1
|
Niitani K, Ito S, Wada S, Izumi S, Nishitani N, Deyama S, Kaneda K. Noradrenergic stimulation of α 1 adrenoceptors in the medial prefrontal cortex mediates acute stress-induced facilitation of seizures in mice. Sci Rep 2023; 13:8089. [PMID: 37208473 DOI: 10.1038/s41598-023-35242-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/15/2023] [Indexed: 05/21/2023] Open
Abstract
Stress is one of the critical facilitators for seizure induction in patients with epilepsy. However, the neural mechanisms underlying this facilitation remain poorly understood. Here, we investigated whether noradrenaline (NA) transmission enhanced by stress exposure facilitates the induction of medial prefrontal cortex (mPFC)-originated seizures. In mPFC slices, whole-cell current-clamp recordings revealed that bath application of picrotoxin induced sporadic epileptiform activities (EAs), which consisted of depolarization with bursts of action potentials in layer 5 pyramidal cells. Addition of NA dramatically shortened the latency and increased the number of EAs. Simultaneous whole-cell and field potential recordings revealed that the EAs are synchronous in the mPFC local circuit. Terazosin, but not atipamezole or timolol, inhibited EA facilitation, indicating the involvement of α1 adrenoceptors. Intra-mPFC picrotoxin infusion induced seizures in mice in vivo. Addition of NA substantially shortened the seizure latency, while co-infusion of terazosin into the mPFC inhibited the effect of NA. Finally, acute restraint stress shortened the latency of intra-mPFC picrotoxin infusion-induced seizures, whereas prior infusion of terazosin reversed this stress-induced shortening of seizure latency. Our findings suggest that stress facilitates the induction of mPFC-originated seizures via NA stimulation of α1 adrenoceptors.
Collapse
Affiliation(s)
- Kazuhei Niitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Shiho Ito
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Shintaro Wada
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Shoma Izumi
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Naoya Nishitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
2
|
Yan Z, Tang J, Ge H, Liu D, Liu Y, Liu H, Zou Y, Hu X, Yang K, Chen J. Synergistic structural and functional alterations in the medial prefrontal cortex of patients with high-grade gliomas infiltrating the thalamus and the basal ganglia. Front Neurosci 2023; 17:1136534. [PMID: 37051149 PMCID: PMC10083262 DOI: 10.3389/fnins.2023.1136534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/28/2023] [Indexed: 03/28/2023] Open
Abstract
BackgroundHigh-grade gliomas (HGGs) are characterized by a high degree of tissue invasion and uncontrolled cell proliferation, inevitably damaging the thalamus and the basal ganglia. The thalamus exhibits a high level of structural and functional connectivity with the default mode network (DMN). The present study investigated the structural and functional compensation within the DMN in HGGs invading the thalamus along with the basal ganglia (HITBG).MethodsA total of 32 and 22 healthy controls were enrolled, and their demographics and neurocognition (digit span test, DST) were assessed. Of the 32 patients, 18 patients were involved only on the left side, while 15 of them were involved on the right side. This study assessed the amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), gray matter (GM) volume, and functional connectivity (FC) within the DMN and compared these measures between patients with left and right HITBG and healthy controls (HCs).ResultThe medial prefrontal cortex (mPFC) region existed in synchrony with the significant increase in ALFF and GM volume in patients with left and right HITBG compared with HCs. In addition, patients with left HITBG exhibited elevated ReHo and GM precuneus volumes, which did not overlap with the findings in patients with right HITBG. The patients with left and right HITBG showed decreased GM volume in the contralateral hippocampus without any functional variation. However, no significant difference in FC values was observed in the regions within the DMN. Additionally, the DST scores were significantly lower in patients with HITBG, but there was no significant correlation with functional or GM volume measurements.ConclusionThe observed pattern of synchrony between structure and function was present in the neuroplasticity of the mPFC and the precuneus. However, patients with HITBG may have a limited capacity to affect the connectivity within the regions of the DMN. Furthermore, the contralateral hippocampus in patients with HITBG exhibited atrophy. Thus, preventing damage to these regions may potentially delay the progression of neurological function impairment in patients with HGG.
Collapse
Affiliation(s)
- Zheng Yan
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Tang
- Department of Neurosurgery, Yixing Hospital of Traditional Chinese Medicine, Yixing, China
| | - Honglin Ge
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dongming Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yong Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Institute of Brain Functional Imaging, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongyi Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Institute of Brain Functional Imaging, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuanjie Zou
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Institute of Brain Functional Imaging, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinhua Hu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Institute of Brain Functional Imaging, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kun Yang
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Institute of Brain Functional Imaging, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- *Correspondence: Kun Yang
| | - Jiu Chen
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Institute of Brain Functional Imaging, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiu Chen
| |
Collapse
|
3
|
Mease RA, Gonzalez AJ. Corticothalamic Pathways From Layer 5: Emerging Roles in Computation and Pathology. Front Neural Circuits 2021; 15:730211. [PMID: 34566583 PMCID: PMC8458899 DOI: 10.3389/fncir.2021.730211] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/10/2021] [Indexed: 11/29/2022] Open
Abstract
Large portions of the thalamus receive strong driving input from cortical layer 5 (L5) neurons but the role of this important pathway in cortical and thalamic computations is not well understood. L5-recipient "higher-order" thalamic regions participate in cortico-thalamo-cortical (CTC) circuits that are increasingly recognized to be (1) anatomically and functionally distinct from better-studied "first-order" CTC networks, and (2) integral to cortical activity related to learning and perception. Additionally, studies are beginning to elucidate the clinical relevance of these networks, as dysfunction across these pathways have been implicated in several pathological states. In this review, we highlight recent advances in understanding L5 CTC networks across sensory modalities and brain regions, particularly studies leveraging cell-type-specific tools that allow precise experimental access to L5 CTC circuits. We aim to provide a focused and accessible summary of the anatomical, physiological, and computational properties of L5-originating CTC networks, and outline their underappreciated contribution in pathology. We particularly seek to connect single-neuron and synaptic properties to network (dys)function and emerging theories of cortical computation, and highlight information processing in L5 CTC networks as a promising focus for computational studies.
Collapse
Affiliation(s)
- Rebecca A. Mease
- Institute of Physiology and Pathophysiology, Medical Biophysics, Heidelberg University, Heidelberg, Germany
| | | |
Collapse
|
4
|
Brodovskaya A, Shiono S, Kapur J. Activation of the basal ganglia and indirect pathway neurons during frontal lobe seizures. Brain 2021; 144:2074-2091. [PMID: 33730155 DOI: 10.1093/brain/awab119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/12/2020] [Accepted: 01/04/2021] [Indexed: 12/27/2022] Open
Abstract
There are no detailed descriptions of neuronal circuit active during frontal lobe motor seizures. Using activity reporter mice, local field potential recordings, tissue clearing, viral tracing, and super-resolution microscopy, we found neuronal activation after focal motor to bilateral tonic-clonic seizures in the striatum, globus pallidus externus, subthalamic nucleus, substantia nigra pars reticulata and neurons of the indirect pathway. Seizures preferentially activated dopamine D2 receptor-expressing neurons over D1 in the striatum, which have different projections. Furthermore, the D2 receptor agonist infused into the striatum exerted an anticonvulsant effect. Seizures activate structures via short and long latency loops, and anatomical connections of the seizure focus determine the seizure circuit. These studies, for the first time, show activation of neurons in the striatum, globus pallidus, subthalamic nucleus, and substantia nigra during frontal lobe motor seizures on the cellular level, revealing a complex neuronal activation circuit subject to modulation by the basal ganglia.
Collapse
Affiliation(s)
- Anastasia Brodovskaya
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Shinnosuke Shiono
- Department of Neurology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, Virginia 22908, USA.,UVA Brain Institute, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
5
|
Singh T, Joshi S, Williamson JM, Kapur J. Neocortical injury-induced status epilepticus. Epilepsia 2020; 61:2811-2824. [PMID: 33063874 DOI: 10.1111/epi.16715] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To characterize neocortical onset status epilepticus (SE) in the C57BL/6J mouse. METHODS We induced SE by administering homocysteine 16-18 hours after cobalt (Co) implantation. SE was monitored by video and electroencephalography (EEG). We evaluated brain structure with magnetic resonance imaging (MRI). Neurodegeneration was evaluated 72 hours after SE using Fluoro-Jade C staining. RESULTS Cobalt triggered seizures in a dose-dependent manner (median effective dose, ED50 = 0.78 mg) and the latency to peak seizure frequency shortened with increased dose. Animals developed SE after homocysteine administration. SE began with early intermittent focal seizures, consisting of frontal onset rhythmic spike-wave discharges manifested as focal dystonia with clonus. These focal seizures then evolved into generalized continuous convulsive activity. Behavioral manifestations of SE included tonic stiffening, bilateral limb clonus, and bilateral tonic-clonic movements, which were accompanied by generalized rhythmic spike-wave discharges on EEG. After prolonged seizures, animals became comatose with intermittent bilateral myoclonic seizures or jerks. During this period, EEG showed seizures interspersed with generalized periodic discharges on a suppressed background. MRI obtained when animals were in a coma revealed edema, midline shift in frontal lobe around the Co implantation site, and ventricular effacement. Fluoro-Jade C staining revealed neurodegeneration in the cortex, amygdala, and thalamus. SIGNIFICANCE We have developed a mouse model of severe, refractory cortical-onset SE, consisting of convulsions merging into a coma, EEG patterns of cortical seizures, and injury, with evidence of widespread neocortical edema and damage. This model replicates many features of acute seizures and SE resulting from traumatic brain injury, subarachnoid, and lobar hemorrhage.
Collapse
Affiliation(s)
- Tanveer Singh
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Suchitra Joshi
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - John M Williamson
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA, USA.,UVA Brain Institute, University of Virginia, Charlottesville, VA, USA.,Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
6
|
Young JC, Nasser HM, Casillas-Espinosa PM, O'Brien TJ, Jackson GD, Paolini AG. Multiunit cluster firing patterns of piriform cortex and mediodorsal thalamus in absence epilepsy. Epilepsy Behav 2019; 97:229-243. [PMID: 31254843 DOI: 10.1016/j.yebeh.2019.05.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/09/2019] [Accepted: 05/20/2019] [Indexed: 01/24/2023]
Abstract
OBJECTIVE The objective of the study were to investigate patterns of multiunit cluster firing in the piriform cortex (PC) and mediodorsal thalamus (MDT) in a rat model of genetic generalized epilepsy (GGE) with absence seizures and to assess whether these regions contribute to the initiation or spread of generalized epileptiform discharges. METHODS Multiunit clusters and their corresponding local field potentials (LFPs) were recorded from microelectrode arrays implanted in the PC and MDT in urethane anesthetized Genetic Absence Epilepsy Rats from Strasbourg (GAERS) and nonepileptic control (NEC) rats. Peristimulus time histograms (PSTHs) and cross-correlograms were used to observe transient changes in both the rate of firing and synchrony over time. The phase locking of multiunit clusters to LFP signals (spike-LFP phase locking) was calculated for frequency bands associated with olfactory communication between the two brain regions. RESULTS There were significant increases in both rate of firing and synchronous activity at the onset of generalized epileptiform discharges in both PC and MDT. Prior to and following these increases in synchronous activity, there were periods of suppression. Significant increases in spike-LFP phase locking were observed within the PC prior to the onset of epileptiform discharges across all spectral bands. There were also significant increases in spike-LFP phase locking within the theta band of the MDT prior to onset. Between the two brain regions, there was a significant decrease in spike-LFP phase locking -0.5 s prior to onset in the theta band which coincided with a significant elevation in spike-LFP phase locking in the gamma band. CONCLUSIONS Both the PC and MDT are engaged in the absence epilepsy network. Early spike-LFP phase locking between these two brain regions suggests potential involvement in the initiation of seizure activity.
Collapse
Affiliation(s)
- James C Young
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia.
| | - Helen M Nasser
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia; ISN Psychology - Institute for Social Neuroscience, Melbourne, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Monash University, Melbourne, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Australia; Department of Neurology, The Royal Melbourne Hospital, The University of Melbourne, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Monash University, Melbourne, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Australia; Department of Neurology, The Royal Melbourne Hospital, The University of Melbourne, Australia
| | - Graeme D Jackson
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia; Department of Neurology, Austin Health, Melbourne, Australia
| | - Antonio G Paolini
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia; ISN Psychology - Institute for Social Neuroscience, Melbourne, Australia; School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| |
Collapse
|
7
|
Trojsi F, Caiazzo G, Siciliano M, Femiano C, Passaniti C, Russo A, Bisecco A, Monsurrò MR, Cirillo M, Esposito F, Tedeschi G, Santangelo G. Microstructural correlates of Edinburgh Cognitive and Behavioural ALS Screen (ECAS) changes in amyotrophic lateral sclerosis. Psychiatry Res Neuroimaging 2019; 288:67-75. [PMID: 30987770 DOI: 10.1016/j.pscychresns.2019.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 11/17/2022]
Abstract
Edinburgh Cognitive and Behavioural ALS Screen (ECAS) was designed for testing patients with amyotrophic lateral sclerosis (ALS), a multi-system neurodegenerative disease characterized by progressive physical disability. In this study, we aim to explore the potential brain microstructural substrates associated with performance on ECAS in the early stages of ALS, using a whole-brain tract-based spatial statistics diffusion tensor imaging approach. Thirty-six non-demented ALS patients, assessed using ECAS, and 35 age-, sex- and education-matched healthy controls underwent magnetic resonance imaging at 3 Tesla. The ALS patients showed decreased fractional anisotropy (FA) in the cortico-spinal tracts and corpus callosum (CC) and significant association between verbal fluency score, among ALS-specific ECAS scores, and FA measures in several long association fiber tracts in the frontal, temporal and parietal lobes. Furthermore, the ALS non-specific total score was inversely related to axial diffusivity (AD) in the mediodorsal nucleus of the thalamus, with more extended areas of correlation in the CC, when considering only the memory subscore. Our results point towards microstructural degeneration across motor and extra-motor areas in ALS, underlining that alterations in verbal fluency performances may be related to impairment of frontotemporal connectivity, while alterations of memory may be associated with damage of thalamocortical circuits.
Collapse
Affiliation(s)
- Francesca Trojsi
- Department of Advanced Medical and Surgical Sciences, MRI Research Centre "SUN-FISM", University of Campania "Luigi Vanvitelli", P.zza Miraglia 2, Naples 80138, Italy.
| | - Giuseppina Caiazzo
- Department of Advanced Medical and Surgical Sciences, MRI Research Centre "SUN-FISM", University of Campania "Luigi Vanvitelli", P.zza Miraglia 2, Naples 80138, Italy
| | - Mattia Siciliano
- Department of Advanced Medical and Surgical Sciences, MRI Research Centre "SUN-FISM", University of Campania "Luigi Vanvitelli", P.zza Miraglia 2, Naples 80138, Italy; Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Cinzia Femiano
- Department of Advanced Medical and Surgical Sciences, MRI Research Centre "SUN-FISM", University of Campania "Luigi Vanvitelli", P.zza Miraglia 2, Naples 80138, Italy
| | - Carla Passaniti
- Department of Advanced Medical and Surgical Sciences, MRI Research Centre "SUN-FISM", University of Campania "Luigi Vanvitelli", P.zza Miraglia 2, Naples 80138, Italy; Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Antonio Russo
- Department of Advanced Medical and Surgical Sciences, MRI Research Centre "SUN-FISM", University of Campania "Luigi Vanvitelli", P.zza Miraglia 2, Naples 80138, Italy
| | - Alvino Bisecco
- Department of Advanced Medical and Surgical Sciences, MRI Research Centre "SUN-FISM", University of Campania "Luigi Vanvitelli", P.zza Miraglia 2, Naples 80138, Italy
| | - Maria Rosaria Monsurrò
- Department of Advanced Medical and Surgical Sciences, MRI Research Centre "SUN-FISM", University of Campania "Luigi Vanvitelli", P.zza Miraglia 2, Naples 80138, Italy
| | - Mario Cirillo
- Department of Advanced Medical and Surgical Sciences, MRI Research Centre "SUN-FISM", University of Campania "Luigi Vanvitelli", P.zza Miraglia 2, Naples 80138, Italy
| | - Fabrizio Esposito
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Baronissi, Salerno, Italy
| | - Gioacchino Tedeschi
- Department of Advanced Medical and Surgical Sciences, MRI Research Centre "SUN-FISM", University of Campania "Luigi Vanvitelli", P.zza Miraglia 2, Naples 80138, Italy
| | - Gabriella Santangelo
- Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| |
Collapse
|
8
|
Dehghani N, Wimmer RD. A Computational Perspective of the Role of the Thalamus in Cognition. Neural Comput 2019; 31:1380-1418. [PMID: 31113299 DOI: 10.1162/neco_a_01197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The thalamus has traditionally been considered as only a relay source of cortical inputs, with hierarchically organized cortical circuits serially transforming thalamic signals to cognitively relevant representations. Given the absence of local excitatory connections within the thalamus, the notion of thalamic relay seemed like a reasonable description over the past several decades. Recent advances in experimental approaches and theory provide a broader perspective on the role of the thalamus in cognitively relevant cortical computations and suggest that only a subset of thalamic circuit motifs fits the relay description. Here, we discuss this perspective and highlight the potential role for the thalamus, and specifically the mediodorsal (MD) nucleus, in the dynamic selection of cortical representations through a combination of intrinsic thalamic computations and output signals that change cortical network functional parameters. We suggest that through the contextual modulation of cortical computation, the thalamus and cortex jointly optimize the information and cost trade-off in an emergent fashion. We emphasize that coordinated experimental and theoretical efforts will provide a path to understanding the role of the thalamus in cognition, along with an understanding to augment cognitive capacity in health and disease.
Collapse
Affiliation(s)
- Nima Dehghani
- Department of Physics and Center for Brains, Minds and Machines (CBMM), MIT, Cambridge, MA 02139, U.S.A.
| | - Ralf D Wimmer
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, U.S.A.
| |
Collapse
|
9
|
Zimmerman EC, Grace AA. Prefrontal cortex modulates firing pattern in the nucleus reuniens of the midline thalamus via distinct corticothalamic pathways. Eur J Neurosci 2018; 48:3255-3272. [PMID: 30107061 PMCID: PMC6237082 DOI: 10.1111/ejn.14111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/12/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023]
Abstract
The thalamus has long been recognized for its role in relaying sensory information from the periphery, a function accomplished by its "first-order" nuclei. However, a second category of thalamic nuclei, termed "higher-order" nuclei, have been shown instead to mediate communication between cortical areas. The nucleus reuniens of the midline thalamus (RE) is a higher-order nucleus known to act as a conduit of reciprocal communication between the medial prefrontal cortex (mPFC) and hippocampus. While anatomical and behavioural studies of RE are numerous, circuit-based electrophysiological studies, particularly those examining the impact of cortical input and the thalamic reticular nucleus (TRN) on RE neuron firing, are sparse. To characterize RE neuron firing properties and dissect the circuit dynamics of the infralimbic subdivision of the mPFC (ilPFC), the TRN and RE, we used in vivo, extracellular, single-unit recordings in male Sprague Dawley rats and manipulated neural activity using targeted pharmacological manipulations, electrical stimulation and a projection-specific implementation of designer receptors exclusively activated by designer drugs (DREADDs). We show that ilPFC inhibition reduces multiple burst firing parameters in RE, whereas ilPFC stimulation drives burst firing and dampens tonic firing. In addition, TRN inhibition reduces the number of spontaneously active neurons in RE. Finally, inhibition of ilPFC terminals in RE selectively enhances a subset of burst firing parameters. These findings demonstrate that ilPFC input, both via direct projections and via the TRN, can modulate RE neuron firing pattern in nuanced and complex ways. They also highlight the ilPFC-TRN-RE circuit as a likely critical component of prefrontal-hippocampal interactions.
Collapse
Affiliation(s)
- Eric C Zimmerman
- Departments of Neuroscience, Psychiatry, and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry, and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
10
|
|
11
|
Kim J, Kim Y, Nakajima R, Shin A, Jeong M, Park AH, Jeong Y, Jo S, Yang S, Park H, Cho SH, Cho KH, Shim I, Chung JH, Paik SB, Augustine GJ, Kim D. Inhibitory Basal Ganglia Inputs Induce Excitatory Motor Signals in the Thalamus. Neuron 2017; 95:1181-1196.e8. [PMID: 28858620 DOI: 10.1016/j.neuron.2017.08.028] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/07/2017] [Accepted: 08/15/2017] [Indexed: 10/19/2022]
Abstract
Basal ganglia (BG) circuits orchestrate complex motor behaviors predominantly via inhibitory synaptic outputs. Although these inhibitory BG outputs are known to reduce the excitability of postsynaptic target neurons, precisely how this change impairs motor performance remains poorly understood. Here, we show that optogenetic photostimulation of inhibitory BG inputs from the globus pallidus induces a surge of action potentials in the ventrolateral thalamic (VL) neurons and muscle contractions during the post-inhibitory period. Reduction of the neuronal population with this post-inhibitory rebound firing by knockout of T-type Ca2+ channels or photoinhibition abolishes multiple motor responses induced by the inhibitory BG input. In a low dopamine state, the number of VL neurons showing post-inhibitory firing increases, while reducing the number of active VL neurons via photoinhibition of BG input, effectively prevents Parkinson disease (PD)-like motor symptoms. Thus, BG inhibitory input generates excitatory motor signals in the thalamus and, in excess, promotes PD-like motor abnormalities. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Jeongjin Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea; Center for Neuroscience, KIST, Seoul 02792, Republic of Korea
| | - Youngsoo Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea; Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Ryuichi Nakajima
- Center for Functional Connectomics, KIST, Seoul 02792, Republic of Korea
| | - Anna Shin
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Minju Jeong
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Ah Hyung Park
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Yongcheol Jeong
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Seonmi Jo
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Seungkyoung Yang
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Hosung Park
- School of Computing, KAIST, Daejeon 34141, Republic of Korea
| | - Sung-Hwan Cho
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Kwang-Hyun Cho
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Insop Shim
- Department of Science in Korean Medicine, Graduate School, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Jae Hoon Chung
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Se-Bum Paik
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - George J Augustine
- Center for Functional Connectomics, KIST, Seoul 02792, Republic of Korea; Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Daesoo Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
12
|
Effect of Hypoxic Injury in Mood Disorder. Neural Plast 2017; 2017:6986983. [PMID: 28717522 PMCID: PMC5498932 DOI: 10.1155/2017/6986983] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/26/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022] Open
Abstract
Hypoxemia is a common complication of the diseases associated with the central nervous system, and neurons are highly sensitive to the availability of oxygen. Neuroplasticity is an important property of the neural system controlling breathing, memory, and cognitive ability. However, the underlying mechanism has not yet been clearly elucidated. In recent years, several pieces of evidence have highlighted the effect of hypoxic injury on neuronal plasticity in the pathogenesis and treatment of mood disorder. Therefore, the present study reviewed the relevant articles regarding hypoxic injury and neuronal plasticity and discussed the pathological changes and physiological functions of neurons in hypoxemia in order to provide a translational perspective to the relevance of hypoxic injury and mood disorder.
Collapse
|
13
|
Kim HJ, Jeong MH, Kim KR, Jung CY, Lee SY, Kim H, Koh J, Vuong TA, Jung S, Yang H, Park SK, Choi D, Kim SH, Kang K, Sohn JW, Park JM, Jeon D, Koo SH, Ho WK, Kang JS, Kim ST, Cho H. Protein arginine methylation facilitates KCNQ channel-PIP2 interaction leading to seizure suppression. eLife 2016; 5. [PMID: 27466704 PMCID: PMC4996652 DOI: 10.7554/elife.17159] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/27/2016] [Indexed: 12/14/2022] Open
Abstract
KCNQ channels are critical determinants of neuronal excitability, thus emerging as a novel target of anti-epileptic drugs. To date, the mechanisms of KCNQ channel modulation have been mostly characterized to be inhibitory via Gq-coupled receptors, Ca2+/CaM, and protein kinase C. Here we demonstrate that methylation of KCNQ by protein arginine methyltransferase 1 (Prmt1) positively regulates KCNQ channel activity, thereby preventing neuronal hyperexcitability. Prmt1+/- mice exhibit epileptic seizures. Methylation of KCNQ2 channels at 4 arginine residues by Prmt1 enhances PIP2 binding, and Prmt1 depletion lowers PIP2 affinity of KCNQ2 channels and thereby the channel activities. Consistently, exogenous PIP2 addition to Prmt1+/- neurons restores KCNQ currents and neuronal excitability to the WT level. Collectively, we propose that Prmt1-dependent facilitation of KCNQ-PIP2 interaction underlies the positive regulation of KCNQ activity by arginine methylation, which may serve as a key target for prevention of neuronal hyperexcitability and seizures. DOI:http://dx.doi.org/10.7554/eLife.17159.001 In the brain, cells called neurons transmit information along their length in the form of electrical signals. To generate electrical signals, ions move into and out of neurons through ion channel proteins – such as the KCNQ channel – in the surface of these cells, which open and close to control the electrical response of the neuron. Abnormally intense bursts of electrical activity from many neurons at once can cause seizures such as those experienced by people with epilepsy. A significant proportion of patients do not respond to current anti-seizure medications. Openers of KCNQ channels have emerged as a potential new class of anti-epileptic drugs. A better understanding of how KCNQ channels work, and how their opening by PIP2lipid signals is regulated, could help to develop more effective therapies for epilepsy. A process called methylation controls many biological tasks by changing the structure of key proteins inside cells. Although methylation occurs throughout the brain, its role in controlling how easily neurons are activated (a property known as “excitability”) remains unclear. Kim, Jeong, Kim, Jung et al. now show that a protein called Prmt1 methylates the KCNQ channels in mice, and that this methylation is essential for suppressing seizures. Mice born without the Prmt1 protein developed epileptic seizures and the KCNQ channels in their neurons featured a reduced level of methylation. However, increasing the amount of PIP2 in these neurons restored their excitability back to normal levels. The methylation of KCNQ channel proteins increases their affinity for PIP2, which is critical to open KCNQ channels. Kim et al. propose that these “opening” controllers balance the action of known “closers” of KCNQ channels to maintain neurons in a healthy condition. In future, Kim et al. plan to investigate whether methylation affects the activity of other ion channels controlled by PIP2. Such experiments will complement a more widespread investigation into other ways in which the Prtmt1 protein may control the activity of neurons. DOI:http://dx.doi.org/10.7554/eLife.17159.002
Collapse
Affiliation(s)
- Hyun-Ji Kim
- Department of Physiology, Samsung Biomedical Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Myong-Ho Jeong
- Department of Molecular Cell Biology, Samsung Biomedical Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Kyung-Ran Kim
- Department of Physiology and bioMembrane Plasticity Research Center, Seoul National University College of Medicine, Seoul, Korea.,Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Korea
| | - Chang-Yun Jung
- Department of Molecular Cell Biology, Samsung Biomedical Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Seul-Yi Lee
- Department of Physiology, Samsung Biomedical Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hanna Kim
- Department of Physiology, Samsung Biomedical Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jewoo Koh
- Department of Physiology, Samsung Biomedical Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Tuan Anh Vuong
- Department of Molecular Cell Biology, Samsung Biomedical Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Seungmoon Jung
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Hyunwoo Yang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Su-Kyung Park
- Department of Molecular Cell Biology, Samsung Biomedical Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Dahee Choi
- Department of Molecular Cell Biology, Samsung Biomedical Institute, Sungkyunkwan University School of Medicine, Suwon, Korea.,Division of Life Sciences, Korea University, Seoul, Korea
| | - Sung Hun Kim
- Department of Neurology, College of Medicine, Kangwon National University, Chuncheon, Korea
| | - KyeongJin Kang
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jong-Woo Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Joo Min Park
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea
| | - Daejong Jeon
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Seoul National University Hospital, Seoul, Korea.,Advanced Neural Technologies, Seoul, Republic of Korea
| | - Seung-Hoi Koo
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Won-Kyung Ho
- Department of Physiology and bioMembrane Plasticity Research Center, Seoul National University College of Medicine, Seoul, Korea.,Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Samsung Biomedical Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Seong-Tae Kim
- Department of Molecular Cell Biology, Samsung Biomedical Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hana Cho
- Department of Physiology, Samsung Biomedical Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
14
|
Park AH, Lee SH, Lee C, Kim J, Lee HE, Paik SB, Lee KJ, Kim D. Optogenetic Mapping of Functional Connectivity in Freely Moving Mice via Insertable Wrapping Electrode Array Beneath the Skull. ACS NANO 2016; 10:2791-802. [PMID: 26735496 DOI: 10.1021/acsnano.5b07889] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Spatiotemporal mapping of neural interactions through electrocorticography (ECoG) is the key to understanding brain functions and disorders. For the entire brain cortical areas, this approach has been challenging, especially in freely moving states, owing to the need for extensive craniotomy. Here, we introduce a flexible microelectrode array system, termed iWEBS, which can be inserted through a small cranial slit and stably wrap onto the curved cortical surface. Using iWEBS, we measured dynamic changes of signals across major cortical domains, namely, somatosensory, motor, visual and retrosplenial areas, in freely moving mice. iWEBS robustly displayed somatosensory evoked potentials (SEPs) in corresponding cortical areas to specific somatosensory stimuli. We also used iWEBS for mapping functional interactions between cortical areas in the propagation of spike-and-wave discharges (SWDs), the neurological marker of absence seizures, triggered by optogenetic inhibition of a specific thalamic nucleus. This demonstrates that iWEBS represents a significant improvement over conventional ECoG recording methodologies and, therefore, is a competitive recording system for mapping wide-range brain connectivity under various behavioral conditions.
Collapse
Affiliation(s)
- Ah Hyung Park
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seung Hyun Lee
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Changju Lee
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeongjin Kim
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Han Eol Lee
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Se-Bum Paik
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Keon Jae Lee
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Daesoo Kim
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
15
|
Mitchell AS. The mediodorsal thalamus as a higher order thalamic relay nucleus important for learning and decision-making. Neurosci Biobehav Rev 2015; 54:76-88. [PMID: 25757689 DOI: 10.1016/j.neubiorev.2015.03.001] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 02/21/2015] [Accepted: 03/01/2015] [Indexed: 02/08/2023]
Abstract
Recent evidence from monkey models of cognition shows that the magnocellular subdivision of the mediodorsal thalamus (MDmc) is more critical for learning new information than for retention of previously acquired information. Further, consistent evidence in animal models shows the mediodorsal thalamus (MD) contributes to adaptive decision-making. It is assumed that prefrontal cortex (PFC) and medial temporal lobes govern these cognitive processes so this evidence suggests that MD contributes a role in these cognitive processes too. Anatomically, the MD has extensive excitatory cortico-thalamo-cortical connections, especially with the PFC. MD also receives modulatory inputs from forebrain, midbrain and brainstem regions. It is suggested that the MD is a higher order thalamic relay of the PFC due to the dual cortico-thalamic inputs from layer V ('driver' inputs capable of transmitting a message) and layer VI ('modulator' inputs) of the PFC. Thus, the MD thalamic relay may support the transfer of information across the PFC via this indirect thalamic route. This review summarizes the current knowledge about the anatomy of MD as a higher order thalamic relay. It also reviews behavioral and electrophysiological studies in animals to consider how MD might support the transfer of information across the cortex during learning and decision-making. Current evidence suggests the MD is particularly important during rapid trial-by-trial associative learning and decision-making paradigms that involve multiple cognitive processes. Further studies need to consider the influence of the MD higher order relay to advance our knowledge about how the cortex processes higher order cognition.
Collapse
Affiliation(s)
- Anna S Mitchell
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford OX1 3UD, United Kingdom.
| |
Collapse
|
16
|
Kozhushko NY, Evdokimov SA, Matveev YK, Tereshchenko EP, Kropotov YD. Study of local EEG specificities in children with mental development disorders using independent component analysis. ACTA ACUST UNITED AC 2014. [DOI: 10.1134/s0362119714050077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
T-type Ca2+ channels in absence epilepsy. Pflugers Arch 2014; 466:719-34. [DOI: 10.1007/s00424-014-1461-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 01/22/2014] [Indexed: 11/25/2022]
|
18
|
Park YG, Kim J, Kim D. The potential roles of T-type Ca2+ channels in motor coordination. Front Neural Circuits 2013; 7:172. [PMID: 24191148 PMCID: PMC3808788 DOI: 10.3389/fncir.2013.00172] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 10/06/2013] [Indexed: 11/27/2022] Open
Abstract
Specific behavioral patterns are expressed by complex combinations of muscle coordination. Tremors are simple behavioral patterns and are the focus of studies investigating motor coordination mechanisms in the brain. T-type Ca(2+) channels mediate intrinsic neuronal oscillations and rhythmic burst spiking, and facilitate the generation of tremor rhythms in motor circuits. Despite substantial evidence that T-type Ca(2+) channels mediate pathological tremors, their roles in physiological motor coordination and behavior remain unknown. Here, we review recent progress in understanding the roles that T-type Ca(2+) channels play under pathological conditions, and discuss the potential relevance of these channels in mediating physiological motor coordination.
Collapse
Affiliation(s)
- Young-Gyun Park
- Department of Biological Sciences, Korea Advanced Institute of Science and TechnologyDaejeon, South Korea
| | - Jeongjin Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and TechnologyDaejeon, South Korea
| | - Daesoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and TechnologyDaejeon, South Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and TechnologyDaejeon, South Korea
| |
Collapse
|
19
|
Abstract
Low-voltage-activated T-type Ca(2+) channels are widely expressed in various types of neurons. Once deinactivated by hyperpolarization, T-type channels are ready to be activated by a small depolarization near the resting membrane potential and, therefore, are optimal for regulating the excitability and electroresponsiveness of neurons under physiological conditions near resting states. Ca(2+) influx through T-type channels engenders low-threshold Ca(2+) spikes, which in turn trigger a burst of action potentials. Low-threshold burst firing has been implicated in the synchronization of the thalamocortical circuit during sleep and in absence seizures. It also has been suggested that T-type channels play an important role in pain signal transmission, based on their abundant expression in pain-processing pathways in peripheral and central neurons. In this review, we will describe studies on the role of T-type Ca(2+) channels in the physiological as well as pathological generation of brain rhythms in sleep, absence epilepsy, and pain signal transmission. Recent advances in studies of T-type channels in the control of cognition will also be briefly discussed.
Collapse
Affiliation(s)
- Eunji Cheong
- Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| | | |
Collapse
|
20
|
Kwak SS, Jeong M, Choi JH, Kim D, Min H, Yoon Y, Hwang O, Meadows GG, Joe CO. Amelioration of behavioral abnormalities in BH(4)-deficient mice by dietary supplementation of tyrosine. PLoS One 2013; 8:e60803. [PMID: 23577163 PMCID: PMC3618182 DOI: 10.1371/journal.pone.0060803] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 03/03/2013] [Indexed: 12/13/2022] Open
Abstract
This study reports an amelioration of abnormal motor behaviors in tetrahydrobiopterin (BH4)-deficient Spr (-/-) mice by the dietary supplementation of tyrosine. Since BH4 is an essential cofactor for the conversion of phenylalanine into tyrosine as well as the synthesis of dopamine neurotransmitter within the central nervous system, the levels of tyrosine and dopamine were severely reduced in brains of BH4-deficient Spr (-/-) mice. We found that Spr (-/-) mice display variable 'open-field' behaviors, impaired motor functions on the 'rotating rod', and dystonic 'hind-limb clasping'. In this study, we report that these aberrant motor deficits displayed by Spr (-/-) mice were ameliorated by the therapeutic tyrosine diet for 10 days. This study also suggests that dopamine deficiency in brains of Spr (-/-) mice may not be the biological feature of aberrant motor behaviors associated with BH4 deficiency. Brain levels of dopamine (DA) and its metabolites in Spr (-/-) mice were not substantially increased by the dietary tyrosine therapy. However, we found that mTORC1 activity severely suppressed in brains of Spr (-/-) mice fed a normal diet was restored 10 days after feeding the mice the tyrosine diet. The present study proposes that brain mTORC1 signaling pathway is one of the potential targets in understanding abnormal motor behaviors associated with BH4-deficiency.
Collapse
Affiliation(s)
- Sang Su Kwak
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Mikyoung Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Ji Hye Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Daesoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hyesun Min
- Department of Food and Nutrition, HanNam University, Daejeon, South Korea
| | - Yoosik Yoon
- College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Onyou Hwang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Ulsan, Seoul, South Korea
| | - Gary G. Meadows
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Pullman, Washington, United States of America
| | - Cheol O. Joe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
21
|
Machinskaya RI, Kurgansky AV. Frontal bilateral synchronous theta waves and the resting EEG coherence in children aged 7–8 and 9–10 with learning difficulties. ACTA ACUST UNITED AC 2013. [DOI: 10.1134/s0362119713010106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Cheong E, Shin HS. T-type Ca²⁺ channels in absence epilepsy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1560-71. [PMID: 23416255 DOI: 10.1016/j.bbamem.2013.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 01/15/2013] [Accepted: 02/01/2013] [Indexed: 11/28/2022]
Abstract
Low-voltage-activated T-type Ca²⁺ channels are highly expressed in the thalamocortical circuit, suggesting that they play a role in this brain circuit. Indeed, low-threshold burst firing mediated by T-type Ca²⁺ channels has long been implicated in the synchronization of the thalamocortical circuit. Over the past few decades, the conventional view has been that rhythmic burst firing mediated by T-type channels in both thalamic reticular nuclie (TRN) and thalamocortical (TC) neurons are equally critical in the generation of thalamocortical oscillations during sleep rhythms and spike-wave-discharges (SWDs). This review broadly investigates recent studies indicating that even though both TRN and TC nuclei are required for thalamocortical oscillations, the contributions of T-type channels to TRN and TC neurons are not equal in the genesis of sleep spindles and SWDs. T-type channels in TC neurons are an essential component of SWD generation, whereas the requirement for TRN T-type channels in SWD generation remains controversial at least in the GBL model of absence seizures. Therefore, a deeper understanding of the functional consequences of modulating each T-type channel subtype could guide the development of therapeutic tools for absence seizures while minimizing side effects on physiological thalamocortical oscillations. This article is part of a Special Issue entitled: Calcium channels.
Collapse
Affiliation(s)
- Eunji Cheong
- Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| | | |
Collapse
|
23
|
Lei D, Gao X, Perez P, Ohlemiller KK, Chen CC, Campbell KP, Hood AY, Bao J. Anti-epileptic drugs delay age-related loss of spiral ganglion neurons via T-type calcium channel. Hear Res 2011; 278:106-12. [PMID: 21640179 PMCID: PMC3152691 DOI: 10.1016/j.heares.2011.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 04/29/2011] [Accepted: 05/11/2011] [Indexed: 12/26/2022]
Abstract
Loss of spiral ganglion neurons is a major cause of age-related hearing loss (presbycusis). Despite being the third most prevalent condition afflicting elderly persons, there are no known medications to prevent presbycusis. Because calcium signaling has long been implicated in age-related neuronal death, we investigated T-type calcium channels. This family is comprised of three members (Ca(v)3.1, Ca(v)3.2, and Ca(v)3.3), based on their respective main pore-forming alpha subunits: α1G, α1H, and α1I. In the present study, we report a significant delay of age-related loss of cochlear function and preservation of spiral ganglion neurons in α1H null and heterozygous mice, clearly demonstrating an important role for Ca(v)3.2 in age-related neuronal loss. Furthermore, we show that anticonvulsant drugs from a family of T-type calcium channel blockers can significantly preserve spiral ganglion neurons during aging. To our knowledge, this is the first report of drugs capable of diminishing age-related loss of spiral ganglion neurons.
Collapse
MESH Headings
- Aging/drug effects
- Aging/metabolism
- Aging/pathology
- Animals
- Anticonvulsants/pharmacology
- Base Sequence
- Calcium Channel Blockers/pharmacology
- Calcium Channels, T-Type/deficiency
- Calcium Channels, T-Type/genetics
- Calcium Channels, T-Type/metabolism
- Evoked Potentials, Auditory, Brain Stem/drug effects
- Hair Cells, Auditory, Inner/pathology
- Hair Cells, Auditory, Outer/pathology
- Mice
- Mice, Congenic
- Mice, Knockout
- Neurons/drug effects
- Neurons/metabolism
- Neurons/pathology
- Presbycusis/metabolism
- Presbycusis/pathology
- Presbycusis/prevention & control
- RNA/genetics
- RNA/metabolism
- Spiral Ganglion/drug effects
- Spiral Ganglion/innervation
- Spiral Ganglion/metabolism
- Spiral Ganglion/pathology
Collapse
Affiliation(s)
- Debin Lei
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
- Center for Aging, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Xia Gao
- Department of Otolaryngology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China 210008
| | - Philip Perez
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
- Center for Aging, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Kevin K Ohlemiller
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Chien-Chang Chen
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa, 60153, USA
| | - Kevin P. Campbell
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa, 60153, USA
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, 60153, USA
- Department of Neurology, University of Iowa, Iowa City, Iowa, 60153, USA
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, 60153, USA
| | - Aizhen Yang Hood
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
- Center for Aging, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Jianxin Bao
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
- Center for Aging, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
- The Division of Biology & Biomedical Science and Neuroscience Program, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| |
Collapse
|