1
|
Zhang Y, Iino Y, Schafer WR. Behavioral plasticity. Genetics 2024; 228:iyae105. [PMID: 39158469 DOI: 10.1093/genetics/iyae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/10/2024] [Indexed: 08/20/2024] Open
Abstract
Behavioral plasticity allows animals to modulate their behavior based on experience and environmental conditions. Caenorhabditis elegans exhibits experience-dependent changes in its behavioral responses to various modalities of sensory cues, including odorants, salts, temperature, and mechanical stimulations. Most of these forms of behavioral plasticity, such as adaptation, habituation, associative learning, and imprinting, are shared with other animals. The C. elegans nervous system is considerably tractable for experimental studies-its function can be characterized and manipulated with molecular genetic methods, its activity can be visualized and analyzed with imaging approaches, and the connectivity of its relatively small number of neurons are well described. Therefore, C. elegans provides an opportunity to study molecular, neuronal, and circuit mechanisms underlying behavioral plasticity that are either conserved in other animals or unique to this species. These findings reveal insights into how the nervous system interacts with the environmental cues to generate behavioral changes with adaptive values.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Yuichi Iino
- Department of Biological Sciences, University of Tokyo, Tokyo 113-0032, Japan
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH, UK
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
2
|
Toraason E, Kaletsky R, Murphy C. In vivo neuron-specific expression of C. elegans reprogramming factor orthologs does not alleviate age-related cognitive decline. MICROPUBLICATION BIOLOGY 2024; 2024. [PMID: 39267613 PMCID: PMC11391276 DOI: 10.17912/micropub.biology.001304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
Overexpression of the OSK(M) (Oct4, Sox2, Klf4, with or without cMyc) pluripotency factors have shown promise in rejuvenating the function of aged neurons. To test whether this intervention could also ameliorate age-associated cognitive decline, we used a doxycycline inducible system to overexpress the C. elegans OSK orthologs specifically in aging C. elegans neurons. We find that OSK does not improve short-term associative memory or extend lifespan and can further disrupt chemotaxis behavior. Taken together, our data suggest that OSK-mediated partial reprogramming may have deleterious effects on post-mitotic neurons that function in cognitive processes.
Collapse
Affiliation(s)
- Erik Toraason
- Lewis-Sigler Institute for Integrative Genomics, Princeton University
- Department of Molecular Biology, Princeton University
| | - Rachel Kaletsky
- Lewis-Sigler Institute for Integrative Genomics, Princeton University
- Department of Molecular Biology, Princeton University
| | - Coleen Murphy
- Department of Molecular Biology, Princeton University
- Lewis-Sigler Institute for Integrative Genomics, Princeton University
| |
Collapse
|
3
|
Wen X, Yang H, Li Z, Chu W. Alcohol degradation, learning, and memory-enhancing effect of Acetobacter pasteurianus BP2201 in Caenorhabditis elegans model. J Appl Microbiol 2023; 134:lxad253. [PMID: 37934610 DOI: 10.1093/jambio/lxad253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/18/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023]
Abstract
AIMS This study aimed to investigate the probiotic effects of Acetobacter pasteurianus BP2201, isolated from brewing mass, for the treatment of alcohol-induced learning and memory ability impairments in a Caenorhabditis elegans model. METHODS AND RESULTS Acetobacter pasteurianus BP2201 was examined for probiotic properties, including acid and bile salt resistance, ethanol degradation, antioxidant efficacy, hemolytic activity, and susceptibility to antibiotics. The strain displayed robust acid and bile salt tolerance, efficient ethanol degradation, potent antioxidant activity, and susceptibility to specific antibiotics. Additionally, in the C. elegans model, administering A. pasteurianus BP2201 significantly improved alcohol-induced learning and memory impairments. CONCLUSIONS Acetobacter pasteurianus BP2201 proves to be a promising candidate strain for the treatment of learning and memory impairments induced by alcohol intake.
Collapse
Affiliation(s)
- Xin Wen
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Huazhong Yang
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Zhongqi Li
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Weihua Chu
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
4
|
Nakai J, Namiki K, Fujimoto K, Hatakeyama D, Ito E. FOXO in Lymnaea: Its Probable Involvement in Memory Consolidation. BIOLOGY 2023; 12:1201. [PMID: 37759600 PMCID: PMC10525164 DOI: 10.3390/biology12091201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023]
Abstract
Food deprivation activates forkhead box O (FOXO), a transcription factor downstream of insulin receptors. In the pond snail Lymnaea stagnalis, insulin signaling and food deprivation improve memory consolidation following conditioned taste aversion (CTA) learning. We investigated the subcellular localization of FOXO in Lymnaea and changes in its expression levels following food deprivation, CTA learning, and insulin administration. Immunohistochemistry revealed that Lymnaea FOXO (LymFOXO) was located in the central nervous system (CNS) neuronal cytoplasm in food-satiated snails but was mainly in neuronal nuclei in food-deprived snails. Following CTA acquisition, LymFOXO translocated to the nuclei in food-satiated snails and remained in the nuclei in food-deprived snails. Contrary to our expectations, insulin administered to the CNS did not induce LymFOXO translocation into the nuclei in food-satiated snails. Real-time PCR was used to quantify LymFOXO mRNA levels, its target genes, and insulin signaling pathway genes and revealed that LymFOXO mRNA was upregulated in food-deprived snails compared to food-satiated snails. Insulin applied to isolated CNSs from food-satiated snails increased LymFOXO compared to vehicle-treated samples. Food deprivation prepares FOXO to function in the nucleus and enhances CTA learning in snails. Insulin application did not directly affect LymFOXO protein localization. Thus, insulin administration may stimulate pathways other than the LymFOXO cascade.
Collapse
Affiliation(s)
- Junko Nakai
- Department Biology, Waseda University, Tokyo 162-8480, Japan; (J.N.); (K.N.); (K.F.)
| | - Kengo Namiki
- Department Biology, Waseda University, Tokyo 162-8480, Japan; (J.N.); (K.N.); (K.F.)
| | - Kanta Fujimoto
- Department Biology, Waseda University, Tokyo 162-8480, Japan; (J.N.); (K.N.); (K.F.)
| | - Dai Hatakeyama
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan;
| | - Etsuro Ito
- Department Biology, Waseda University, Tokyo 162-8480, Japan; (J.N.); (K.N.); (K.F.)
| |
Collapse
|
5
|
Roman A, Palanski K, Nemenman I, Ryu WS. A dynamical model of C. elegans thermal preference reveals independent excitatory and inhibitory learning pathways. Proc Natl Acad Sci U S A 2023; 120:e2215191120. [PMID: 36940330 PMCID: PMC10068832 DOI: 10.1073/pnas.2215191120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/19/2023] [Indexed: 03/22/2023] Open
Abstract
Caenorhabditis elegans is capable of learning and remembering behaviorally relevant cues such as smells, tastes, and temperature. This is an example of associative learning, a process in which behavior is modified by making associations between various stimuli. Since the mathematical theory of conditioning does not account for some of its salient aspects, such as spontaneous recovery of extinguished associations, accurate modeling of behavior of real animals during conditioning has turned out difficult. Here, we do this in the context of the dynamics of the thermal preference of C. elegans. We quantify C. elegans thermotaxis in response to various conditioning temperatures, starvation durations, and genetic perturbations using a high-resolution microfluidic droplet assay. We model these data comprehensively, within a biologically interpretable, multi-modal framework. We find that the strength of the thermal preference is composed of two independent, genetically separable contributions and requires a model with at least four dynamical variables. One pathway positively associates the experienced temperature independently of food and the other negatively associates with the temperature when food is absent. The multidimensional structure of the association strength provides an explanation for the apparent classical temperature-food association of C. elegans thermal preference and a number of longstanding questions in animal learning, including spontaneous recovery, asymmetric response to appetitive vs. aversive cues, latent inhibition, and generalization among similar cues.
Collapse
Affiliation(s)
- Ahmed Roman
- Department of Physics, Emory University, Atlanta, GA30322
| | | | - Ilya Nemenman
- Department of Physics, Emory University, Atlanta, GA30322
- Department of Biology, Emory University, Atlanta, GA30322
- Initiative in Theory and Modeling of Living Systems, Emory University, Atlanta, GA30322
| | - William S. Ryu
- Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| |
Collapse
|
6
|
Lindsay JH, Mathies LD, Davies AG, Bettinger JC. A neuropeptide signal confers ethanol state dependency during olfactory learning in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2022; 119:e2210462119. [PMID: 36343256 PMCID: PMC9674237 DOI: 10.1073/pnas.2210462119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022] Open
Abstract
Alcohol intoxication can impact learning and this may contribute to the development of problematic alcohol use. In alcohol (ethanol)-induced state-dependent learning (SDL), information learned while an animal is intoxicated is recalled more effectively when the subject is tested while similarly intoxicated than if tested while not intoxicated. When Caenorhabditis elegans undergoes olfactory learning (OL) while intoxicated, the learning becomes state dependent such that recall of OL is only apparent if the animals are tested while intoxicated. We found that two genes known to be required for signal integration, the secreted peptide HEN-1 and its receptor tyrosine kinase, SCD-2, are required for SDL. Expression of hen-1 in the ASER neuron and scd-2 in the AIA neurons was sufficient for their functions in SDL. Optogenetic activation of ASER in the absence of ethanol during learning could confer ethanol state dependency, indicating that ASER activation is sufficient to signal ethanol intoxication to the OL circuit. To our surprise, ASER activation during testing did not substitute for ethanol intoxication, demonstrating that the effects of ethanol on learning and recall rely on distinct signals. Additionally, intoxication-state information could be added to already established OL, but state-dependent OL did not lose state information when the intoxication signal was removed. Finally, dopamine is required for state-dependent OL, and we found that the activation of ASER cannot bypass this requirement. Our findings provide a window into the modulation of learning by ethanol and suggest that ethanol acts to modify learning using mechanisms distinct from those used during memory access.
Collapse
Affiliation(s)
- Jonathan H. Lindsay
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298
| | - Laura D. Mathies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, VA 23298
| | - Andrew G. Davies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, VA 23298
| | - Jill C. Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, VA 23298
| |
Collapse
|
7
|
Cheng D, Lee JS, Brown M, Ebert MS, McGrath PT, Tomioka M, Iino Y, Bargmann CI. Insulin/IGF signaling regulates presynaptic glutamate release in aversive olfactory learning. Cell Rep 2022; 41:111685. [DOI: 10.1016/j.celrep.2022.111685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/06/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022] Open
|
8
|
Invited review: Unearthing the mechanisms of age-related neurodegenerative disease using Caenorhabditis elegans. Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111166. [PMID: 35176489 DOI: 10.1016/j.cbpa.2022.111166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
Abstract
As human life expectancy increases, neurodegenerative diseases present a growing public health threat, for which there are currently few effective treatments. There is an urgent need to understand the molecular and genetic underpinnings of these disorders so new therapeutic targets can be identified. Here we present the argument that the simple nematode worm Caenorhabditis elegans is a powerful tool to rapidly study neurodegenerative disorders due to their short lifespan and vast array of genetic tools, which can be combined with characterization of conserved neuronal processes and behavior orthologous to those disrupted in human disease. We review how pre-existing C. elegans models provide insight into human neurological disease as well as an overview of current tools available to study neurodegenerative diseases in the worm, with an emphasis on genetics and behavior. We also discuss open questions that C. elegans may be particularly well suited for in future studies and how worms will be a valuable preclinical model to better understand these devastating neurological disorders.
Collapse
|
9
|
Nakai J, Chikamoto N, Fujimoto K, Totani Y, Hatakeyama D, Dyakonova VE, Ito E. Insulin and Memory in Invertebrates. Front Behav Neurosci 2022; 16:882932. [PMID: 35558436 PMCID: PMC9087806 DOI: 10.3389/fnbeh.2022.882932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022] Open
Abstract
Insulin and insulin-like peptides (ILP) help to maintain glucose homeostasis, whereas insulin-like growth factor (IGF) promotes the growth and differentiation of cells in both vertebrates and invertebrates. It is sometimes difficult to distinguish between ILP and IGF in invertebrates, however, because in some cases ILP has the same function as IGF. In the present review, therefore, we refer to these peptides as ILP/IGF signaling (IIS) in invertebrates, and discuss the role of IIS in memory formation after classical conditioning in invertebrates. In the arthropod Drosophila melanogaster, IIS is involved in aversive olfactory memory, and in the nematode Caenorhabditis elegans, IIS controls appetitive/aversive response to NaCl depending on the duration of starvation. In the mollusk Lymnaea stagnalis, IIS has a critical role in conditioned taste aversion. Insulin in mammals is also known to play an important role in cognitive function, and many studies in humans have focused on insulin as a potential treatment for Alzheimer’s disease. Although analyses of tissue and cellular levels have progressed in mammals, the molecular mechanisms, such as transcriptional and translational levels, of IIS function in cognition have been far advanced in studies using invertebrates. We anticipate that the present review will help to pave the way for studying the effects of insulin, ILPs, and IGFs in cognitive function across phyla.
Collapse
Affiliation(s)
- Junko Nakai
- Department of Biology, Waseda University, Tokyo, Japan
| | | | | | - Yuki Totani
- Department of Biology, Waseda University, Tokyo, Japan
| | - Dai Hatakeyama
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Varvara E. Dyakonova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Etsuro Ito
- Department of Biology, Waseda University, Tokyo, Japan
- Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- *Correspondence: Etsuro Ito
| |
Collapse
|
10
|
Tomioka M, Jang MS, Iino Y. DAF-2c signaling promotes taste avoidance after starvation in Caenorhabditis elegans by controlling distinct phospholipase C isozymes. Commun Biol 2022; 5:30. [PMID: 35017611 PMCID: PMC8752840 DOI: 10.1038/s42003-021-02956-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022] Open
Abstract
Previously, we reported that DAF-2c, an axonal insulin receptor isoform in Caenorhabditis elegans, acts in the ASER gustatory neuron to regulate taste avoidance learning, a process in which worms learn to avoid salt concentrations experienced during starvation. Here, we show that secretion of INS-1, an insulin-like peptide, after starvation conditioning is sufficient to drive taste avoidance via DAF-2c signaling. Starvation conditioning enhances the salt-triggered activity of AIA neurons, the main sites of INS-1 release, which potentially promotes feedback signaling to ASER to maintain DAF-2c activity during taste avoidance. Genetic studies suggest that DAF-2c-Akt signaling promotes high-salt avoidance via a decrease in PLCβ activity. On the other hand, the DAF-2c pathway promotes low-salt avoidance via PLCε and putative Akt phosphorylation sites on PLCε are essential for taste avoidance. Our findings imply that animals disperse from the location at which they experience starvation by controlling distinct PLC isozymes via DAF-2c.
Collapse
Affiliation(s)
- Masahiro Tomioka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Moon Sun Jang
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Yuichi Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
11
|
Ozawa K, Shinkai Y, Kako K, Fukamizu A, Doi M. The molecular and neural regulation of ultraviolet light phototaxis and its food-associated learning behavioral plasticity in C. elegans. Neurosci Lett 2021; 770:136384. [PMID: 34890717 DOI: 10.1016/j.neulet.2021.136384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022]
Abstract
Ultraviolet light is quite toxic to all the animals and evoke the avoidance behavior of UV. The soil nematode Caenorhabditis elegans senses UV and is known to avoid UV by using four sensory neurons. However, it is not clear what signaling molecules act for UV avoidance in the neuronal pathway constituted of four sensory neurons. In addition, it is not clear whether this harmful environmental signal can be associated with other benefit signals such as food. In this study, by using newly developed assay system, we found that C. elegans can associate UV and food and changes behavioral strategy against harmful UV signal. This is the first indication that C. elegans shows associate learning with UV and food. Using our assay system, we also found that glutamate is used as a transmitter in both the UV avoidance and UV associate learning neural circuits. However, one sensory neuron showed a significant role for associative learning, compared to a complimentary role in four sensory neurons for direct associative learning, and different sets of glutamate receptors seemed to be acting for UV avoidance and UV associate learning. These findings suggest that a distinct neuronal network is used for UV learning compared to that for direct avoidance behavior of UV.
Collapse
Affiliation(s)
- Kazuki Ozawa
- College of Agro-Biological Resource Sciences, School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yoichi Shinkai
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Koichiro Kako
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Motomichi Doi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| |
Collapse
|
12
|
Rahmani A, Chew YL. Investigating the molecular mechanisms of learning and memory using Caenorhabditis elegans. J Neurochem 2021; 159:417-451. [PMID: 34528252 DOI: 10.1111/jnc.15510] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/15/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022]
Abstract
Learning is an essential biological process for survival since it facilitates behavioural plasticity in response to environmental changes. This process is mediated by a wide variety of genes, mostly expressed in the nervous system. Many studies have extensively explored the molecular and cellular mechanisms underlying learning and memory. This review will focus on the advances gained through the study of the nematode Caenorhabditis elegans. C. elegans provides an excellent system to study learning because of its genetic tractability, in addition to its invariant, compact nervous system (~300 neurons) that is well-characterised at the structural level. Importantly, despite its compact nature, the nematode nervous system possesses a high level of conservation with mammalian systems. These features allow the study of genes within specific sensory-, inter- and motor neurons, facilitating the interrogation of signalling pathways that mediate learning via defined neural circuits. This review will detail how learning and memory can be studied in C. elegans through behavioural paradigms that target distinct sensory modalities. We will also summarise recent studies describing mechanisms through which key molecular and cellular pathways are proposed to affect associative and non-associative forms of learning.
Collapse
Affiliation(s)
- Aelon Rahmani
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Yee Lian Chew
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
13
|
Tabassum S, Misrani A, Yang L. Exploiting Common Aspects of Obesity and Alzheimer's Disease. Front Hum Neurosci 2020; 14:602360. [PMID: 33384592 PMCID: PMC7769820 DOI: 10.3389/fnhum.2020.602360] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is an example of age-related dementia, and there are still no known preventive or curative measures for this disease. Obesity and associated metabolic changes are widely accepted as risk factors of age-related cognitive decline. Insulin is the prime mediator of metabolic homeostasis, which is impaired in obesity, and this impairment potentiates amyloid-β (Aβ) accumulation and the formation of neurofibrillary tangles (NFTs). Obesity is also linked with functional and morphological alterations in brain mitochondria leading to brain insulin resistance (IR) and memory deficits associated with AD. Also, increased peripheral inflammation and oxidative stress due to obesity are the main drivers that increase an individual’s susceptibility to cognitive deficits, thus doubling the risk of AD. This enhanced risk of AD is alarming in the context of a rapidly increasing global incidence of obesity and overweight in the general population. In this review, we summarize the risk factors that link obesity with AD and emphasize the point that the treatment and management of obesity may also provide a way to prevent AD.
Collapse
Affiliation(s)
- Sidra Tabassum
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Afzal Misrani
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Li Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
14
|
Baugh LR, Hu PJ. Starvation Responses Throughout the Caenorhabditiselegans Life Cycle. Genetics 2020; 216:837-878. [PMID: 33268389 PMCID: PMC7768255 DOI: 10.1534/genetics.120.303565] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
Caenorhabditis elegans survives on ephemeral food sources in the wild, and the species has a variety of adaptive responses to starvation. These features of its life history make the worm a powerful model for studying developmental, behavioral, and metabolic starvation responses. Starvation resistance is fundamental to life in the wild, and it is relevant to aging and common diseases such as cancer and diabetes. Worms respond to acute starvation at different times in the life cycle by arresting development and altering gene expression and metabolism. They also anticipate starvation during early larval development, engaging an alternative developmental program resulting in dauer diapause. By arresting development, these responses postpone growth and reproduction until feeding resumes. A common set of signaling pathways mediates systemic regulation of development in each context but with important distinctions. Several aspects of behavior, including feeding, foraging, taxis, egg laying, sleep, and associative learning, are also affected by starvation. A variety of conserved signaling, gene regulatory, and metabolic mechanisms support adaptation to starvation. Early life starvation can have persistent effects on adults and their descendants. With its short generation time, C. elegans is an ideal model for studying maternal provisioning, transgenerational epigenetic inheritance, and developmental origins of adult health and disease in humans. This review provides a comprehensive overview of starvation responses throughout the C. elegans life cycle.
Collapse
Affiliation(s)
- L Ryan Baugh
- Department of Biology, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708 and
| | - Patrick J Hu
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
15
|
Takeishi A, Yeon J, Harris N, Yang W, Sengupta P. Feeding state functionally reconfigures a sensory circuit to drive thermosensory behavioral plasticity. eLife 2020; 9:e61167. [PMID: 33074105 PMCID: PMC7644224 DOI: 10.7554/elife.61167] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/18/2020] [Indexed: 12/24/2022] Open
Abstract
Internal state alters sensory behaviors to optimize survival strategies. The neuronal mechanisms underlying hunger-dependent behavioral plasticity are not fully characterized. Here we show that feeding state alters C. elegans thermotaxis behavior by engaging a modulatory circuit whose activity gates the output of the core thermotaxis network. Feeding state does not alter the activity of the core thermotaxis circuit comprised of AFD thermosensory and AIY interneurons. Instead, prolonged food deprivation potentiates temperature responses in the AWC sensory neurons, which inhibit the postsynaptic AIA interneurons to override and disrupt AFD-driven thermotaxis behavior. Acute inhibition and activation of AWC and AIA, respectively, restores negative thermotaxis in starved animals. We find that state-dependent modulation of AWC-AIA temperature responses requires INS-1 insulin-like peptide signaling from the gut and DAF-16/FOXO function in AWC. Our results describe a mechanism by which functional reconfiguration of a sensory network via gut-brain signaling drives state-dependent behavioral flexibility.
Collapse
Affiliation(s)
- Asuka Takeishi
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Jihye Yeon
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Nathan Harris
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Wenxing Yang
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard UniversityCambridgeUnited States
| | - Piali Sengupta
- Department of Biology, Brandeis UniversityWalthamUnited States
| |
Collapse
|
16
|
Hussein AAA, Baz ES, Mariën J, Tadros MM, El-Shenawy NS, Koene JM. Effect of photoperiod and light intensity on learning ability and memory formation of the pond snail Lymnaea stagnalis. INVERTEBRATE NEUROSCIENCE : IN 2020; 20:18. [PMID: 33078292 PMCID: PMC7572358 DOI: 10.1007/s10158-020-00251-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/06/2020] [Indexed: 11/29/2022]
Abstract
Natural light is regarded as a key regulator of biological systems and typically serves as a Zeitgeber for biological rhythms. As a natural abiotic factor, it is recognized to regulate multiple behavioral and physiological processes in animals. Disruption of the natural light regime due to light pollution may result in significant effects on animal learning and memory development. Here, we investigated whether sensitivity to various photoperiods or light intensities had an impact on intermediate-term memory (ITM) and long-term memory (LTM) formation in the pond snail Lymnaea stagnalis. We also investigated the change in the gene expression level of molluscan insulin-related peptide II (MIP II) is response to the given light treatments. The results show that the best light condition for proper LTM formation is exposure to a short day (8 h light) and low light intensity (1 and 10 lx). Moreover, the more extreme light conditions (16 h and 24 h light) prevent the formation of both ITM and LTM. We found no change in MIP II expression in any of the light treatments, which may indicate that MIP II is not directly involved in the operant conditioning used here, even though it is known to be involved in learning. The finding that snails did not learn in complete darkness indicates that light is a necessary factor for proper learning and memory formation. Furthermore, dim light enhances both ITM and LTM formation, which suggests that there is an optimum since both no light and too bright light prevented learning and memory. Our findings suggest that the upsurge of artificial day length and/or night light intensity may also negatively impact memory consolidation in the wild.
Collapse
Affiliation(s)
- Ahmed A A Hussein
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt.
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands.
- Malacology Lab, Theodor Bilharz Research Institute (TBRI), Giza, Egypt.
| | - El-Sayed Baz
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt.
| | - Janine Mariën
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands
| | - Menerva M Tadros
- Malacology Lab, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| | - Nahla S El-Shenawy
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Joris M Koene
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
17
|
De Fruyt N, Yu AJ, Rankin CH, Beets I, Chew YL. The role of neuropeptides in learning: Insights from C. elegans. Int J Biochem Cell Biol 2020; 125:105801. [DOI: 10.1016/j.biocel.2020.105801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/17/2020] [Accepted: 07/06/2020] [Indexed: 12/26/2022]
|
18
|
Fadda M, De Fruyt N, Borghgraef C, Watteyne J, Peymen K, Vandewyer E, Naranjo Galindo FJ, Kieswetter A, Mirabeau O, Chew YL, Beets I, Schoofs L. NPY/NPF-Related Neuropeptide FLP-34 Signals from Serotonergic Neurons to Modulate Aversive Olfactory Learning in Caenorhabditis elegans. J Neurosci 2020; 40:6018-6034. [PMID: 32576621 PMCID: PMC7392509 DOI: 10.1523/jneurosci.2674-19.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/26/2020] [Accepted: 06/12/2020] [Indexed: 02/03/2023] Open
Abstract
Aversive learning is fundamental for animals to increase chances of survival. In addition to classical neurotransmitters, neuropeptides have emerged to modulate such complex behaviors. Among them, neuropeptide Y (NPY) is well known to promote aversive memory acquisition in mammals. Here we identify an NPY/neuropeptide F (NPF)-related neuropeptide system in Caenorhabditis elegans and show that this FLP-34/NPR-11 system is required for learning negative associations, a process that is reminiscent of NPY signaling in mammals. The Caenorhabditis elegans NPY/NPF ortholog FLP-34 displays conserved structural hallmarks of bilaterian-wide NPY/NPF neuropeptides. We show that it is required for aversive olfactory learning after pairing diacetyl with the absence of food, but not for appetitive olfactory learning in response to butanone. To mediate diacetyl learning and thus integrate the aversive food context with the diacetyl odor, FLP-34 is released from serotonergic neurons and signals through its evolutionarily conserved NPY/NPF GPCR, NPR-11, in downstream AIA interneurons. NPR-11 activation in the AIA integration center results in avoidance of a previously attractive stimulus. This study opens perspectives for a deeper understanding of stress conditions in which aversive learning results in excessive avoidance.SIGNIFICANCE STATEMENT Aversive learning evolved early in evolution to promote avoidance of dangerous and stressful situations. In addition to classical neurotransmitters, neuropeptides are emerging as modulators of complex behaviors, including learning and memory. Here, we identified the evolutionary ortholog of neuropeptide Y/neuropeptide F in the nematode Caenorhabditis elegans, and we discovered that it is required for olfactory aversive learning. In addition, we elucidated the neural circuit underlying this avoidance behavior, and we discovered a novel coordinated action of Caenorhabditis elegans neuropeptide Y/neuropeptide F and serotonin that could aid in our understanding of the molecular mechanisms underlying stress disorders in which excessive avoidance results in maladaptive behaviors.
Collapse
Affiliation(s)
- Melissa Fadda
- Department of Biology, KU Leuven, Leuven, 3000, Belgium
| | | | | | - Jan Watteyne
- Department of Biology, KU Leuven, Leuven, 3000, Belgium
| | | | | | | | | | - Olivier Mirabeau
- Genetics and Biology of Cancers Unit, Institut Curie, Institut National de la Santé et de la Recherche Médicale U830, Paris Sciences et Lettres Research University, Paris, 75005, France
| | - Yee Lian Chew
- Illawarra Health & Medical Research Institute School of Chemistry & Molecular Bioscience, University of Wollongong, Wollongong, 2522 New South Wales, Australia
| | - Isabel Beets
- Department of Biology, KU Leuven, Leuven, 3000, Belgium
| | | |
Collapse
|
19
|
Neuromedin U signaling regulates retrieval of learned salt avoidance in a C. elegans gustatory circuit. Nat Commun 2020; 11:2076. [PMID: 32350283 PMCID: PMC7190830 DOI: 10.1038/s41467-020-15964-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 04/06/2020] [Indexed: 01/07/2023] Open
Abstract
Learning and memory are regulated by neuromodulatory pathways, but the contribution and temporal requirement of most neuromodulators in a learning circuit are unknown. Here we identify the evolutionarily conserved neuromedin U (NMU) neuropeptide family as a regulator of C. elegans gustatory aversive learning. The NMU homolog CAPA-1 and its receptor NMUR-1 are required for the retrieval of learned salt avoidance. Gustatory aversive learning requires the release of CAPA-1 neuropeptides from sensory ASG neurons that respond to salt stimuli in an experience-dependent manner. Optogenetic silencing of CAPA-1 neurons blocks the expression, but not the acquisition, of learned salt avoidance. CAPA-1 signals through NMUR-1 in AFD sensory neurons to modulate two navigational strategies for salt chemotaxis. Aversive conditioning thus recruits NMU signaling to modulate locomotor programs for expressing learned avoidance behavior. Because NMU signaling is conserved across bilaterian animals, our findings incite further research into its function in other learning circuits.
Collapse
|
20
|
Nagashima T, Iino Y, Tomioka M. DAF-16/FOXO promotes taste avoidance learning independently of axonal insulin-like signaling. PLoS Genet 2019; 15:e1008297. [PMID: 31323047 PMCID: PMC6668909 DOI: 10.1371/journal.pgen.1008297] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/31/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
The avoidance of starvation is critical for the survival of most organisms, thus animals change behavior based on past nutritional conditions. Insulin signaling is important for nutritional state-dependent behavioral plasticity, yet the underlying regulatory mechanism at the cellular level remains unclear. Previous studies showed that insulin-like signaling is required for taste avoidance learning, in which the nematode Caenorhabditis elegans avoids salt concentrations encountered under starvation conditions. DAF-2c, a splice isoform of the DAF-2 insulin receptor, functions in the axon of the ASER sensory neuron, which senses changes in salt concentrations. In addition, mutants of a major downstream factor of DAF-2, the forkhead transcription factor O (FOXO) homolog DAF-16, show defects in taste avoidance learning. Interestingly, the defect of the daf-2 mutant is not suppressed by daf-16 mutations in the learning, unlike those in other phenomena, such as longevity and development. Here we show that multiple DAF-16 isoforms function in ASER. By epistasis analysis using a DAF-2c isoform-specific mutant and an activated form of DAF-16, we found that DAF-16 acts in the nucleus in parallel with the DAF-2c-dependent pathway in the axon, indicating that insulin-like signaling acts both in the cell body and axon of a single neuron, ASER. Starvation conditioning induces nuclear translocation of DAF-16 in ASER and degradation of DAF-16 before starvation conditioning causes defects in taste avoidance learning. Forced nuclear localization of DAF-16 in ASER biased chemotaxis towards lower salt concentrtions and this effect required the Gq/PKC pathway and neuropeptide processing enzymes. These data imply that DAF-16/FOXO transmits starvation signals and modulates neuropeptide transmission in the learning. Animals change behavior based on remembered experiences of hunger and appetite. Signaling by insulin and insulin-like peptides in the nervous system plays key roles in behavioral responses to hunger and satiety. In C. elegans, insulin-like signaling in the gustatory sensory neuron ASER regulates learned avoidance of salt concentrations experienced during fasting, which we call taste avoidance learning. DAF-2c, an isoform of the insulin receptor homolog, is localized to the axon of ASER and regulates taste avoidance learning. Here, we show that DAF-16, the forkhead transcription factor O (FOXO) homolog, translocates into the nucleus of ASER during fasting and promotes taste avoidance learning. DAF-16 is negatively regulated by insulin-like signaling independently of axonal DAF-2c signaling. This dual function of insulin-like signaling in the cell body and the axon ensures dynamic changes in behavioral responses after experience of hunger. By genetic analyses using constitutively nuclear-translocated DAF-16, we show that DAF-16 in ASER regulates taste avoidance learning via modulating neuropeptide signaling in the nervous system, which is reminiscent of the function of FOXO in the hypothalamus in the regulation of food-seeking behavior in mammals.
Collapse
Affiliation(s)
- Takashi Nagashima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yuichi Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Masahiro Tomioka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
21
|
A Model of Hereditary Sensory and Autonomic Neuropathy Type 1 Reveals a Role of Glycosphingolipids in Neuronal Polarity. J Neurosci 2019; 39:5816-5834. [PMID: 31138658 DOI: 10.1523/jneurosci.2541-18.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 05/15/2019] [Accepted: 05/19/2019] [Indexed: 12/14/2022] Open
Abstract
Hereditary sensory and autonomic neuropathy Type 1 (HSAN1) is a rare autosomal dominantly inherited neuropathy, clinically characterized by a loss of distal peripheral sensory and motoneuronal function. Mutations in subunits of serine palmitoyltransferase (SPT) have been linked to the majority of HSAN1 cases. SPTs catalyze the condensation of l-serine with palmitoyl-CoA, the first committed and rate-limiting step in de novo sphingolipid biosynthesis. Despite extensive investigation, the molecular pathogenesis of HSAN1 remains controversial. Here, we established a Caenorhabditis elegans (C. elegans) model of HSAN1 by generating a sptl-1(c363g) mutation, encoding SPTL-1(C121W) and equivalent to human SPTLC1C133W, at the C. elegans genomic locus through CRISPR. The sptl-1(c363g) homozygous mutants exhibited the same larval lethality and epithelial polarity defect as observed in sptl-1(RNAi) animals, suggesting a loss-of-function effect of the SPTL-1(C121W) mutation. sptl-1(c363g)/+ heterozygous mutants displayed sensory dysfunction with concomitant neuronal morphology and axon-dendrite polarity defects, demonstrating that the C. elegans model recapitulates characteristics of the human disease. sptl-1(c363g)-derived neuronal defects were copied in animals with defective sphingolipid biosynthetic enzymes downstream of SPTL-1, including ceramide glucosyltransferases, suggesting that SPTLC1C133W contributes to the HSAN1 pathogenesis by limiting the production of complex sphingolipids, including glucosylceramide. Overexpression of SPTL-1(C121W) led to similar epithelial and neuronal defects and to reduced levels of complex sphingolipids, specifically glucosylceramide, consistent with a dominant-negative effect of SPTL-1(C121W) that is mediated by loss of this downstream product. Genetic interactions between SPTL-1(C121W) and components of directional trafficking in neurons suggest that the neuronal polarity phenotype could be caused by glycosphingolipid-dependent defects in polarized vesicular trafficking.SIGNIFICANCE STATEMENT The symptoms of inherited metabolic diseases are often attributed to the accumulation of toxic intermediates or byproducts, no matter whether the disease-causing enzyme participates in a biosynthetic or a degradation pathway. By showing that the phenotypes observed in a C. elegans model of HSAN1 disease could be caused by loss of a downstream product (glucosylceramide) rather than the accumulation of a toxic byproduct, our work provides new insights into the origins of the symptoms of inherited metabolic diseases while expanding the repertoire of sphingolipid functions, specifically, of glucosylceramides. These findings not only have their most immediate relevance for neuroprotective treatments for HSAN1, they may also have implications for a much broader range of neurologic conditions.
Collapse
|
22
|
Eliezer Y, Deshe N, Hoch L, Iwanir S, Pritz CO, Zaslaver A. A Memory Circuit for Coping with Impending Adversity. Curr Biol 2019; 29:1573-1583.e4. [PMID: 31056393 PMCID: PMC6538972 DOI: 10.1016/j.cub.2019.03.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/20/2019] [Accepted: 03/26/2019] [Indexed: 11/28/2022]
Abstract
Organisms’ capacity to anticipate future conditions is key for survival. Associative memories are instrumental for learning from past experiences, yet little is known about the processes that follow memory retrieval and their potential advantage in preparing for impending developments. Here, using C. elegans nematodes, we demonstrate that odor-evoked retrieval of aversive memories induces rapid and protective stress responses, which increase animal survival prospects when facing imminent adversities. The underlying mechanism relies on two sensory neurons: one is necessary during the learning period, and the other is necessary and sufficient for memory retrieval. Downstream of memory reactivation, serotonin secreted from two head neurons mediates the systemic stress response. Thus, evoking stressful memories, stored within individual sensory neurons, allows animals to anticipate upcoming dire conditions and provides a head start to initiate rapid and protective responses that ultimately increase animal fitness. Reactivation of an aversive memory induces a fast protective stress response The fast response provides the animals with a fitness advantage One neuron is necessary for memory formation Another neuron is necessary and sufficient for memory reactivation
Collapse
Affiliation(s)
- Yifat Eliezer
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Noa Deshe
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Lihi Hoch
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Shachar Iwanir
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Christian O Pritz
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Alon Zaslaver
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
23
|
Li N, van der Kooy D. Mutations in the guanylate cyclase gcy-28 neuronally dissociate naïve attraction and memory retrieval. Eur J Neurosci 2018; 48:3367-3378. [PMID: 30362188 DOI: 10.1111/ejn.14221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/26/2018] [Accepted: 10/10/2018] [Indexed: 11/28/2022]
Abstract
The molecules and mechanisms that are involved in the acquisition, storage, and retrieval of memories in many organisms are unclear. To investigate these processes, we use the nematode worm Caenorhabditis elegans, which is attracted naïvely to the odorant benzaldehyde but learns to avoid it after paired exposure with starvation. Mutations in the receptor-like guanylate cyclase GCY-28 have previously been thought to result in a behavioral switch in the primary chemosensory neuron AWCON , from an attractive state to an aversive (already-learned) state. Here, we offer a different interpretation and show that GCY-28 functions in distinct neurons to modulate two independent processes: naïve attraction to AWCON -sensed odors in the AWCON neuron, and associative learning of benzaldehyde and starvation in the AIA interneurons. Consequently, mutants that lack gcy-28 do not approach AWCON -sensed odors and cannot associate benzaldehyde with starvation. We further show that this learning deficit lies in memory retrieval, not in its acquisition or storage, and that GCY-28 is required in AIA for sensory integration only when both AWC neurons (ON and OFF) are activated by chemical stimuli. Our results reveal a novel role of GCY-28 in the retrieval of associative memories and may have wide implications for the neural machineries of learning and memory in general.
Collapse
Affiliation(s)
- Naijin Li
- The Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Derek van der Kooy
- The Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Choi JI, Lee HK, Kim HS, Park SY, Lee TY, Yoon KH, Lee JI. Odor-dependent temporal dynamics in Caenorhabitis elegans adaptation and aversive learning behavior. PeerJ 2018; 6:e4956. [PMID: 29910981 PMCID: PMC6003392 DOI: 10.7717/peerj.4956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/22/2018] [Indexed: 01/19/2023] Open
Abstract
Animals sense an enormous number of cues in their environments, and, over time, can form learned associations and memories with some of these. The nervous system remarkably maintains the specificity of learning and memory to each of the cues. Here we asked whether the nematode Caenorhabditis elegans adjusts the temporal dynamics of adaptation and aversive learning depending on the specific odor sensed. C. elegans senses a multitude of odors, and adaptation and learned associations to many of these odors requires activity of the cGMP-dependent protein kinase EGL-4 in the AWC sensory neuron. We identified a panel of 17 attractive odors, some of which have not been tested before, and determined that the majority of these odors require the AWC primary sensory neuron for sensation. We then devised a novel assay to assess odor behavior over time for a single population of animals. We used this assay to evaluate the temporal dynamics of adaptation and aversive learning to 13 odors and find that behavior change occurs early in some odors and later in others. We then examined EGL-4 localization in early-trending and late-trending odors over time. We found that the timing of these behavior changes correlated with the timing of nuclear accumulation of EGL-4 in the AWC neuron suggesting that temporal changes in behavior may be mediated by aversive learning mechanisms. We demonstrate that temporal dynamics of adaptation and aversive learning in C. elegans can be used as a model to study the timing of memory formation to different sensory cues.
Collapse
Affiliation(s)
- Jae Im Choi
- Division of Biological Science and Technology, Yonsei University, Wonju, Gangwondo, South Korea
| | - Hee Kyung Lee
- Division of Biological Science and Technology, Yonsei University, Wonju, Gangwondo, South Korea.,Mitohormesis Research Center, Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju, Gangwondo, South Korea
| | - Hae Su Kim
- Division of Biological Science and Technology, Yonsei University, Wonju, Gangwondo, South Korea
| | - So Young Park
- Division of Biological Science and Technology, Yonsei University, Wonju, Gangwondo, South Korea
| | - Tong Young Lee
- Division of Biological Science and Technology, Yonsei University, Wonju, Gangwondo, South Korea
| | - Kyoung-Hye Yoon
- Division of Biological Science and Technology, Yonsei University, Wonju, Gangwondo, South Korea.,Mitohormesis Research Center, Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju, Gangwondo, South Korea
| | - Jin I Lee
- Division of Biological Science and Technology, Yonsei University, Wonju, Gangwondo, South Korea
| |
Collapse
|
25
|
|
26
|
Ardiel EL, Yu AJ, Giles AC, Rankin CH. Habituation as an adaptive shift in response strategy mediated by neuropeptides. NPJ SCIENCE OF LEARNING 2017; 2:9. [PMID: 30631455 PMCID: PMC6161508 DOI: 10.1038/s41539-017-0011-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/12/2017] [Accepted: 07/25/2017] [Indexed: 06/09/2023]
Abstract
Habituation is a non-associative form of learning characterized by a decremented response to repeated stimulation. It is typically framed as a process of selective attention, allowing animals to ignore irrelevant stimuli in order to free up limited cognitive resources. However, habituation can also occur to threatening and toxic stimuli, suggesting that habituation may serve other functions. Here we took advantage of a high-throughput Caenorhabditis elegans learning assay to investigate habituation to noxious stimuli. Using real-time computer vision software for automated behavioral tracking and optogenetics for controlled activation of a polymodal nociceptor, ASH, we found that neuropeptides mediated habituation and performed an RNAi screen to identify candidate receptors. Through subsequent mutant analysis and cell-type-specific gene expression, we found that pigment-dispersing factor (PDF) neuropeptides function redundantly to promote habituation via PDFR-1-mediated cAMP signaling in both neurons and muscles. Behavioral analysis during learning acquisition suggests that response habituation and sensitization of locomotion are parts of a shifting behavioral strategy orchestrated by pigment dispersing factor signaling to promote dispersal away from repeated aversive stimuli.
Collapse
Affiliation(s)
- Evan L. Ardiel
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC Canada V6T 2B5
| | - Alex J. Yu
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC Canada V6T 2B5
| | - Andrew C. Giles
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC Canada V6T 2B5
| | - Catharine H. Rankin
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC Canada V6T 2B5
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC Canada V6T 1Z4
| |
Collapse
|
27
|
Tanabe K, Itoh M, Tonoki A. Age-Related Changes in Insulin-like Signaling Lead to Intermediate-Term Memory Impairment in Drosophila. Cell Rep 2017; 18:1598-1605. [DOI: 10.1016/j.celrep.2017.01.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/20/2016] [Accepted: 01/20/2017] [Indexed: 11/30/2022] Open
|
28
|
Cho CE, Brueggemann C, L'Etoile ND, Bargmann CI. Parallel encoding of sensory history and behavioral preference during Caenorhabditis elegans olfactory learning. eLife 2016; 5:e14000. [PMID: 27383131 PMCID: PMC4935464 DOI: 10.7554/elife.14000] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/02/2016] [Indexed: 12/26/2022] Open
Abstract
Sensory experience modifies behavior through both associative and non-associative learning. In Caenorhabditis elegans, pairing odor with food deprivation results in aversive olfactory learning, and pairing odor with food results in appetitive learning. Aversive learning requires nuclear translocation of the cGMP-dependent protein kinase EGL-4 in AWC olfactory neurons and an insulin signal from AIA interneurons. Here we show that the activity of neurons including AIA is acutely required during aversive, but not appetitive, learning. The AIA circuit and AGE-1, an insulin-regulated PI3 kinase, signal to AWC to drive nuclear enrichment of EGL-4 during conditioning. Odor exposure shifts the AWC dynamic range to higher odor concentrations regardless of food pairing or the AIA circuit, whereas AWC coupling to motor circuits is oppositely regulated by aversive and appetitive learning. These results suggest that non-associative sensory adaptation in AWC encodes odor history, while associative behavioral preference is encoded by altered AWC synaptic activity.
Collapse
Affiliation(s)
- Christine E Cho
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Chantal Brueggemann
- Departments of Cell and Tissue Biology and Medicine, University of California, San Francisco, United States
| | - Noelle D L'Etoile
- Departments of Cell and Tissue Biology and Medicine, University of California, San Francisco, United States
| | - Cornelia I Bargmann
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| |
Collapse
|
29
|
Tomioka M, Naito Y, Kuroyanagi H, Iino Y. Splicing factors control C. elegans behavioural learning in a single neuron by producing DAF-2c receptor. Nat Commun 2016; 7:11645. [PMID: 27198602 PMCID: PMC4876481 DOI: 10.1038/ncomms11645] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/17/2016] [Indexed: 01/18/2023] Open
Abstract
Alternative splicing generates protein diversity essential for neuronal properties. However, the precise mechanisms underlying this process and its relevance to physiological and behavioural functions are poorly understood. To address these issues, we focused on a cassette exon of the Caenorhabditis elegans insulin receptor gene daf-2, whose proper variant expression in the taste receptor neuron ASER is critical for taste-avoidance learning. We show that inclusion of daf-2 exon 11.5 is restricted to specific neuron types, including ASER, and is controlled by a combinatorial action of evolutionarily conserved alternative splicing factors, RBFOX, CELF and PTB families of proteins. Mutations of these factors cause a learning defect, and this defect is relieved by DAF-2c (exon 11.5+) isoform expression only in a single neuron ASER. Our results provide evidence that alternative splicing regulation of a single critical gene in a single critical neuron is essential for learning ability in an organism. Little is known about the molecular mechanisms regulating neuron-specific alternative splicing. Here, the authors identify a combination of RNA-binding proteins regulating neuron-specific expression of the C. elegans insulin receptor isoform DAF-2c and find disrupting these factors leads to learning deficits.
Collapse
Affiliation(s)
- Masahiro Tomioka
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuki Naito
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yuichi Iino
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
30
|
McDiarmid TA, Ardiel EL, Rankin CH. The role of neuropeptides in learning and memory in Caenorhabditis elegans. Curr Opin Behav Sci 2015. [DOI: 10.1016/j.cobeha.2014.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Extension of the established period of diacetyl adaptation by oxygen intermediates in the nematode Caenorhabditis elegans. Comp Biochem Physiol A Mol Integr Physiol 2015; 184:156-62. [PMID: 25759262 DOI: 10.1016/j.cbpa.2015.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 11/20/2022]
Abstract
After pre-exposure to the odorant diacetyl, the nematode Caenorhabditis elegans showed a decline in chemotactic responses to diacetyl, a phenomenon known as diacetyl adaptation. In the present study, we found that the established period of diacetyl adaptation in nematodes increased with the breeding temperature. When wild-type (N2) nematodes were bred at 15°C, adaptation was observed from the young adult (YA) to the 3-day-old adult that is reached 3 days after the YA stage. On breeding nematodes at 20°C and 25°C, adaptation was observed between the YA and 5-day-old adult and between the YA and the 7-day-old adult, respectively. Breeding temperature has been shown to correlate with the rate of aging in nematodes, which is related to the level of oxygen consumption. Accordingly, long-lived isp-1 and clk-1 mutants that demonstrate decreased levels of oxygen consumption showed a shorter established period of adaptation than N2 nematodes, whereas short-lived gas-1 and mev-1 mutants that have a hypersensitive response to oxygen showed a longer period of adaptation than the N2. Moreover, the established period of diacetyl adaptation in N2 nematodes was shortened by the antioxidant α-lipoic acid. These results suggest that oxygen intermediates, which are produced by oxygen consumption, play a significant role in diacetyl adaptation. Although this is only one of many factors that regulate diacetyl adaptation, such as the release of neurotransmitters and changes in intracellular conditions, the acquisition of this adaptation requires an increase in the intensity of moderate oxygen signals.
Collapse
|
32
|
Chambers DB, Androschuk A, Rosenfelt C, Langer S, Harding M, Bolduc FV. Insulin signaling is acutely required for long-term memory in Drosophila. Front Neural Circuits 2015; 9:8. [PMID: 25805973 PMCID: PMC4354381 DOI: 10.3389/fncir.2015.00008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 02/12/2015] [Indexed: 11/13/2022] Open
Abstract
Memory formation has been shown recently to be dependent on energy status in Drosophila. A well-established energy sensor is the insulin signaling (InS) pathway. Previous studies in various animal models including human have revealed the role of insulin levels in short-term memory but its role in long-term memory remains less clear. We therefore investigated genetically the spatial and temporal role of InS using the olfactory learning and long-term memory model in Drosophila. We found that InS is involved in both learning and memory. InS in the mushroom body is required for learning and long-term memory whereas long-term memory specifically is impaired after InS signaling disruption in the ellipsoid body, where it regulates the level of p70s6k, a downstream target of InS and a marker of protein synthesis. Finally, we show also that InS is acutely required for long-term memory formation in adult flies.
Collapse
Affiliation(s)
- Daniel B Chambers
- Neuroscience and Mental Health Institute, University of Alberta Edmonton, AB, Canada
| | - Alaura Androschuk
- Department of Pediatrics, University of Alberta Edmonton, AB, Canada
| | - Cory Rosenfelt
- Department of Pediatrics, University of Alberta Edmonton, AB, Canada
| | - Steven Langer
- Department of Pediatrics, University of Alberta Edmonton, AB, Canada
| | - Mark Harding
- Department of Pediatrics, University of Alberta Edmonton, AB, Canada
| | - Francois V Bolduc
- Neuroscience and Mental Health Institute, University of Alberta Edmonton, AB, Canada ; Department of Pediatrics, University of Alberta Edmonton, AB, Canada
| |
Collapse
|
33
|
Cline BH, Costa-Nunes JP, Cespuglio R, Markova N, Santos AI, Bukhman YV, Kubatiev A, Steinbusch HWM, Lesch KP, Strekalova T. Dicholine succinate, the neuronal insulin sensitizer, normalizes behavior, REM sleep, hippocampal pGSK3 beta and mRNAs of NMDA receptor subunits in mouse models of depression. Front Behav Neurosci 2015; 9:37. [PMID: 25767439 PMCID: PMC4341562 DOI: 10.3389/fnbeh.2015.00037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/01/2015] [Indexed: 11/13/2022] Open
Abstract
Central insulin receptor-mediated signaling is attracting the growing attention of researchers because of rapidly accumulating evidence implicating it in the mechanisms of plasticity, stress response, and neuropsychiatric disorders including depression. Dicholine succinate (DS), a mitochondrial complex II substrate, was shown to enhance insulin-receptor mediated signaling in neurons and is regarded as a sensitizer of the neuronal insulin receptor. Compounds enhancing neuronal insulin receptor-mediated transmission exert an antidepressant-like effect in several pre-clinical paradigms of depression; similarly, such properties for DS were found with a stress-induced anhedonia model. Here, we additionally studied the effects of DS on several variables which were ameliorated by other insulin receptor sensitizers in mice. Pre-treatment with DS of chronically stressed C57BL6 mice rescued normal contextual fear conditioning, hippocampal gene expression of NMDA receptor subunit NR2A, the NR2A/NR2B ratio and increased REM sleep rebound after acute predation. In 18-month-old C57BL6 mice, a model of elderly depression, DS restored normal sucrose preference and activated the expression of neural plasticity factors in the hippocampus as shown by Illumina microarray. Finally, young naïve DS-treated C57BL6 mice had reduced depressive- and anxiety-like behaviors and, similarly to imipramine-treated mice, preserved hippocampal levels of the phosphorylated (inactive) form of GSK3 beta that was lowered by forced swimming in pharmacologically naïve animals. Thus, DS can ameliorate behavioral and molecular outcomes under a variety of stress- and depression-related conditions. This further highlights neuronal insulin signaling as a new factor of pathogenesis and a potential pharmacotherapy of affective pathologies.
Collapse
Affiliation(s)
- Brandon H Cline
- Faculté de Médecine, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg Strasbourg, France
| | - Joao P Costa-Nunes
- Department of Neuroscience, Maastricht University Maastricht, Netherlands ; Group of Behavioural Neuroscience and Pharmacology, Institute for Hygiene and Tropical Medicine, New University of Lisbon Lisbon, Portugal
| | - Raymond Cespuglio
- Faculty of Medicine, Neuroscience Research Center of Lyon, INSERM U1028, C. Bernard University Lyon, France
| | - Natalyia Markova
- Laboratory of Biomolecular Screening, Institute of Physiologically Active Compounds, Russian Academy of Sciences Moscow, Russia ; Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences Moscow, Russia
| | - Ana I Santos
- Faculdade de Ciências Médicas, NOVA Medical School, Universidade Nova de Lisboa Lisboa, Portugal
| | - Yury V Bukhman
- Great Lakes Bioenergy Research Center, Computational Biology, Wisconsin Energy Institute, University of Wisconsin Madison, WI, USA
| | - Aslan Kubatiev
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences Moscow, Russia
| | | | - Klaus-Peter Lesch
- Department of Neuroscience, Maastricht University Maastricht, Netherlands ; Laboratory of Translational Neuroscience, Division of Molecular Psychiatry, Centre of Mental Health, University of Wuerzburg Wuerzburg, Germany
| | - Tatyana Strekalova
- Department of Neuroscience, Maastricht University Maastricht, Netherlands ; Group of Behavioural Neuroscience and Pharmacology, Institute for Hygiene and Tropical Medicine, New University of Lisbon Lisbon, Portugal ; Laboratory of Biomolecular Screening, Institute of Physiologically Active Compounds, Russian Academy of Sciences Moscow, Russia
| |
Collapse
|
34
|
Regulation of experience-dependent bidirectional chemotaxis by a neural circuit switch in Caenorhabditis elegans. J Neurosci 2015; 34:15631-7. [PMID: 25411491 DOI: 10.1523/jneurosci.1757-14.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The nematode Caenorhabditis elegans changes its chemotaxis to NaCl depending on previous experience. At the behavioral level, this chemotactic plasticity is generated by reversing the elementary behaviors for chemotaxis, klinotaxis, and klinokinesis. Here, we report that bidirectional klinotaxis is achieved by the proper use of at least two different neural subcircuits. We simulated an NaCl concentration change by activating an NaCl-sensitive chemosensory neuron in phase with head swing and successfully induced klinotaxis-like curving. The curving direction reversed depending on preconditioning, which was consistent with klinotaxis plasticity under a real concentration gradient. Cell-specific ablation and activation of downstream interneurons revealed that ASER-evoked curving toward lower concentration was mediated by AIY interneurons, whereas curving to the opposite direction was not. These results suggest that the experience-dependent bidirectionality of klinotaxis is generated by a switch between different neural subcircuits downstream of the chemosensory neuron.
Collapse
|
35
|
Alexander AG, Marfil V, Li C. Use of Caenorhabditis elegans as a model to study Alzheimer's disease and other neurodegenerative diseases. Front Genet 2014; 5:279. [PMID: 25250042 PMCID: PMC4155875 DOI: 10.3389/fgene.2014.00279] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/31/2014] [Indexed: 12/12/2022] Open
Abstract
Advances in research and technology has increased our quality of life, allowed us to combat diseases, and achieve increased longevity. Unfortunately, increased longevity is accompanied by a rise in the incidences of age-related diseases such as Alzheimer’s disease (AD). AD is the sixth leading cause of death, and one of the leading causes of dementia amongst the aged population in the USA. It is a progressive neurodegenerative disorder, characterized by the prevalence of extracellular Aβ plaques and intracellular neurofibrillary tangles, derived from the proteolysis of the amyloid precursor protein (APP) and the hyperphosphorylation of microtubule-associated protein tau, respectively. Despite years of extensive research, the molecular mechanisms that underlie the pathology of AD remain unclear. Model organisms, such as the nematode, Caenorhabditis elegans, present a complementary approach to addressing these questions. C. elegans has many advantages as a model system to study AD and other neurodegenerative diseases. Like their mammalian counterparts, they have complex biochemical pathways, most of which are conserved. Genes in which mutations are correlated with AD have counterparts in C. elegans, including an APP-related gene, apl-1, a tau homolog, ptl-1, and presenilin homologs, such as sel-12 and hop-1. Since the neuronal connectivity in C. elegans has already been established, C. elegans is also advantageous in modeling learning and memory impairments seen during AD. This article addresses the insights C. elegans provide in studying AD and other neurodegenerative diseases. Additionally, we explore the advantages and drawbacks associated with using this model.
Collapse
Affiliation(s)
- Adanna G Alexander
- Department of Biology, City College of New York New York, NY, USA ; Department of Biology, The Graduate Center, City University of New York New York, NY, USA
| | - Vanessa Marfil
- Department of Biology, City College of New York New York, NY, USA
| | - Chris Li
- Department of Biology, City College of New York New York, NY, USA ; Department of Biology, The Graduate Center, City University of New York New York, NY, USA
| |
Collapse
|
36
|
Gkikas I, Petratou D, Tavernarakis N. Longevity pathways and memory aging. Front Genet 2014; 5:155. [PMID: 24926313 PMCID: PMC4044971 DOI: 10.3389/fgene.2014.00155] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/10/2014] [Indexed: 12/28/2022] Open
Abstract
The aging process has been associated with numerous pathologies at the cellular, tissue, and organ level. Decline or loss of brain functions, including learning and memory, is one of the most devastating and feared aspects of aging. Learning and memory are fundamental processes by which animals adjust to environmental changes, evaluate various sensory signals based on context and experience, and make decisions to generate adaptive behaviors. Age-related memory impairment is an important phenotype of brain aging. Understanding the molecular mechanisms underlying age-related memory impairment is crucial for the development of therapeutic strategies that may eventually lead to the development of drugs to combat memory loss. Studies in invertebrate animal models have taught us much about the physiology of aging and its effects on learning and memory. In this review we survey recent progress relevant to conserved molecular pathways implicated in both aging and memory formation and consolidation.
Collapse
Affiliation(s)
- Ilias Gkikas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion Crete, Greece
| | - Dionysia Petratou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion Crete, Greece ; Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion Crete, Greece
| |
Collapse
|
37
|
Chatterjee I, Ibanez-Ventoso C, Vijay P, Singaravelu G, Baldi C, Bair J, Ng S, Smolyanskaya A, Driscoll M, Singson A. Dramatic fertility decline in aging C. elegans males is associated with mating execution deficits rather than diminished sperm quality. Exp Gerontol 2013; 48:1156-66. [PMID: 23916839 PMCID: PMC4169024 DOI: 10.1016/j.exger.2013.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 07/25/2013] [Indexed: 01/03/2023]
Abstract
Although much is known about female reproductive aging, fairly little is known about the causes of male reproductive senescence. We developed a method that facilitates culture maintenance of Caenorhabditis elegans adult males, which enabled us to measure male fertility as populations age, without profound loss of males from the growth plate. We find that the ability of males to sire progeny declines rapidly in the first half of adult lifespan and we examined potential factors that contribute towards reproductive success, including physical vigor, sperm quality, mating apparatus morphology, and mating ability. Of these, we find little evidence of general physical decline in males or changes in sperm number, morphology, or capacity for activation, at time points when reproductive senescence is markedly evident. Rather, it is the loss of efficient mating ability that correlates most strongly with reproductive senescence. Low insulin signaling can extend male ability to sire progeny later in life, although insulin impact on individual facets of mating behavior is complex. Overall, we suggest that combined modest deficits, predominantly affecting the complex mating behavior rather than sperm quality, sum up to block effective C. elegans male reproduction in middle adult life.
Collapse
|
38
|
Pereira S, van der Kooy D. Entwined engrams: The evolution of associative and non-associative learning. WORM 2013; 2:e22725. [PMID: 24058869 PMCID: PMC3704443 DOI: 10.4161/worm.22725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 10/19/2012] [Accepted: 10/30/2012] [Indexed: 01/28/2023]
Abstract
The nematode Caenorhabditis elegans displays a surprisingly sophisticated behavioral repertoire that includes the utilization of both associative and non-associative forms of learning. Elucidating the molecular basis of learning remains a fundamental, yet daunting, challenge of modern neuroscience. In Pereira and van der Kooy (ref. 2), we described the use of a two input—two output stimuli system to dissociate between associative and non-associative learning and between memory acquisition and retrieval processes. Briefly, one finding indicated that after training with the odorant isoamyl alcohol (IsoA), we could preferentially retrieve either associative or non-associative memory with a choice of either a benzaldehyde (Bnz) or IsoA retrieval stimulus, respectively. Here, we describe how that apparently enigmatic molecular cross wiring of the two forms of memory examined could represent an evolutionary relic of the ancient divergence between non-associative and associative learning. In addition, we extrapolate on the utility and subtleties of using such a system to dissociate and decipher the components of memory in C. elegans.
Collapse
Affiliation(s)
- Schreiber Pereira
- Department of Molecular Genetics; and Donnelly Centre for Cellular and Biomolecular Research; University of Toronto; Toronto, ON Canada
| | | |
Collapse
|
39
|
Nishino A, Kanno R, Matsuura T. The Role of Oxygen Intermediates in the Retention Time of Diacetyl Adaptation in the NematodeCaenorhabditis elegans. ACTA ACUST UNITED AC 2013; 319:431-9. [DOI: 10.1002/jez.1806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/21/2013] [Accepted: 04/29/2013] [Indexed: 11/07/2022]
Affiliation(s)
| | - Ryo Kanno
- Laboratory of Behavioral Physiology, Faculty of Engineering; Iwate University; Morioka; Japan
| | | |
Collapse
|
40
|
Hung WL, Hwang C, Gao S, Liao EH, Chitturi J, Wang Y, Li H, Stigloher C, Bessereau JL, Zhen M. Attenuation of insulin signalling contributes to FSN-1-mediated regulation of synapse development. EMBO J 2013; 32:1745-60. [PMID: 23665919 DOI: 10.1038/emboj.2013.91] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 03/27/2013] [Indexed: 01/07/2023] Open
Abstract
A neuronal F-box protein FSN-1 regulates Caenorhabditis elegans neuromuscular junction development by negatively regulating DLK-mediated MAPK signalling. In the present study, we show that attenuation of insulin/IGF signalling also contributes to FSN-1-dependent synaptic development and function. The aberrant synapse morphology and synaptic transmission in fsn-1 mutants are partially and specifically rescued by reducing insulin/IGF-signalling activity in postsynaptic muscles, as well as by reducing the activity of EGL-3, a prohormone convertase that processes agonistic insulin/IGF ligands INS-4 and INS-6, in neurons. FSN-1 interacts with, and potentiates the ubiquitination of EGL-3 in vitro, and reduces the EGL-3 level in vivo. We propose that FSN-1 may negatively regulate insulin/IGF signalling, in part, through EGL-3-dependent insulin-like ligand processing.
Collapse
Affiliation(s)
- Wesley L Hung
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Stein GM, Murphy CT. The Intersection of Aging, Longevity Pathways, and Learning and Memory in C. elegans. Front Genet 2012; 3:259. [PMID: 23226155 PMCID: PMC3509946 DOI: 10.3389/fgene.2012.00259] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/05/2012] [Indexed: 11/18/2022] Open
Abstract
Our understanding of the molecular and genetic regulation of aging and longevity has been greatly augmented through studies using the small model system, C. elegans. It is important to test whether mutations that result in a longer life span also extend the health span of the organism, rather than simply prolonging an aged state. C. elegans can learn and remember both associated and non-associated stimuli, and many of these learning and memory paradigms are subject to regulation by longevity pathways. One of the more distressing results of aging is cognitive decline, and while no gross physical defects in C. elegans sensory neurons have been identified, the organism does lose the ability to perform both simple and complex learned behaviors with age. Here we review what is known about the effects of longevity pathways and the decline of these complex learned behaviors with age, and we highlight outstanding questions in the field.
Collapse
Affiliation(s)
- Geneva M. Stein
- Glenn Laboratories for Aging Research, Department of Molecular Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton UniversityPrinceton, NJ, USA
| | - Coleen T. Murphy
- Glenn Laboratories for Aging Research, Department of Molecular Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton UniversityPrinceton, NJ, USA
| |
Collapse
|
42
|
Pan-neuronal expression of APL-1, an APP-related protein, disrupts olfactory, gustatory, and touch plasticity in Caenorhabditis elegans. J Neurosci 2012; 32:10156-69. [PMID: 22836251 DOI: 10.1523/jneurosci.0495-12.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Patients with Alzheimer's disease show age-related cognitive decline. Postmortem autopsy of their brains shows the presence of large numbers of senile plaques, whose major component is the β-amyloid peptide. The β-amyloid peptide is a cleavage product of the amyloid precursor protein (APP). In addition to the neurodegeneration associated with β-amyloid aggregation in Alzheimer's disease patients, mutations in APP in mammalian model organisms have also been shown to disrupt several behaviors independent of visible amyloid plaque formation. However, the pathways in which APP function are unknown and difficult to unravel in mammals. Here we show that pan-neuronal expression of APL-1, the Caenorhabditis elegans ortholog of APP, disrupts several behaviors, such as olfactory and gustatory learning behavior and touch habituation. These behaviors are mediated by distinct neural circuits, suggesting a broad impact of APL-1 on sensory plasticity in C. elegans. Furthermore, we found that disruption of these three behaviors requires activity of the TGFβ pathway and reduced activity of the insulin pathway. These results suggest pathways and molecular components that may underlie behavioral plasticity in mammals and in patients with Alzheimer's disease.
Collapse
|
43
|
Cline BH, Steinbusch HWM, Malin D, Revishchin AV, Pavlova GV, Cespuglio R, Strekalova T. The neuronal insulin sensitizer dicholine succinate reduces stress-induced depressive traits and memory deficit: possible role of insulin-like growth factor 2. BMC Neurosci 2012; 13:110. [PMID: 22989159 PMCID: PMC3564824 DOI: 10.1186/1471-2202-13-110] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 09/14/2012] [Indexed: 12/16/2022] Open
Abstract
Background A number of epidemiological studies have established a link between insulin resistance and the prevalence of depression. The occurrence of depression was found to precede the onset of diabetes and was hypothesized to be associated with inherited inter-related insufficiency of the peripheral and central insulin receptors. Recently, dicholine succinate, a sensitizer of the neuronal insulin receptor, was shown to stimulate insulin-dependent H2O2 production of the mitochondrial respiratory chain leading to an enhancement of insulin receptor autophosphorylation in neurons. As such, this mechanism can be a novel target for the elevation of insulin signaling. Results Administration of DS (25 mg/kg/day, intraperitoneal) in CD1 mice for 7 days prior to the onset of stress procedure, diminished manifestations of anhedonia defined in a sucrose test and behavioral despair in the forced swim test. Treatment with dicholine succinate reduced the anxiety scores of stressed mice in the dark/light box paradigm, precluded stress-induced decreases of long-term contextual memory in the step-down avoidance test and hippocampal gene expression of IGF2. Conclusions Our data suggest that dicholine succinate has an antidepressant-like effect, which might be mediated via the up-regulation of hippocampal expression of IGF2, and implicate the neuronal insulin receptor in the pathogenesis of stress-induced depressive syndrome.
Collapse
Affiliation(s)
- Brandon H Cline
- Interdisciplinary Center for Neurosciences, Heidelberg University, and Institute for Neuroanatomy, University Clinic Heidelberg, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Ghasemi R, Haeri A, Dargahi L, Mohamed Z, Ahmadiani A. Insulin in the brain: sources, localization and functions. Mol Neurobiol 2012; 47:145-71. [PMID: 22956272 DOI: 10.1007/s12035-012-8339-9] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/20/2012] [Indexed: 02/07/2023]
Abstract
Historically, insulin is best known for its role in peripheral glucose homeostasis, and insulin signaling in the brain has received less attention. Insulin-independent brain glucose uptake has been the main reason for considering the brain as an insulin-insensitive organ. However, recent findings showing a high concentration of insulin in brain extracts, and expression of insulin receptors (IRs) in central nervous system tissues have gathered considerable attention over the sources, localization, and functions of insulin in the brain. This review summarizes the current status of knowledge of the peripheral and central sources of insulin in the brain, site-specific expression of IRs, and also neurophysiological functions of insulin including the regulation of food intake, weight control, reproduction, and cognition and memory formation. This review also considers the neuromodulatory and neurotrophic effects of insulin, resulting in proliferation, differentiation, and neurite outgrowth, introducing insulin as an attractive tool for neuroprotection against apoptosis, oxidative stress, beta amyloid toxicity, and brain ischemia.
Collapse
Affiliation(s)
- Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | | |
Collapse
|
45
|
Irvine EE, Drinkwater L, Radwanska K, Al-Qassab H, Smith MA, O'Brien M, Kielar C, Choudhury AI, Krauss S, Cooper JD, Withers DJ, Giese KP. Insulin receptor substrate 2 is a negative regulator of memory formation. Learn Mem 2011; 18:375-83. [PMID: 21597043 DOI: 10.1101/lm.2111311] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Insulin has been shown to impact on learning and memory in both humans and animals, but the downstream signaling mechanisms involved are poorly characterized. Insulin receptor substrate-2 (Irs2) is an adaptor protein that couples activation of insulin- and insulin-like growth factor-1 receptors to downstream signaling pathways. Here, we have deleted Irs2, either in the whole brain or selectively in the forebrain, using the nestin Cre- or D6 Cre-deleter mouse lines, respectively. We show that brain- and forebrain-specific Irs2 knockout mice have enhanced hippocampal spatial reference memory. Furthermore, NesCreIrs2KO mice have enhanced spatial working memory and contextual- and cued-fear memory. Deletion of Irs2 in the brain also increases PSD-95 expression and the density of dendritic spines in hippocampal area CA1, possibly reflecting an increase in the number of excitatory synapses per neuron in the hippocampus that can become activated during memory formation. This increase in activated excitatory synapses might underlie the improved hippocampal memory formation observed in NesCreIrs2KO mice. Overall, these results suggest that Irs2 acts as a negative regulator on memory formation by restricting dendritic spine generation.
Collapse
Affiliation(s)
- Elaine E Irvine
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Oda S, Tomioka M, Iino Y. Neuronal plasticity regulated by the insulin-like signaling pathway underlies salt chemotaxis learning in Caenorhabditis elegans. J Neurophysiol 2011; 106:301-8. [PMID: 21525368 DOI: 10.1152/jn.01029.2010] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Quantification of neuronal plasticity in a living animal is essential for understanding learning and memory. Caenorhabditis elegans shows a chemotactic behavior toward NaCl. However, it learns to avoid NaCl after prolonged exposure to NaCl under starvation conditions, which is called salt chemotaxis learning. Insulin-like signaling is important for this behavioral plasticity and functions in one of the salt-sensing sensory neurons, ASE right (ASER). However, how neurons including ASER show neuronal plasticity is unknown. To determine the neuronal plasticity related to salt chemotaxis learning, we measured Ca(2+) response and synaptic release of individual neurons by using in vivo imaging techniques. We found that response of ASER increased whereas its synaptic release decreased after prolonged exposure to NaCl without food. These changes in the opposite directions were abolished in insulin-like signaling mutants, suggesting that insulin-like signaling regulates these plasticities in ASER. The response of one of the downstream interneurons, AIB, decreased profoundly after NaCl conditioning. This alteration in AIB response was independent of the insulin-like signaling pathway. Our results suggest that information on NaCl is modulated at the level of both sensory neurons and interneurons in salt chemotaxis learning.
Collapse
Affiliation(s)
- Shigekazu Oda
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | |
Collapse
|
47
|
Reversal of salt preference is directed by the insulin/PI3K and Gq/PKC signaling in Caenorhabditis elegans. Genetics 2010; 186:1309-19. [PMID: 20837997 DOI: 10.1534/genetics.110.119768] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Animals search for foods and decide their behaviors according to previous experience. Caenorhabditis elegans detects chemicals with a limited number of sensory neurons, allowing us to dissect roles of each neuron for innate and learned behaviors. C. elegans is attracted to salt after exposure to the salt (NaCl) with food. In contrast, it learns to avoid the salt after exposure to the salt without food. In salt-attraction behavior, it is known that the ASE taste sensory neurons (ASEL and ASER) play a major role. However, little is known about mechanisms for learned salt avoidance. Here, through dissecting contributions of ASE neurons for salt chemotaxis, we show that both ASEL and ASER generate salt chemotaxis plasticity. In ASER, we have previously shown that the insulin/PI 3-kinase signaling acts for starvation-induced salt chemotaxis plasticity. This study shows that the PI 3-kinase signaling promotes aversive drive of ASER but not of ASEL. Furthermore, the Gq signaling pathway composed of Gqα EGL-30, diacylglycerol, and nPKC (novel protein kinase C) TTX-4 promotes attractive drive of ASER but not of ASEL. A putative salt receptor GCY-22 guanylyl cyclase is required in ASER for both salt attraction and avoidance. Our results suggest that ASEL and ASER use distinct molecular mechanisms to regulate salt chemotaxis plasticity.
Collapse
|