1
|
She JW, Young CM, Chou SJ, Wu YR, Lin YT, Huang TY, Shen MY, Chen CY, Yang YP, Chien Y, Ayalew H, Liao WH, Tung YC, Shyue JJ, Chiou SH, Yu HH. Gradient conducting polymer surfaces with netrin-1-conjugation promote axon guidance and neuron transmission of human iPSC-derived retinal ganglion cells. Biomaterials 2025; 313:122770. [PMID: 39226653 DOI: 10.1016/j.biomaterials.2024.122770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/30/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
Major advances have been made in utilizing human-induced pluripotent stem cells (hiPSCs) for regenerative medicine. Nevertheless, the delivery and integration of hiPSCs into target tissues remain significant challenges, particularly in the context of retinal ganglion cell (RGC) restoration. In this study, we introduce a promising avenue for providing directional guidance to regenerated cells in the retina. First, we developed a technique for construction of gradient interfaces based on functionalized conductive polymers, which could be applied with various functionalized ehthylenedioxythiophene (EDOT) monomers. Using a tree-shaped channel encapsulated with a thin PDMS and a specially designed electrochemical chamber, gradient flow generation could be converted into a functionalized-PEDOT gradient film by cyclic voltammetry. The characteristics of the successfully fabricated gradient flow and surface were analyzed using fluorescent labels, time of flight secondary ion mass spectrometry (TOF-SIMS), and X-ray photoelectron spectroscopy (XPS). Remarkably, hiPSC-RGCs seeded on PEDOT exhibited improvements in neurite outgrowth, axon guidance and neuronal electrophysiology measurements. These results suggest that our novel gradient PEDOT may be used with hiPSC-based technologies as a potential biomedical engineering scaffold for functional restoration of RGCs in retinal degenerative diseases and optic neuropathies.
Collapse
Affiliation(s)
- Jia-Wei She
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei, 11529, Taiwan; Taiwan International Graduate Program (TIGP), Nano Science & Technology Program, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei, 11529, Taiwan; Department of Engineering and System Science, National Tsing Hua University, No. 101, Section 2, Guangfu Road, East District, 300, Hsinchu City, Taiwan
| | - Chia-Mei Young
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11217, Taiwan
| | - Shih-Jie Chou
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11217, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - You-Ren Wu
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11217, Taiwan
| | - Yu-Ting Lin
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei, 11529, Taiwan
| | - Tzu-Yang Huang
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei, 11529, Taiwan
| | - Mo-Yuan Shen
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei, 11529, Taiwan
| | - Chih-Ying Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Hailemichael Ayalew
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei, 11529, Taiwan
| | - Wei-Hao Liao
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Chung Tung
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Jing-Jong Shyue
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Shih-Hwa Chiou
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11217, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan; Genomic Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| | - Hsiao-Hua Yu
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
2
|
Vita DJ, Orsi FS, Stanko NG, Clark NA, Tiriac A. Development and organization of the retinal orientation selectivity map. Nat Commun 2024; 15:4829. [PMID: 38844438 PMCID: PMC11156980 DOI: 10.1038/s41467-024-49206-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
Orientation or axial selectivity, the property of neurons in the visual system to respond preferentially to certain angles of visual stimuli, plays a pivotal role in our understanding of visual perception and information processing. This computation is performed as early as the retina, and although much work has established the cellular mechanisms of retinal orientation selectivity, how this computation is organized across the retina is unknown. Using a large dataset collected across the mouse retina, we demonstrate functional organization rules of retinal orientation selectivity. First, we identify three major functional classes of retinal cells that are orientation selective and match previous descriptions. Second, we show that one orientation is predominantly represented in the retina and that this predominant orientation changes as a function of retinal location. Third, we demonstrate that neural activity plays little role on the organization of retinal orientation selectivity. Lastly, we use in silico modeling followed by validation experiments to demonstrate that the overrepresented orientation aligns along concentric axes. These results demonstrate that, similar to direction selectivity, orientation selectivity is organized in a functional map as early as the retina.
Collapse
Affiliation(s)
- Dominic J Vita
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Fernanda S Orsi
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Nathan G Stanko
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Natalie A Clark
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Alexandre Tiriac
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
3
|
Vita DJ, Orsi FS, Stanko NG, Clark NA, Tiriac A. Development and Organization of the Retinal Orientation Selectivity Map. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.585774. [PMID: 38585937 PMCID: PMC10996665 DOI: 10.1101/2024.03.27.585774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Orientation or axial selectivity, the property of neurons in the visual system to respond preferentially to certain angles of a visual stimuli, plays a pivotal role in our understanding of visual perception and information processing. This computation is performed as early as the retina, and although much work has established the cellular mechanisms of retinal orientation selectivity, how this computation is organized across the retina is unknown. Using a large dataset collected across the mouse retina, we demonstrate functional organization rules of retinal orientation selectivity. First, we identify three major functional classes of retinal cells that are orientation selective and match previous descriptions. Second, we show that one orientation is predominantly represented in the retina and that this predominant orientation changes as a function of retinal location. Third, we demonstrate that neural activity plays little role on the organization of retinal orientation selectivity. Lastly, we use in silico modeling followed by validation experiments to demonstrate that the overrepresented orientation aligns along concentric axes. These results demonstrate that, similar to direction selectivity, orientation selectivity is organized in a functional map as early as the retina. One Sentence Summary Development and organization of retinal orientation selectivity.
Collapse
|
4
|
de Malmazet D, Kühn NK, Li C, Farrow K. Retinal origin of orientation but not direction selective maps in the superior colliculus. Curr Biol 2024; 34:1222-1233.e7. [PMID: 38417446 PMCID: PMC10980837 DOI: 10.1016/j.cub.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/19/2023] [Accepted: 02/01/2024] [Indexed: 03/01/2024]
Abstract
Neurons in the mouse superior colliculus ("colliculus") are arranged in ordered spatial maps. While orientation-selective (OS) neurons form a concentric map aligned to the center of vision, direction-selective (DS) neurons are arranged in patches with changing preferences across the visual field. It remains unclear whether these maps are a consequence of feedforward input from the retina or local computations in the colliculus. To determine whether these maps originate in the retina, we mapped the local and global distribution of OS and DS retinal ganglion cell axon boutons using in vivo two-photon calcium imaging. We found that OS boutons formed patches that matched the distribution of OS neurons within the colliculus. DS boutons displayed fewer regional specializations, better reflecting the organization of DS neurons in the retina. Both eyes convey similar orientation but different DS inputs to the colliculus, as shown in recordings from retinal explants. These data demonstrate that orientation and direction maps within the colliculus are independent, where orientation maps are likely inherited from the retina, but direction maps require additional computations.
Collapse
Affiliation(s)
- Daniel de Malmazet
- Neuro-Electronics Research Flanders, Leuven 3001, Belgium; KU Leuven, Department of Biology & Leuven Brain Institute, Leuven 3000, Belgium; MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Norma K Kühn
- Neuro-Electronics Research Flanders, Leuven 3001, Belgium; KU Leuven, Department of Biology & Leuven Brain Institute, Leuven 3000, Belgium; VIB, Leuven 3001, Belgium
| | - Chen Li
- Neuro-Electronics Research Flanders, Leuven 3001, Belgium; KU Leuven, Department of Biology & Leuven Brain Institute, Leuven 3000, Belgium
| | - Karl Farrow
- Neuro-Electronics Research Flanders, Leuven 3001, Belgium; KU Leuven, Department of Biology & Leuven Brain Institute, Leuven 3000, Belgium; VIB, Leuven 3001, Belgium; imec, Leuven 3001, Belgium.
| |
Collapse
|
5
|
Chander PR, Hanson L, Chundekkad P, Awatramani GB. Neural Circuits Underlying Multifeature Extraction in the Retina. J Neurosci 2024; 44:e0910232023. [PMID: 37957014 PMCID: PMC10919202 DOI: 10.1523/jneurosci.0910-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 11/21/2023] Open
Abstract
Classic ON-OFF direction-selective ganglion cells (DSGCs) that encode the four cardinal directions were recently shown to also be orientation-selective. To clarify the mechanisms underlying orientation selectivity, we employed a variety of electrophysiological, optogenetic, and gene knock-out strategies to test the relative contributions of glutamate, GABA, and acetylcholine (ACh) input that are known to drive DSGCs, in male and female mouse retinas. Extracellular spike recordings revealed that DSGCs respond preferentially to either vertical or horizontal bars, those that are perpendicular to their preferred-null motion axes. By contrast, the glutamate input to all four DSGC types measured using whole-cell patch-clamp techniques was found to be tuned along the vertical axis. Tuned glutamatergic excitation was heavily reliant on type 5A bipolar cells, which appear to be electrically coupled via connexin 36 containing gap junctions to the vertically oriented processes of wide-field amacrine cells. Vertically tuned inputs are transformed by the GABAergic/cholinergic "starburst" amacrine cells (SACs), which are critical components of the direction-selective circuit, into distinct patterns of inhibition and excitation. Feed-forward SAC inhibition appears to "veto" preferred orientation glutamate excitation in dorsal/ventral (but not nasal/temporal) coding DSGCs "flipping" their orientation tuning by 90° and accounts for the apparent mismatch between glutamate input tuning and the DSGC's spiking response. Together, these results reveal how two distinct synaptic motifs interact to generate complex feature selectivity, shedding light on the intricate circuitry that underlies visual processing in the retina.
Collapse
Affiliation(s)
| | - Laura Hanson
- Department of Biology, University of Victoria, Victoria, British Columbia V8W 4A4, Canada
| | - Pavitra Chundekkad
- Department of Biology, University of Victoria, Victoria, British Columbia V8W 4A4, Canada
| | | |
Collapse
|
6
|
Swygart D, Yu WQ, Takeuchi S, Wong ROL, Schwartz GW. A presynaptic source drives differing levels of surround suppression in two mouse retinal ganglion cell types. Nat Commun 2024; 15:599. [PMID: 38238324 PMCID: PMC10796971 DOI: 10.1038/s41467-024-44851-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
In early sensory systems, cell-type diversity generally increases from the periphery into the brain, resulting in a greater heterogeneity of responses to the same stimuli. Surround suppression is a canonical visual computation that begins within the retina and is found at varying levels across retinal ganglion cell types. Our results show that heterogeneity in the level of surround suppression occurs subcellularly at bipolar cell synapses. Using single-cell electrophysiology and serial block-face scanning electron microscopy, we show that two retinal ganglion cell types exhibit very different levels of surround suppression even though they receive input from the same bipolar cell types. This divergence of the bipolar cell signal occurs through synapse-specific regulation by amacrine cells at the scale of tens of microns. These findings indicate that each synapse of a single bipolar cell can carry a unique visual signal, expanding the number of possible functional channels at the earliest stages of visual processing.
Collapse
Affiliation(s)
- David Swygart
- Northwestern University Interdepartmental Neuroscience Program, Chicago, IL, USA
| | - Wan-Qing Yu
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Shunsuke Takeuchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Gregory W Schwartz
- Northwestern University Interdepartmental Neuroscience Program, Chicago, IL, USA.
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
7
|
Park SJ, Lei W, Pisano J, Orpia A, Minehart J, Pottackal J, Hanke-Gogokhia C, Zapadka TE, Clarkson-Paredes C, Popratiloff A, Ross SE, Singer JH, Demb JB. Molecular identification of wide-field amacrine cells in mouse retina that encode stimulus orientation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.28.573580. [PMID: 38234775 PMCID: PMC10793454 DOI: 10.1101/2023.12.28.573580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Visual information processing is sculpted by a diverse group of inhibitory interneurons in the retina called amacrine cells. Yet, for most of the >60 amacrine cell types, molecular identities and specialized functional attributes remain elusive. Here, we developed an intersectional genetic strategy to target a group of wide-field amacrine cells (WACs) in mouse retina that co-express the transcription factor Bhlhe22 and the Kappa Opioid Receptor (KOR; B/K WACs). B/K WACs feature straight, unbranched dendrites spanning over 0.5 mm (∼15° visual angle) and produce non-spiking responses to either light increments or decrements. Two-photon dendritic population imaging reveals Ca 2+ signals tuned to the physical orientations of B/K WAC dendrites, signifying a robust structure-function alignment. B/K WACs establish divergent connections with multiple retinal neurons, including unexpected connections with non-orientation-tuned ganglion cells and bipolar cells. Our work sets the stage for future comprehensive investigations of the most enigmatic group of retinal neurons: WACs.
Collapse
|
8
|
Mani A, Yang X, Zhao TA, Leyrer ML, Schreck D, Berson DM. A circuit suppressing retinal drive to the optokinetic system during fast image motion. Nat Commun 2023; 14:5142. [PMID: 37612305 PMCID: PMC10447436 DOI: 10.1038/s41467-023-40527-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/26/2023] [Indexed: 08/25/2023] Open
Abstract
Optokinetic nystagmus (OKN) assists stabilization of the retinal image during head rotation. OKN is driven by ON direction selective retinal ganglion cells (ON DSGCs), which encode both the direction and speed of global retinal slip. The synaptic circuits responsible for the direction selectivity of ON DSGCs are well understood, but those sculpting their slow-speed preference remain enigmatic. Here, we probe this mechanism in mouse retina through patch clamp recordings, functional imaging, genetic manipulation, and electron microscopic reconstructions. We confirm earlier evidence that feedforward glycinergic inhibition is the main suppressor of ON DSGC responses to fast motion, and reveal the source for this inhibition-the VGluT3 amacrine cell, a dual neurotransmitter, excitatory/inhibitory interneuron. Together, our results identify a role for VGluT3 cells in limiting the speed range of OKN. More broadly, they suggest VGluT3 cells shape the response of many retinal cell types to fast motion, suppressing it in some while enhancing it in others.
Collapse
Affiliation(s)
- Adam Mani
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Xinzhu Yang
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Tiffany A Zhao
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Megan L Leyrer
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Daniel Schreck
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - David M Berson
- Department of Neuroscience, Brown University, Providence, RI, USA.
| |
Collapse
|
9
|
Liang Y, Lu R, Borges K, Ji N. Stimulus edges induce orientation tuning in superior colliculus. Nat Commun 2023; 14:4756. [PMID: 37553352 PMCID: PMC10409754 DOI: 10.1038/s41467-023-40444-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/27/2023] [Indexed: 08/10/2023] Open
Abstract
Orientation columns exist in the primary visual cortex (V1) of cat and primates but not mouse. Intriguingly, some recent studies reported the presence of orientation and direction columns in the mouse superficial superior colliculus (sSC), while others reported a lack of columnar organization therein. Using in vivo calcium imaging of sSC in the awake mouse brain, we found that the presence of columns is highly stimulus dependent. Specifically, we observed orientation and direction columns formed by sSC neurons retinotopically mapped to the edge of grating stimuli. For both excitatory and inhibitory neurons in sSC, orientation selectivity can be induced by the edge with their preferred orientation perpendicular to the edge orientation. Furthermore, we found that this edge-induced orientation selectivity is associated with saliency encoding. These findings indicate that the tuning properties of sSC neurons are not fixed by circuit architecture but rather dependent on the spatiotemporal properties of the stimulus.
Collapse
Affiliation(s)
- Yajie Liang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20148, USA
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Rongwen Lu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20148, USA
| | - Katharine Borges
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Na Ji
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20148, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA.
- Department of Physics, University of California, Berkeley, CA, 94720, USA.
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
10
|
Hanson L, Ravi-Chander P, Berson D, Awatramani GB. Hierarchical retinal computations rely on hybrid chemical-electrical signaling. Cell Rep 2023; 42:112030. [PMID: 36696265 DOI: 10.1016/j.celrep.2023.112030] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/08/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Bipolar cells (BCs) are integral to the retinal circuits that extract diverse features from the visual environment. They bridge photoreceptors to ganglion cells, the source of retinal output. Understanding how such circuits encode visual features requires an accounting of the mechanisms that control glutamate release from bipolar cell axons. Here, we demonstrate orientation selectivity in a specific genetically identifiable type of mouse bipolar cell-type 5A (BC5A). Their synaptic terminals respond best when stimulated with vertical bars that are far larger than their dendritic fields. We provide evidence that this selectivity involves enhanced excitation for vertical stimuli that requires gap junctional coupling through connexin36. We also show that this orientation selectivity is detectable postsynaptically in direction-selective ganglion cells, which were not previously thought to be selective for orientation. Together, these results demonstrate how multiple features are extracted by a single hierarchical network, engaging distinct electrical and chemical synaptic pathways.
Collapse
Affiliation(s)
- Laura Hanson
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | | | - David Berson
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Gautam B Awatramani
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada.
| |
Collapse
|
11
|
Chan KH, Shik HT, Kwok KW, Kee CS, Leung TW. Bi-directional Refractive Compensation for With-the-Rule and Against-the-Rule Astigmatism in Young Adults. Invest Ophthalmol Vis Sci 2022; 63:15. [PMID: 36155745 PMCID: PMC9526370 DOI: 10.1167/iovs.63.10.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to investigate the short-term effect of imposing astigmatism on the refractive states of young adults. Methods Nineteen visually healthy low-astigmatic young adults (age = 20.94 ± 0.37 years; spherical-equivalent errors [M] = -1.47 ± 0.23 diopters [D]; cylindrical errors = -0.32 ± 0.05 D) were recruited. They were asked to wear a trial frame with treated and control lenses while watching a video for an hour. In three separate visits, the treated eye was exposed to one of three defocused conditions in random sequence: (1) with-the-rule (WTR) astigmatism = +3.00 DC × 180 degrees; (2) against-the-rule (ATR) astigmatism = +3.00 DC × 90 degrees; and (3) spherical defocus (SPH) = +3.00 DS. The control eye was fully corrected optically. Before and after watching the video, non-cycloplegic autorefraction was performed over the trial lenses. Refractive errors were decomposed into M, J0, and J45 astigmatism. Interocular differences in refractions (treated eye - control eye) were analyzed. Results After participants watched the video with monocular astigmatic defocus for an hour, the magnitude of the J0 astigmatism was significantly reduced by 0.25 ± 0.10 D in both WTR (from +1.53 ± 0.07 D to +1.28 ± 0.09 D) and 0.39 ± 0.15 D in ATR conditions (from -1.33 ± 0.06 D to -0.94 ± 0.18 D), suggesting an active compensation. In contrast, changes in J0 astigmatism were not significant in the SPH condition. No compensatory changes in J45 astigmatism or M were found under any conditions. Conclusions Watching a video for an hour with astigmatic defocus induced bidirectional, compensatory changes in astigmatic components, suggesting that refractive components of young adults are moldable to compensate for orientation-specific astigmatic blur over a short period.
Collapse
Affiliation(s)
- Kin-Ho Chan
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, Special Administration Region of the People's, Republic of China.,Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, Special Administration Region of the People's, Republic of China
| | - Ho-Tin Shik
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, Special Administration Region of the People's, Republic of China
| | - Kwan William Kwok
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, Special Administration Region of the People's, Republic of China
| | - Chea-Su Kee
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, Special Administration Region of the People's, Republic of China.,Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, Special Administration Region of the People's, Republic of China
| | - Tsz-Wing Leung
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, Special Administration Region of the People's, Republic of China.,Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, Special Administration Region of the People's, Republic of China.,Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, Special Administration Region of the People's, Republic of China
| |
Collapse
|
12
|
Goetz J, Jessen ZF, Jacobi A, Mani A, Cooler S, Greer D, Kadri S, Segal J, Shekhar K, Sanes JR, Schwartz GW. Unified classification of mouse retinal ganglion cells using function, morphology, and gene expression. Cell Rep 2022; 40:111040. [PMID: 35830791 PMCID: PMC9364428 DOI: 10.1016/j.celrep.2022.111040] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/27/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Classification and characterization of neuronal types are critical for understanding their function and dysfunction. Neuronal classification schemes typically rely on measurements of electrophysiological, morphological, and molecular features, but aligning such datasets has been challenging. Here, we present a unified classification of mouse retinal ganglion cells (RGCs), the sole retinal output neurons. We use visually evoked responses to classify 1,859 mouse RGCs into 42 types. We also obtain morphological or transcriptomic data from subsets and use these measurements to align the functional classification to publicly available morphological and transcriptomic datasets. We create an online database that allows users to browse or download the data and to classify RGCs from their light responses using a machine learning algorithm. This work provides a resource for studies of RGCs, their upstream circuits in the retina, and their projections in the brain, and establishes a framework for future efforts in neuronal classification and open data distribution.
Collapse
Affiliation(s)
- Jillian Goetz
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Zachary F Jessen
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA; Medical Scientist Training Program, Northwestern University, Chicago, IL, USA
| | - Anne Jacobi
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Adam Mani
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sam Cooler
- Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA
| | - Devon Greer
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA
| | - Sabah Kadri
- Department of Pathology, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Jeremy Segal
- Department of Pathology, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Gregory W Schwartz
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
13
|
Wienbar S, Schwartz GW. Differences in spike generation instead of synaptic inputs determine the feature selectivity of two retinal cell types. Neuron 2022; 110:2110-2123.e4. [PMID: 35508174 PMCID: PMC9262831 DOI: 10.1016/j.neuron.2022.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/21/2022] [Accepted: 04/11/2022] [Indexed: 12/19/2022]
Abstract
Retinal ganglion cells (RGCs) are the spiking projection neurons of the eye that encode different features of the visual environment. The circuits providing synaptic input to different RGC types to drive feature selectivity have been studied extensively, but there has been less research aimed at understanding the intrinsic properties and how they impact feature selectivity. We introduce an RGC type in the mouse, the Bursty Suppressed-by-Contrast (bSbC) RGC, and compared it to the OFF sustained alpha (OFFsA). Differences in their contrast response functions arose from differences not in synaptic inputs but in their intrinsic properties. Spike generation was the key intrinsic property behind this functional difference; the bSbC RGC undergoes depolarization block while the OFFsA RGC maintains a high spike rate. Our results demonstrate that differences in intrinsic properties allow these two RGC types to detect and relay distinct features of an identical visual stimulus to the brain.
Collapse
Affiliation(s)
- Sophia Wienbar
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL 60208, USA
| | - Gregory William Schwartz
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
14
|
Abstract
Retinal circuits transform the pixel representation of photoreceptors into the feature representations of ganglion cells, whose axons transmit these representations to the brain. Functional, morphological, and transcriptomic surveys have identified more than 40 retinal ganglion cell (RGC) types in mice. RGCs extract features of varying complexity; some simply signal local differences in brightness (i.e., luminance contrast), whereas others detect specific motion trajectories. To understand the retina, we need to know how retinal circuits give rise to the diverse RGC feature representations. A catalog of the RGC feature set, in turn, is fundamental to understanding visual processing in the brain. Anterograde tracing indicates that RGCs innervate more than 50 areas in the mouse brain. Current maps connecting RGC types to brain areas are rudimentary, as is our understanding of how retinal signals are transformed downstream to guide behavior. In this article, I review the feature selectivities of mouse RGCs, how they arise, and how they are utilized downstream. Not only is knowledge of the behavioral purpose of RGC signals critical for understanding the retinal contributions to vision; it can also guide us to the most relevant areas of visual feature space. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences; Department of Neuroscience; Department of Biomedical Engineering; and Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, Missouri, USA;
| |
Collapse
|
15
|
Ichinose T, Habib S. ON and OFF Signaling Pathways in the Retina and the Visual System. FRONTIERS IN OPHTHALMOLOGY 2022; 2:989002. [PMID: 36926308 PMCID: PMC10016624 DOI: 10.3389/fopht.2022.989002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Visual processing starts at the retina of the eye, and signals are then transferred primarily to the visual cortex and the tectum. In the retina, multiple neural networks encode different aspects of visual input, such as color and motion. Subsequently, multiple neural streams in parallel convey unique aspects of visual information to cortical and subcortical regions. Bipolar cells, which are the second order neurons of the retina, separate visual signals evoked by light and dark contrasts and encode them to ON and OFF pathways, respectively. The interplay between ON and OFF neural signals is the foundation for visual processing for object contrast which underlies higher order stimulus processing. ON and OFF pathways have been classically thought to signal in a mirror-symmetric manner. However, while these two pathways contribute synergistically to visual perception in some instances, they have pronounced asymmetries suggesting independent operation in other cases. In this review, we summarize the role of the ON-OFF dichotomy in visual signaling, aiming to contribute to the understanding of visual recognition.
Collapse
Affiliation(s)
- Tomomi Ichinose
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
- Correspondence: Tomomi Ichinose, MD, PhD,
| | - Samar Habib
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Medical Parasitology, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
16
|
Ruff T, Peters C, Matsumoto A, Ihle SJ, Morales PA, Gaitanos L, Yonehara K, Del Toro D, Klein R. FLRT3 Marks Direction-Selective Retinal Ganglion Cells That Project to the Medial Terminal Nucleus. Front Mol Neurosci 2021; 14:790466. [PMID: 34955746 PMCID: PMC8696037 DOI: 10.3389/fnmol.2021.790466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/19/2021] [Indexed: 11/23/2022] Open
Abstract
The mammalian retina extracts a multitude of diverse features from the visual scene such as color, contrast, and direction of motion. These features are transmitted separately to the brain by more than 40 different retinal ganglion cell (RGC) subtypes. However, so far only a few genetic markers exist to fully characterize the different RGC subtypes. Here, we present a novel genetic Flrt3-CreERT2 knock-in mouse that labels a small subpopulation of RGCs. Using single-cell injection of fluorescent dyes in Flrt3 positive RGCs, we distinguished four morphological RGC subtypes. Anterograde tracings using a fluorescent Cre-dependent Adeno-associated virus (AAV) revealed that a subgroup of Flrt3 positive RGCs specifically project to the medial terminal nucleus (MTN), which is part of the accessory optic system (AOS) and is essential in driving reflex eye movements for retinal image stabilization. Functional characterization using ex vivo patch-clamp recordings showed that the MTN-projecting Flrt3 RGCs preferentially respond to downward motion in an ON-fashion. These neurons distribute in a regular pattern and most of them are bistratified at the level of the ON and OFF bands of cholinergic starburst amacrine cells where they express the known ON-OFF direction-selective RGC marker CART. Together, our results indicate that MTN-projecting Flrt3 RGCs represent a new functionally homogeneous AOS projecting direction-selective RGC subpopulation.
Collapse
Affiliation(s)
- Tobias Ruff
- Department of Molecules, Signaling, and Development, Max Planck Institute of Neurobiology, Martinsried, Germany.,Laboratory of Biosensors and Bioelectronics, ETH Zürich, Zurich, Switzerland
| | - Christian Peters
- Department of Molecules, Signaling, and Development, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Akihiro Matsumoto
- Department of Biomedicine, Nordic-EMBL Partnership for Molecular Medicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
| | - Stephan J Ihle
- Laboratory of Biosensors and Bioelectronics, ETH Zürich, Zurich, Switzerland
| | - Pilar Alcalá Morales
- Department of Molecules, Signaling, and Development, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Louise Gaitanos
- Department of Molecules, Signaling, and Development, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Keisuke Yonehara
- Department of Biomedicine, Nordic-EMBL Partnership for Molecular Medicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
| | - Daniel Del Toro
- Department of Molecules, Signaling, and Development, Max Planck Institute of Neurobiology, Martinsried, Germany.,Department of Biological Sciences, Faculty of Medicine, Institute of Neurosciences, IDIBAPS, CIBERNED, University of Barcelona, Barcelona, Spain
| | - Rüdiger Klein
- Department of Molecules, Signaling, and Development, Max Planck Institute of Neurobiology, Martinsried, Germany
| |
Collapse
|
17
|
Gămănuţ R, Shimaoka D. Anatomical and functional connectomes underlying hierarchical visual processing in mouse visual system. Brain Struct Funct 2021; 227:1297-1315. [PMID: 34846596 DOI: 10.1007/s00429-021-02415-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/08/2021] [Indexed: 10/19/2022]
Abstract
Over the last 10 years, there has been a surge in interest in the rodent visual system resulting from the discovery of visual processing functions shared with primates V1, and of a complex anatomical structure in the extrastriate visual cortex. This surprisingly intricate visual system was elucidated by recent investigations using rapidly growing genetic tools primarily available in the mouse. Here, we examine the structural and functional connections of visual areas that have been identified in mice mostly during the past decade, and the impact of these findings on our understanding of brain functions associated with vision. Special attention is paid to structure-function relationships arising from the hierarchical organization, which is a prominent feature of the primate visual system. Recent evidence supports the existence of a hierarchical organization in rodents that contains levels that are poorly resolved relative to those observed in primates. This shallowness of the hierarchy indicates that the mouse visual system incorporates abundant non-hierarchical processing. Thus, the mouse visual system provides a unique opportunity to study non-hierarchical processing and its relation to hierarchical processing.
Collapse
Affiliation(s)
- Răzvan Gămănuţ
- Department of Physiology, Monash University, Melbourne, Australia
| | - Daisuke Shimaoka
- Department of Physiology, Monash University, Melbourne, Australia.
| |
Collapse
|
18
|
D'Souza SP, Swygart DI, Wienbar SR, Upton BA, Zhang KX, Mackin RD, Casasent AK, Samuel MA, Schwartz GW, Lang RA. Retinal patterns and the cellular repertoire of neuropsin (Opn5) retinal ganglion cells. J Comp Neurol 2021; 530:1247-1262. [PMID: 34743323 PMCID: PMC8969148 DOI: 10.1002/cne.25272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/08/2022]
Abstract
Obtaining a parts list of the sensory components of the retina is vital to understanding the effects of light in behavior, health, and disease. Rods, cones, and intrinsically photosensitive retinal ganglion cells (ipRGCs) are the best described photoreceptors in the mammalian retina, but recent functional roles have been proposed for retinal neuropsin (Opn5) - an atypical opsin. However, little is known about the pattern of Opn5 expression in the retina. Using cre (Opn5cre ) and cre-dependent reporters, we uncover patterns of Opn5 expression and find that Opn5 is restricted to retinal ganglion cells (RGCs). Opn5-RGCs are non-homogenously distributed through the retina, with greater densities of cells located in the dorsotemporal quadrant. In addition to local topology of these cells, using cre-dependent AAV viral tracing, we surveyed their central targets and found that they are biased towards image-forming and image-stabilizing regions. Finally, molecular and electrophysiological profiling reveal that Opn5-RGCs comprise previously defined RGC types which respond optimally to edges and object-motion (F-mini-ONs, HD2, HD1, LEDs, ooDSRGCs, etc.). Together, these data describe the second collection of RGCs that express atypical opsins in the mouse, and expand the roles of image-forming cells in retinal physiology and function. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shane P D'Souza
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA.,The Visual Systems Group.,Center for Chronobiology, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology
| | - David I Swygart
- Departments of Ophthalmology and Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Sophia R Wienbar
- Departments of Ophthalmology and Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Brian A Upton
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA.,The Visual Systems Group.,Center for Chronobiology, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology.,Medical Scientist Training Program, College of Medicine, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Kevin X Zhang
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA.,The Visual Systems Group.,Center for Chronobiology, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology.,Medical Scientist Training Program, College of Medicine, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Robert D Mackin
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Anna K Casasent
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Melanie A Samuel
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Gregory W Schwartz
- Departments of Ophthalmology and Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.,Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, 60201, USA
| | - Richard A Lang
- The Visual Systems Group.,Center for Chronobiology, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology.,Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, 45229, USA.,Department of Ophthalmology, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| |
Collapse
|
19
|
Rochon PL, Theriault C, Rangel Olguin AG, Krishnaswamy A. The cell adhesion molecule Sdk1 shapes assembly of a retinal circuit that detects localized edges. eLife 2021; 10:e70870. [PMID: 34545809 PMCID: PMC8514235 DOI: 10.7554/elife.70870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/11/2021] [Indexed: 01/10/2023] Open
Abstract
Nearly 50 different mouse retinal ganglion cell (RGC) types sample the visual scene for distinct features. RGC feature selectivity arises from their synapses with a specific subset of amacrine (AC) and bipolar cell (BC) types, but how RGC dendrites arborize and collect input from these specific subsets remains poorly understood. Here we examine the hypothesis that RGCs employ molecular recognition systems to meet this challenge. By combining calcium imaging and type-specific histological stains, we define a family of circuits that express the recognition molecule Sidekick-1 (Sdk1), which include a novel RGC type (S1-RGC) that responds to local edges. Genetic and physiological studies revealed that Sdk1 loss selectively disrupts S1-RGC visual responses, which result from a loss of excitatory and inhibitory inputs and selective dendritic deficits on this neuron. We conclude that Sdk1 shapes dendrite growth and wiring to help S1-RGCs become feature selective.
Collapse
|
20
|
Johnson KP, Fitzpatrick MJ, Zhao L, Wang B, McCracken S, Williams PR, Kerschensteiner D. Cell-type-specific binocular vision guides predation in mice. Neuron 2021; 109:1527-1539.e4. [PMID: 33784498 PMCID: PMC8112612 DOI: 10.1016/j.neuron.2021.03.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/09/2021] [Accepted: 03/05/2021] [Indexed: 12/20/2022]
Abstract
Predators use vision to hunt, and hunting success is one of evolution's main selection pressures. However, how viewing strategies and visual systems are adapted to predation is unclear. Tracking predator-prey interactions of mice and crickets in 3D, we find that mice trace crickets with their binocular visual fields and that monocular mice are poor hunters. Mammalian binocular vision requires ipsi- and contralateral projections of retinal ganglion cells (RGCs) to the brain. Large-scale single-cell recordings and morphological reconstructions reveal that only a small subset (9 of 40+) of RGC types in the ventrotemporal mouse retina innervate ipsilateral brain areas (ipsi-RGCs). Selective ablation of ipsi-RGCs (<2% of RGCs) in the adult retina drastically reduces the hunting success of mice. Stimuli based on ethological observations indicate that five ipsi-RGC types reliably signal prey. Thus, viewing strategies align with a spatially restricted and cell-type-specific set of ipsi-RGCs that supports binocular vision to guide predation.
Collapse
Affiliation(s)
- Keith P Johnson
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael J Fitzpatrick
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lei Zhao
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bing Wang
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sean McCracken
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philip R Williams
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel Kerschensteiner
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
21
|
Khani MH, Gollisch T. Linear and nonlinear chromatic integration in the mouse retina. Nat Commun 2021; 12:1900. [PMID: 33772000 PMCID: PMC7997992 DOI: 10.1038/s41467-021-22042-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/23/2021] [Indexed: 11/09/2022] Open
Abstract
The computations performed by a neural circuit depend on how it integrates its input signals into an output of its own. In the retina, ganglion cells integrate visual information over time, space, and chromatic channels. Unlike the former two, chromatic integration is largely unexplored. Analogous to classical studies of spatial integration, we here study chromatic integration in mouse retina by identifying chromatic stimuli for which activation from the green or UV color channel is maximally balanced by deactivation through the other color channel. This reveals nonlinear chromatic integration in subsets of On, Off, and On-Off ganglion cells. Unlike the latter two, nonlinear On cells display response suppression rather than activation under balanced chromatic stimulation. Furthermore, nonlinear chromatic integration occurs independently of nonlinear spatial integration, depends on contributions from the rod pathway and on surround inhibition, and may provide information about chromatic boundaries, such as the skyline in natural scenes.
Collapse
Affiliation(s)
- Mohammad Hossein Khani
- Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany.
- Bernstein Center for Computational Neuroscience, Göttingen, Germany.
- International Max Planck Research School for Neuroscience, Göttingen, Germany.
| | - Tim Gollisch
- Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany.
- Bernstein Center for Computational Neuroscience, Göttingen, Germany.
| |
Collapse
|
22
|
Nonlinear Spatial Integration Underlies the Diversity of Retinal Ganglion Cell Responses to Natural Images. J Neurosci 2021; 41:3479-3498. [PMID: 33664129 PMCID: PMC8051676 DOI: 10.1523/jneurosci.3075-20.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
How neurons encode natural stimuli is a fundamental question for sensory neuroscience. In the early visual system, standard encoding models assume that neurons linearly filter incoming stimuli through their receptive fields, but artificial stimuli, such as contrast-reversing gratings, often reveal nonlinear spatial processing. We investigated to what extent such nonlinear processing is relevant for the encoding of natural images in retinal ganglion cells in mice of either sex. How neurons encode natural stimuli is a fundamental question for sensory neuroscience. In the early visual system, standard encoding models assume that neurons linearly filter incoming stimuli through their receptive fields, but artificial stimuli, such as contrast-reversing gratings, often reveal nonlinear spatial processing. We investigated to what extent such nonlinear processing is relevant for the encoding of natural images in retinal ganglion cells in mice of either sex. We found that standard linear receptive field models yielded good predictions of responses to flashed natural images for a subset of cells but failed to capture the spiking activity for many others. Cells with poor model performance displayed pronounced sensitivity to fine spatial contrast and local signal rectification as the dominant nonlinearity. By contrast, sensitivity to high-frequency contrast-reversing gratings, a classical test for nonlinear spatial integration, was not a good predictor of model performance and thus did not capture the variability of nonlinear spatial integration under natural images. In addition, we also observed a class of nonlinear ganglion cells with inverse tuning for spatial contrast, responding more strongly to spatially homogeneous than to spatially structured stimuli. These findings highlight the diversity of receptive field nonlinearities as a crucial component for understanding early sensory encoding in the context of natural stimuli. SIGNIFICANCE STATEMENT Experiments with artificial visual stimuli have revealed that many types of retinal ganglion cells pool spatial input signals nonlinearly. However, it is still unclear how relevant this nonlinear spatial integration is when the input signals are natural images. Here we analyze retinal responses to natural scenes in large populations of mouse ganglion cells. We show that nonlinear spatial integration strongly influences responses to natural images for some ganglion cells, but not for others. Cells with nonlinear spatial integration were sensitive to spatial structure inside their receptive fields, and a small group of cells displayed a surprising sensitivity to spatially homogeneous stimuli. Traditional analyses with contrast-reversing gratings did not predict this variability of nonlinear spatial integration under natural images.
Collapse
|
23
|
An offset ON-OFF receptive field is created by gap junctions between distinct types of retinal ganglion cells. Nat Neurosci 2020; 24:105-115. [PMID: 33230322 PMCID: PMC7769921 DOI: 10.1038/s41593-020-00747-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/23/2020] [Indexed: 01/01/2023]
Abstract
In the vertebrate retina, the location of a neuron's receptive field in visual space closely corresponds to the physical location of synaptic input onto its dendrites, a relationship called the retinotopic map. We report the discovery of a systematic spatial offset between the ON and OFF receptive subfields in F-mini-ON retinal ganglion cells (RGCs). Surprisingly, this property does not come from spatially offset ON and OFF layer dendrites, but instead arises from a network of electrical synapses via gap junctions to RGCs of a different type, the F-mini-OFF. We show that the asymmetric morphology and connectivity of these RGCs can explain their receptive field offset, and we use a multicell model to explore the effects of receptive field offset on the precision of edge-location representation in a population. This RGC network forms a new electrical channel combining the ON and OFF feedforward pathways within the output layer of the retina.
Collapse
|
24
|
Parmhans N, Fuller AD, Nguyen E, Chuang K, Swygart D, Wienbar SR, Lin T, Kozmik Z, Dong L, Schwartz GW, Badea TC. Identification of retinal ganglion cell types and brain nuclei expressing the transcription factor Brn3c/Pou4f3 using a Cre recombinase knock-in allele. J Comp Neurol 2020; 529:1926-1953. [PMID: 33135183 DOI: 10.1002/cne.25065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
Members of the POU4F/Brn3 transcription factor family have an established role in the development of retinal ganglion cell (RGCs) types, the main transducers of visual information from the mammalian eye to the brain. Our previous work using sparse random recombination of a conditional knock-in reporter allele expressing alkaline phosphatase (AP) and intersectional genetics had identified three types of Brn3c positive (Brn3c+ ) RGCs. Here, we describe a novel Brn3cCre mouse allele generated by serial Dre to Cre recombination and use it to explore the expression overlap of Brn3c with Brn3a and Brn3b and the dendritic arbor morphologies and visual stimulus response properties of Brn3c+ RGC types. Furthermore, we explore brain nuclei that express Brn3c or receive input from Brn3c+ neurons. Our analysis reveals a much larger number of Brn3c+ RGCs and more diverse set of RGC types than previously reported. Most RGCs expressing Brn3c during development are still Brn3c positive in the adult, and all express Brn3a while only about half express Brn3b. Genetic Brn3c-Brn3b intersection reveals an area of increased RGC density, extending from dorsotemporal to ventrolateral across the retina and overlapping with the mouse binocular field of view. In addition, we report a Brn3c+ RGC projection to the thalamic reticular nucleus, a visual nucleus that was not previously shown to receive retinal input. Furthermore, Brn3c+ neurons highlight a previously unknown subdivision of the deep mesencephalic nucleus. Thus, our newly generated allele provides novel biological insights into RGC type classification, brain connectivity, and cytoarchitectonic.
Collapse
Affiliation(s)
- Nadia Parmhans
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Anne Drury Fuller
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Eileen Nguyen
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Katherine Chuang
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - David Swygart
- Departments of Ophthalmology and Physiology Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sophia Rose Wienbar
- Departments of Ophthalmology and Physiology Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tyger Lin
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Zbynek Kozmik
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lijin Dong
- Genetic Engineering Facility, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Gregory William Schwartz
- Departments of Ophthalmology and Physiology Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tudor Constantin Badea
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
25
|
Baden T, Euler T, Berens P. Understanding the retinal basis of vision across species. Nat Rev Neurosci 2019; 21:5-20. [PMID: 31780820 DOI: 10.1038/s41583-019-0242-1] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2019] [Indexed: 12/12/2022]
Abstract
The vertebrate retina first evolved some 500 million years ago in ancestral marine chordates. Since then, the eyes of different species have been tuned to best support their unique visuoecological lifestyles. Visual specializations in eye designs, large-scale inhomogeneities across the retinal surface and local circuit motifs mean that all species' retinas are unique. Computational theories, such as the efficient coding hypothesis, have come a long way towards an explanation of the basic features of retinal organization and function; however, they cannot explain the full extent of retinal diversity within and across species. To build a truly general understanding of vertebrate vision and the retina's computational purpose, it is therefore important to more quantitatively relate different species' retinal functions to their specific natural environments and behavioural requirements. Ultimately, the goal of such efforts should be to build up to a more general theory of vision.
Collapse
Affiliation(s)
- Tom Baden
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK. .,Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Philipp Berens
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany.,Bernstein Centre for Computational Neuroscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|
26
|
Reinhard K, Li C, Do Q, Burke EG, Heynderickx S, Farrow K. A projection specific logic to sampling visual inputs in mouse superior colliculus. eLife 2019; 8:e50697. [PMID: 31750831 PMCID: PMC6872211 DOI: 10.7554/elife.50697] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/02/2019] [Indexed: 02/07/2023] Open
Abstract
Using sensory information to trigger different behaviors relies on circuits that pass through brain regions. The rules by which parallel inputs are routed to downstream targets are poorly understood. The superior colliculus mediates a set of innate behaviors, receiving input from >30 retinal ganglion cell types and projecting to behaviorally important targets including the pulvinar and parabigeminal nucleus. Combining transsynaptic circuit tracing with in vivo and ex vivo electrophysiological recordings, we observed a projection-specific logic where each collicular output pathway sampled a distinct set of retinal inputs. Neurons projecting to the pulvinar or the parabigeminal nucleus showed strongly biased sampling from four cell types each, while six others innervated both pathways. The visual response properties of retinal ganglion cells correlated well with those of their disynaptic targets. These findings open the possibility that projection-specific sampling of retinal inputs forms a basis for the selective triggering of behaviors by the superior colliculus.
Collapse
Affiliation(s)
- Katja Reinhard
- Neuro-Electronics Research FlandersLeuvenBelgium
- VIBLeuvenBelgium
- Department of BiologyKU LeuvenLeuvenBelgium
| | - Chen Li
- Neuro-Electronics Research FlandersLeuvenBelgium
- VIBLeuvenBelgium
- Department of BiologyKU LeuvenLeuvenBelgium
| | - Quan Do
- Neuro-Electronics Research FlandersLeuvenBelgium
- Northeastern UniversityBostonUnited States
| | - Emily G Burke
- Neuro-Electronics Research FlandersLeuvenBelgium
- Northeastern UniversityBostonUnited States
| | | | - Karl Farrow
- Neuro-Electronics Research FlandersLeuvenBelgium
- VIBLeuvenBelgium
- Department of BiologyKU LeuvenLeuvenBelgium
- IMECLeuvenBelgium
| |
Collapse
|
27
|
Laboissonniere LA, Goetz JJ, Martin GM, Bi R, Lund TJS, Ellson L, Lynch MR, Mooney B, Wickham H, Liu P, Schwartz GW, Trimarchi JM. Molecular signatures of retinal ganglion cells revealed through single cell profiling. Sci Rep 2019; 9:15778. [PMID: 31673015 PMCID: PMC6823391 DOI: 10.1038/s41598-019-52215-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 10/11/2019] [Indexed: 01/27/2023] Open
Abstract
Retinal ganglion cells can be classified into more than 40 distinct subtypes, whether by functional classification or transcriptomics. The examination of these subtypes in relation to their physiology, projection patterns, and circuitry would be greatly facilitated through the identification of specific molecular identifiers for the generation of transgenic mice. Advances in single cell transcriptomic profiling have enabled the identification of molecular signatures for cellular subtypes that are only rarely found. Therefore, we used single cell profiling combined with hierarchical clustering and correlate analyses to identify genes expressed in distinct populations of Parvalbumin-expressing cells and functionally classified RGCs. RGCs were manually isolated based either upon fluorescence or physiological distinction through cell-attached recordings. Microarray hybridization and RNA-Sequencing were employed for the characterization of transcriptomes and in situ hybridization was utilized to further characterize gene candidate expression. Gene candidates were identified based upon cluster correlation, as well as expression specificity within physiologically distinct classes of RGCs. Further, we identified Prph, Ctxn3, and Prkcq as potential candidates for ipRGC classification in the murine retina. The use of these genes, or one of the other newly identified subset markers, for the generation of a transgenic mouse would enable future studies of RGC-subtype specific function, wiring, and projection.
Collapse
Affiliation(s)
- Lauren A Laboissonniere
- Department of Molecular Genetics and Microbiology 2033 Mowry Road, University of Florida, Gainesville, FL, 32610, USA
| | - Jillian J Goetz
- Departments of Ophthalmology and Physiology, Feinberg School of Medicine Northwestern University, Chicago, IL, 60611, USA
| | | | - Ran Bi
- Department of Statistics, 2117 Snedecor Hall, Iowa State University, Ames, IA, 50011, USA
| | - Terry J S Lund
- Department of Genetics, Development and Cell Biology 2437 Pammel Drive, 2114 Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Laura Ellson
- Department of Genetics, Development and Cell Biology 2437 Pammel Drive, 2114 Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Madison R Lynch
- Department of Genetics, Development and Cell Biology 2437 Pammel Drive, 2114 Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Bailey Mooney
- Department of Genetics, Development and Cell Biology 2437 Pammel Drive, 2114 Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Hannah Wickham
- Department of Genetics, Development and Cell Biology 2437 Pammel Drive, 2114 Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Peng Liu
- Department of Statistics, 2117 Snedecor Hall, Iowa State University, Ames, IA, 50011, USA
| | - Gregory W Schwartz
- Departments of Ophthalmology and Physiology, Feinberg School of Medicine Northwestern University, Chicago, IL, 60611, USA
| | | |
Collapse
|
28
|
Tengölics ÁJ, Szarka G, Ganczer A, Szabó-Meleg E, Nyitrai M, Kovács-Öller T, Völgyi B. Response Latency Tuning by Retinal Circuits Modulates Signal Efficiency. Sci Rep 2019; 9:15110. [PMID: 31641196 PMCID: PMC6806000 DOI: 10.1038/s41598-019-51756-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/07/2019] [Indexed: 12/31/2022] Open
Abstract
In the visual system, retinal ganglion cells (RGCs) of various subtypes encode preprocessed photoreceptor signals into a spike output which is then transmitted towards the brain through parallel feature pathways. Spike timing determines how each feature signal contributes to the output of downstream neurons in visual brain centers, thereby influencing efficiency in visual perception. In this study, we demonstrate a marked population-wide variability in RGC response latency that is independent of trial-to-trial variability and recording approach. RGC response latencies to simple visual stimuli vary considerably in a heterogenous cell population but remain reliable when RGCs of a single subtype are compared. This subtype specificity, however, vanishes when the retinal circuitry is bypassed via direct RGC electrical stimulation. This suggests that latency is primarily determined by the signaling speed through retinal pathways that provide subtype specific inputs to RGCs. In addition, response latency is significantly altered when GABA inhibition or gap junction signaling is disturbed, which further supports the key role of retinal microcircuits in latency tuning. Finally, modulation of stimulus parameters affects individual RGC response delays considerably. Based on these findings, we hypothesize that retinal microcircuits fine-tune RGC response latency, which in turn determines the context-dependent weighing of each signal and its contribution to visual perception.
Collapse
Affiliation(s)
- Ádám Jonatán Tengölics
- MTA-PTE NAP-2 Retinal Electrical Synapses Research Group, Pécs, H-7624, Hungary.,János Szentágothai Research Centre, Pécs, H-7624, Hungary.,Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, H-7624, Hungary
| | - Gergely Szarka
- MTA-PTE NAP-2 Retinal Electrical Synapses Research Group, Pécs, H-7624, Hungary.,János Szentágothai Research Centre, Pécs, H-7624, Hungary.,Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, H-7624, Hungary
| | - Alma Ganczer
- MTA-PTE NAP-2 Retinal Electrical Synapses Research Group, Pécs, H-7624, Hungary.,János Szentágothai Research Centre, Pécs, H-7624, Hungary.,Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, H-7624, Hungary
| | - Edina Szabó-Meleg
- János Szentágothai Research Centre, Pécs, H-7624, Hungary.,Department of Biophysics, University of Pécs Medical School, Pécs, H-7624, Hungary.,Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences (MTA-PTE), Pécs, H-7624, Hungary
| | - Miklós Nyitrai
- János Szentágothai Research Centre, Pécs, H-7624, Hungary.,Department of Biophysics, University of Pécs Medical School, Pécs, H-7624, Hungary.,Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences (MTA-PTE), Pécs, H-7624, Hungary
| | - Tamás Kovács-Öller
- MTA-PTE NAP-2 Retinal Electrical Synapses Research Group, Pécs, H-7624, Hungary.,János Szentágothai Research Centre, Pécs, H-7624, Hungary.,Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, H-7624, Hungary
| | - Béla Völgyi
- MTA-PTE NAP-2 Retinal Electrical Synapses Research Group, Pécs, H-7624, Hungary. .,János Szentágothai Research Centre, Pécs, H-7624, Hungary. .,Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, H-7624, Hungary.
| |
Collapse
|
29
|
Lucas JA, Schmidt TM. Cellular properties of intrinsically photosensitive retinal ganglion cells during postnatal development. Neural Dev 2019; 14:8. [PMID: 31470901 PMCID: PMC6716945 DOI: 10.1186/s13064-019-0132-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/12/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs) respond directly to light and have been shown to mediate a broad variety of visual behaviors in adult animals. ipRGCs are also the first light sensitive cells in the developing retina, and have been implicated in a number of retinal developmental processes such as pruning of retinal vasculature and refinement of retinofugal projections. However, little is currently known about the properties of the six ipRGC subtypes during development, and how these cells act to influence retinal development. We therefore sought to characterize the structure, physiology, and birthdate of the most abundant ipRGC subtypes, M1, M2, and M4, at discrete postnatal developmental timepoints. METHODS We utilized whole cell patch clamp to measure the electrophysiological and morphological properties of ipRGC subtypes through postnatal development. We also used EdU labeling to determine the embryonic timepoints at which ipRGC subtypes terminally differentiate. RESULTS Our data show that ipRGC subtypes are distinguishable from each other early in postnatal development. Additionally, we find that while ipRGC subtypes terminally differentiate at similar embryonic stages, the subtypes reach adult-like morphology and physiology at different developmental timepoints. CONCLUSIONS This work provides a broad assessment of ipRGC morphological and physiological properties during the postnatal stages at which they are most influential in modulating retinal development, and lays the groundwork for further understanding of the specific role of each ipRGC subtype in influencing retinal and visual system development.
Collapse
Affiliation(s)
- Jasmine A. Lucas
- Department of Neurobiology, Northwestern University, Evanston, IL USA
| | | |
Collapse
|
30
|
Baden T, Schaeffel F, Berens P. Visual Neuroscience: A Retinal Ganglion Cell to Report Image Focus? Curr Biol 2019; 27:R139-R141. [PMID: 28222289 DOI: 10.1016/j.cub.2016.12.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A recent study describes a mouse neuron projecting from the retina to the brain that exhibits exquisitely high sensitivity to high spatial frequency patterns presented over an unusually large receptive field: could this cell be a (de)focus detector?
Collapse
Affiliation(s)
- Tom Baden
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK; Institute for Ophthalmic Research, University of Tübingen, Otfried Müller Strasse 25, 72076, Tübingen, Germany.
| | - Frank Schaeffel
- Institute for Ophthalmic Research, University of Tübingen, Otfried Müller Strasse 25, 72076, Tübingen, Germany
| | - Philipp Berens
- Institute for Ophthalmic Research, University of Tübingen, Otfried Müller Strasse 25, 72076, Tübingen, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, Otfried Müller Strasse 25, 72076, Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, Otfried Müller Strasse 25, 72076, Tübingen, Germany
| |
Collapse
|
31
|
Vlasits AL, Euler T, Franke K. Function first: classifying cell types and circuits of the retina. Curr Opin Neurobiol 2019; 56:8-15. [DOI: 10.1016/j.conb.2018.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/24/2018] [Indexed: 12/30/2022]
|
32
|
Simulated Saccadic Stimuli Suppress ON-Type Direction-Selective Retinal Ganglion Cells via Glycinergic Inhibition. J Neurosci 2019; 39:4312-4322. [PMID: 30926751 DOI: 10.1523/jneurosci.3066-18.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
Two types of mammalian direction-selective ganglion cells (DSGCs), ON and ONOFF, operate over different speed ranges. The directional axes of the ON-DSGCs are thought to align with the axes of the vestibular system and provide sensitivity at rotational velocities that are too slow to activate the semicircular canals. ONOFF-DSGCs respond to faster image velocities. Using natural images that simulate the natural visual inputs to freely moving animals, we show that simulated visual saccades suppress responses in ON-DSGCs but not ONOFF-DSGCs recorded in retinas of domestic rabbits of either gender. Analysis of the synaptic inputs shows that this saccadic suppression results from glycinergic inputs that are specific to ON-DSGCs and are absent in ONOFF-DSGCs. When this glycinergic input is blocked, both cell types respond similarly to visual saccades and display essentially identical speed tuning. The results demonstrate that glycinergic circuits within the retina can produce saccadic suppression of retinal ganglion cell activity. The cell-type-specific targeting of the glycinergic circuits further supports the proposed physiological roles of ON-DSGCs in retinal-image stabilization and of ONOFF-DSGCs in detecting local object motion and signaling optical flow.SIGNIFICANCE STATEMENT In the mammalian retina, ON direction-selective ganglion cells (DSGCs) respond preferentially to slow image motion, whereas ONOFF-DSGCs respond better to rapid motion. The mechanisms producing this different speed tuning remain unclear. Here we show that simulated visual saccades suppress ON-DSGCs, but not ONOFF-DSGCs. This selective saccadic suppression is because of the selective targeting of glycinergic inhibitory synaptic inputs to ON-DSGCs. The different saccadic suppression in the two cell types points to different physiological roles, consistent with their projections to distinct areas within the brain. ON-DSGCs may be critical for providing the visual feedback signals that contribute to stabilizing the image on the retina, whereas ONOFF-DSGCs may be important for detecting the onset of saccades or for signaling optical flow.
Collapse
|
33
|
Digital Museum of Retinal Ganglion Cells with Dense Anatomy and Physiology. Cell 2019; 173:1293-1306.e19. [PMID: 29775596 DOI: 10.1016/j.cell.2018.04.040] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/09/2018] [Accepted: 04/27/2018] [Indexed: 11/23/2022]
Abstract
When 3D electron microscopy and calcium imaging are used to investigate the structure and function of neural circuits, the resulting datasets pose new challenges of visualization and interpretation. Here, we present a new kind of digital resource that encompasses almost 400 ganglion cells from a single patch of mouse retina. An online "museum" provides a 3D interactive view of each cell's anatomy, as well as graphs of its visual responses. The resource reveals two aspects of the retina's inner plexiform layer: an arbor segregation principle governing structure along the light axis and a density conservation principle governing structure in the tangential plane. Structure is related to visual function; ganglion cells with arbors near the layer of ganglion cell somas are more sustained in their visual responses on average. Our methods are potentially applicable to dense maps of neuronal anatomy and physiology in other parts of the nervous system.
Collapse
|
34
|
Román Rosón M, Bauer Y, Kotkat AH, Berens P, Euler T, Busse L. Mouse dLGN Receives Functional Input from a Diverse Population of Retinal Ganglion Cells with Limited Convergence. Neuron 2019; 102:462-476.e8. [PMID: 30799020 DOI: 10.1016/j.neuron.2019.01.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/08/2018] [Accepted: 01/17/2019] [Indexed: 10/27/2022]
Abstract
Mouse vision is based on the parallel output of more than 30 functional types of retinal ganglion cells (RGCs). Little is known about how representations of visual information change between retina and dorsolateral geniculate nucleus (dLGN) of the thalamus, the main relay between retina and cortex. Here, we functionally characterized responses of retrogradely labeled dLGN-projecting RGCs and dLGN neurons to the same set of visual stimuli. We found that many of the previously identified functional RGC types innervate dLGN, which maintained a high degree of functional diversity. Using a linear model to assess functional connectivity between RGC types and dLGN neurons, we found that responses of dLGN neurons could be predicted as linear combination of inputs from on average five RGC types, but only two of those had the strongest functional impact. Thus, mouse dLGN receives functional input from a diverse population of RGC types with limited convergence.
Collapse
Affiliation(s)
- Miroslav Román Rosón
- Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Institute for Ophthalmic Research, University Hospital Tübingen, 72076 Tübingen, Germany; Division of Neurobiology, Department Biology II, LMU Munich, 82151 Munich, Germany; Graduate School of Neural & Behavioural Sciences, International Max Planck Research School, University of Tübingen, 72074 Tübingen, Germany
| | - Yannik Bauer
- Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Division of Neurobiology, Department Biology II, LMU Munich, 82151 Munich, Germany; Graduate School of Systemic Neuroscience (GSN), LMU Munich, 82151 Munich, Germany
| | - Ann H Kotkat
- Division of Neurobiology, Department Biology II, LMU Munich, 82151 Munich, Germany; ENB Elite Master of Science Program in Neuroengineering, Technical University of Munich, 80333 Munich, Germany
| | - Philipp Berens
- Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Institute for Ophthalmic Research, University Hospital Tübingen, 72076 Tübingen, Germany; Bernstein Centre for Computational Neuroscience, 72076 Tübingen, Germany.
| | - Thomas Euler
- Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Institute for Ophthalmic Research, University Hospital Tübingen, 72076 Tübingen, Germany; Bernstein Centre for Computational Neuroscience, 72076 Tübingen, Germany.
| | - Laura Busse
- Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Division of Neurobiology, Department Biology II, LMU Munich, 82151 Munich, Germany; Bernstein Centre for Computational Neuroscience, 72076 Tübingen, Germany; Bernstein Centre for Computational Neuroscience, 82151 Munich, Germany.
| |
Collapse
|
35
|
Turner MH, Sanchez Giraldo LG, Schwartz O, Rieke F. Stimulus- and goal-oriented frameworks for understanding natural vision. Nat Neurosci 2019; 22:15-24. [PMID: 30531846 PMCID: PMC8378293 DOI: 10.1038/s41593-018-0284-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 10/22/2018] [Indexed: 12/21/2022]
Abstract
Our knowledge of sensory processing has advanced dramatically in the last few decades, but this understanding remains far from complete, especially for stimuli with the large dynamic range and strong temporal and spatial correlations characteristic of natural visual inputs. Here we describe some of the issues that make understanding the encoding of natural images a challenge. We highlight two broad strategies for approaching this problem: a stimulus-oriented framework and a goal-oriented one. Different contexts can call for one framework or the other. Looking forward, recent advances, particularly those based in machine learning, show promise in borrowing key strengths of both frameworks and by doing so illuminating a path to a more comprehensive understanding of the encoding of natural stimuli.
Collapse
Affiliation(s)
- Maxwell H Turner
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
| | | | - Odelia Schwartz
- Department of Computer Science, University of Miami, Coral Gables, FL, USA
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
36
|
Cyr A, Thériault F, Ross M, Berberian N, Chartier S. Spiking Neurons Integrating Visual Stimuli Orientation and Direction Selectivity in a Robotic Context. Front Neurorobot 2018; 12:75. [PMID: 30524261 PMCID: PMC6256284 DOI: 10.3389/fnbot.2018.00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/31/2018] [Indexed: 11/13/2022] Open
Abstract
Visual motion detection is essential for the survival of many species. The phenomenon includes several spatial properties, not fully understood at the level of a neural circuit. This paper proposes a computational model of a visual motion detector that integrates direction and orientation selectivity features. A recent experiment in the Drosophila model highlights that stimulus orientation influences the neural response of direction cells. However, this interaction and the significance at the behavioral level are currently unknown. As such, another objective of this article is to study the effect of merging these two visual processes when contextualized in a neuro-robotic model and an operant conditioning procedure. In this work, the learning task was solved using an artificial spiking neural network, acting as the brain controller for virtual and physical robots, showing a behavior modulation from the integration of both visual processes.
Collapse
Affiliation(s)
- André Cyr
- Conec Laboratory, School of Psychology, Ottawa University, Ottawa, ON, Canada
| | - Frédéric Thériault
- Department of Computer Science, Cégep du Vieux Montréal, Montreal, QC, Canada
| | - Matthew Ross
- Conec Laboratory, School of Psychology, Ottawa University, Ottawa, ON, Canada
| | - Nareg Berberian
- Conec Laboratory, School of Psychology, Ottawa University, Ottawa, ON, Canada
| | - Sylvain Chartier
- Conec Laboratory, School of Psychology, Ottawa University, Ottawa, ON, Canada
| |
Collapse
|
37
|
Lee ES, Lee JY, Kim GH, Jeon CJ. Identification of calretinin-expressing retinal ganglion cells projecting to the mouse superior colliculus. Cell Tissue Res 2018; 376:153-163. [PMID: 30506393 DOI: 10.1007/s00441-018-2964-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/12/2018] [Indexed: 11/29/2022]
Abstract
In mice, retinal ganglion cells (RGCs), which consist of around 30 subtypes, exclusively transmit retinal information to the relevant brain systems through parallel visual pathways. The superior colliculus (SC) receives the vast majority of this information from several RGC subtypes. The objective of the current study is to identify the types of calretinin (CR)-expressing RGCs that project to the SC in mice. To label RGCs, we performed CR immunoreactivity in the mouse retina after injections of fluorescent dye, dextran into mouse SC. Subsequently, the neurons double-labeled for dextran and CR were iontophoretically injected with the lipophilic dye, DiI, to characterize the detailed morphological properties of these cells. The analysis of various morphological parameters, including dendritic arborization, dendritic field size and stratification, indicated that, of the ten different types of CR-expressing RGCs in the retina, the double-labeled cells consisted of at least eight types of RGCs that projected to the SC. These cells tended to have small-medium field sizes. However, except for dendritic field size, the cells did not exhibit consistent characteristics for the other morphometric parameters examined. The combination of a tracer and single-cell injections after immunohistochemistry for a particular molecule provided valuable data that confirmed the presence of distinct subtypes of RGCs within multiple-labeled RGCs that projected to specific brain regions.
Collapse
Affiliation(s)
- Eun-Shil Lee
- Department of Biology, School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, South Korea
| | - Jea-Young Lee
- Center of Excellence for Aging and Brain Repair, USF Health, University of South Florida, Tampa, FL, 33612, USA
| | - Gil Hyun Kim
- Department of Biology, School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, South Korea
| | - Chang-Jin Jeon
- Department of Biology, School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
38
|
Wienbar S, Schwartz GW. The dynamic receptive fields of retinal ganglion cells. Prog Retin Eye Res 2018; 67:102-117. [PMID: 29944919 PMCID: PMC6235744 DOI: 10.1016/j.preteyeres.2018.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 11/30/2022]
Abstract
Retinal ganglion cells (RGCs) were one of the first classes of sensory neurons to be described in terms of a receptive field (RF). Over the last six decades, our understanding of the diversity of RGC types and the nuances of their response properties has grown exponentially. We will review the current understanding of RGC RFs mostly from studies in mammals, but including work from other vertebrates as well. We will argue for a new paradigm that embraces the fluidity of RGC RFs with an eye toward the neuroethology of vision. Specifically, we will focus on (1) different methods for measuring RGC RFs, (2) RF models, (3) feature selectivity and the distinction between fluid and stable RF properties, and (4) ideas about the future of understanding RGC RFs.
Collapse
Affiliation(s)
- Sophia Wienbar
- Departments of Ophthalmology and Physiology, Feinberg School of Medicine, Northwestern University, United States.
| | - Gregory W Schwartz
- Departments of Ophthalmology and Physiology, Feinberg School of Medicine, Northwestern University, United States.
| |
Collapse
|
39
|
Retinotopic Separation of Nasal and Temporal Motion Selectivity in the Mouse Superior Colliculus. Curr Biol 2018; 28:2961-2969.e4. [PMID: 30174186 DOI: 10.1016/j.cub.2018.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/04/2018] [Accepted: 07/02/2018] [Indexed: 11/21/2022]
Abstract
Sensory neurons often display an ordered spatial arrangement that enhances the encoding of specific features on different sides of natural borders in the visual field (for example, [1-3]). In central visual areas, one prominent natural border is formed by the confluence of information from the two eyes, the monocular-binocular border [4]. Here, we investigate whether receptive field properties of neurons in the mouse superior colliculus show any systematic organization about the monocular-binocular border. The superior colliculus is a layered midbrain structure that plays a significant role in the orienting responses of the eye, head, and body [5]. Its superficial layers receive direct input from the majority of retinal ganglion cells and are retinotopically organized [6, 7]. Using two-photon calcium imaging, we recorded the activity of collicular neurons from the superficial layers of awake mice and determined their direction selectivity, orientation selectivity, and retinotopic location. This revealed that nearby direction-selective neurons have a strong tendency to prefer the same motion direction. In retinotopic space, the local preference of direction-selective neurons shows a sharp transition in the preference for nasal versus temporal motion at the monocular-binocular border. The maps representing orientation and direction appear to be independent. These results illustrate the important coherence between the spatial organization of inputs and response properties within the visual system and suggest a re-analysis of the receptive field organization within the superior colliculus from an ecological perspective.
Collapse
|
40
|
Jacoby J, Schwartz GW. Typology and Circuitry of Suppressed-by-Contrast Retinal Ganglion Cells. Front Cell Neurosci 2018; 12:269. [PMID: 30210298 PMCID: PMC6119723 DOI: 10.3389/fncel.2018.00269] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/02/2018] [Indexed: 11/13/2022] Open
Abstract
Retinal ganglion cells (RGCs) relay ~40 parallel and independent streams of visual information, each encoding a specific feature of a visual scene, to the brain for further processing. The polarity of a visual neuron’s response to a change in contrast is generally the first characteristic used for functional classification: ON cells increase their spike rate to positive contrast; OFF cells increase their spike rate for negative contrast; ON-OFF cells increase their spike rate for both contrast polarities. Suppressed-by-Contrast (SbC) neurons represent a less well-known fourth category; they decrease firing below a baseline rate for both positive and negative contrasts. SbC RGCs were discovered over 50 years ago, and SbC visual neurons have now been found in the thalamus and primary visual cortex of several mammalian species, including primates. Recent discoveries of SbC RGCs in mice have provided new opportunities for tracing upstream circuits in the retina responsible for the SbC computation and downstream targets in the brain where this information is used. We review and clarify recent work on the circuit mechanism of the SbC computation in these RGCs. Studies of mechanism rely on precisely defined cell types, and we argue that, like ON, OFF, and ON-OFF RGCs, SbC RGCs consist of more than one type. A new appreciation of the diversity of SbC RGCs will help guide future work on their targets in the brain and their roles in visual perception and behavior.
Collapse
Affiliation(s)
- Jason Jacoby
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Gregory William Schwartz
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, United States
| |
Collapse
|
41
|
Cang J, Savier E, Barchini J, Liu X. Visual Function, Organization, and Development of the Mouse Superior Colliculus. Annu Rev Vis Sci 2018; 4:239-262. [PMID: 29852095 DOI: 10.1146/annurev-vision-091517-034142] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The superior colliculus (SC) is the most prominent visual center in mice. Studies over the past decade have greatly advanced our understanding of the function, organization, and development of the mouse SC, which has rapidly become a popular model in vision research. These studies have described the diverse and cell-type-specific visual response properties in the mouse SC, revealed their laminar and topographic organizations, and linked the mouse SC and downstream pathways with visually guided behaviors. Here, we summarize these findings, compare them with the rich literature of SC studies in other species, and highlight important gaps and exciting future directions. Given its clear importance in mouse vision and the available modern neuroscience tools, the mouse SC holds great promise for understanding the cellular, circuit, and developmental mechanisms that underlie visual processing, sensorimotor transformation, and, ultimately, behavior.
Collapse
Affiliation(s)
- Jianhua Cang
- Department of Biology and Department of Psychology, University of Virginia, Charlottesville, Virginia 22904, USA;
| | - Elise Savier
- Department of Biology and Department of Psychology, University of Virginia, Charlottesville, Virginia 22904, USA;
| | - Jad Barchini
- Department of Functional Architecture and Development of Cerebral Cortex, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA
| | - Xiaorong Liu
- Department of Biology and Department of Psychology, University of Virginia, Charlottesville, Virginia 22904, USA;
| |
Collapse
|
42
|
Stabio ME, Sondereker KB, Haghgou SD, Day BL, Chidsey B, Sabbah S, Renna JM. A novel map of the mouse eye for orienting retinal topography in anatomical space. J Comp Neurol 2018; 526:1749-1759. [PMID: 29633277 DOI: 10.1002/cne.24446] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/01/2018] [Accepted: 03/19/2018] [Indexed: 12/24/2022]
Abstract
Functionally distinct retinal ganglion cells have density and size gradients across the mouse retina, and some degenerative eye diseases follow topographic-specific gradients of cell death. Hence, the anatomical orientation of the retina with respect to the orbit and head is important for understanding the functional anatomy of the retina in both health and disease. However, different research groups use different anatomical landmarks to determine retinal orientation (dorsal, ventral, temporal, nasal poles). Variations in the accuracy and reliability in marking these landmarks during dissection may lead to discrepancies in the identification and reporting of retinal topography. The goal of this study was to compare the accuracy and reliability of the canthus, rectus muscle, and choroid fissure landmarks in reporting retinal orientation. The retinal relieving cut angle made from each landmark during dissection was calculated based on its relationship to the opsin transition zone (OTZ), determined via a custom MATLAB script that aligns retinas from immunostained s-opsin. The choroid fissure and rectus muscle landmarks were the most accurate and reliable, while burn marks using the canthus as a reference were the least. These values were used to build an anatomical map that plots various ocular landmarks in relationship to one another, to the horizontal semicircular canals, to lambda-bregma, and to the earth's horizon. Surprisingly, during normal locomotion, the mouse's opsin gradient and the horizontal semicircular canals make equivalent 6° angles aligning the OTZ near the earth's horizon, a feature which may enhance the mouse's ability to visually navigate through its environment.
Collapse
Affiliation(s)
- Maureen E Stabio
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | | | - Sean D Haghgou
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Brittany L Day
- Department of Biology, The University of Akron, Akron, Ohio
| | - Berrien Chidsey
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Shai Sabbah
- Department of Neuroscience, Brown University, Providence, Rhode Island
| | - Jordan M Renna
- Department of Biology, The University of Akron, Akron, Ohio
| |
Collapse
|
43
|
Manookin MB, Patterson SS, Linehan CM. Neural Mechanisms Mediating Motion Sensitivity in Parasol Ganglion Cells of the Primate Retina. Neuron 2018; 97:1327-1340.e4. [PMID: 29503188 PMCID: PMC5866240 DOI: 10.1016/j.neuron.2018.02.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/16/2018] [Accepted: 02/02/2018] [Indexed: 10/17/2022]
Abstract
Considerable theoretical and experimental effort has been dedicated to understanding how neural circuits detect visual motion. In primates, much is known about the cortical circuits that contribute to motion processing, but the role of the retina in this fundamental neural computation is poorly understood. Here, we used a combination of extracellular and whole-cell recording to test for motion sensitivity in the two main classes of output neurons in the primate retina-midget (parvocellular-projecting) and parasol (magnocellular-projecting) ganglion cells. We report that parasol, but not midget, ganglion cells are motion sensitive. This motion sensitivity is present in synaptic excitation and disinhibition from presynaptic bipolar cells and amacrine cells, respectively. Moreover, electrical coupling between neighboring bipolar cells and the nonlinear nature of synaptic release contribute to the observed motion sensitivity. Our findings indicate that motion computations arise far earlier in the primate visual stream than previously thought.
Collapse
Affiliation(s)
- Michael B Manookin
- Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA; Vision Science Center, University of Washington, Seattle, WA 98195, USA.
| | - Sara S Patterson
- Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA; Vision Science Center, University of Washington, Seattle, WA 98195, USA; Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
| | - Conor M Linehan
- Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA; Vision Science Center, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
44
|
Ito S, Feldheim DA. The Mouse Superior Colliculus: An Emerging Model for Studying Circuit Formation and Function. Front Neural Circuits 2018; 12:10. [PMID: 29487505 PMCID: PMC5816945 DOI: 10.3389/fncir.2018.00010] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/22/2018] [Indexed: 11/30/2022] Open
Abstract
The superior colliculus (SC) is a midbrain area where visual, auditory and somatosensory information are integrated to initiate motor commands. The SC plays a central role in visual information processing in the mouse; it receives projections from 85% to 90% of the retinal ganglion cells (RGCs). While the mouse SC has been a long-standing model used to study retinotopic map formation, a number of technological advances in mouse molecular genetic techniques, large-scale physiological recordings and SC-dependent visual behavioral assays have made the mouse an even more ideal model to understand the relationship between circuitry and behavior.
Collapse
Affiliation(s)
- Shinya Ito
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - David A Feldheim
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
45
|
Antinucci P, Hindges R. Orientation-Selective Retinal Circuits in Vertebrates. Front Neural Circuits 2018; 12:11. [PMID: 29467629 PMCID: PMC5808299 DOI: 10.3389/fncir.2018.00011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/23/2018] [Indexed: 11/24/2022] Open
Abstract
Visual information is already processed in the retina before it is transmitted to higher visual centers in the brain. This includes the extraction of salient features from visual scenes, such as motion directionality or contrast, through neurons belonging to distinct neural circuits. Some retinal neurons are tuned to the orientation of elongated visual stimuli. Such ‘orientation-selective’ neurons are present in the retinae of most, if not all, vertebrate species analyzed to date, with species-specific differences in frequency and degree of tuning. In some cases, orientation-selective neurons have very stereotyped functional and morphological properties suggesting that they represent distinct cell types. In this review, we describe the retinal cell types underlying orientation selectivity found in various vertebrate species, and highlight their commonalities and differences. In addition, we discuss recent studies that revealed the cellular, synaptic and circuit mechanisms at the basis of retinal orientation selectivity. Finally, we outline the significance of these findings in shaping our current understanding of how this fundamental neural computation is implemented in the visual systems of vertebrates.
Collapse
Affiliation(s)
- Paride Antinucci
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Robert Hindges
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| |
Collapse
|
46
|
Seabrook TA, Burbridge TJ, Crair MC, Huberman AD. Architecture, Function, and Assembly of the Mouse Visual System. Annu Rev Neurosci 2018; 40:499-538. [PMID: 28772103 DOI: 10.1146/annurev-neuro-071714-033842] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vision is the sense humans rely on most to navigate the world, make decisions, and perform complex tasks. Understanding how humans see thus represents one of the most fundamental and important goals of neuroscience. The use of the mouse as a model for parsing how vision works at a fundamental level started approximately a decade ago, ushered in by the mouse's convenient size, relatively low cost, and, above all, amenability to genetic perturbations. In the course of that effort, a large cadre of new and powerful tools for in vivo labeling, monitoring, and manipulation of neurons were applied to this species. As a consequence, a significant body of work now exists on the architecture, function, and development of mouse central visual pathways. Excitingly, much of that work includes causal testing of the role of specific cell types and circuits in visual perception and behavior-something rare to find in studies of the visual system of other species. Indeed, one could argue that more information is now available about the mouse visual system than any other sensory system, in any species, including humans. As such, the mouse visual system has become a platform for multilevel analysis of the mammalian central nervous system generally. Here we review the mouse visual system structure, function, and development literature and comment on the similarities and differences between the visual system of this and other model species. We also make it a point to highlight the aspects of mouse visual circuitry that remain opaque and that are in need of additional experimentation to enrich our understanding of how vision works on a broad scale.
Collapse
Affiliation(s)
- Tania A Seabrook
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305
| | - Timothy J Burbridge
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520;
| | - Michael C Crair
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520;
| | - Andrew D Huberman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305.,Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California 94303; .,Bio-X, Stanford University, Stanford, California 94305
| |
Collapse
|
47
|
Orientation Selectivity in the Retina: ON Cell Types and Mechanisms. J Neurosci 2018; 36:8064-6. [PMID: 27488626 DOI: 10.1523/jneurosci.1527-16.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/21/2016] [Indexed: 11/21/2022] Open
|
48
|
Electrical synapses convey orientation selectivity in the mouse retina. Nat Commun 2017; 8:2025. [PMID: 29229967 PMCID: PMC5725423 DOI: 10.1038/s41467-017-01980-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022] Open
Abstract
Sensory neurons downstream of primary receptors are selective for specific stimulus features, and they derive their selectivity both from excitatory and inhibitory synaptic inputs from other neurons and from their own intrinsic properties. Electrical synapses, formed by gap junctions, modulate sensory circuits. Retinal ganglion cells (RGCs) are diverse feature detectors carrying visual information to the brain, and receive excitatory input from bipolar cells and inhibitory input from amacrine cells (ACs). Here we describe a RGC that relies on gap junctions, rather than chemical synapses, to convey its selectivity for the orientation of a visual stimulus. This represents both a new functional role of electrical synapses as the primary drivers of feature selectivity and a new circuit mechanism for orientation selectivity in the retina. Visual input received by photoreceptors is relayed to retinal ganglion cells (RGCs), which have selectivity for inputs of certain orientations. Here, the authors show that gap junction-mediated input onto one type of RGC contributes to its orientation selectivity.
Collapse
|
49
|
Kay RB, Triplett JW. Visual Neurons in the Superior Colliculus Innervated by Islet2 + or Islet2 - Retinal Ganglion Cells Display Distinct Tuning Properties. Front Neural Circuits 2017; 11:73. [PMID: 29066954 PMCID: PMC5641327 DOI: 10.3389/fncir.2017.00073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/19/2017] [Indexed: 11/20/2022] Open
Abstract
Throughout the visual system, different subtypes of neurons are tuned to distinct aspects of the visual scene, establishing parallel circuits. Defining the mechanisms by which such tuning arises has been a long-standing challenge for neuroscience. To investigate this, we have focused on the retina’s projection to the superior colliculus (SC), where multiple visual neuron subtypes have been described. The SC receives inputs from a variety of retinal ganglion cell (RGC) subtypes; however, which RGCs drive the tuning of different SC neurons remains unclear. Here, we pursued a genetic approach that allowed us to determine the tuning properties of neurons innervated by molecularly defined subpopulations of RGCs. In homozygous Islet2-EphA3 knock-in (Isl2EA3/EA3) mice, Isl2+ and Isl2− RGCs project to non-overlapping sub-regions of the SC. Based on molecular and anatomic data, we show that significantly more Isl2− RGCs are direction-selective (DS) in comparison with Isl2+ RGCs. Targeted recordings of visual responses from each SC sub-region in Isl2EA3/EA3 mice revealed that Isl2− RGC-innervated neurons were significantly more DS than those innervated by Isl2+ RGCs. Axis-selective (AS) neurons were found in both sub-regions, though AS neurons innervated by Isl2+ RGCs were more tightly tuned. Despite this segregation, DS and AS neurons innervated by Isl2+ or Isl2− RGCs did not differ in their spatial summation or spatial frequency (SF) tuning. Further, we did not observe alterations in receptive field (RF) size or structure of SC neurons innervated by Isl2+ or Isl2− RGCs. Together, these data show that innervation by Isl2+ and Isl2− RGCs results in distinct tuning in the SC and set the stage for future studies investigating the mechanisms by which these circuits are built.
Collapse
Affiliation(s)
- Rachel B Kay
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC, United States
| | - Jason W Triplett
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC, United States.,Department of Pediatrics, The George Washington University School of Medicine and Health Science, Washington, DC, United States
| |
Collapse
|
50
|
Contralateral Bias of High Spatial Frequency Tuning and Cardinal Direction Selectivity in Mouse Visual Cortex. J Neurosci 2017; 37:10125-10138. [PMID: 28924011 DOI: 10.1523/jneurosci.1484-17.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/01/2017] [Indexed: 01/16/2023] Open
Abstract
Binocular mechanisms for visual processing are thought to enhance spatial acuity by combining matched input from the two eyes. Studies in the primary visual cortex of carnivores and primates have confirmed that eye-specific neuronal response properties are largely matched. In recent years, the mouse has emerged as a prominent model for binocular visual processing, yet little is known about the spatial frequency tuning of binocular responses in mouse visual cortex. Using calcium imaging in awake mice of both sexes, we show that the spatial frequency preference of cortical responses to the contralateral eye is ∼35% higher than responses to the ipsilateral eye. Furthermore, we find that neurons in binocular visual cortex that respond only to the contralateral eye are tuned to higher spatial frequencies. Binocular neurons that are well matched in spatial frequency preference are also matched in orientation preference. In contrast, we observe that binocularly mismatched cells are more mismatched in orientation tuning. Furthermore, we find that contralateral responses are more direction-selective than ipsilateral responses and are strongly biased to the cardinal directions. The contralateral bias of high spatial frequency tuning was found in both awake and anesthetized recordings. The distinct properties of contralateral cortical responses may reflect the functional segregation of direction-selective, high spatial frequency-preferring neurons in earlier stages of the central visual pathway. Moreover, these results suggest that the development of binocularity and visual acuity may engage distinct circuits in the mouse visual system.SIGNIFICANCE STATEMENT Seeing through two eyes is thought to improve visual acuity by enhancing sensitivity to fine edges. Using calcium imaging of cellular responses in awake mice, we find surprising asymmetries in the spatial processing of eye-specific visual input in binocular primary visual cortex. The contralateral visual pathway is tuned to higher spatial frequencies than the ipsilateral pathway. At the highest spatial frequencies, the contralateral pathway strongly prefers to respond to visual stimuli along the cardinal (horizontal and vertical) axes. These results suggest that monocular, and not binocular, mechanisms set the limit of spatial acuity in mice. Furthermore, they suggest that the development of visual acuity and binocularity in mice involves different circuits.
Collapse
|