been an almost retro sounding grumpy retort, but it has inspired a journey of sorts, and something along the way I hope you won't have come across before. An opinionated exploration of the distinctive phasic spiking patterns of magnocellular vasopressin neurons of the supraoptic and paraventricular nuclei of the hypothalamus. A mostly life essential population of neurons that signal the kidneys to regulate water loss in response to signals that encode plasma volume and osmotic pressure, as well as regulating blood pressure, and possibly metabolism and social behaviour. The viewpoint of a modeller shorn of any explicit maths.
Collapse
|
3
|
Chrobok L, Wojcik M, Klich JD, Pradel K, Lewandowski MH, Piggins HD. Phasic Neuronal Firing in the Rodent Nucleus of the Solitary Tract ex vivo. Front Physiol 2021; 12:638695. [PMID: 33762969 PMCID: PMC7982836 DOI: 10.3389/fphys.2021.638695] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/10/2021] [Indexed: 02/02/2023] Open
Abstract
Phasic pattern of neuronal activity has been previously described in detail for magnocellular vasopressin neurons in the hypothalamic paraventricular and supraoptic nuclei. This characteristic bistable pattern consists of alternating periods of electrical silence and elevated neuronal firing, implicated in neuropeptide release. Here, with the use of multi-electrode array recordings ex vivo, we aimed to study the firing pattern of neurons in the nucleus of the solitary tract (NTS) - the brainstem hub for homeostatic, cardio-vascular, and metabolic processes. Our recordings from the mouse and rat hindbrain slices reveal the phasic activity pattern to be displayed by a subset of neurons in the dorsomedial NTS subjacent to the area postrema (AP), with the inter-spike interval distribution closely resembling that reported for phasic magnocellular vasopressin cells. Additionally, we provide interspecies comparison, showing higher phasic frequency and firing rate of phasic NTS cells in mice compared to rats. Further, we describe daily changes in their firing rate and pattern, peaking at the middle of the night. Last, we reveal these phasic cells to be sensitive to α 2 adrenergic receptors activation and to respond to electrical stimulation of the AP. This study provides a comprehensive description of the phasic neuronal activity in the rodent NTS and identifies it as a potential downstream target of the AP noradrenergic system.
Collapse
Affiliation(s)
- Lukasz Chrobok
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland.,Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Michal Wojcik
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Jasmin Daniela Klich
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Kamil Pradel
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Marian Henryk Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Hugh David Piggins
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
4
|
MacGregor DJ, Leng G. Network and Population Function in Neuroendocrine Systems. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11371-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
5
|
Armstrong WE, Foehring RC, Kirchner MK, Sladek CD. Electrophysiological properties of identified oxytocin and vasopressin neurones. J Neuroendocrinol 2019; 31:e12666. [PMID: 30521104 PMCID: PMC7251933 DOI: 10.1111/jne.12666] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 12/18/2022]
Abstract
To understand the contribution of intrinsic membrane properties to the different in vivo firing patterns of oxytocin (OT) and vasopressin (VP) neurones, in vitro studies are needed, where stable intracellular recordings can be made. Combining immunochemistry for OT and VP and intracellular dye injections allows characterisation of identified OT and VP neurones, and several differences between the two cell types have emerged. These include a greater transient K+ current that delays spiking to stimulus onset, and a higher Na+ current density leading to greater spike amplitude and a more stable spike threshold, in VP neurones. VP neurones also show a greater incidence of both fast and slow Ca2+ -dependent depolarising afterpotentials, the latter of which summate to plateau potentials and contribute to phasic bursting. By contrast, OT neurones exhibit a sustained outwardly rectifying potential (SOR), as well as a consequent depolarising rebound potential, not found in VP neurones. The SOR makes OT neurones more susceptible to spontaneous inhibitory synaptic inputs and correlates with a longer period of spike frequency adaptation in these neurones. Although both types exhibit prominent Ca2+ -dependent afterhyperpolarising potentials (AHPs) that limit firing rate and contribute to bursting patterns, Ca2+ -dependent AHPs in OT neurones selectively show significant increases during pregnancy and lactation. In OT neurones, but not VP neurones, AHPs are highly dependent on the constitutive presence of the second messenger, phosphatidylinositol 4,5-bisphosphate, which permissively gates N-type channels that contribute the Ca2+ during spike trains that activates the AHP. By contrast to the intrinsic properties supporting phasic bursting in VP neurones, the synchronous bursting of OT neurones has only been demonstrated in vitro in cultured hypothalamic explants and is completely dependent on synaptic transmission. Additional differences in Ca2+ channel expression between the two neurosecretory terminal types suggests these channels are also critical players in the differential release of OT and VP during repetitive spiking, in addition to their importance to the potentials controlling firing patterns.
Collapse
Affiliation(s)
- William E Armstrong
- Department of Anatomy & Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Robert C Foehring
- Department of Anatomy & Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Matthew K Kirchner
- Department of Anatomy & Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Celia D Sladek
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
6
|
Medlock L, Shute L, Fry M, Standage D, Ferguson AV. Ionic mechanisms underlying tonic and burst firing behavior in subfornical organ neurons: a combined experimental and modeling study. J Neurophysiol 2018; 120:2269-2281. [PMID: 30089060 DOI: 10.1152/jn.00340.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Subfornical organ (SFO) neurons exhibit heterogeneity in current expression and spiking behavior, where the two major spiking phenotypes appear as tonic and burst firing. Insight into the mechanisms behind this heterogeneity is critical for understanding how the SFO, a sensory circumventricular organ, integrates and selectively influences physiological function. To integrate efficient methods for studying this heterogeneity, we built a single-compartment, Hodgkin-Huxley-type model of an SFO neuron that is parameterized by SFO-specific in vitro patch-clamp data. The model accounts for the membrane potential distribution and spike train variability of both tonic and burst firing SFO neurons. Analysis of model dynamics confirms that a persistent Na+ and Ca2+ currents are required for burst initiation and maintenance and suggests that a slow-activating K+ current may be responsible for burst termination in SFO neurons. Additionally, the model suggests that heterogeneity in current expression and subsequent influence on spike afterpotential underlie the behavioral differences between tonic and burst firing SFO neurons. Future use of this model in coordination with single neuron patch-clamp electrophysiology provides a platform for explaining and predicting the response of SFO neurons to various combinations of circulating signals, thus elucidating the mechanisms underlying physiological signal integration within the SFO. NEW & NOTEWORTHY Our understanding of how the subfornical organ (SFO) selectively influences autonomic nervous system function remains incomplete but theoretically results from the electrical responses of SFO neurons to physiologically important signals. We have built a computational model of SFO neurons, derived from and supported by experimental data, which explains how SFO neurons produce different electrical patterns. The model provides an efficient system to theoretically and experimentally explore how changes in the essential features of SFO neurons affect their electrical activity.
Collapse
Affiliation(s)
- Laura Medlock
- Center for Neuroscience Studies, Queen's University , Kingston, Ontario , Canada
| | - Lauren Shute
- Department of Biological Sciences, University of Manitoba , Winnipeg, Manitoba , Canada
| | - Mark Fry
- Department of Biological Sciences, University of Manitoba , Winnipeg, Manitoba , Canada
| | - Dominic Standage
- Center for Neuroscience Studies, Queen's University , Kingston, Ontario , Canada
| | - Alastair V Ferguson
- Center for Neuroscience Studies, Queen's University , Kingston, Ontario , Canada
| |
Collapse
|
7
|
Leng G, MacGregor DJ. Models in neuroendocrinology. Math Biosci 2018; 305:29-41. [DOI: 10.1016/j.mbs.2018.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022]
|
8
|
Wang L, Chandaka GK, Foehring RC, Callaway JC, Armstrong WE. Changes in potassium channel modulation may underlie afterhyperpolarization plasticity in oxytocin neurons during late pregnancy. J Neurophysiol 2018. [PMID: 29537926 DOI: 10.1152/jn.00608.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oxytocin (OT) neurons exhibit larger afterhyperpolarizations (AHPs) following spike trains during late pregnancy and lactation, times when these neurons fire in bursts and release more OT associated with labor and lactation. Calcium-dependent AHPs mediated by SK channels show this plasticity, and are reduced when the channel complex is phosphorylated by casein kinase 2 (CK2), and increased when dephosphorylated by protein phosphatase (PP)2A, by altering Ca2+ sensitivity. We compared AHP currents in supraoptic OT neurons after CK2 inhibition with 4,5,6,7-tetrabromobenzotriazole (TBB), or PP1-PP2A inhibition with okadaic acid (OA), to determine the roles of these enzymes in AHP plasticity, focusing on the peak current at 100 ms representing the SK-mediated, medium AHP (ImAHP). In slices from virgin and two groups of pregnant rats [embryonic days (E18-19, or E20-21], ImAHPs were evoked with 3-, 10-, and 17-spike trains (20 Hz). With 3-spike trains, TBB increased the ImAHP to the greatest extent in virgin compared with both groups of pregnant animals. A difference between virgins and E20-21 rats was also evident with a 10-spike train but the increases in ImAHPs were similar among groups with 17-spike trains. In contrast, OA, while consistently reducing the ImAHP in all cases, showed no differential effects among groups. In Western blots, CK2α, CK2β, PP2A-A, PP2A-B, and PP2A-C were found in supraoptic lysates, and expression of CK2α and CK2β was reduced in E20-21 rats. Coimmunoprecipitation revealed that calmodulin, CK2α, and PP2A-C were associated with SK3 protein. The results suggest that a downregulation of SK3-associated CK2α during late pregnancy may increase the sensitivity of the SK calmodulin (Ca2+) sensor for ImAHP, contributing to the enhanced ImAHP. NEW & NOTEWORTHY The article demonstrates for the first time that enhancement in spike afterhyperpolarizations in oxytocin neurons during pregnancy may be related to a downregulation in the small-conductance Ca2+-activated potassium channels (SK)/calmodulin binding protein casein kinase 2, which phosphorylates the SK channel complex and reduces its Ca2+ sensitivity.
Collapse
Affiliation(s)
- Lie Wang
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Giri Kumar Chandaka
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Robert C Foehring
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center , Memphis, Tennessee.,Neuroscience Institute, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Joseph C Callaway
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center , Memphis, Tennessee.,Neuroscience Institute, University of Tennessee Health Science Center , Memphis, Tennessee
| | - William E Armstrong
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center , Memphis, Tennessee.,Neuroscience Institute, University of Tennessee Health Science Center , Memphis, Tennessee
| |
Collapse
|
9
|
Leng T, Leng G, MacGregor DJ. Spike patterning in oxytocin neurons: Capturing physiological behaviour with Hodgkin-Huxley and integrate-and-fire models. PLoS One 2017; 12:e0180368. [PMID: 28683135 PMCID: PMC5500322 DOI: 10.1371/journal.pone.0180368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/14/2017] [Indexed: 01/08/2023] Open
Abstract
Integrate-and-fire (IF) models can provide close matches to the discharge activity of neurons, but do they oversimplify the biophysical properties of the neurons? A single compartment Hodgkin-Huxley (HH) model of the oxytocin neuron has previously been developed, incorporating biophysical measurements of channel properties obtained in vitro. A simpler modified integrate-and-fire model has also been developed, which can match well the characteristic spike patterning of oxytocin neurons as observed in vivo. Here, we extended the HH model to incorporate synaptic input, to enable us to compare spike activity in the model with experimental data obtained in vivo. We refined the HH model parameters to closely match the data, and then matched the same experimental data with a modified IF model, using an evolutionary algorithm to optimise parameter matching. Finally we compared the properties of the modified HH model with those of the IF model to seek an explanation for differences between spike patterning in vitro and in vivo. We show that, with slight modifications, the original HH model, like the IF model, is able to closely match both the interspike interval (ISI) distributions of oxytocin neurons and the observed variability of spike firing rates in vivo and in vitro. This close match of both models to data depends on the presence of a slow activity-dependent hyperpolarisation (AHP); this is represented in both models and the parameters used in the HH model representation match well with optimal parameters of the IF model found by an evolutionary algorithm. The ability of both models to fit data closely also depends on a shorter hyperpolarising after potential (HAP); this is explicitly represented in the IF model, but in the HH model, it emerges from a combination of several components. The critical elements of this combination are identified.
Collapse
Affiliation(s)
- Trystan Leng
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Gareth Leng
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Duncan J. MacGregor
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Kirchner MK, Foehring RC, Wang L, Chandaka GK, Callaway JC, Armstrong WE. Phosphatidylinositol 4,5-bisphosphate (PIP 2 ) modulates afterhyperpolarizations in oxytocin neurons of the supraoptic nucleus. J Physiol 2017; 595:4927-4946. [PMID: 28383826 DOI: 10.1113/jp274219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/04/2017] [Indexed: 01/19/2023] Open
Abstract
KEY POINTS Afterhyperpolarizations (AHPs) generated by repetitive action potentials in supraoptic magnocellular neurons regulate repetitive firing and spike frequency adaptation but relatively little is known about PIP2 's control of these AHPs. We examined how changes in PIP2 levels affected AHPs, somatic [Ca2+ ]i , and whole cell Ca2+ currents. Manipulations of PIP2 levels affected both medium and slow AHP currents in oxytocin (OT) neurons of the supraoptic nucleus. Manipulations of PIP2 levels did not modulate AHPs by influencing Ca2+ release from IP3 -triggered Ca2+ stores, suggesting more direct modulation of channels by PIP2 . PIP2 depletion reduced spike-evoked Ca2+ entry and voltage-gated Ca2+ currents. PIP2 appears to influence AHPs in OT neurons by reducing Ca2+ influx during spiking. ABSTRACT Oxytocin (OT)- and vasopressin (VP)-secreting magnocellular neurons of the supraoptic nucleus (SON) display calcium-dependent afterhyperpolarizations (AHPs) following a train of action potentials that are critical to shaping the firing patterns of these cells. Previous work demonstrated that the lipid phosphatidylinositol 4,5-bisphosphate (PIP2 ) enabled the slow AHP component (sAHP) in cortical pyramidal neurons. We investigated whether this phenomenon occurred in OT and VP neurons of the SON. Using whole cell recordings in coronal hypothalamic slices from adult female rats, we demonstrated that inhibition of PIP2 synthesis with wortmannin robustly blocked both the medium and slow AHP currents (ImAHP and IsAHP ) of OT, but not VP neurons with high affinity. We further tested this by introducing a water-soluble PIP2 analogue (diC8 -PIP2 ) into neurons, which in OT neurons not only prevented wortmannin's inhibitory effect, but slowed rundown of the ImAHP and IsAHP . Inhibition of phospholipase C (PLC) with U73122 did not inhibit either ImAHP or IsAHP in OT neurons, consistent with wortmannin's effects not being due to reducing diacylglycerol (DAG) or IP3 availability, i.e. PIP2 modulation of AHPs is not likely to involve downstream Ca2+ release from inositol 1,4,5-trisphosphate (IP3 )-triggered Ca2+ -store release, or channel modulation via DAG and protein kinase C (PKC). We found that wortmannin reduced [Ca2+ ]i increase induced by spike trains in OT neurons, but had no effect on AHPs evoked by uncaging intracellular Ca2+ . Finally, wortmannin selectively reduced whole cell Ca2+ currents in OT neurons while leaving VP neurons unaffected. The results indicate that PIP2 modulates both the ImAHP and IsAHP in OT neurons, most likely by controlling Ca2+ entry through voltage-gated Ca2+ channels opened during spike trains.
Collapse
Affiliation(s)
- Matthew K Kirchner
- Department of Anatomy and Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert C Foehring
- Department of Anatomy and Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lie Wang
- Department of Anatomy and Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Giri Kumar Chandaka
- Department of Anatomy and Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Joseph C Callaway
- Department of Anatomy and Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - William E Armstrong
- Department of Anatomy and Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
11
|
Abstract
The posterior pituitary gland secretes oxytocin and vasopressin (the antidiuretic hormone) into the blood system. Oxytocin is required for normal delivery of the young and for delivery of milk to the young during lactation. Vasopressin increases water reabsorption in the kidney to maintain body fluid balance and causes vasoconstriction to increase blood pressure. Oxytocin and vasopressin secretion occurs from the axon terminals of magnocellular neurons whose cell bodies are principally found in the hypothalamic supraoptic nucleus and paraventricular nucleus. The physiological functions of oxytocin and vasopressin depend on their secretion, which is principally determined by the pattern of action potentials initiated at the cell bodies. Appropriate secretion of oxytocin and vasopressin to meet the challenges of changing physiological conditions relies mainly on integration of afferent information on reproductive, osmotic, and cardiovascular status with local regulation of magnocellular neurons by glia as well as intrinsic regulation by the magnocellular neurons themselves. This review focuses on the control of magnocellular neuron activity with a particular emphasis on their regulation by reproductive function, body fluid balance, and cardiovascular status. © 2016 American Physiological Society. Compr Physiol 6:1701-1741, 2016.
Collapse
Affiliation(s)
- Colin H Brown
- Brain Health Research Centre, Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
12
|
|
13
|
Nunemaker CS, Satin LS. Episodic hormone secretion: a comparison of the basis of pulsatile secretion of insulin and GnRH. Endocrine 2014; 47:49-63. [PMID: 24610206 PMCID: PMC4382805 DOI: 10.1007/s12020-014-0212-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 02/13/2014] [Indexed: 01/01/2023]
Abstract
Rhythms govern many endocrine functions. Examples of such rhythmic systems include the insulin-secreting pancreatic beta-cell, which regulates blood glucose, and the gonadotropin-releasing hormone (GnRH) neuron, which governs reproductive function. Although serving very different functions within the body, these cell types share many important features. Both GnRH neurons and beta-cells, for instance, are hypothesized to generate at least two rhythms endogenously: (1) a burst firing electrical rhythm and (2) a slower rhythm involving metabolic or other intracellular processes. This review discusses the importance of hormone rhythms to both physiology and disease and compares and contrasts the rhythms generated by each system.
Collapse
Affiliation(s)
- Craig S. Nunemaker
- Division of Endocrinology and Metabolism, Department of, Medicine, University of Virginia, P.O. Box 801413, Charlottesville, VA 22901, USA,
| | - Leslie S. Satin
- Pharmacology Department, University of Michigan Medical School, 5128 Brehm Tower, Ann Arbor, MI 48105, USA
- Brehm Diabetes Research Center, University of Michigan, Medical School, 5128 Brehm Tower, Ann Arbor, MI 48105, USA
| |
Collapse
|
14
|
Gagnon A, Walsh M, Okuda T, Choe KY, Zaelzer C, Bourque CW. Modulation of spike clustering by NMDA receptors and neurotensin in rat supraoptic nucleus neurons. J Physiol 2014; 592:4177-86. [PMID: 25063824 DOI: 10.1113/jphysiol.2014.275602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Magnocellular neurosecretory cells (MNCs) in the rat supraoptic nucleus display clustered firing during hyperosmolality or dehydration. This response is beneficial because this type of activity potentiates vasopressin secretion from axon terminals in the neurohypophysis and thus promotes homoeostatic water reabsorption from the kidney. However, the mechanisms which lead to the generation of clustering activity in MNCs remain unknown. Previous work has shown that clustered firing can be induced in these neurons through the pharmacological activation of NMDA receptors (NMDARs) and that silent pauses observed during this activity are mediated by apamin-sensitive calcium activated potassium (SK) channels. However, it remains unknown if clustered firing can be induced in situ by endogenous glutamate release from axon terminals. Here we show that electrical stimulation of glutamatergic osmosensory afferents in the organum vasculosum lamina terminalis (OVLT) can promote clustering in MNCs via NMDARs and apamin-sensitive channels.We also show that the rate of spike clustering induced by NMDA varies as a bell-shaped function of voltage, and that partial inhibition of SK channels can increase cluster duration and reduce the rate of clustering. Finally,we show that MNCs express neurotensin type 2 receptors, and that activation of these receptors can simultaneously depolarize MNCs and suppress clustered firing induced by bath application of NMDA or by repetitive stimulation of glutamate afferents. These studies reveal that spike clustering can be induced in MNCs by glutamate release from afferent nerve terminals and that that this type of activity can be fine-tuned by neuromodulators such as neurotensin.
Collapse
Affiliation(s)
- Ariane Gagnon
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal QC, Canada H3G 1A4
| | - Michael Walsh
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal QC, Canada H3G 1A4
| | - Tika Okuda
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal QC, Canada H3G 1A4
| | - Katrina Y Choe
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal QC, Canada H3G 1A4
| | - Cristian Zaelzer
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal QC, Canada H3G 1A4
| | - Charles W Bourque
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal QC, Canada H3G 1A4
| |
Collapse
|
15
|
μ-Opioid inhibition of Ca2+ currents and secretion in isolated terminals of the neurohypophysis occurs via ryanodine-sensitive Ca2+ stores. J Neurosci 2014; 34:3733-42. [PMID: 24599471 DOI: 10.1523/jneurosci.2505-13.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
μ-Opioid agonists have no effect on calcium currents (I(Ca)) in neurohypophysial terminals when recorded using the classic whole-cell patch-clamp configuration. However, μ-opioid receptor (MOR)-mediated inhibition of I(Ca) is reliably demonstrated using the perforated-patch configuration. This suggests that the MOR-signaling pathway is sensitive to intraterminal dialysis and is therefore mediated by a readily diffusible second messenger. Using the perforated patch-clamp technique and ratio-calcium-imaging methods, we describe a diffusible second messenger pathway stimulated by the MOR that inhibits voltage-gated calcium channels in isolated terminals from the rat neurohypophysis (NH). Our results show a rise in basal intracellular calcium ([Ca(2+)]i) in response to application of [D-Ala(2)-N-Me-Phe(4),Gly5-ol]-Enkephalin (DAMGO), a MOR agonist, that is blocked by D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), a MOR antagonist. Buffering DAMGO-induced changes in [Ca(2+)]i with BAPTA-AM completely blocked the inhibition of both I(Ca) and high-K(+)-induced rises in [Ca(2+)]i due to MOR activation, but had no effect on κ-opioid receptor (KOR)-mediated inhibition. Given the presence of ryanodine-sensitive stores in isolated terminals, we tested 8-bromo-cyclic adenosine diphosphate ribose (8Br-cADPr), a competitive inhibitor of cyclic ADP-ribose (cADPr) signaling that partially relieves DAMGO inhibition of I(Ca) and completely relieves MOR-mediated inhibition of high-K(+)-induced and DAMGO-induced rises in [Ca(2+)]i. Furthermore, antagonist concentrations of ryanodine completely blocked MOR-induced increases in [Ca(2+)]i and inhibition of I(Ca) and high-K(+)-induced rises in [Ca(2+)]i while not affecting KOR-mediated inhibition. Antagonist concentrations of ryanodine also blocked MOR-mediated inhibition of electrically-evoked increases in capacitance. These results strongly suggest that a key diffusible second messenger mediating the MOR-signaling pathway in NH terminals is [Ca(2+)]i released by cADPr from ryanodine-sensitive stores.
Collapse
|
16
|
Brown CH, Bains JS, Ludwig M, Stern JE. Physiological regulation of magnocellular neurosecretory cell activity: integration of intrinsic, local and afferent mechanisms. J Neuroendocrinol 2013; 25:678-710. [PMID: 23701531 PMCID: PMC3852704 DOI: 10.1111/jne.12051] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 05/08/2013] [Accepted: 05/20/2013] [Indexed: 01/12/2023]
Abstract
The hypothalamic supraoptic and paraventricular nuclei contain magnocellular neurosecretory cells (MNCs) that project to the posterior pituitary gland where they secrete either oxytocin or vasopressin (the antidiuretic hormone) into the circulation. Oxytocin is important for delivery at birth and is essential for milk ejection during suckling. Vasopressin primarily promotes water reabsorption in the kidney to maintain body fluid balance, but also increases vasoconstriction. The profile of oxytocin and vasopressin secretion is principally determined by the pattern of action potentials initiated at the cell bodies. Although it has long been known that the activity of MNCs depends upon afferent inputs that relay information on reproductive, osmotic and cardiovascular status, it has recently become clear that activity depends critically on local regulation by glial cells, as well as intrinsic regulation by the MNCs themselves. Here, we provide an overview of recent advances in our understanding of how intrinsic and local extrinsic mechanisms integrate with afferent inputs to generate appropriate physiological regulation of oxytocin and vasopressin MNC activity.
Collapse
Affiliation(s)
- C H Brown
- Department of Physiology and Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand.
| | | | | | | |
Collapse
|
17
|
MacGregor DJ, Clayton TF, Leng G. Information coding in vasopressin neurons--the role of asynchronous bistable burst firing. Biosystems 2013; 112:85-93. [PMID: 23499814 PMCID: PMC3677098 DOI: 10.1016/j.biosystems.2013.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The task of the vasopressin system is homeostasis, a type of process which is fundamental to the brain's regulation of the body, exists in many different systems, and is vital to health and survival. Many illnesses are related to the dysfunction of homeostatic systems, including high blood pressure, obesity and diabetes. Beyond the vasopressin system's own importance, in regulating osmotic pressure, it presents an accessible model where we can learn how the features of homeostatic systems generally relate to their function, and potentially develop treatments. The vasopressin system is an important model system in neuroscience because it presents an accessible system in which to investigate the function and importance of, for example, dendritic release and burst firing, both of which are found in many systems of the brain. We have only recently begun to understand the contribution of dendritic release to neuronal function and information processing. Burst firing has most commonly been associated with rhythm generation; in this system it clearly plays a different role, still to be understood fully.
Collapse
Affiliation(s)
- D J MacGregor
- Centre for Integrative Physiology, University of Edinburgh, UK.
| | | | | |
Collapse
|
18
|
MacGregor DJ, Leng G. Phasic firing in vasopressin cells: understanding its functional significance through computational models. PLoS Comput Biol 2012; 8:e1002740. [PMID: 23093929 PMCID: PMC3475655 DOI: 10.1371/journal.pcbi.1002740] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/24/2012] [Indexed: 11/18/2022] Open
Abstract
Vasopressin neurons, responding to input generated by osmotic pressure, use an intrinsic mechanism to shift from slow irregular firing to a distinct phasic pattern, consisting of long bursts and silences lasting tens of seconds. With increased input, bursts lengthen, eventually shifting to continuous firing. The phasic activity remains asynchronous across the cells and is not reflected in the population output signal. Here we have used a computational vasopressin neuron model to investigate the functional significance of the phasic firing pattern. We generated a concise model of the synaptic input driven spike firing mechanism that gives a close quantitative match to vasopressin neuron spike activity recorded in vivo, tested against endogenous activity and experimental interventions. The integrate-and-fire based model provides a simple physiological explanation of the phasic firing mechanism involving an activity-dependent slow depolarising afterpotential (DAP) generated by a calcium-inactivated potassium leak current. This is modulated by the slower, opposing, action of activity-dependent dendritic dynorphin release, which inactivates the DAP, the opposing effects generating successive periods of bursting and silence. Model cells are not spontaneously active, but fire when perturbed by random perturbations mimicking synaptic input. We constructed one population of such phasic neurons, and another population of similar cells but which lacked the ability to fire phasically. We then studied how these two populations differed in the way that they encoded changes in afferent inputs. By comparison with the non-phasic population, the phasic population responds linearly to increases in tonic synaptic input. Non-phasic cells respond to transient elevations in synaptic input in a way that strongly depends on background activity levels, phasic cells in a way that is independent of background levels, and show a similar strong linearization of the response. These findings show large differences in information coding between the populations, and apparent functional advantages of asynchronous phasic firing. Vasopressin is a hormone secreted from specialised brain cells into the bloodstream, acting at the kidneys to control water excretion, and thereby help regulate osmotic pressure. This is a cell membrane property determined by the ratio between body salt and water, and its maintenance is essential to the function of all our cells and organs, which depend on a stable fluid volume and extracellular salt concentration. Specialised cells in the brain sense osmotic pressure and generate electrical signals, which the thousands of vasopressin neurons process and respond to by producing and secreting vasopressin. The individual vasopressin cells generate an interesting phasic pattern of electrical activity in response to rises in osmotic pressure – they fire in long bursts, separated by long silences. In our project we're using modelling to simulate this phasic pattern of electrical activity and how it relates to the input signals, trying to understand exactly why vasopressin cells generate this kind of pattern and exactly what advantages it offers to signal processing and the control of vasopressin secretion.
Collapse
Affiliation(s)
| | - Gareth Leng
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Nadeau L, Mouginot D. Quantitative prediction of vasopressin secretion using a computational population model of rat magnocellular neurons. J Comput Neurosci 2012; 33:533-45. [DOI: 10.1007/s10827-012-0399-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 10/28/2022]
|
20
|
Clayton T, Cameron K, Rae BR, Sabatier N, Charbon E, Henderson RK, Leng G, Murray A. An implementation of a spike-response model with escape noise using an avalanche diode. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2011; 5:231-243. [PMID: 23851474 DOI: 10.1109/tbcas.2010.2100392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This paper introduces a novel probabilistic spike-response model through the combination of avalanche diode-generated Poisson distributed noise, and a standard exponential decay-based spike-response curve. The noise source, which is derived from a 0.35-μm single-photon avalanche diode (kept in the dark), was tested experimentally to verify its characteristics, before being combined with a field-programmable gate-array implementation of a spike-response model. This simple model was then analyzed, and shown to reproduce seven of eight behaviors recorded during an extensive study of the ventral medial hypothalamic (VMH) region of the brain. It is thought that many of the cell types found within the VMH are fed from a tonic noise synaptic input, where the patterns generated are a product of their spike response and not their interconnection. This paper shows how this tonic noise source can be modelled, and due to the independent nature of the noise sources, provides an avenue for the exploration of networks of noise-fueled neurons, which play a significant role in pattern generation within the brain.
Collapse
|
21
|
Williams KS, Diniz Behn CG. Dynamic Interactions between Orexin and Dynorphin May Delay Onset of Functional Orexin Effects: A Modeling Study. J Biol Rhythms 2011; 26:171-81. [DOI: 10.1177/0748730410395471] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Orexin (also known as hypocretin) neurons play a key role in regulating sleep-wake behavior, but the links between orexin neuron electrophysiology and function have not been explored. Orexin neurons are wake-active, and spiking activity in orexin neurons may anticipate transitions to wakefulness by several seconds. However, it is suggested that while the orexin system is necessary to maintain sustained wake bouts, orexin has little effect on brief wake bouts. In vitro experiments investigating the actions of orexin and dynorphin, a colocalized neuropeptide, on orexin neurons indicate that the dynamics of desensitization to dynorphin may represent a mechanism for modulating local network activity and resolving the apparent discrepancy between the onset of firing in orexin neurons and the onset of functional orexin effects. To investigate the role of dynorphin on orexin neuron activity, a Hodgkin-Huxley—type model orexin neuron was developed in which baseline electrophysiology, orexin/dynorphin action, and dynorphin desensitization were closely tied to experimental data. In this model framework, model orexin neuron responses to orexin/dynorphin action were calibrated by simulating the physiologic effects of static orexin and dynorphin bath application on orexin neurons. Then behavior in a small network of model orexin neurons was simulated with pure orexin, pure dynorphin, or combined orexin and dynorphin coupling based on the mechanisms established in the static case. It was found that the dynamics of desensitization to dynorphin can mediate a clear shift from a network in which firing is suppressed by dynorphin-mediated inhibition to a network of neurons with high firing rates sustained by orexin-mediated excitation. The findings suggest that dynamic interactions between orexin and dynorphin at transitions from sleep to wake may delay onset of functional orexin effects.
Collapse
Affiliation(s)
- Katherine S. Williams
- Department of Mathematics, University of Michigan, Ann Arbor, MI, Department of Mathematics, The Ohio State University, Columbus, OH
| | | |
Collapse
|
22
|
New determinants of firing rates and patterns of vasopressinergic magnocellular neurons: predictions using a mathematical model of osmodetection. J Comput Neurosci 2011; 31:441-51. [DOI: 10.1007/s10827-011-0321-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/21/2011] [Accepted: 02/22/2011] [Indexed: 10/18/2022]
|
23
|
Thomson AM, Armstrong WE. Biocytin-labelling and its impact on late 20th century studies of cortical circuitry. BRAIN RESEARCH REVIEWS 2011; 66:43-53. [PMID: 20399808 PMCID: PMC2949688 DOI: 10.1016/j.brainresrev.2010.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/08/2010] [Accepted: 04/12/2010] [Indexed: 11/15/2022]
Abstract
In recognition of the impact that a powerful new anatomical tool, such as the Golgi method, can have, this essay highlights the enormous influence that biocytin-filling has had on modern neuroscience. This method has allowed neurones that have been recorded intracellularly, 'whole-cell' or juxta-cellularly, to be identified anatomically, forming a vital link between functional and structural studies. It has been applied throughout the nervous system and has become a fundamental component of our technical armoury. A comprehensive survey of the applications to which the biocytin-filling approach has been put, would fill a large volume. This essay therefore focuses on one area, neocortical microcircuitry and the ways in which combining physiology and anatomy have revealed rules that help us explain its previously indecipherable variability and complexity.
Collapse
Affiliation(s)
- Alex M Thomson
- Department of Pharmacology, The School of Pharmacy University of London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | | |
Collapse
|
24
|
Abstract
A minimalist model of magnocellular vasopressin neurones was developed to examine the hypothesis that their phasic behaviour is the product of intrinsic voltage- and activity-dependent intracellular mechanisms that create a bistable dynamical system. The model can closely match a range of phasic behaviours recorded in vasopressin cells in vivo, as well as reproduce the three archetypal behaviours of vasopressin cells (continuous firing, sparse sporadic firing and phasic firing) by varying one of the fourteen model parameters. In addition, the mean and standard deviation of burst and silence periods can be matched by varying a further two parameters. In the model, the long-term behaviour (phasic characteristics) of cells is largely independent of the short-term behaviour (interspike intervals).
Collapse
Affiliation(s)
- T F Clayton
- Institute of Integrated Micro and Nano Systems, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
25
|
Velázquez-Marrero CM, Marrero HG, Lemos JR. Voltage-dependent kappa-opioid modulation of action potential waveform-elicited calcium currents in neurohypophysial terminals. J Cell Physiol 2010; 225:223-32. [PMID: 20506396 DOI: 10.1002/jcp.22247] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Release of neurotransmitter is activated by the influx of calcium. Inhibition of Ca(2+) channels results in less calcium influx into the terminals and presumably a reduction in transmitter release. In the neurohypophysis (NH), Ca(2+) channel kinetics, and the associated Ca(2+) influx, is primarily controlled by membrane voltage and can be modulated, in a voltage-dependent manner, by G-protein subunits interacting with voltage-gated calcium channels (VGCCs). In this series of experiments we test whether the kappa- and micro-opioid inhibition of Ca(2+) currents in NH terminals is voltage-dependent. Voltage-dependent relief of G-protein inhibition of VGCC can be achieved with either a depolarizing square pre-pulse or by action potential waveforms. Both protocols were tested in the presence and absence of opioid agonists targeting the kappa- and micro-receptors in neurohypophysial terminals. The kappa-opioid VGCC inhibition is relieved by such pre-pulses, suggesting that this receptor is involved in a voltage-dependent membrane delimited pathway. In contrast, micro-opioid inhibition of VGCC is not relieved by such pre-pulses, indicating a voltage-independent diffusible second-messenger signaling pathway. Furthermore, relief of kappa-opioid inhibition during a physiologic action potential (AP) burst stimulation indicates the possibility of activity-dependent modulation in vivo. Differences in the facilitation of Ca(2+) channels due to specific G-protein modulation during a burst of APs may contribute to the fine-tuning of Ca(2+)-dependent neuropeptide release in other CNS terminals, as well.
Collapse
Affiliation(s)
- Cristina M Velázquez-Marrero
- Department of Physiology and Program in Neuroscience, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | |
Collapse
|
26
|
Nadeau L, Arbour D, Mouginot D. Computational simulation of vasopressin secretion using a rat model of the water and electrolyte homeostasis. BMC PHYSIOLOGY 2010; 10:17. [PMID: 20738873 PMCID: PMC2939538 DOI: 10.1186/1472-6793-10-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 08/25/2010] [Indexed: 11/10/2022]
Abstract
Background In mammals, vasopressin (AVP) is released from magnocellular neurons of the hypothalamus when osmotic pressure exceeds a fixed set-point. AVP participates to the hydromineral homeostasis (HH) by controlling water excretion at the level of the kidneys. Our current understanding of the HH and AVP secretion is the result of a vast amount of data collected over the five past decades. This experimental data was collected using a number of systems under different conditions, giving a fragmented view of the components involved in HH. Results Here, we present a high-level model of the rat HH based on selected published results to predict short-term (hours) to long-term (days) variation of six major homeostatic parameters: (1) the extracellular sodium concentration, (2) the AVP concentration, (3) the intracellular volume, (4) the extracellular volume, (5) the urine volume and (6) the water intake. The simulation generates quantitative predictions like the daily mean of the extracellular sodium concentration (142.2 mmol/L), the AVP concentration, (1.7 pg/ml), the intracellular volume (45.3 ml/100 g body weight - bw), the extracellular volume (22.6 ml/100 g bw), the urine volume (11.8 ml/100 g bw) and the cumulative water intake (18 ml/100 g bw). The simulation also computes the dynamics of all these parameters with a high temporal resolution of one minute. This high resolution predicts the circadian fluctuation of the AVP secretion (5 ± 2 pg/ml) and defines the limits of a restoration and a maintenance phase in the HH (2.1 pg/ml). Moreover, the simulation can predict the action of pharmacological compounds that disrupt the HH. As an example, we tested the action of a diuretic (furosemide) combined with a sodium deficient diet to generate quantitative prediction on the extracellular sodium concentration (134 mmol/L) and the need-induced water intake (20.3 ml/100 g bw). These simulated data are compatible with experimental data (136 ± 3 mmol/L and 17.5 ± 3.5 ml/100 g bw, respectively). Conclusion The quantitative agreement of the predictions with published experimental data indicates that our simplified model of the HH integrates most of the essential systems to predict realistic physiological values and dynamics under a set of normal and perturbed hydromineral conditions.
Collapse
Affiliation(s)
- Louis Nadeau
- Centre de Recherche du CHUQ CHUL, Neurosciences and Université Laval, Québec G1V 4G2, Canada
| | | | | |
Collapse
|
27
|
Abstract
Many neurons in the CNS display rhythmic patterns of activity to optimize excitation-secretion coupling. However, the mechanisms of rhythmogenesis are only partially understood. Magnocellular vasopressin (VP) neurons in the hypothalamus display a phasic activity that consists of alternative bursts of action potentials and silent periods. Previous observations from acute slices of adult hypothalamus suggested that VP cell rhythmicity depends on intrinsic membrane properties. However, such activity in vivo is nonregenerative. Here, we studied the mechanisms of VP neuron rhythmicity in organotypic slice cultures that, unlike acute slices, preserve functional synaptic connections. Comparative analysis of phasic firing of VP neurons in vivo, in acute slices, and in the cultures revealed that, in the latter, the activity was closely related to that observed in vivo. It was synaptically driven, essentially from glutamatergic inputs, and did not rely on intrinsic membrane properties. The glutamatergic synaptic activity was sensitive to osmotic challenges and kappa-opioid receptor activation, physiological stimuli known to affect phasic activity. Together, our data thus strongly suggest that phasic activity in magnocellular VP neurons is controlled by glutamatergic synaptic inputs rather than by intrinsic properties.
Collapse
|
28
|
Jasoni CL, Romanò N, Constantin S, Lee K, Herbison AE. Calcium dynamics in gonadotropin-releasing hormone neurons. Front Neuroendocrinol 2010; 31:259-69. [PMID: 20594958 DOI: 10.1016/j.yfrne.2010.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 05/25/2010] [Accepted: 05/27/2010] [Indexed: 02/04/2023]
Abstract
The gonadotropin-releasing hormone (GnRH) neurons represent the key output cells of the neuronal network controlling fertility. Intracellular calcium ion concentration ([Ca(2+)](i)) is likely to be a key signaling tool used by GnRH neurons to regulate and co-ordinate multiple cell processes. This review examines the dynamics and control of [Ca(2+)](i) in GT1 cells, embryonic GnRH neurons in the nasal placode culture, and adult GnRH neurons in the acute brain slice preparation. GnRH neurons at all stages of development display spontaneous [Ca(2+)](i) transients driven, primarily, by their burst firing. However, the intracellular mechanisms generating [Ca(2+)](i) transients, and the control of [Ca(2+)](i) by neurotransmitters, varies markedly across the different developmental stages. The functional roles of [Ca(2+)](i) transients are beginning to be unraveled with one key action being that of regulating the dynamics of GnRH neuron burst firing.
Collapse
Affiliation(s)
- Christine L Jasoni
- Centre for Neuroendocrinology, Departments of Physiology, University of Otago, Dunedin 9054, New Zealand
| | | | | | | | | |
Collapse
|
29
|
Armstrong WE, Wang L, Li C, Teruyama R. Performance, properties and plasticity of identified oxytocin and vasopressin neurones in vitro. J Neuroendocrinol 2010; 22:330-42. [PMID: 20210845 PMCID: PMC2910405 DOI: 10.1111/j.1365-2826.2010.01989.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The neurohypophysial hormones oxytocin (OT) and vasopressin (VP) originate from hypothalamic neurosecretory cells in the paraventricular and supraoptic (SON) nuclei. The firing rate and pattern of action potentials arising from these neurones determine the timing and quantity of peripheral hormone release. We have used immunochemical identification of biocytin-filled SON neurones in hypothalamic slices in vitro to uncover differences between OT and VP neurones in membrane and synaptic properties, firing patterns, and plasticity during pregnancy and lactation. In this review, we summarise some recent findings from this approach: (i) VP neuronal excitability is influenced by slow (sDAP) and fast (fDAP) depolarising afterpotentials that underlie phasic bursting activity. The fDAP may relate to a transient receptor potential (TRP) channel, type melastatin (TRPM4 and/or TRPM5), both of which are immunochemically localised more to VP neurones, and especially, to their dendrites. Both TRPM4 and TRPM5 mRNAs are found in the SON, but single cell reverse transcriptase-polymerisation suggests that TRPM4 might be the more prominent channel. Phasic bursting in VP neurones is little influenced by spontaneous synaptic activity in slices, being shaped largely by intrinsic currents. (ii) The firing pattern of OT neurones ranges from irregular to continuous, with the coefficient of variation determined by randomly distributed, spontaneous GABAergic, inhibitory synaptic currents (sIPSCs). These sIPSCs are four- to five-fold more frequent in OT versus VP neurones, and much more frequent than spontaneous excitatory synaptic currents. (iii) Both cell types express Ca(2+)-dependent afterhyperpolarisations (AHPs), including an apamin-sensitive, medium duration AHP and a slower, apamin-insensitive AHP (sAHP). In OT neurones, both AHPs are enhanced during pregnancy and lactation. During pregnancy, the plasticity of the sAHP is blocked by antagonism of central OT receptors. AHP enhancement is mimicked by exposing slices from day 19 pregnant rats to OT and oestradiol, suggesting that central OT and sex steroids programme this plasticity during pregnancy by direct hypothalamic actions. In conclusion, the differences in VP and OT neuronal function are underlain by differences in both membrane and synaptic properties, and differentially modulated by reproductive state.
Collapse
Affiliation(s)
- W E Armstrong
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | |
Collapse
|
30
|
Popescu IR, Morton LA, Franco A, Di S, Ueta Y, Tasker JG. Synchronized bursts of miniature inhibitory postsynaptic currents. J Physiol 2010; 588:939-51. [PMID: 20123785 DOI: 10.1113/jphysiol.2009.181461] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Spike-independent miniature postsynaptic currents are generally stochastic and are therefore not thought to mediate information relay in neuronal circuits. However, we recorded endogenous bursts of IPSCs in hypothalamic magnocellular neurones in the presence of TTX, which implicated a coordinated mechanism of spike-independent GABA release. IPSC bursts were identical in the absence of TTX, although the burst incidence increased 5-fold, indicating that IPSC bursts were composed of miniature IPSCs (mIPSCs), and that the probability of burst generation increased with action potential activity. IPSC bursts required extracellular calcium, although they were not dependent on calcium influx through voltage-gated calcium channels or on calcium mobilization from intracellular stores. Current injections simulating IPSC bursts were capable of triggering and terminating action potential trains. In 25% of dual recordings, a subset of IPSC bursts were highly synchronized in onset in pairs of magnocellular neurones. Synchronized IPSC bursts displayed properties that were consistent with simultaneous release at GABA synapses shared between pairs of postsynaptic magnocellular neurones. Synchronized bursts of inhibitory synaptic inputs represent a novel mechanism that may contribute to the action potential burst generation, termination and synchronization responsible for pulsatile hormone release from neuroendocrine cells.
Collapse
Affiliation(s)
- Ion R Popescu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | | | | | | | | | | |
Collapse
|
31
|
Zhang W, Wang D, Liu XH, Kosala WRA, Rajapaksha JS, Fisher TE. An osmosensitive voltage-gated K+ current in rat supraoptic neurons. Eur J Neurosci 2009; 29:2335-46. [PMID: 19490083 DOI: 10.1111/j.1460-9568.2009.06772.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The magnocellular neurosecretory cells of the hypothalamus (MNCs) regulate their electrical behaviour as a function of external osmolality through changes in the activity of osmosensitive ion channels. We now present evidence that the MNCs express an osmosensitive voltage-gated K(+) current (the OKC). Whole-cell patch-clamp experiments on acutely isolated MNCs were used to show that increases in the external osmolality from 295 to 325 mosmol/kg cause an increase in a slow, tetraethylammonium-insensitive outward current. The equilibrium potential for this current is close to the predicted E(K) in two different concentrations of external K(+). The OKC is sensitive to block by Ba(2+) (0.3 mm), and by the M-type K(+) current blockers linopirdine (150 microm) and XE991 (5 microm), and to enhancement by retigabine (10 microm), which increases opening of M-type K(+) channels. The OKC is suppressed by muscarine (30 microm) and is decreased by the L-type Ca(2+) channel blocker nifedipine (10 microm), but not by apamin (100 nm), which blocks SK-type Ca(2+)-dependent K(+) currents. Reverse transcriptase-polymerase chain reaction and immunocytochemical data suggest that MNCs express several members of the K(V)7 (KCNQ) family of K(+) channels, including K(V)7.2, 7.3, 7.4 and 7.5. Extracellular recordings of individual MNCs in a hypothalamic explant preparation demonstrated that an XE991- and retigabine-sensitive current contribute to the regulation of MNC firing. Our data suggest that the MNCs express an osmosensitive K(+) current that could contribute to the regulation of MNC firing by external osmolality and that could be mediated by K(V)7/M-type K(+) channels.
Collapse
Affiliation(s)
- Wenbo Zhang
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
In neuroendocrinology, mathematical modelling is about formalising our understanding of the behaviour of the complex biological systems with which we deal. Formulating our explanations mathematically ensures their logical consistency, and makes them open to structured analysis; it is a stringent test of their intellectual coherence. In addition, however, modellers are seeking to extend our understanding in new ways, by seeking novel, simple explanations for complex behaviour. Here we discuss some styles of modelling as they have been applied to neuroendocrine systems, and discuss some of their strengths and limitations.
Collapse
Affiliation(s)
- G Leng
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK.
| | | |
Collapse
|
33
|
Abstract
Systemic osmoregulation is a vital process whereby changes in plasma osmolality, detected by osmoreceptors, modulate ingestive behaviour, sympathetic outflow and renal function to stabilize the tonicity and volume of the extracellular fluid. Furthermore, changes in the central processing of osmosensory signals are likely to affect the hydro-mineral balance and other related aspects of homeostasis, including thermoregulation and cardiovascular balance. Surprisingly little is known about how the brain orchestrates these responses. Here, recent advances in our understanding of the molecular, cellular and network mechanisms that mediate the central control of osmotic homeostasis in mammals are reviewed.
Collapse
Affiliation(s)
- Charles W Bourque
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Room L7-216, Montreal General Hospital, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada.
| |
Collapse
|
34
|
McCrohan CR, Lu W, Brierley MJ, Dow L, Balment RJ. Fish caudal neurosecretory system: a model for the study of neuroendocrine secretion. Gen Comp Endocrinol 2007; 153:243-50. [PMID: 17316635 DOI: 10.1016/j.ygcen.2006.12.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 12/05/2006] [Accepted: 12/26/2006] [Indexed: 11/30/2022]
Abstract
The caudal neurosecretory system (CNSS) is unique to fish and has suggested homeostatic roles in osmoregulation and reproduction. Magnocellular neuroendocrine Dahlgren cells, located in the terminal segments of the spinal cord, project to a neurohaemal organ, the urophysis, from which neuropeptides are released. In the euryhaline flounder Platichthys flesus Dahlgren cells synthesise at least four peptides, including urotensins I and II and CRF. These peptides are differentially expressed with co-localisation of up to three in a single cell. Dahlgren cells display a range of electrical firing patterns, including characteristic bursting activity, which is dependent on L-type Ca(2+) and Ca-activated K(+)channels. Activity is modulated by a range of extrinsic and intrinsic neuromodulators. This includes autoregulation by the secreted peptides themselves, leading to enhanced bursting. Electrophysiological and mRNA expression studies have examined changes in response to altered physiological demands. Bursting activity is more robust and more Dahlgren cells are recruited in seawater compared to freshwater adapted fish and this is mirrored by a reduction in mRNA expression for L-type Ca(2+) and Ca-activated K(+) channels. Acute seawater/freshwater transfer experiments support a role for UII in adaptation to hyperosmotic conditions. Responses to stress suggest a shared role for CRF and UI, released from the CNSS. We hypothesise that the Dahlgren cell population is reprogrammed, both in anticipation of and in response to changed physiological demands, and this is seen as changes in gene expression profile and electrical activity. The CNSS shows striking parallels with the hypothalamic-neurohypophysial system, providing a highly accessible system for studies of neuroendocrine mechanisms. Furthermore, the presence of homologues of urotensins throughout the vertebrates has sparked new interest in these peptides and their functional evolution.
Collapse
Affiliation(s)
- Catherine R McCrohan
- Faculty of Life Sciences, University of Manchester, 1.124 Stopford Building, Oxford Road, Manchester M13 9PT, UK.
| | | | | | | | | |
Collapse
|
35
|
Iremonger KJ, Bains JS. Integration of asynchronously released quanta prolongs the postsynaptic spike window. J Neurosci 2007; 27:6684-91. [PMID: 17581955 PMCID: PMC6672686 DOI: 10.1523/jneurosci.0934-07.2007] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Classically, the release of glutamate in response to a presynaptic action potential causes a brief increase in postsynaptic excitability. Previous reports indicate that at some central synapses, a single action potential can elicit multiple, asynchronous release events. This raises the possibility that the temporal dynamics of neurotransmitter release may determine the duration of altered postsynaptic excitability. In response to physiological challenges, the magnocellular neurosecretory cells (MNCs) in the paraventricular nucleus of the hypothalamus (PVN) exhibit robust and prolonged increases in neuronal activity. Although the postsynaptic conductances that may facilitate this form of activity have been investigated thoroughly, the role of presynaptic release has been largely overlooked. Because the specific patterns of activity generated by MNCs require the activation of excitatory synaptic inputs, we sought to characterize the release dynamics at these synapses and determine whether they contribute to prolonged excitability in these cells. We obtained whole-cell recordings from MNCs in brain slices of postnatal day 21-44 rats. Stimulation of glutamatergic inputs elicited large and prolonged postsynaptic events that resulted from the summation of multiple, asynchronously released quanta. Asynchronous release was selectively inhibited by the slow calcium buffer EGTA-AM and potentiated by brief high-frequency stimulus trains. These trains caused a prolonged increase in postsynaptic spike activity that could also be eliminated by EGTA-AM. Our results demonstrate that glutamatergic terminals in PVN exhibit asynchronous release, which is important in generating large postsynaptic depolarizations and prolonged spiking in response to brief, high-frequency bursts of presynaptic activity.
Collapse
Affiliation(s)
- Karl J. Iremonger
- Hotchkiss Brain Institute and Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Jaideep S. Bains
- Hotchkiss Brain Institute and Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
36
|
Komendantov AO, Trayanova NA, Tasker JG. Somato-dendritic mechanisms underlying the electrophysiological properties of hypothalamic magnocellular neuroendocrine cells: a multicompartmental model study. J Comput Neurosci 2007; 23:143-68. [PMID: 17484044 PMCID: PMC2837924 DOI: 10.1007/s10827-007-0024-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 01/27/2007] [Accepted: 02/07/2007] [Indexed: 01/08/2023]
Abstract
Magnocellular neuroendocrine cells (MNCs) of the hypothalamus synthesize the neurohormones vasopressin and oxytocin, which are released into the blood and exert a wide spectrum of actions, including the regulation of cardiovascular and reproductive functions. Vasopressin- and oxytocin-secreting neurons have similar morphological structure and electrophysiological characteristics. A realistic multicompartmental model of a MNC with a bipolar branching structure was developed and calibrated based on morphological and in vitro electrophysiological data in order to explore the roles of ion currents and intracellular calcium dynamics in the intrinsic electrical MNC properties. The model was used to determine the likely distributions of ion conductances in morphologically distinct parts of the MNCs: soma, primary dendrites and secondary dendrites. While reproducing the general electrophysiological features of MNCs, the model demonstrates that the differential spatial distributions of ion channels influence the functional expression of MNC properties, and reveals the potential importance of dendritic conductances in these properties.
Collapse
|
37
|
Abstract
Magnocellular vasopressin neurones generate distinctive 'phasic' patterns of electrical activity during which periods of spiking activity (bursts) alternate with periods of no spikes or occasional spikes. The mechanisms of burst termination in vivo are still not clearly understood. We recorded from single phasic vasopressin cells in vivo and here we show that burst terminations in some phasic cells is preceded by transient increases in activity, consistent with bursts ending as a result of activity-dependent inhibition. We show that extrinsically imposed increases in activity, evoked by brief stimulation of the organum vasculosum of the lamina terminalis, can either trigger bursts if given when a cell is silent, or stop bursts if given when a cell is active. Thus, the magnocellular vasopressin system is a population of independent bistable oscillators. The population as a whole is insensitive to transient changes in input level, whether these are excitatory or inhibitory. The vasopressin cell population thus acts like a 'low-pass filter'; although brief large changes in input rate have little overall effect, the population responds very effectively to small, sustained changes in input rate by evolving a pattern of discharge activity that efficiently maintains secretion. We note that these filtering characteristics are the opposite of the filtering characteristics that are typically associated with neurones.
Collapse
Affiliation(s)
- N Sabatier
- Centre for Integrative Physiology, University of Edinburgh College of Medical and Veterinary Sciences, Edinburgh, UK
| | | |
Collapse
|
38
|
Zhang W, Star B, Rajapaksha WRAKJS, Fisher TE. Dehydration increases L-type Ca(2+) current in rat supraoptic neurons. J Physiol 2007; 580:181-93. [PMID: 17234692 PMCID: PMC2075438 DOI: 10.1113/jphysiol.2006.126680] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The magnocellular neurosecretory cells of the hypothalamus (MNCs) regulate water balance by releasing vasopressin (VP) and oxytocin (OT) as a function of plasma osmolality. Release is determined largely by the rate and pattern of MNC firing, but sustained increases in osmolality also produce structural adaptations, such as cellular hypertrophy, that may be necessary for maintaining high levels of neuropeptide release. Since increases in Ca(2+) current could enhance exocytotic secretion, influence MNC firing patterns, and activate gene transcription and translation, we tested whether Ca(2+) currents in MNCs acutely isolated from the supraoptic nucleus (SON) of the hypothalamus are altered by 16-24 h of water deprivation. A comparison of whole-cell patch-clamp recordings demonstrated that dehydration causes a significant increase in the amplitude of current sensitive to the L-type Ca(2+) channel blocker nifedipine (from -56 +/- 6 to -99 +/- 10 pA; P < 0.001) with no apparent change in other components of Ca(2+) current. Post-recording immunocytochemical identification showed that this increase in current occurred in both OT- and VP-releasing MNCs. Radioligand binding studies of tissue from the SON showed there is also an increase in the density of binding sites for an L-type Ca(2+) channel ligand (from 51.5 +/- 4.8 to 68.1 +/- 4.1 fmol (mg protein)(-1); P < 0.05), suggesting that there was an increase in the number of L-type channels on the plasma membrane of the MNCs or some other cell type in the SON. There were no changes in the measured number of binding sites for an N-type Ca(2+) channel ligand. Dehydration was not associated with changes in the levels of mRNA coding for Ca(2+) channel alpha(1) subunits. These data are consistent with the hypothesis that a selective increase of L-type Ca(2+) current may contribute to the adaptation that occurs in the MNCs during dehydration.
Collapse
Affiliation(s)
- Wenbo Zhang
- Department of Physiology, College of Medicine, 107 Wiggins Road, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5
| | | | | | | |
Collapse
|
39
|
Hsiao CF, Gougar K, Asai J, Chandler SH. Intrinsic membrane properties and morphological characteristics of interneurons in the rat supratrigeminal region. J Neurosci Res 2007; 85:3673-86. [PMID: 17668857 DOI: 10.1002/jnr.21442] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The membrane properties and morphological features of interneurons in the supratrigeminal area (SupV) were studied in rat brain slices using whole-cell patch clamp recording techniques. We classified three morphological types of neurons as fusiform, pyramidal, and multipolar and four physiological types of neurons according to their discharge pattern in response to a 1-sec depolarizing current pulse from -80 mV. Single-spike neurons responded with a single spike, phasic neurons showed an initial burst of spikes and were silent during the remainder of the stimulus, delayed-firing (DF) neurons exhibited a slow depolarization and delay to initial spike onset, and tonic (T) neurons showed maintained a discharge throughout the stimulus pulse. In a subpopulation of neurons (10%), membrane depolarization to around -44 mV produced a rhythmic burst discharge (RB) that was associated with voltage-dependent subthreshold membrane oscillations. Both these phenomena were blocked by the sodium channel blocker riluzole at a concentration that did not affect the fast transient spike. Low doses of 4-AP, which blocks low-threshold K+ currents, transformed bursting into low-frequency tonic discharge. In contrast, bursting occurred with exposure to cadium, a calcium-channel blocker. This suggests that persistent sodium currents and low-threshold K+ currents have a role in intrinsic burst generation. Importantly, RB cells were most often associated with multipolar neurons that exhibited either a DF or a T discharge. Thus, the SupV contains a variety of physiological cell types with unique morphologies and discharge characteristics. Intrinsic bursting neurons form a unique group in this region. .
Collapse
Affiliation(s)
- Chie-Fang Hsiao
- Department of Physiological Science and the Brain Research Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
40
|
Ponzio TA, Ni Y, Montana V, Parpura V, Hatton GI. Vesicular glutamate transporter expression in supraoptic neurones suggests a glutamatergic phenotype. J Neuroendocrinol 2006; 18:253-65. [PMID: 16503920 PMCID: PMC1413582 DOI: 10.1111/j.1365-2826.2006.01410.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Magnocellular neuroendocrine cells of the supraoptic nucleus (SON) release the peptides oxytocin (OT) and vasopressin (VP) from their dendrites and terminals. In addition to peptide-containing large dense-core vesicles, axon terminals from these cells contain clear microvesicles that have been shown to contain glutamate. Using multilabelling confocal microscopy, we investigated the presence of vesicular glutamate transporters (VGLUTs) in astrocytes as well as VP and OT neurones of the SON. Simultaneous probing of the SON with antibodies against VGLUT isoforms 1-3, OT, VP and glial fibrillary acidic protein (GFAP) revealed the presence of VGLUT-2 in somata and dendrites of SON neurones. Immunoreactivity (-ir) for VGLUT-3 was also detected in both OT and VP neurones as well as in GFAP-ir astrocytes and other cells of the ventral glial lamina. Colocalisation of VGLUT-2 and VGLUT-3 in individual SON neurones was also examined and VGLUT-ir with both antibodies could be detected in both types of SON neurones. Although VGLUT-1-ir was strong lateral to the SON, only sparse labelling was apparent within the nucleus, and no colocalisation with either SON neurones or astrocytes was observed. The SON or the SON plus its surrounding perinuclear zone was probed using the reverse transcriptase-polymerase chain reaction and the presence of mRNA for all three VGLUT isoforms was detected. These results suggest that similar arrangements of transmitters exist in SON neuronal dendrites and their neurohypophysial terminals and that magnocellular neuroendocrine somata and dendrites may be capable of glutamatergic transmission.
Collapse
Affiliation(s)
- T A Ponzio
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA, USA.
| | | | | | | | | |
Collapse
|
41
|
Zhang Z, Bourque CW. Calcium permeability and flux through osmosensory transduction channels of isolated rat supraoptic nucleus neurons. Eur J Neurosci 2006; 23:1491-500. [PMID: 16553612 DOI: 10.1111/j.1460-9568.2006.04670.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hypertonic stimuli delivered into the supraoptic nucleus provoke neuropeptide release from the somata of magnocellular neurosecretory cells (MNCs) in the presence of tetrodotoxin, suggesting that such stimuli can increase intracellular calcium concentration ([Ca2+]i) in the absence of action potentials. We therefore examined whether the stretch-inhibited cation (SIC) channels of MNCs can mediate calcium influx. Whole-cell recordings were made in MNCs isolated from the supraoptic nuclei of adult rats. Measurements of reversal potentials in different solutions revealed that the current induced by a suction-evoked decrease in cell volume (ISIC) displays a selectivity sequence for monovalent cations of K+>Cs+>Na+>NMDG+. The permeability of SIC channels to Ca2+, relative to Na+, was approximately 5. In the presence of physiological concentrations of external Na+ and K+, the amplitude of inward ISIC was reduced dose-dependently by external Ca2+ with an IC50 of 4.9 mM. This was not due to reduced suction-evoked volume changes or to an accumulation of [Ca2+]i. Confocal imaging of cytoplasmic Calcium Green-1 fluorescence revealed that activation of ISIC significantly increases [Ca2+]i in physiological solutions. This effect is absent in Ca2+-free solution, or when Gd3+ (300 microM) is added to Ca2+-containing solution. Part of this effect is inhibited in the presence of dantrolene (10 microM) and heparin (4 mg/mL), suggesting that release from intracellular Ca2+ stores participates in suction-evoked Ca2+ signalling. These observations indicate that SIC channels are highly permeable to Ca2+, mediate significant Ca2+ entry and release of Ca2+ from internal stores under conditions when the volume of MNCs is decreased.
Collapse
Affiliation(s)
- Zizhen Zhang
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, 1650 Cedar Avenue, Montreal, QC, Canada, H3G 1A4
| | | |
Collapse
|
42
|
Pressler RT, Strowbridge BW. Blanes Cells Mediate Persistent Feedforward Inhibition onto Granule Cells in the Olfactory Bulb. Neuron 2006; 49:889-904. [PMID: 16543136 DOI: 10.1016/j.neuron.2006.02.019] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 12/21/2005] [Accepted: 02/09/2006] [Indexed: 10/24/2022]
Abstract
Inhibitory local circuits in the olfactory bulb play a critical role in determining the firing patterns of output neurons. However, little is known about the circuitry in the major plexiform layers of the olfactory bulb that regulate this output. Here we report the first electrophysiological recordings from Blanes cells, large stellate-shaped interneurons located in the granule cell layer. We find that Blanes cells are GABAergic and generate large I(CAN)-mediated afterdepolarizations following bursts of action potentials. Using paired two-photon guided intracellular recordings, we show that Blanes cells have a presumptive axon and monosynaptically inhibit granule cells. Sensory axon stimulation evokes barrages of EPSPs in Blanes cells that trigger long epochs of persistent spiking; this firing mode was reset by hyperpolarizing membrane potential steps. Persistent firing in Blanes cells may represent a novel mechanism for encoding short-term olfactory information through modulation of tonic inhibitory synaptic input onto bulbar neurons.
Collapse
Affiliation(s)
- R Todd Pressler
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
43
|
Brown CH, Leng G, Ludwig M, Bourque CW. Endogenous activation of supraoptic nucleus kappa-opioid receptors terminates spontaneous phasic bursts in rat magnocellular neurosecretory cells. J Neurophysiol 2006; 95:3235-44. [PMID: 16495366 DOI: 10.1152/jn.00062.2006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phasic activity in magnocellular neurosecretory vasopressin cells is characterized by alternating periods of activity (bursts) and silence. During phasic bursts, action potentials (spikes) are superimposed on plateau potentials that are generated by summation of depolarizing after-potentials (DAPs). Burst termination is believed to result from autocrine feedback inhibition of plateau potentials by the kappa-opioid peptide, dynorphin, which is copackaged in vasopressin neurosecretory vesicles and exocytosed from vasopressin cell dendrites during phasic bursts. Here we tested this hypothesis, using intracellular recording in vitro to show that kappa-opioid receptor antagonist administration enhanced plateau potential amplitude to increase postspike excitability during spontaneous phasic activity. The antagonist also increased postburst DAP amplitude in vitro, indicating that endogenous dynorphin probably reduces plateau potential amplitude by inhibiting the DAP mechanism. However, the kappa-opioid receptor antagonist did not affect the slow depolarization that follows burst termination, suggesting that recovery from endogenous kappa-opioid inhibition does not contribute to the slow depolarization. We also show, by extracellular single-unit recording, that that there is a strong random element in the timing of burst initiation and termination in vivo. Administration of a kappa-opioid receptor antagonist eliminated the random element of burst termination but did not alter the timing of burst initiation. We conclude that dendritic dynorphin release terminates phasic bursts by reducing the amplitude of plateau potentials to reduce the probability of spike firing as bursts progress. By contrast, dendritic dynorphin release does not greatly influence the membrane potential between bursts and evidently does not influence the timing of burst initiation.
Collapse
Affiliation(s)
- Colin H Brown
- Centre for Neuroendocrinology and Department of Physiology, School of Medical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand.
| | | | | | | |
Collapse
|
44
|
Brown CH, Bourque CW. Mechanisms of rhythmogenesis: insights from hypothalamic vasopressin neurons. Trends Neurosci 2006; 29:108-15. [PMID: 16330104 DOI: 10.1016/j.tins.2005.11.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 09/23/2005] [Accepted: 11/21/2005] [Indexed: 11/23/2022]
Abstract
Many neurons in the CNS, including hypothalamic vasopressin-expressing cells, display rhythmic activity patterning. These vasopressin neurons receive random synaptic input but fire action potentials in alternating periods of activity and silence that each lasts tens of seconds. Recent work demonstrates that vasopressin cell rhythmicity depends on feedback modulation of intrinsic membrane properties and synaptic inputs by peptides released from the dendrites of these neurons. Many other neurons across the CNS release neurotransmitters from their dendrites; therefore, vasopressin cells provide an insight into the potential mechanisms that support neuronal activity patterning across the CNS.
Collapse
Affiliation(s)
- Colin H Brown
- Centre for Neuroendocrinology and Department of Physiology, School of Medical Sciences, University of Otago, PO Box 913, Dunedin, New Zealand.
| | | |
Collapse
|
45
|
Abstract
This paper is the 27th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over 30 years of research. It summarizes papers published during 2004 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| | | |
Collapse
|
46
|
Parker CN. McMaster University data-mining and docking competition: computational models on the catwalk. ACTA ACUST UNITED AC 2005; 10:647-8. [PMID: 16170048 DOI: 10.1177/1087057105281268] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Frequency-dependent depletion of secretory vesicle pools modulates bursting in vasopressin neurones of the rat supraoptic nucleus. Neurocomputing 2005. [DOI: 10.1016/j.neucom.2004.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Ghamari-Langroudi M, Bourque CW. Muscarinic receptor modulation of slow afterhyperpolarization and phasic firing in rat supraoptic nucleus neurons. J Neurosci 2005; 24:7718-26. [PMID: 15342739 PMCID: PMC6729628 DOI: 10.1523/jneurosci.1240-04.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A slow posttrain afterhyperpolarization (sAHP) was studied in rat magnocellular neurosecretory cells (MNCs) in vitro. The sAHP was isolated from other afterpotentials by blocking the depolarizing afterpotential (DAP) with Cs(+) and the medium afterhyperpolarization (mAHP) with apamin. The sAHP amplitude increased logarithmically with activity ( approximately 3 mV per e-fold increase in number of impulses) and, when firing stopped, decayed exponentially with a time constant of 2 sec. The sAHP was associated with increased membrane conductance, and its amplitude varied linearly with voltage, reversing at the K(+) equilibrium potential. The sAHP was blocked by Cd(2+) but not by charybdotoxin or iberiotoxin, blockers of intermediate- and big-conductance-type Ca(2+)-dependent K(+) (K(Ca)) channels. The sAHP was reversibly inhibited by muscarine, an effect antagonized by atropine, indicating involvement of muscarinic cholinergic receptors. Muscarine did not affect Ca(2+)-dependent features of action potentials, DAPs, or the mAHP in MNCs, indicating selective modulation of K(Ca) channels causing the sAHP. Muscarinic inhibition of the sAHP enhanced plateau potentials and increased the mean firing rate and duration of afterdischarges that followed spike trains evoked from voltages near threshold. Similarly, the frequency and duration of the spontaneous phasic bursts that characterize physiologically activated vasopressin-releasing MNCs were enhanced by muscarine. MNCs thus express apamin- and voltage-insensitive K(Ca) channels that mediate an sAHP. The activity dependence and kinetics of the sAHP cause it to mask DAPs in a manner that attenuates the amplitude of plateau potentials. Muscarinic inhibition of the sAHP provides an effective mechanism for promoting phasic firing in MNCs.
Collapse
Affiliation(s)
- Masoud Ghamari-Langroudi
- Centre for Research in Neuroscience, Montreal General Hospital and McGill University, Montreal, Quebec H3G 1A4, Canada
| | | |
Collapse
|
49
|
Thiagarajah JR, Papadopoulos MC, Verkman AS. Noninvasive early detection of brain edema in mice by near-infrared light scattering. J Neurosci Res 2005; 80:293-9. [PMID: 15765520 DOI: 10.1002/jnr.20439] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Brain edema accounts for significant morbidity and mortality in many neurologic conditions such as head trauma, stroke, meningitis, and brain tumor. The water channel aquaporin-4 (AQP4) has been found to be an important determinant of brain water accumulation and clearance of excess brain water. We report the development of a noninvasive near-infrared (NIR) light-scattering method to compare the early kinetics of brain swelling in normal and AQP4-deficient mice. Brain tissue was illuminated through the intact skull with NIR light at 850 nm, and steady-state scattered light intensity was monitored at an angle of 90 degrees at a position on the skull approximately 10 mm from the illuminated site. NIR light scattering reversibly increased with brain swelling (DeltaI/Io approximately 25% per 1% increase in brain water content), but was insensitive to changes in cerebral blood flow, blood oxygenation, or blood flow-related changes in intracranial pressure (ICP). DeltaI/Io increased approximately linearly with brain water content as measured by wet-to-dry weight ratios. Acute water intoxication (intraperitoneal water, 20% body weight) produced a gradual increase in DeltaI/Io of 12 +/- 4% in wild-type mice at 5 min, much greater than that of 2 +/- 1% in AQP4-null mice. Correlation of the NIR signal with ICP showed that increased DeltaI/Io preceded measurable increases in ICP, indicating the ability of the NIR method to detect early brain edema before ICP elevation. NIR light scattering provides a simple noninvasive method to monitor brain edema in mice, with potential clinical applications.
Collapse
Affiliation(s)
- Jay R Thiagarajah
- Department of Medicine and Physiology, Cardiovascular Research Institute, University of California, San Francisco, 94143-0521, USA
| | | | | |
Collapse
|
50
|
Sabatier N, Brown CH, Ludwig M, Leng G. Phasic spike patterning in rat supraoptic neurones in vivo and in vitro. J Physiol 2004; 558:161-80. [PMID: 15146047 PMCID: PMC1664911 DOI: 10.1113/jphysiol.2004.063982] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In vivo, most vasopressin cells of the hypothalamic supraoptic nucleus fire action potentials in a 'phasic' pattern when the systemic osmotic pressure is elevated, while most oxytocin cells fire continuously. The phasic firing pattern is believed to arise as a consequence of intrinsic activity-dependent changes in membrane potential, and these have been extensively studied in vitro. Here we analysed the discharge patterning of supraoptic nucleus neurones in vivo, to infer the characteristics of the post-spike sequence of hyperpolarization and depolarization from the observed spike patterning. We then compared patterning in phasic cells in vivo and in vitro, and we found systematic differences in the interspike interval distributions, and in other statistical parameters that characterized activity patterns within bursts. Analysis of hazard functions (probability of spike initiation as a function of time since the preceding spike) revealed that phasic firing in vitro appears consistent with a regenerative process arising from a relatively slow, late depolarizing afterpotential that approaches or exceeds spike threshold. By contrast, in vivo activity appears to be dominated by stochastic rather than deterministic mechanisms, and appears consistent with a relatively early and fast depolarizing afterpotential that modulates the probability that random synaptic input exceeds spike threshold. Despite superficial similarities in the phasic firing patterns observed in vivo and in vitro, there are thus fundamental differences in the underlying mechanisms.
Collapse
Affiliation(s)
- Nancy Sabatier
- School of Biomedical and Clinical Laboratory Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | | | | | | |
Collapse
|