1
|
Wang J, Rao X, Huang S, Wang Z, Niu X, Zhu M, Wang S, Shi L. Detection of a temporal salient object benefits from visual stimulus-specific adaptation in avian midbrain inhibitory nucleus. Integr Zool 2024; 19:288-306. [PMID: 36893724 DOI: 10.1111/1749-4877.12715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Food and predators are the most noteworthy objects for the basic survival of wild animals, and both are often deviant in both spatial and temporal domains and quickly attract an animal's attention. Although stimulus-specific adaptation (SSA) is considered a potential neural basis of salient sound detection in the temporal domain, related research on visual SSA is limited and its relationship with temporal saliency is uncertain. The avian nucleus isthmi pars magnocellularis (Imc), which is central to midbrain selective attention network, is an ideal site to investigate the neural correlate of visual SSA and detection of a salient object in the time domain. Here, the constant order paradigm was applied to explore the visual SSA in the Imc of pigeons. The results showed that the firing rates of Imc neurons gradually decrease with repetitions of motion in the same direction, but recover when a motion in a deviant direction is presented, implying visual SSA to the direction of a moving object. Furthermore, enhanced response for an object moving in other directions that were not presented ever in the paradigm is also observed. To verify the neural mechanism underlying these phenomena, we introduced a neural computation model involving a recoverable synaptic change with a "center-surround" pattern to reproduce the visual SSA and temporal saliency for the moving object. These results suggest that the Imc produces visual SSA to motion direction, allowing temporal salient object detection, which may facilitate the detection of the sudden appearance of a predator.
Collapse
Affiliation(s)
- Jiangtao Wang
- Department of Automation, Zhengzhou University School of Electrical Engineering, Zhengzhou, China
| | - Xiaoping Rao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Shuman Huang
- Department of Automation, Zhengzhou University School of Electrical Engineering, Zhengzhou, China
| | - Zhizhong Wang
- Department of Automation, Zhengzhou University School of Electrical Engineering, Zhengzhou, China
| | - Xiaoke Niu
- Department of Automation, Zhengzhou University School of Electrical Engineering, Zhengzhou, China
| | - Minjie Zhu
- Department of Automation, Zhengzhou University School of Electrical Engineering, Zhengzhou, China
| | - Songwei Wang
- Department of Automation, Zhengzhou University School of Electrical Engineering, Zhengzhou, China
| | - Li Shi
- Department of Automation, Zhengzhou University School of Electrical Engineering, Zhengzhou, China
- Department of Automation, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Pérez-González D, Lao-Rodríguez AB, Aedo-Sánchez C, Malmierca MS. Acetylcholine modulates the precision of prediction error in the auditory cortex. eLife 2024; 12:RP91475. [PMID: 38241174 PMCID: PMC10942646 DOI: 10.7554/elife.91475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024] Open
Abstract
A fundamental property of sensory systems is their ability to detect novel stimuli in the ambient environment. The auditory brain contains neurons that decrease their response to repetitive sounds but increase their firing rate to novel or deviant stimuli; the difference between both responses is known as stimulus-specific adaptation or neuronal mismatch (nMM). Here, we tested the effect of microiontophoretic applications of ACh on the neuronal responses in the auditory cortex (AC) of anesthetized rats during an auditory oddball paradigm, including cascade controls. Results indicate that ACh modulates the nMM, affecting prediction error responses but not repetition suppression, and this effect is manifested predominantly in infragranular cortical layers. The differential effect of ACh on responses to standards, relative to deviants (in terms of averages and variances), was consistent with the representational sharpening that accompanies an increase in the precision of prediction errors. These findings suggest that ACh plays an important role in modulating prediction error signaling in the AC and gating the access of these signals to higher cognitive levels.
Collapse
Affiliation(s)
- David Pérez-González
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando GallegoSalamancaSpain
- Institute for Biomedical Research of Salamanca (IBSAL)SalamancaSpain
- Department of Basic Psychology, Psychobiology and Behavioural Science Methodology, Faculty of Psychology, Campus Ciudad Jardín, University of SalamancaSalamancaSpain
| | - Ana Belén Lao-Rodríguez
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando GallegoSalamancaSpain
- Institute for Biomedical Research of Salamanca (IBSAL)SalamancaSpain
| | - Cristian Aedo-Sánchez
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando GallegoSalamancaSpain
- Institute for Biomedical Research of Salamanca (IBSAL)SalamancaSpain
| | - Manuel S Malmierca
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando GallegoSalamancaSpain
- Institute for Biomedical Research of Salamanca (IBSAL)SalamancaSpain
- Department of Biology and Pathology, Faculty of Medicine, Campus Miguel de Unamuno, University of SalamancaSalamancaSpain
| |
Collapse
|
3
|
Yan H, Tang S, Huang F. Temporal expectations mediated the repetition effect in a sequence in two ways. Cogn Process 2023; 24:463-469. [PMID: 37256504 DOI: 10.1007/s10339-023-01141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 05/15/2023] [Indexed: 06/01/2023]
Abstract
The repetition priming effect generally refers to facilitated responding in instances where the same stimulus or a very similar stimulus repeats after an initial occurrence. Prior studies showed that the repetition priming effect was greater when repetitive stimuli appeared at expected times than when they appeared at less expected times. However, in addition to the expectation for repetition, the expectation for nonrepetitive stimuli may also arise in a sequence, especially after repetitive stimuli continuously appeared several times. This study was designed to further reveal how these two kinds of expectations influence the repetition effect in a sequence. Participants were asked to solve 3, 4 or 5 repetitive tasks followed by a novel task in the experimental group, a situation where the expectations for repetitive events arise in the first three serial positions but that for nonrepetitive events arise in the fourth, fifth and sixth serial positions, or were asked to continuously solve 3-5 repetitive tasks in the control group, a situation where only the expectation for repetitive events appears. The results showed that the repetition effect appeared steadily in the whole sequence for the control group, whereas the repetition effect appeared in the early serial positions but was reduced in the later serial position for the experimental group. The findings revealed the dual influences of temporal expectations on repetition effects in a sequence.
Collapse
Affiliation(s)
- Haiqiong Yan
- School of Psychology, Jiangxi Normal University, Nanchang, 330022, China
| | - Shuang Tang
- School of Psychology, Jiangxi Normal University, Nanchang, 330022, China
| | - Furong Huang
- School of Psychology, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
4
|
Quintela-Vega L, Morado-Díaz CJ, Terreros G, Sánchez JS, Pérez-González D, Malmierca MS. Novelty detection in an auditory oddball task on freely moving rats. Commun Biol 2023; 6:1063. [PMID: 37857812 PMCID: PMC10587131 DOI: 10.1038/s42003-023-05403-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/02/2023] [Indexed: 10/21/2023] Open
Abstract
The relative importance or saliency of sensory inputs depend on the animal's environmental context and the behavioural responses to these same inputs can vary over time. Here we show how freely moving rats, trained to discriminate between deviant tones embedded in a regular pattern of repeating stimuli and different variations of the classic oddball paradigm, can detect deviant tones, and this discriminability resembles the properties that are typical of neuronal adaptation described in previous studies. Moreover, the auditory brainstem response (ABR) latency decreases after training, a finding consistent with the notion that animals develop a type of plasticity to auditory stimuli. Our study suggests the existence of a form of long-term memory that may modulate the level of neuronal adaptation according to its behavioural relevance, and sets the ground for future experiments that will help to disentangle the functional mechanisms that govern behavioural habituation and its relation to neuronal adaptation.
Collapse
Affiliation(s)
- Laura Quintela-Vega
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- The Salamanca Institute for Biomedical Research (IBSAL), 37007, Salamanca, Spain
| | - Camilo J Morado-Díaz
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- The Salamanca Institute for Biomedical Research (IBSAL), 37007, Salamanca, Spain
| | - Gonzalo Terreros
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- Instituto de Ciencias de la Salud. Universidad de O´Higgins, Rancagua, Chile
| | - Jazmín S Sánchez
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- The Salamanca Institute for Biomedical Research (IBSAL), 37007, Salamanca, Spain
- Department of Biology and Pathology, Faculty of Medicine, Campus Miguel de Unamuno, University of Salamanca, 37007, Salamanca, Spain
| | - David Pérez-González
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- The Salamanca Institute for Biomedical Research (IBSAL), 37007, Salamanca, Spain
- Department of Basic Psychology, Psychobiology and Methodology of Behavioural Sciences. Faculty of Psychology, University of Salamanca, 37005, Salamanca, Spain
| | - Manuel S Malmierca
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando Gallego 1, 37007, Salamanca, Spain.
- The Salamanca Institute for Biomedical Research (IBSAL), 37007, Salamanca, Spain.
- Department of Biology and Pathology, Faculty of Medicine, Campus Miguel de Unamuno, University of Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
5
|
Shadron K, Peña JL. Development of frequency tuning shaped by spatial cue reliability in the barn owl's auditory midbrain. eLife 2023; 12:e84760. [PMID: 37166099 PMCID: PMC10238092 DOI: 10.7554/elife.84760] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/10/2023] [Indexed: 05/12/2023] Open
Abstract
Sensory systems preferentially strengthen responses to stimuli based on their reliability at conveying accurate information. While previous reports demonstrate that the brain reweighs cues based on dynamic changes in reliability, how the brain may learn and maintain neural responses to sensory statistics expected to be stable over time is unknown. The barn owl's midbrain features a map of auditory space where neurons compute horizontal sound location from the interaural time difference (ITD). Frequency tuning of midbrain map neurons correlates with the most reliable frequencies for the neurons' preferred ITD (Cazettes et al., 2014). Removal of the facial ruff led to a specific decrease in the reliability of high frequencies from frontal space. To directly test whether permanent changes in ITD reliability drive frequency tuning, midbrain map neurons were recorded from adult owls, with the facial ruff removed during development, and juvenile owls, before facial ruff development. In both groups, frontally tuned neurons were tuned to frequencies lower than in normal adult owls, consistent with the change in ITD reliability. In addition, juvenile owls exhibited more heterogeneous frequency tuning, suggesting normal developmental processes refine tuning to match ITD reliability. These results indicate causality of long-term statistics of spatial cues in the development of midbrain frequency tuning properties, implementing probabilistic coding for sound localization.
Collapse
Affiliation(s)
- Keanu Shadron
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - José Luis Peña
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| |
Collapse
|
6
|
Smyre SA, Bean NL, Stein BE, Rowland BA. Predictability alters multisensory responses by modulating unisensory inputs. Front Neurosci 2023; 17:1150168. [PMID: 37065927 PMCID: PMC10090419 DOI: 10.3389/fnins.2023.1150168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
The multisensory (deep) layers of the superior colliculus (SC) play an important role in detecting, localizing, and guiding orientation responses to salient events in the environment. Essential to this role is the ability of SC neurons to enhance their responses to events detected by more than one sensory modality and to become desensitized (‘attenuated’ or ‘habituated’) or sensitized (‘potentiated’) to events that are predictable via modulatory dynamics. To identify the nature of these modulatory dynamics, we examined how the repetition of different sensory stimuli affected the unisensory and multisensory responses of neurons in the cat SC. Neurons were presented with 2HZ stimulus trains of three identical visual, auditory, or combined visual–auditory stimuli, followed by a fourth stimulus that was either the same or different (‘switch’). Modulatory dynamics proved to be sensory-specific: they did not transfer when the stimulus switched to another modality. However, they did transfer when switching from the visual–auditory stimulus train to either of its modality-specific component stimuli and vice versa. These observations suggest that predictions, in the form of modulatory dynamics induced by stimulus repetition, are independently sourced from and applied to the modality-specific inputs to the multisensory neuron. This falsifies several plausible mechanisms for these modulatory dynamics: they neither produce general changes in the neuron’s transform, nor are they dependent on the neuron’s output.
Collapse
|
7
|
Zylbertal A, Bianco IH. Recurrent network interactions explain tectal response variability and experience-dependent behavior. eLife 2023; 12:78381. [PMID: 36943029 PMCID: PMC10030118 DOI: 10.7554/elife.78381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/09/2023] [Indexed: 03/23/2023] Open
Abstract
Response variability is an essential and universal feature of sensory processing and behavior. It arises from fluctuations in the internal state of the brain, which modulate how sensory information is represented and transformed to guide behavioral actions. In part, brain state is shaped by recent network activity, fed back through recurrent connections to modulate neuronal excitability. However, the degree to which these interactions influence response variability and the spatial and temporal scales across which they operate, are poorly understood. Here, we combined population recordings and modeling to gain insights into how neuronal activity modulates network state and thereby impacts visually evoked activity and behavior. First, we performed cellular-resolution calcium imaging of the optic tectum to monitor ongoing activity, the pattern of which is both a cause and consequence of changes in network state. We developed a minimal network model incorporating fast, short range, recurrent excitation and long-lasting, activity-dependent suppression that reproduced a hallmark property of tectal activity - intermittent bursting. We next used the model to estimate the excitability state of tectal neurons based on recent activity history and found that this explained a portion of the trial-to-trial variability in visually evoked responses, as well as spatially selective response adaptation. Moreover, these dynamics also predicted behavioral trends such as selective habituation of visually evoked prey-catching. Overall, we demonstrate that a simple recurrent interaction motif can be used to estimate the effect of activity upon the incidental state of a neural network and account for experience-dependent effects on sensory encoding and visually guided behavior.
Collapse
Affiliation(s)
- Asaph Zylbertal
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Isaac H Bianco
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
8
|
Schlossmacher I, Dilly J, Protmann I, Hofmann D, Dellert T, Roth-Paysen ML, Moeck R, Bruchmann M, Straube T. Differential effects of prediction error and adaptation along the auditory cortical hierarchy during deviance processing. Neuroimage 2022; 259:119445. [DOI: 10.1016/j.neuroimage.2022.119445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/03/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022] Open
|
9
|
Yarden TS, Mizrahi A, Nelken I. Context-Dependent Inhibitory Control of Stimulus-Specific Adaptation. J Neurosci 2022; 42:4629-4651. [PMID: 35477904 PMCID: PMC9186800 DOI: 10.1523/jneurosci.0988-21.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 02/04/2022] [Accepted: 03/26/2022] [Indexed: 11/21/2022] Open
Abstract
Stimulus-specific adaptation (SSA) is the reduction in responses to frequent stimuli (standards) that does not generalize to rare stimuli (deviants). We investigated the contribution of inhibition in auditory cortex to SSA using two-photon targeted cell-attached recordings and optogenetic manipulations in male mice. We characterized the responses of parvalbumin (PV)-, somatostatin (SST)-, and vasoactive intestinal polypeptide (VIP)-expressing interneurons of layer 2/3, and of serotonin receptor 5HT3a-expressing interneurons of layer 1. All populations showed early-onset SSA. Unexpectedly, the PV, SST, and VIP populations exhibited a substantial late component of evoked activity, often stronger for standard than for deviant stimuli. Optogenetic suppression of PV neurons facilitated pyramidal neuron responses substantially more (approximately ×10) for deviants than for standards. VIP suppression decreased responses of putative PV neurons, specifically for standard but not for deviant stimuli. Thus, the inhibitory network does not generate cortical SSA, but powerfully controls its expression by differentially affecting the responses to deviants and to standards.SIGNIFICANCE STATEMENT Stimulus-specific adaptation (SSA) reflects the growing complexity of auditory processing along the ascending auditory system. In the presence of SSA, neuronal responses depend not only on the stimulus itself but also on the history of stimulation. Strong SSA in the fast, ascending auditory pathway first occurs in cortex. Here we studied the role of the cortical inhibitory network in shaping SSA, showing that while cortical inhibition does not generate SSA, it powerfully controls its expression. We deduce that the cortical network contributes in crucial ways to the properties of SSA.
Collapse
Affiliation(s)
- Tohar S Yarden
- Department of Neurobiology, the Alexander Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem 91904, Israel
| | - Adi Mizrahi
- Department of Neurobiology, the Alexander Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem 91904, Israel
| | - Israel Nelken
- Department of Neurobiology, the Alexander Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
10
|
Lev-Ari T, Beeri H, Gutfreund Y. The Ecological View of Selective Attention. Front Integr Neurosci 2022; 16:856207. [PMID: 35391754 PMCID: PMC8979825 DOI: 10.3389/fnint.2022.856207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Accumulating evidence is supporting the hypothesis that our selective attention is a manifestation of mechanisms that evolved early in evolution and are shared by many organisms from different taxa. This surge of new data calls for the re-examination of our notions about attention, which have been dominated mostly by human psychology. Here, we present an hypothesis that challenges, based on evolutionary grounds, a common view of attention as a means to manage limited brain resources. We begin by arguing that evolutionary considerations do not favor the basic proposition of the limited brain resources view of attention, namely, that the capacity of the sensory organs to provide information exceeds the capacity of the brain to process this information. Moreover, physiological studies in animals and humans show that mechanisms of selective attention are highly demanding of brain resources, making it paradoxical to see attention as a means to release brain resources. Next, we build on the above arguments to address the question why attention evolved in evolution. We hypothesize that, to a certain extent, limiting sensory processing is adaptive irrespective of brain capacity. We call this hypothesis the ecological view of attention (EVA) because it is centered on interactions of an animal with its environment rather than on internal brain resources. In its essence is the notion that inherently noisy and degraded sensory inputs serve the animal's adaptive, dynamic interactions with its environment. Attention primarily functions to resolve behavioral conflicts and false distractions. Hence, we evolved to focus on a particular target at the expense of others, not because of internal limitations, but to ensure that behavior is properly oriented and committed to its goals. Here, we expand on this notion and review evidence supporting it. We show how common results in human psychophysics and physiology can be reconciled with an EVA and discuss possible implications of the notion for interpreting current results and guiding future research.
Collapse
Affiliation(s)
| | | | - Yoram Gutfreund
- The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, The Technion, Haifa, Israel
| |
Collapse
|
11
|
Parlevliet PP, Kanaev A, Hung CP, Schweiger A, Gregory FD, Benosman R, de Croon GCHE, Gutfreund Y, Lo CC, Moss CF. Autonomous Flying With Neuromorphic Sensing. Front Neurosci 2021; 15:672161. [PMID: 34054420 PMCID: PMC8160287 DOI: 10.3389/fnins.2021.672161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/07/2021] [Indexed: 11/17/2022] Open
Abstract
Autonomous flight for large aircraft appears to be within our reach. However, launching autonomous systems for everyday missions still requires an immense interdisciplinary research effort supported by pointed policies and funding. We believe that concerted endeavors in the fields of neuroscience, mathematics, sensor physics, robotics, and computer science are needed to address remaining crucial scientific challenges. In this paper, we argue for a bio-inspired approach to solve autonomous flying challenges, outline the frontier of sensing, data processing, and flight control within a neuromorphic paradigm, and chart directions of research needed to achieve operational capabilities comparable to those we observe in nature. One central problem of neuromorphic computing is learning. In biological systems, learning is achieved by adaptive and relativistic information acquisition characterized by near-continuous information retrieval with variable rates and sparsity. This results in both energy and computational resource savings being an inspiration for autonomous systems. We consider pertinent features of insect, bat and bird flight behavior as examples to address various vital aspects of autonomous flight. Insects exhibit sophisticated flight dynamics with comparatively reduced complexity of the brain. They represent excellent objects for the study of navigation and flight control. Bats and birds enable more complex models of attention and point to the importance of active sensing for conducting more complex missions. The implementation of neuromorphic paradigms for autonomous flight will require fundamental changes in both traditional hardware and software. We provide recommendations for sensor hardware and processing algorithm development to enable energy efficient and computationally effective flight control.
Collapse
Affiliation(s)
| | - Andrey Kanaev
- U.S. Office of Naval Research Global, London, United Kingdom
| | - Chou P. Hung
- United States Army Research Laboratory, Aberdeen Proving Ground, Maryland, MD, United States
| | | | - Frederick D. Gregory
- U.S. Army Research Laboratory, London, United Kingdom
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Ryad Benosman
- Institut de la Vision, INSERM UMRI S 968, Paris, France
- Biomedical Science Tower, University of Pittsburgh, Pittsburgh, PA, United States
- Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Guido C. H. E. de Croon
- Micro Air Vehicle Laboratory, Department of Control and Operations, Faculty of Aerospace Engineering, Delft University of Technology, Delft, Netherlands
| | - Yoram Gutfreund
- The Neuroethological lab, Department of Neurobiology, The Rappaport Institute for Biomedical Research, Technion – Israel Institute of Technology, Haifa, Israel
| | - Chung-Chuan Lo
- Brain Research Center/Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Cynthia F. Moss
- Laboratory of Comparative Neural Systems and Behavior, Department of Psychological and Brain Sciences, Neuroscience and Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
12
|
Temporal Prediction Signals for Periodic Sensory Events in the Primate Central Thalamus. J Neurosci 2021; 41:1917-1927. [PMID: 33452224 DOI: 10.1523/jneurosci.2151-20.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/07/2020] [Accepted: 01/03/2021] [Indexed: 11/21/2022] Open
Abstract
Prediction of periodic event timing is an important function for everyday activities, while the exact neural mechanism remains unclear. Previous studies in nonhuman primates have demonstrated that neurons in the cerebellar dentate nucleus and those in the caudate nucleus exhibit periodic firing modulation when the animals attempt to detect a single omission of isochronous repetitive audiovisual stimuli. To understand how these subcortical signals are sent and processed through the thalamocortical pathways, we examined single-neuron activities in the central thalamus of two macaque monkeys (one female and one male). We found that three types of neurons responded to each stimulus in the sequence in the absence of movements. Reactive-type neurons showed sensory adaptation and gradually waned the transient response to each stimulus. Predictive-type neurons steadily increased the magnitude of the suppressive response, similar to neurons previously reported in the cerebellum. Switch-type neurons initially showed a transient response, but after several cycles, the direction of firing modulation reversed and the activity decreased for each repetitive stimulus. The time course of Switch-type activity was well explained by the weighted sum of activities of the other types of neurons. Furthermore, for only Switch-type neurons the activity just before stimulus omission significantly correlated with behavioral latency, indicating that this type of neuron may carry a more advanced signal in the system detecting stimulus omission. These results suggest that the central thalamus may transmit integrated signals to the cerebral cortex for temporal information processing, which are necessary to accurately predict rhythmic event timing.SIGNIFICANCE STATEMENT Several cortical and subcortical regions are involved in temporal information processing, and the thalamus will play a role in functionally linking them. The present study aimed to clarify how the paralaminar part of the thalamus transmits and modifies signals for temporal prediction of rhythmic events. Three types of thalamic neurons exhibited periodic activity when monkeys attempted to detect a single omission of isochronous repetitive stimuli. The activity of one type of neuron correlated with the behavioral latency and appeared to be generated by integrating the signals carried by the other types of neurons. Our results revealed the neuronal signals in the thalamus for temporal prediction of sensory events, providing a clue to elucidate information processing in the thalamocortical pathways.
Collapse
|
13
|
Fryer SL, Roach BJ, Hamilton HK, Bachman P, Belger A, Carrión RE, Duncan E, Johannesen J, Light GA, Niznikiewicz M, Addington J, Bearden CE, Cadenhead KS, Cannon TD, Cornblatt BA, McGlashan TH, Perkins DO, Seidman L, Tsuang M, Walker EF, Woods SW, Mathalon DH. Deficits in auditory predictive coding in individuals with the psychosis risk syndrome: Prediction of conversion to psychosis. JOURNAL OF ABNORMAL PSYCHOLOGY 2021; 129:599-611. [PMID: 32757603 DOI: 10.1037/abn0000513] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mismatch negativity (MMN) event-related potential (ERP) component is increasingly viewed as a prediction error signal elicited when a deviant sound violates the prediction that a frequent "standard" sound will repeat. Support for this predictive coding framework emerged with the identification of the repetition positivity (RP), a standard stimulus ERP component that increases with standard repetition and is thought to reflect strengthening of the standard's memory trace and associated predictive code. Using electroencephalographic recordings, we examined the RP elicited by repeating standard tones presented during a traditional "constant standard" MMN paradigm in individuals with the psychosis risk syndrome (PRS; n = 579) and healthy controls (HC; n = 241). Clinical follow-up assessments identified PRS participants who converted to a psychotic disorder (n = 77) and PRS nonconverters who were followed for the entire 24-month clinical follow-up period and either remained symptomatic (n = 144) or remitted from the PRS (n = 94). In HC, RP linearly increased from early- to late-appearing standards within local trains of repeating standards (p < .0001), consistent with auditory predictive code/memory trace strengthening. Relative to HC, PRS participants showed a reduced RP across standards (p = .0056). PRS converters showed a relatively small RP deficit for early appearing standards relative to HC (p = .0.0107) and a more prominent deficit for late-appearing standards (p = .0006) relative to both HC and PRS-remitted groups. Moreover, greater RP deficits predicted shorter time to conversion in a subsample of unmedicated PRS individuals (p = .02). Thus, auditory predictive coding/memory trace deficits precede psychosis onset and predict future psychosis risk in PRS individuals. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | | | | | - Aysenil Belger
- Department of Psychiatry, University of North Carolina at Chapel Hill
| | - Ricardo E Carrión
- Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System
| | | | | | - Gregory A Light
- Department of Psychiatry, University of California, San Diego
| | - Margaret Niznikiewicz
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center
| | - Jean Addington
- Hotchkiss Brain Institute Department of Psychiatry, University of Calgary
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | | | | | - Barbara A Cornblatt
- Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System
| | | | - Diana O Perkins
- Department of Psychiatry, University of North Carolina at Chapel Hill
| | - Larry Seidman
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center
| | - Ming Tsuang
- Department of Psychiatry, University of California, San Diego
| | | | - Scott W Woods
- Department of Psychiatry, Yale University, School of Medicine
| | | |
Collapse
|
14
|
Niu X, Huang S, Yang S, Wang Z, Li Z, Shi L. Comparison of pop-out responses to luminance and motion contrasting stimuli of tectal neurons in pigeons. Brain Res 2020; 1747:147068. [PMID: 32827547 DOI: 10.1016/j.brainres.2020.147068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/20/2020] [Accepted: 08/17/2020] [Indexed: 11/30/2022]
Abstract
The emergence of visual saliency has been widely studied in the primary visual cortex and the superior colliculus (SC) in mammals. There are fewer studies on the pop-out response to motion direction contrasting stimuli taken in the optic tectum (OT, homologous to mammalian SC), and these are mainly of owls and fish. To our knowledge the influence of spatial luminance has not been reported. In this study, we have recorded multi-units in pigeon OT and analyzed the tectal response to spatial luminance contrasting, motion direction contrasting, and contrasting stimuli from both feature dimensions. The comparison results showed that 1) the tectal response would pop-out in either motion direction or spatial luminance contrasting conditions. 2) The modulation from motion direction contrasting was independent of the temporal luminance variation of the visual stimuli. 3) When both spatial luminance and motion direction were salient, the response of tectal neurons was modulated more intensely by motion direction than by spatial luminance. The phenomenon was consistent with the innate instinct of avians in their natural environment. This study will help to deepen the understanding of mechanisms involved in bottom-up visual information processing and selective attention in the avian.
Collapse
Affiliation(s)
- Xiaoke Niu
- Henan Key Laboratory of Brain-Computer Interface Technology, School of Electrical Engineering, ZhengZhou University, Zhengzhou 450001, China; College of Basic Medicine, Zhengzhou University, Zhengzhou 450001, China.
| | - Shuman Huang
- Henan Key Laboratory of Brain-Computer Interface Technology, School of Electrical Engineering, ZhengZhou University, Zhengzhou 450001, China
| | - Shangfei Yang
- Henan Key Laboratory of Brain-Computer Interface Technology, School of Electrical Engineering, ZhengZhou University, Zhengzhou 450001, China
| | - Zhizhong Wang
- Henan Key Laboratory of Brain-Computer Interface Technology, School of Electrical Engineering, ZhengZhou University, Zhengzhou 450001, China
| | - Zhihui Li
- Henan Key Laboratory of Brain-Computer Interface Technology, School of Electrical Engineering, ZhengZhou University, Zhengzhou 450001, China
| | - Li Shi
- Henan Key Laboratory of Brain-Computer Interface Technology, School of Electrical Engineering, ZhengZhou University, Zhengzhou 450001, China; Department of Automation, Tsinghua University, Beijing 100000, China.
| |
Collapse
|
15
|
Chot MG, Tran S, Zhang H. Spatial Separation between Two Sounds of an Oddball Paradigm Affects Responses of Neurons in the Rat's Inferior Colliculus to the Sounds. Neuroscience 2020; 444:118-135. [PMID: 32712224 DOI: 10.1016/j.neuroscience.2020.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/30/2022]
Abstract
The ability to sense occasionally occurring sounds in an environment is critical for animals. To understand this ability, we studied responses to acoustic oddball paradigms in the rat's midbrain auditory neurons. An oddball paradigm is a random sequence of stimuli created using two tone bursts, with one presented at a high probability (standard stimulus) and the other at a low probability (oddball stimulus). The sounds were either colocalized at the ear contralateral to a neuron under investigation (c90° azimuth) or separated with one at c90° while the other at another azimuth. We found that most neurons generated stronger responses to a sound at c90° when it was presented as an oddball than as a standard stimulus. Relocating one sound from c90° to another azimuth changed both responses to the relocated sound and the sound that remained at c90°. Most notably, the response to an oddball stimulus at c90° was increased when a standard stimulus was relocated from c90° to a location that was in front of the animal or on the ipsilateral side of recording. The increase was particularly large in neurons that displayed transient firing under contralateral stimulation but no firing under ipsilateral stimulation. These neurons likely play a particularly important role in using spatial cues to detect occasionally occurring sounds. Results suggest that effects of spatial separation between two sounds of an oddball paradigm on responses to the sounds were dependent on changes in the level of adaptation and binaural inhibition.
Collapse
Affiliation(s)
- Mathiang G Chot
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario N9B 3P4, Canada.
| | - Sarah Tran
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario N9B 3P4, Canada.
| | - Huiming Zhang
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario N9B 3P4, Canada.
| |
Collapse
|
16
|
Valdés-Baizabal C, Carbajal GV, Pérez-González D, Malmierca MS. Dopamine modulates subcortical responses to surprising sounds. PLoS Biol 2020; 18:e3000744. [PMID: 32559190 PMCID: PMC7329133 DOI: 10.1371/journal.pbio.3000744] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 07/01/2020] [Accepted: 06/03/2020] [Indexed: 11/19/2022] Open
Abstract
Dopamine guides behavior and learning through pleasure, according to classic understanding. Dopaminergic neurons are traditionally thought to signal positive or negative prediction errors (PEs) when reward expectations are, respectively, exceeded or not matched. These signed PEs are quite different from the unsigned PEs, which report surprise during sensory processing. But mounting theoretical accounts from the predictive processing framework postulate that dopamine, as a neuromodulator, could potentially regulate the postsynaptic gain of sensory neurons, thereby scaling unsigned PEs according to their expected precision or confidence. Despite ample modeling work, the physiological effects of dopamine on the processing of surprising sensory information are yet to be addressed experimentally. In this study, we tested how dopamine modulates midbrain processing of unexpected tones. We recorded extracellular responses from the rat inferior colliculus to oddball and cascade sequences, before, during, and after the microiontophoretic application of dopamine or eticlopride (a D2-like receptor antagonist). Results demonstrate that dopamine reduces the net neuronal responsiveness exclusively to unexpected sensory input without significantly altering the processing of expected input. We conclude that dopaminergic projections from the thalamic subparafascicular nucleus to the inferior colliculus could encode the expected precision of unsigned PEs, attenuating via D2-like receptors the postsynaptic gain of sensory inputs forwarded by the auditory midbrain neurons. This direct dopaminergic modulation of sensory PE signaling has profound implications for both the predictive coding framework and the understanding of dopamine function. Information about unexpected stimuli is encoded in the form of prediction error signals. The earliest prediction error signals identified in the auditory brain emerge subcortically in the inferior colliculus. This study reveals the essential role of dopamine in encoding the precision of prediction errors at the auditory midbrain.
Collapse
Affiliation(s)
- Catalina Valdés-Baizabal
- Cognitive and Auditory Neuroscience Laboratory (CANELAB), Institute of Neuroscience of Castilla y León (INCYL), Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Guillermo V. Carbajal
- Cognitive and Auditory Neuroscience Laboratory (CANELAB), Institute of Neuroscience of Castilla y León (INCYL), Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - David Pérez-González
- Cognitive and Auditory Neuroscience Laboratory (CANELAB), Institute of Neuroscience of Castilla y León (INCYL), Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- * E-mail: (DPG); (MSM)
| | - Manuel S. Malmierca
- Cognitive and Auditory Neuroscience Laboratory (CANELAB), Institute of Neuroscience of Castilla y León (INCYL), Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Biology and Pathology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
- * E-mail: (DPG); (MSM)
| |
Collapse
|
17
|
Yaron A, Jankowski MM, Badrieh R, Nelken I. Stimulus-specific adaptation to behaviorally-relevant sounds in awake rats. PLoS One 2020; 15:e0221541. [PMID: 32210448 PMCID: PMC7094827 DOI: 10.1371/journal.pone.0221541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/02/2020] [Indexed: 11/30/2022] Open
Abstract
Stimulus-specific adaptation (SSA) is the reduction in responses to a common stimulus that does not generalize, or only partially generalizes, to other stimuli. SSA has been studied mainly with sounds that bear no behavioral meaning. We hypothesized that the acquisition of behavioral meaning by a sound should modify the amount of SSA evoked by that sound. To test this hypothesis, we used fear conditioning in rats, using two word-like stimuli, derived from the English words "danger" and "safety", as well as pure tones. One stimulus (CS+) was associated with a foot shock whereas the other stimulus (CS-) was presented without a concomitant foot shock. We recorded neural responses to the auditory stimuli telemetrically, using chronically implanted multi-electrode arrays in freely moving animals before and after conditioning. Consistent with our hypothesis, SSA changed in a way that depended on the behavioral role of the sound: the contrast between standard and deviant responses remained the same or decreased for CS+ stimuli but increased for CS- stimuli, showing that SSA is shaped by experience. In most cases the sensory responses underlying these changes in SSA increased following conditioning. Unexpectedly, the responses to CS+ word-like stimuli showed a specific, large decrease, which we interpret as evidence for substantial inhibitory plasticity.
Collapse
Affiliation(s)
- Amit Yaron
- Department of Neurobiology, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maciej M. Jankowski
- The Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ruan Badrieh
- Department of Neurobiology, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Israel Nelken
- Department of Neurobiology, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
18
|
Abstract
Evoked potentials provide valuable insight into brain processes that are integral to our ability to interact effectively and efficiently in the world. The mismatch negativity (MMN) component of the evoked potential has proven highly informative on the ways in which sensitivity to regularity contributes to perception and cognition. This review offers a compendium of research on MMN with a view to scaffolding an appreciation for its use as a tool to explore the way regularities contribute to predictions about the sensory environment over many timescales. In compiling this work, interest in MMN as an index of sensory encoding and memory are addressed, as well as attention. Perspectives on the possible underlying computational processes are reviewed as well as recent observations that invite consideration of how MMN relates to how we learn, what we learn, and why.
Collapse
Affiliation(s)
- Kaitlin Fitzgerald
- School of Psychology, University of Newcastle, Callaghan, NSW, Australia
| | - Juanita Todd
- School of Psychology, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
19
|
Hartkopf J, Moser J, Schleger F, Preissl H, Keune J. Changes in event-related brain responses and habituation during child development - A systematic literature review. Clin Neurophysiol 2019; 130:2238-2254. [PMID: 31711004 DOI: 10.1016/j.clinph.2019.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/07/2019] [Accepted: 08/24/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVE This systematic review highlights the influence of developmental changes of the central nervous system on habituation assessment during child development. Therefore, studies on age dependant changes in event-related brain responses as well as studies on behavioural and neurophysiological habituation during child development are compiled and discussed. METHODS Two PubMed searches with terms "(development evoked brain response (fetus OR neonate OR children) (electroencephalography OR magnetoencephalography))" and with terms "(psychology habituation (fetal OR neonate OR children) (human brain))" were performed to identify studies on developmental changes in event-related brain responses as well as habituation studies during child development. RESULTS Both search results showed a wide diversity of subjects' ages, stimulation protocols and examined behaviour or components of event-related brain responses as well as a demand for more longitudinal study designs. CONCLUSIONS A conclusive statement about clear developmental trends in event-related brain responses or in neurophysiological habituation studies is difficult to draw. Future studies should implement longitudinal designs, combination of behavioural and neurophysiological habituation measurement and more complex habituation paradigms to assess several habituation criteria. SIGNIFICANCE This review emphasizes that event-related brain responses underlie certain changes during child development which should be more considered in the context of neurophysiological habituation studies.
Collapse
Affiliation(s)
- Julia Hartkopf
- Institute for Diabetes Research and Metabolic Diseases/German Center for Diabetes Research (DZD e.V.) of the Helmholtz Center Munich at the University of Tuebingen, Otfried-Mueller-Strasse 10, 72076 Tuebingen, Germany; fMEG-Center, University of Tuebingen, Otfried-Mueller-Strasse 47, 72076 Tuebingen, Germany.
| | - Julia Moser
- Institute for Diabetes Research and Metabolic Diseases/German Center for Diabetes Research (DZD e.V.) of the Helmholtz Center Munich at the University of Tuebingen, Otfried-Mueller-Strasse 10, 72076 Tuebingen, Germany; fMEG-Center, University of Tuebingen, Otfried-Mueller-Strasse 47, 72076 Tuebingen, Germany.
| | - Franziska Schleger
- Institute for Diabetes Research and Metabolic Diseases/German Center for Diabetes Research (DZD e.V.) of the Helmholtz Center Munich at the University of Tuebingen, Otfried-Mueller-Strasse 10, 72076 Tuebingen, Germany; fMEG-Center, University of Tuebingen, Otfried-Mueller-Strasse 47, 72076 Tuebingen, Germany.
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases/German Center for Diabetes Research (DZD e.V.) of the Helmholtz Center Munich at the University of Tuebingen, Otfried-Mueller-Strasse 10, 72076 Tuebingen, Germany; fMEG-Center, University of Tuebingen, Otfried-Mueller-Strasse 47, 72076 Tuebingen, Germany.
| | - Jana Keune
- fMEG-Center, University of Tuebingen, Otfried-Mueller-Strasse 47, 72076 Tuebingen, Germany; Department of Neurology, Klinikum Bayreuth GmbH, Hohe Warte 8, 95445 Bayreuth, Germany.
| |
Collapse
|
20
|
Neural adaptation and cognitive inflexibility in repeated problem-solving behaviors. Cortex 2019; 119:470-479. [PMID: 31505438 DOI: 10.1016/j.cortex.2019.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/21/2019] [Accepted: 08/04/2019] [Indexed: 01/04/2023]
Abstract
Repeated stimulus processing is often associated with a reduction in neural activity, known as neural adaptation. Therefore, people are more sensitive to novelty detection but likely lose flexibility in subsequent novelty processing after detection. To demonstrate the dynamic changes in neural adaption in repeated problem-solving behaviors and test its negative influence on subsequent nonrepetitive problem-solving behaviors, we adopted a Chinese character decomposition task in this fMRI study. Participants were asked to repeatedly perform 3-5 practice problems that could be solved by the same loose chunk decomposition (LCD) solution followed by a test problem that could be solved by a tight chunk decomposition (TCD) solution in the enhanced-set condition. The practice problem gradually elicited lower percent signal changes within the cuneus, superior parietal lobule (SPL), inferior frontal gyrus (IFG) and medial prefrontal cortex (mPFC) in serial positions -1, -2 and -3 of a set, implying that neural adaptation occurred in repeated practice. Both the test problem and the practice problem that following it recruited greater activation of the SPL and IFG in the enhanced-set condition than in the base-set condition when the practice problem and test problem alternately appeared, implying that the task switching cost from a more dominant task to a less dominant task and vice versa was increased after neural adaptation occurred. In other words, repeatedly solving a set of similar problems with the same solution likely leads to neural adaptation and cognitive inflexibility, which in turn have an undifferentiated impact on task switching. This finding expands existing knowledge about the neurocognitive mechanism underlying the formation of the mental set and sheds light on the influence of neural adaptation on subsequent processing.
Collapse
|
21
|
Implicit Memory for Complex Sounds in Higher Auditory Cortex of the Ferret. J Neurosci 2018; 38:9955-9966. [PMID: 30266740 DOI: 10.1523/jneurosci.2118-18.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/14/2018] [Accepted: 09/19/2018] [Indexed: 11/21/2022] Open
Abstract
Responses of auditory cortical neurons encode sound features of incoming acoustic stimuli and also are shaped by stimulus context and history. Previous studies of mammalian auditory cortex have reported a variable time course for such contextual effects ranging from milliseconds to minutes. However, in secondary auditory forebrain areas of songbirds, long-term stimulus-specific neuronal habituation to acoustic stimuli can persist for much longer periods of time, ranging from hours to days. Such long-term habituation in the songbird is a form of long-term auditory memory that requires gene expression. Although such long-term habituation has been demonstrated in avian auditory forebrain, this phenomenon has not previously been described in the mammalian auditory system. Utilizing a similar version of the avian habituation paradigm, we explored whether such long-term effects of stimulus history also occur in auditory cortex of a mammalian auditory generalist, the ferret. Following repetitive presentation of novel complex sounds, we observed significant response habituation in secondary auditory cortex, but not in primary auditory cortex. This long-term habituation appeared to be independent for each novel stimulus and often lasted for at least 20 min. These effects could not be explained by simple neuronal fatigue in the auditory pathway, because time-reversed sounds induced undiminished responses similar to those elicited by completely novel sounds. A parallel set of pupillometric response measurements in the ferret revealed long-term habituation effects similar to observed long-term neural habituation, supporting the hypothesis that habituation to passively presented stimuli is correlated with implicit learning and long-term recognition of familiar sounds.SIGNIFICANCE STATEMENT Long-term habituation in higher areas of songbird auditory forebrain is associated with gene expression and is correlated with recognition memory. Similar long-term auditory habituation in mammals has not been previously described. We studied such habituation in single neurons in the auditory cortex of awake ferrets that were passively listening to repeated presentations of various complex sounds. Responses exhibited long-lasting habituation (at least 20 min) in the secondary, but not primary auditory cortex. Habituation ceased when stimuli were played backward, despite having identical spectral content to the original sound. This long-term neural habituation correlated with similar habituation of ferret pupillary responses to repeated presentations of the same stimuli, suggesting that stimulus habituation is retained as a long-term behavioral memory.
Collapse
|
22
|
Behavioral Evidence and Neural Correlates of Perceptual Grouping by Motion in the Barn Owl. J Neurosci 2018; 38:6653-6664. [PMID: 29967005 DOI: 10.1523/jneurosci.0174-18.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 11/21/2022] Open
Abstract
Perceiving an object as salient from its surround often requires a preceding process of grouping the object and background elements as perceptual wholes. In humans, motion homogeneity provides a strong cue for grouping, yet it is unknown to what extent this occurs in nonprimate species. To explore this question, we studied the effects of visual motion homogeneity in barn owls of both genders, at the behavioral as well as the neural level. Our data show that the coherency of the background motion modulates the perceived saliency of the target object. An object moving in an odd direction relative to other objects attracted more attention when the other objects moved homogeneously compared with when moved in a variety of directions. A possible neural correlate of this effect may arise in the population activity of the intermediate/deep layers of the optic tectum. In these layers, the neural responses to a moving element in the receptive field were suppressed when additional elements moved in the surround. However, when the surrounding elements all moved in one direction (homogeneously moving), they induced less suppression of the response compared with nonhomogeneously moving elements. Moreover, neural responses were more sensitive to the homogeneity of the background motion than to motion-direction contrasts between the receptive field and the surround. The findings suggest similar principles of saliency-by-motion in an avian species as in humans and show a locus in the optic tectum where the underlying neural circuitry may exist.SIGNIFICANCE STATEMENT A critical task of the visual system is to arrange incoming visual information to a meaningful scene of objects and background. In humans, elements that move homogeneously are grouped perceptually to form a categorical whole object. We discovered a similar principle in the barn owl's visual system, whereby the homogeneity of the motion of elements in the scene allows perceptually distinguishing an object from its surround. The novel findings of these visual effects in an avian species, which lacks neocortical structure, suggest that our basic visual perception shares more universal principles across species than presently thought, and shed light on possible brain mechanisms for perceptual grouping.
Collapse
|
23
|
Musall S, Haiss F, Weber B, von der Behrens W. Deviant Processing in the Primary Somatosensory Cortex. Cereb Cortex 2018; 27:863-876. [PMID: 26628563 DOI: 10.1093/cercor/bhv283] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Stimulus-specific adaptation (SSA) to repetitive stimulation has been proposed to separate behaviorally relevant features from a stream of continuous sensory information. However, the exact mechanisms giving rise to SSA and cortical deviance detection are not well understood. We therefore used an oddball paradigm and multicontact electrodes to characterize single-neuron and local field potential responses to various deviant stimuli across the rat somatosensory cortex. Changing different single-whisker stimulus features evoked robust SSA in individual cortical neurons over a wide range of stimulus repetition rates (0.25-80 Hz). Notably, SSA was weakest in the granular input layer and significantly stronger in the supra- and infragranular layers, suggesting that a major part of SSA is generated within cortex. Moreover, we found a small subset of neurons in the granular layer with a deviant-specific late response, occurring roughly 200 ms after stimulus offset. This late deviant response exhibited true-deviance detection properties that were not explained by depression of sensory inputs. Our results show that deviant responses are actively amplified within cortex and contain an additional late component that is sensitive for context-specific sensory deviations. This strongly implicates deviance detection as a feature of intracortical stimulus processing beyond simple sensory input depression.
Collapse
Affiliation(s)
- Simon Musall
- Brain Research Institute.,Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich
| | - Florent Haiss
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Institute of Neuropathology.,Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich
| | - Wolfger von der Behrens
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Neurons, Connections, and Microcircuits of the Inferior Colliculus. THE MAMMALIAN AUDITORY PATHWAYS 2018. [DOI: 10.1007/978-3-319-71798-2_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
25
|
Allitt BJ, Alwis DS, Rajan R. Laminar-specific encoding of texture elements in rat barrel cortex. J Physiol 2017; 595:7223-7247. [PMID: 28929510 PMCID: PMC5709323 DOI: 10.1113/jp274865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/06/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS For rats texture discrimination is signalled by the large face whiskers by stick-slip events. Neural encoding of repetitive stick-slip events will be influenced by intrinsic properties of adaptation. We show that texture coding in the barrel cortex is laminar specific and follows a power function. Our results also show layer 2 codes for novel feature elements via robust firing rates and temporal fidelity. We conclude that texture coding relies on a subtle neural ensemble to provide important object information. ABSTRACT Texture discrimination by rats is exquisitely guided by fine-grain mechanical stick-slip motions of the face whiskers as they encounter, stick to and slip past successive texture-defining surface features such as bumps and grooves. Neural encoding of successive stick-slip texture events will be shaped by adaptation, common to all sensory systems, whereby receptor and neural responses to a stimulus are affected by responses to preceding stimuli, allowing resetting to signal novel information. Additionally, when a whisker is actively moved to contact and brush over surfaces, that motion itself generates neural responses that could cause adaptation of responses to subsequent stick-slip events. Nothing is known about encoding in the rat whisker system of stick-slip events defining textures of different grain or the influence of adaptation from whisker protraction or successive texture-defining stick-slip events. Here we recorded responses from halothane-anaesthetized rats in response to texture-defining stimuli applied to passive whiskers. We demonstrate that: across the columnar network of the whisker-recipient barrel cortex, adaptation in response to repetitive stick-slip events is strongest in uppermost layers and equally lower thereafter; neither whisker protraction speed nor stick-slip frequency impede encoding of stick-slip events at rates up to 34.08 Hz; and layer 2 normalizes responses to whisker protraction to resist effects on texture signalling. Thus, within laminar-specific response patterns, barrel cortex reliably encodes texture-defining elements even to high frequencies.
Collapse
Affiliation(s)
| | - Dasuni S. Alwis
- Department of PhysiologyMonash UniversityClaytonVIC3800Australia
| | - Ramesh Rajan
- Department of PhysiologyMonash UniversityClaytonVIC3800Australia
| |
Collapse
|
26
|
Abstract
Over the last 30 years a wide range of manipulations of auditory input and experience have been shown to result in plasticity in auditory cortical and subcortical structures. The time course of plasticity ranges from very rapid stimulus-specific adaptation to longer-term changes associated with, for example, partial hearing loss or perceptual learning. Evidence for plasticity as a consequence of these and a range of other manipulations of auditory input and/or its significance is reviewed, with an emphasis on plasticity in adults and in the auditory cortex. The nature of the changes in auditory cortex associated with attention, memory and perceptual learning depend critically on task structure, reward contingencies, and learning strategy. Most forms of auditory system plasticity are adaptive, in that they serve to optimize auditory performance, prompting attempts to harness this plasticity for therapeutic purposes. However, plasticity associated with cochlear trauma and partial hearing loss appears to be maladaptive, and has been linked to tinnitus. Three important forms of human learning-related auditory system plasticity are those associated with language development, musical training, and improvement in performance with a cochlear implant. Almost all forms of plasticity involve changes in synaptic excitatory - inhibitory balance within existing patterns of connectivity. An attractive model applicable to a number of forms of learning-related plasticity is dynamic multiplexing by individual neurons, such that learning involving a particular stimulus attribute reflects a particular subset of the diverse inputs to a given neuron being gated by top-down influences. The plasticity evidence indicates that auditory cortex is a component of complex distributed networks that integrate the representation of auditory stimuli with attention, decision and reward processes.
Collapse
Affiliation(s)
- Dexter R F Irvine
- Bionics Institute, East Melbourne, Victoria 3002, Australia; School of Psychological Sciences, Monash University, Victoria 3800, Australia.
| |
Collapse
|
27
|
Wasmuht DF, Pena JL, Gutfreund Y. Stimulus-specific adaptation to visual but not auditory motion direction in the barn owl's optic tectum. Eur J Neurosci 2016; 45:610-621. [PMID: 27987375 DOI: 10.1111/ejn.13505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/11/2016] [Accepted: 12/12/2016] [Indexed: 12/01/2022]
Abstract
Whether the auditory and visual systems use a similar coding strategy to represent motion direction is an open question. We investigated this question in the barn owl's optic tectum (OT) testing stimulus-specific adaptation (SSA) to the direction of motion. SSA, the reduction of the response to a repetitive stimulus that does not generalize to other stimuli, has been well established in OT neurons. SSA suggests a separate representation of the adapted stimulus in upstream pathways. So far, only SSA to static stimuli has been studied in the OT. Here, we examined adaptation to moving auditory and visual stimuli. SSA to motion direction was examined using repeated presentations of moving stimuli, occasionally switching motion to the opposite direction. Acoustic motion was either mimicked by varying binaural spatial cues or implemented in free field using a speaker array. While OT neurons displayed SSA to motion direction in visual space, neither stimulation paradigms elicited significant SSA to auditory motion direction. These findings show a qualitative difference in how auditory and visual motion is processed in the OT and support the existence of dedicated circuitry for representing motion direction in the early stages of visual but not the auditory system.
Collapse
Affiliation(s)
- Dante F Wasmuht
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, The Technion, Bat-Galim, Haifa, 31096, Israel
| | - Jose L Pena
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yoram Gutfreund
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, The Technion, Bat-Galim, Haifa, 31096, Israel
| |
Collapse
|
28
|
Herrmann B, Henry MJ, Johnsrude IS, Obleser J. Altered temporal dynamics of neural adaptation in the aging human auditory cortex. Neurobiol Aging 2016; 45:10-22. [DOI: 10.1016/j.neurobiolaging.2016.05.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/11/2016] [Accepted: 05/07/2016] [Indexed: 12/19/2022]
|
29
|
Responses to Pop-Out Stimuli in the Barn Owl's Optic Tectum Can Emerge through Stimulus-Specific Adaptation. J Neurosci 2016; 36:4876-87. [PMID: 27122042 DOI: 10.1523/jneurosci.3339-15.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 03/20/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Here, we studied neural correlates of orientation-contrast-based saliency in the optic tectum (OT) of barn owls. Neural responses in the intermediate/deep layers of the OT were recorded from lightly anesthetized owls confronted with arrays of bars in which one bar (the target) was orthogonal to the remaining bars (the distractors). Responses to target bars were compared with responses to distractor bars in the receptive field (RF). Initially, no orientation-contrast sensitivity was observed. However, if the position of the target bar in the array was randomly shuffled across trials so that it occasionally appeared in the RF, then such sensitivity emerged. The effect started to become significant after three or four positional changes of the target bar and strengthened with additional trials. Our data further suggest that this effect arises due to specific adaptation to the stimulus in the RF combined with suppression from the surround. By jittering the position of the bar inside the RF across trials, we demonstrate that the adaptation has two components, one position specific and one orientation specific. The findings give rise to the hypothesis that barn owls, by active scanning of the scene, can induce adaptation of the tectal circuitry to the common orientation and thus achieve a "pop-out" of rare orientations. Such a model is consistent with several behavioral observations in owls and may be relevant to other visual features and species. SIGNIFICANCE STATEMENT Natural scenes are often characterized by a dominant orientation, such as the scenery of a pine forest or the sand dunes in a windy desert. Therefore, orientation that contrasts the regularity of the scene is perceived salient for many animals as a means to break camouflage. By actively moving the scene between each trial, we show here that neurons in the retinotopic map of the barn owl's optic tectum specifically adapt to the common orientation, giving rise to preferential representation of odd orientations. Based on this, we suggest a new mechanism for orientation-based camouflage breaking that links active scanning of scenes with neural adaptation. This mechanism may be relevant to pop-out in other species and visual features.
Collapse
|
30
|
Verhaal J, Luksch H. Neuronal responses to motion and apparent motion in the optic tectum of chickens. Brain Res 2016; 1635:190-200. [DOI: 10.1016/j.brainres.2016.01.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/30/2015] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
|
31
|
Compass Cells in the Brain of an Insect Are Sensitive to Novel Events in the Visual World. PLoS One 2015; 10:e0144501. [PMID: 26636334 PMCID: PMC4670205 DOI: 10.1371/journal.pone.0144501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/19/2015] [Indexed: 11/29/2022] Open
Abstract
The central complex of the insect brain comprises a group of neuropils involved in spatial orientation and memory. In fruit flies it mediates place learning based on visual landmarks and houses neurons that encode the orientation for goal-directed locomotion, based on landmarks and self-motion cues for angular path-integration. In desert locusts, the central complex holds a compass-like representation of head directions, based on the polarization pattern of skylight. Through intracellular recordings from immobilized locusts, we investigated whether sky compass neurons of the central complex also represent the position or any salient feature of possible landmarks, in analogy to the observations in flies. Neurons showed strongest responses to the novel appearance of a small moving square, but we found no evidence for a topographic representation of object positions. Responses to an individual square were independent of direction of motion and trajectory, but showed rapid adaptation to successive stimulation, unaffected by changing the direction of motion. Responses reappeared, however, if the moving object changed its trajectory or if it suddenly reversed moving direction against the movement of similar objects that make up a coherent background-flow as induced by ego-motion. Response amplitudes co-varied with the precedent state of dynamic background activity, a phenomenon that has been related to attention-dependent saliency coding in neurons of the mammalian primary visual cortex. The data show that neurons of the central complex of the locust brain are visually bimodal, signaling sky compass direction and the novelty character of moving objects. These response properties might serve to attune compass-aided locomotor control to unexpected events in the environment. The difference to data obtained in fruit flies might relate to differences in the lifestyle of landmark learners (fly) and compass navigators (locust), point to the existence of parallel networks for the two orientation strategies, or reflect differences in experimental conditions.
Collapse
|
32
|
Detecting the unexpected. Curr Opin Neurobiol 2015; 35:142-7. [DOI: 10.1016/j.conb.2015.08.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/01/2015] [Accepted: 08/04/2015] [Indexed: 11/21/2022]
|
33
|
Direction-Specific Adaptation in Neuronal and Behavioral Responses of an Insect Mechanosensory System. J Neurosci 2015; 35:11644-55. [PMID: 26290241 DOI: 10.1523/jneurosci.1378-15.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Stimulus-specific adaptation (SSA) is considered to be the neural underpinning of habituation to frequent stimuli and novelty detection. However, neither the cellular mechanism underlying SSA nor the link between SSA-like neuronal plasticity and behavioral modulation is well understood. The wind-detection system in crickets is one of the best models for investigating the neural basis of SSA. We found that crickets exhibit stimulus-direction-specific adaptation in wind-elicited avoidance behavior. Repetitive air currents inducing this behavioral adaptation reduced firings to the stimulus and the amplitude of excitatory synaptic potentials in wind-sensitive giant interneurons (GIs) related to the avoidance behavior. Injection of a Ca(2+) chelator into GIs diminished both the attenuation of firings and the synaptic depression induced by the repetitive stimulation, suggesting that adaptation of GIs induced by this stimulation results in Ca(2+)-mediated modulation of postsynaptic responses, including postsynaptic short-term depression. Some types of GIs showed specific adaptation to the direction of repetitive stimuli, resulting in an alteration of their directional tuning curves. The types of GIs for which directional tuning was altered displayed heterogeneous direction selectivity in their Ca(2+) dynamics that was restricted to a specific area of dendrites. In contrast, other types of GIs with constant directionality exhibited direction-independent global Ca(2+) elevation throughout the dendritic arbor. These results suggest that depression induced by local Ca(2+) accumulation at repetitively activated synapses of key neurons underlies direction-specific behavioral adaptation. This input-selective depression mediated by heterogeneous Ca(2+) dynamics could confer the ability to detect novelty at the earliest stages of sensory processing in crickets. SIGNIFICANCE STATEMENT Stimulus-specific adaptation (SSA) is considered to be the neural underpinning of habituation and novelty detection. We found that crickets exhibit stimulus-direction-specific adaptation in wind-elicited avoidance behavior. Repetitive air currents inducing this behavioral adaptation altered the directional selectivity of wind-sensitive giant interneurons (GIs) via direction-specific adaptation mediated by dendritic Ca(2+) elevation. The GIs for which directional tuning was altered displayed heterogeneous direction selectivity in their Ca(2+) dynamics and the transient increase in Ca(2+) evoked by the repeated puffs was restricted to a specific area of dendrites. These results suggest that depression induced by local Ca(2+) accumulation at repetitively activated synapses of key neurons underlies direction-specific behavioral adaptation. Our findings elucidate the subcellular mechanism underlying SSA-like neuronal plasticity related to behavioral adaptation.
Collapse
|
34
|
Hazan Y, Kra Y, Yarin I, Wagner H, Gutfreund Y. Visual-auditory integration for visual search: a behavioral study in barn owls. Front Integr Neurosci 2015; 9:11. [PMID: 25762905 PMCID: PMC4327738 DOI: 10.3389/fnint.2015.00011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/28/2015] [Indexed: 12/14/2022] Open
Abstract
Barn owls are nocturnal predators that rely on both vision and hearing for survival. The optic tectum of barn owls, a midbrain structure involved in selective attention, has been used as a model for studying visual-auditory integration at the neuronal level. However, behavioral data on visual-auditory integration in barn owls are lacking. The goal of this study was to examine if the integration of visual and auditory signals contributes to the process of guiding attention toward salient stimuli. We attached miniature wireless video cameras on barn owls' heads (OwlCam) to track their target of gaze. We first provide evidence that the area centralis (a retinal area with a maximal density of photoreceptors) is used as a functional fovea in barn owls. Thus, by mapping the projection of the area centralis on the OwlCam's video frame, it is possible to extract the target of gaze. For the experiment, owls were positioned on a high perch and four food items were scattered in a large arena on the floor. In addition, a hidden loudspeaker was positioned in the arena. The positions of the food items and speaker were changed every session. Video sequences from the OwlCam were saved for offline analysis while the owls spontaneously scanned the room and the food items with abrupt gaze shifts (head saccades). From time to time during the experiment, a brief sound was emitted from the speaker. The fixation points immediately following the sounds were extracted and the distances between the gaze position and the nearest items and loudspeaker were measured. The head saccades were rarely toward the location of the sound source but to salient visual features in the room, such as the door knob or the food items. However, among the food items, the one closest to the loudspeaker had the highest probability of attracting a gaze shift. This result supports the notion that auditory signals are integrated with visual information for the selection of the next visual search target.
Collapse
Affiliation(s)
- Yael Hazan
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion Haifa, Israel
| | - Yonatan Kra
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion Haifa, Israel
| | - Inna Yarin
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion Haifa, Israel
| | - Hermann Wagner
- Department of Zoology and Animal Physiology, Institute for Biology II, RWTH Aachen University Aachen, Germany
| | - Yoram Gutfreund
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion Haifa, Israel
| |
Collapse
|
35
|
Fast and robust estimation of spectro-temporal receptive fields using stochastic approximations. J Neurosci Methods 2015; 246:119-33. [PMID: 25744059 DOI: 10.1016/j.jneumeth.2015.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 01/22/2015] [Accepted: 02/11/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND The receptive field (RF) represents the signal preferences of sensory neurons and is the primary analysis method for understanding sensory coding. While it is essential to estimate a neuron's RF, finding numerical solutions to increasingly complex RF models can become computationally intensive, in particular for high-dimensional stimuli or when many neurons are involved. NEW METHOD Here we propose an optimization scheme based on stochastic approximations that facilitate this task. The basic idea is to derive solutions on a random subset rather than computing the full solution on the available data set. To test this, we applied different optimization schemes based on stochastic gradient descent (SGD) to both the generalized linear model (GLM) and a recently developed classification-based RF estimation approach. RESULTS AND COMPARISON WITH EXISTING METHOD Using simulated and recorded responses, we demonstrate that RF parameter optimization based on state-of-the-art SGD algorithms produces robust estimates of the spectro-temporal receptive field (STRF). Results on recordings from the auditory midbrain demonstrate that stochastic approximations preserve both predictive power and tuning properties of STRFs. A correlation of 0.93 with the STRF derived from the full solution may be obtained in less than 10% of the full solution's estimation time. We also present an on-line algorithm that allows simultaneous monitoring of STRF properties of more than 30 neurons on a single computer. CONCLUSIONS The proposed approach may not only prove helpful for large-scale recordings but also provides a more comprehensive characterization of neural tuning in experiments than standard tuning curves.
Collapse
|
36
|
Bockhorst T, Homberg U. Amplitude and dynamics of polarization-plane signaling in the central complex of the locust brain. J Neurophysiol 2015; 113:3291-311. [PMID: 25609107 DOI: 10.1152/jn.00742.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/20/2015] [Indexed: 11/22/2022] Open
Abstract
The polarization pattern of skylight provides a compass cue that various insect species use for allocentric orientation. In the desert locust, Schistocerca gregaria, a network of neurons tuned to the electric field vector (E-vector) angle of polarized light is present in the central complex of the brain. Preferred E-vector angles vary along slices of neuropils in a compasslike fashion (polarotopy). We studied how the activity in this polarotopic population is modulated in ways suited to control compass-guided locomotion. To this end, we analyzed tuning profiles using measures of correlation between spike rate and E-vector angle and, furthermore, tested for adaptation to stationary angles. The results suggest that the polarotopy is stabilized by antagonistic integration across neurons with opponent tuning. Downstream to the input stage of the network, responses to stationary E-vector angles adapted quickly, which may correlate with a tendency to steer a steady course previously observed in tethered flying locusts. By contrast, rotating E-vectors corresponding to changes in heading direction under a natural sky elicited nonadapting responses. However, response amplitudes were particularly variable at the output stage, covarying with the level of ongoing activity. Moreover, the responses to rotating E-vector angles depended on the direction of rotation in an anticipatory manner. Our observations support a view of the central complex as a substrate of higher-stage processing that could assign contextual meaning to sensory input for motor control in goal-driven behaviors. Parallels to higher-stage processing of sensory information in vertebrates are discussed.
Collapse
Affiliation(s)
- Tobias Bockhorst
- Animal Physiology, Department of Biology, Philipps University, Marburg, Germany
| | - Uwe Homberg
- Animal Physiology, Department of Biology, Philipps University, Marburg, Germany
| |
Collapse
|
37
|
Meyer AF, Diepenbrock JP, Ohl FW, Anemüller J. Temporal variability of spectro-temporal receptive fields in the anesthetized auditory cortex. Front Comput Neurosci 2014; 8:165. [PMID: 25566049 PMCID: PMC4274980 DOI: 10.3389/fncom.2014.00165] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 11/30/2014] [Indexed: 11/13/2022] Open
Abstract
Temporal variability of neuronal response characteristics during sensory stimulation is a ubiquitous phenomenon that may reflect processes such as stimulus-driven adaptation, top-down modulation or spontaneous fluctuations. It poses a challenge to functional characterization methods such as the receptive field, since these often assume stationarity. We propose a novel method for estimation of sensory neurons' receptive fields that extends the classic static linear receptive field model to the time-varying case. Here, the long-term estimate of the static receptive field serves as the mean of a probabilistic prior distribution from which the short-term temporally localized receptive field may deviate stochastically with time-varying standard deviation. The derived corresponding generalized linear model permits robust characterization of temporal variability in receptive field structure also for highly non-Gaussian stimulus ensembles. We computed and analyzed short-term auditory spectro-temporal receptive field (STRF) estimates with characteristic temporal resolution 5-30 s based on model simulations and responses from in total 60 single-unit recordings in anesthetized Mongolian gerbil auditory midbrain and cortex. Stimulation was performed with short (100 ms) overlapping frequency-modulated tones. Results demonstrate identification of time-varying STRFs, with obtained predictive model likelihoods exceeding those from baseline static STRF estimation. Quantitative characterization of STRF variability reveals a higher degree thereof in auditory cortex compared to midbrain. Cluster analysis indicates that significant deviations from the long-term static STRF are brief, but reliably estimated. We hypothesize that the observed variability more likely reflects spontaneous or state-dependent internal fluctuations that interact with stimulus-induced processing, rather than experimental or stimulus design.
Collapse
Affiliation(s)
- Arne F Meyer
- Medizinische Physik and Cluster of Excellence Hearing4all, Department of Medical Physics and Acoustics, Carl von Ossietzky University Oldenburg, Germany
| | - Jan-Philipp Diepenbrock
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology Magdeburg, Germany
| | - Frank W Ohl
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology Magdeburg, Germany ; Department of Neuroprosthetics, Institute of Biology, Otto-von-Guericke University Magdeburg, Germany
| | - Jörn Anemüller
- Medizinische Physik and Cluster of Excellence Hearing4all, Department of Medical Physics and Acoustics, Carl von Ossietzky University Oldenburg, Germany
| |
Collapse
|
38
|
Nelken I. Stimulus-specific adaptation and deviance detection in the auditory system: experiments and models. BIOLOGICAL CYBERNETICS 2014; 108:655-663. [PMID: 24477619 DOI: 10.1007/s00422-014-0585-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 01/13/2014] [Indexed: 06/03/2023]
Abstract
Stimulus-specific adaptation (SSA) is the reduction in the response to a common stimulus that does not generalize, or only partially generalizes, to other, rare stimuli. SSA has been proposed to be a correlate of 'deviance detection', an important computational task of sensory systems. SSA is ubiquitous in the auditory system: It is found both in cortex and in subcortical stations, and it has been demonstrated in many mammalian species as well as in birds. A number of models have been suggested in the literature to account for SSA in the auditory domain. In this review, the experimental literature is critically examined in relationship to these models. While current models can all account for auditory SSA to some degree, none is fully compatible with the available findings.
Collapse
Affiliation(s)
- Israel Nelken
- Department of Neurobiology, The Silberman Institute of Life Sciences, Hebrew University, Edmond J. Safra Campus, Givat Ram, 91904 , Jerusalem, Israel,
| |
Collapse
|
39
|
Miller-Sims VC, Bottjer SW. Development of neural responsivity to vocal sounds in higher level auditory cortex of songbirds. J Neurophysiol 2014; 112:81-94. [PMID: 24694936 PMCID: PMC4499030 DOI: 10.1152/jn.00484.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 04/02/2014] [Indexed: 11/22/2022] Open
Abstract
Like humans, songbirds learn vocal sounds from "tutors" during a sensitive period of development. Vocal learning in songbirds therefore provides a powerful model system for investigating neural mechanisms by which memories of learned vocal sounds are stored. This study examined whether NCM (caudo-medial nidopallium), a region of higher level auditory cortex in songbirds, serves as a locus where a neural memory of tutor sounds is acquired during early stages of vocal learning. NCM neurons respond well to complex auditory stimuli, and evoked activity in many NCM neurons habituates such that the response to a stimulus that is heard repeatedly decreases to approximately one-half its original level (stimulus-specific adaptation). The rate of neural habituation serves as an index of familiarity, being low for familiar sounds, but high for novel sounds. We found that response strength across different song stimuli was higher in NCM neurons of adult zebra finches than in juveniles, and that only adult NCM responded selectively to tutor song. The rate of habituation across both tutor song and novel conspecific songs was lower in adult than in juvenile NCM, indicating higher familiarity and a more persistent response to song stimuli in adults. In juvenile birds that have memorized tutor vocal sounds, neural habituation was higher for tutor song than for a familiar conspecific song. This unexpected result suggests that the response to tutor song in NCM at this age may be subject to top-down influences that maintain the tutor song as a salient stimulus, despite its high level of familiarity.
Collapse
Affiliation(s)
| | - Sarah W Bottjer
- Section of Neurobiology, University of Southern California, Los Angeles, California
| |
Collapse
|
40
|
Wang Y, Gutfreund Y, Peña JL. Coding space-time stimulus dynamics in auditory brain maps. Front Physiol 2014; 5:135. [PMID: 24782781 PMCID: PMC3986518 DOI: 10.3389/fphys.2014.00135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/19/2014] [Indexed: 11/21/2022] Open
Abstract
Sensory maps are often distorted representations of the environment, where ethologically-important ranges are magnified. The implication of a biased representation extends beyond increased acuity for having more neurons dedicated to a certain range. Because neurons are functionally interconnected, non-uniform representations influence the processing of high-order features that rely on comparison across areas of the map. Among these features are time-dependent changes of the auditory scene generated by moving objects. How sensory representation affects high order processing can be approached in the map of auditory space of the owl's midbrain, where locations in the front are over-represented. In this map, neurons are selective not only to location but also to location over time. The tuning to space over time leads to direction selectivity, which is also topographically organized. Across the population, neurons tuned to peripheral space are more selective to sounds moving into the front. The distribution of direction selectivity can be explained by spatial and temporal integration on the non-uniform map of space. Thus, the representation of space can induce biased computation of a second-order stimulus feature. This phenomenon is likely observed in other sensory maps and may be relevant for behavior.
Collapse
Affiliation(s)
- Yunyan Wang
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine Bronx, NY, USA
| | - Yoram Gutfreund
- The Rappaport Research Institute and Faculty of Medicine The Technion, Haifa, Israel
| | - José L Peña
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine Bronx, NY, USA
| |
Collapse
|
41
|
Abstract
Stimulus-specific adaptation (SSA) is the reduction in response to a common stimulus that does not generalize, or only partially generalizes, to rare stimuli. SSA is strong and widespread in primary auditory cortex (A1) of rats, but is weak or absent in the main input station to A1, the ventral division of the medial geniculate body. To study SSA in A1, we recorded neural activity in A1 intracellularly using sharp electrodes. We studied the responses to tone pips of the same frequency in different contexts: as Standard and Deviants in Oddball sequences; in equiprobable sequences; in sequences consisting of rare tone presentations; and in sequences composed of many different frequencies, each of which was rare. SSA was found both in subthreshold membrane potential fluctuations and in spiking responses of A1 neurons. SSA for changes in frequency was large at a frequency difference of 44% between Standard and Deviant, and clearly present with tones separated by as little as 4%, near the behavioral frequency difference limen in rats. When using equivalent measures, SSA in spiking responses was generally larger than the SSA at the level of the membrane potential. This effect can be traced to the nonlinearity of the transformation between membrane potential to spikes. Using the responses to the same tone in different contexts made it possible to demonstrate that cortical SSA could not be fully explained by adaptation in narrow frequency channels, even at the level of the membrane potential. We conclude that local processing significantly contributes to the generation of cortical SSA.
Collapse
|
42
|
Netser S, Dutta A, Gutfreund Y. Ongoing activity in the optic tectum is correlated on a trial-by-trial basis with the pupil dilation response. J Neurophysiol 2014; 111:918-29. [DOI: 10.1152/jn.00527.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The selection of the appropriate stimulus to induce an orienting response is a basic task thought to be partly achieved by tectal circuitry. Here we addressed the relationship between neural activity in the optic tectum (OT) and orienting behavioral responses. We recorded multiunit activity in the intermediate/deep layers of the OT of the barn owl simultaneously with pupil dilation responses (PDR, a well-known orienting response common to birds and mammals). A trial-by-trial analysis of the responses revealed that the PDR generally did not correlate with the evoked neural responses but significantly correlated with the rate of ongoing neural activity measured shortly before the stimulus. Following this finding, we characterized ongoing activity in the OT and showed that in the intermediate/deep layers it tended to fluctuate spontaneously. It is characterized by short periods of high ongoing activity during which the probability of a PDR to an auditory stimulus inside the receptive field is increased. These high-ongoing activity periods were correlated with increase in the power of gamma band local field potential oscillations. Through dual recordings, we showed that the correlation coefficients of ongoing activity decreased as a function of distance between recording sites in the tectal map. Significant correlations were also found between recording sites in the OT and the forebrain entopallium. Our results suggest that an increase of ongoing activity in the OT reflects an internal state during which coupling between sensory stimulation and behavioral responses increases.
Collapse
Affiliation(s)
- Shai Netser
- Department of Physiology and Biophysics, The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion, Haifa, Israel
| | - Arkadeb Dutta
- Department of Physiology and Biophysics, The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion, Haifa, Israel
| | - Yoram Gutfreund
- Department of Physiology and Biophysics, The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion, Haifa, Israel
| |
Collapse
|
43
|
Forward suppression in the auditory cortex is caused by the Ca(v)3.1 calcium channel-mediated switch from bursting to tonic firing at thalamocortical projections. J Neurosci 2014; 33:18940-50. [PMID: 24285899 DOI: 10.1523/jneurosci.3335-13.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Brief sounds produce a period of suppressed responsiveness in the auditory cortex (ACx). This forward suppression can last for hundreds of milliseconds and might contribute to mechanisms of temporal separation of sounds and stimulus-specific adaptation. However, the mechanisms of forward suppression remain unknown. We used in vivo recordings of sound-evoked responses in the mouse ACx and whole-cell recordings, two-photon calcium imaging in presynaptic terminals, and two-photon glutamate uncaging in dendritic spines performed in brain slices to show that synaptic depression at thalamocortical (TC) projections contributes to forward suppression in the ACx. Paired-pulse synaptic depression at TC projections lasts for hundreds of milliseconds and is attributable to a switch between firing modes in thalamic neurons. Thalamic neurons respond to a brief depolarizing pulse with a burst of action potentials; however, within hundreds of milliseconds, the same pulse repeated again produces only a single action potential. This switch between firing modes depends on Ca(v)3.1 T-type calcium channels enriched in thalamic relay neurons. Pharmacologic inhibition or knockdown of Ca(v)3.1 T-type calcium channels in the auditory thalamus substantially reduces synaptic depression at TC projections and forward suppression in the ACx. These data suggest that Ca(v)3.1-dependent synaptic depression at TC projections contributes to mechanisms of forward suppression in the ACx.
Collapse
|
44
|
Dutta A, Gutfreund Y. Saliency mapping in the optic tectum and its relationship to habituation. Front Integr Neurosci 2014; 8:1. [PMID: 24474908 PMCID: PMC3893637 DOI: 10.3389/fnint.2014.00001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/02/2014] [Indexed: 12/02/2022] Open
Abstract
Habituation of the orienting response has long served as a model system for studying fundamental psychological phenomena such as learning, attention, decisions, and surprise. In this article, we review an emerging hypothesis that the evolutionary role of the superior colliculus (SC) in mammals or its homolog in birds, the optic tectum (OT), is to select the most salient target and send this information to the appropriate brain regions to control the body and brain orienting responses. Recent studies have begun to reveal mechanisms of how saliency is computed in the OT/SC, demonstrating a striking similarity between mammals and birds. The saliency of a target can be determined by how different it is from the surrounding objects, by how different it is from its history (that is habituation) and by how relevant it is for the task at hand. Here, we will first review evidence, mostly from primates and barn owls, that all three types of saliency computations are linked in the OT/SC. We will then focus more on neural adaptation in the OT and its possible link to temporal saliency and habituation.
Collapse
Affiliation(s)
- Arkadeb Dutta
- Rappaport Family Institute for Research in the Medical Sciences, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology Haifa, Israel
| | - Yoram Gutfreund
- Rappaport Family Institute for Research in the Medical Sciences, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology Haifa, Israel
| |
Collapse
|
45
|
Escera C, Malmierca MS. The auditory novelty system: An attempt to integrate human and animal research. Psychophysiology 2013; 51:111-23. [DOI: 10.1111/psyp.12156] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 08/06/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Carles Escera
- Institute for Brain; Cognition and Behavior (IR3C); University of Barcelona; Catalonia Spain
- Cognitive Neuroscience Research Group; Department of Psychiatry and Clinical Psychobiology; University of Barcelona; Catalonia Spain
| | - Manuel S. Malmierca
- Auditory Neurophysiology Laboratory; The Institute of Neuroscience of Castilla y Leon (INCyL); University of Salamanca; Salamanca Spain
- Department of Cell Biology and Pathology; The Medical School; University of Salamanca; Salamanca Spain
| |
Collapse
|
46
|
New perspectives on the owl's map of auditory space. Curr Opin Neurobiol 2013; 24:55-62. [PMID: 24492079 DOI: 10.1016/j.conb.2013.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 08/07/2013] [Accepted: 08/13/2013] [Indexed: 11/20/2022]
Abstract
A map of sound direction was found in the owl's midbrain more than three decades ago. This finding suggested that the brain reconstructs spatial coordinates to represent them. Subsequent research elucidated the variables used to compute the map. Here we provide a review of the processes leading to its emergence and an updated perspective on how and what information is represented.
Collapse
|
47
|
Triblehorn JD, Schul J. Dendritic mechanisms contribute to stimulus-specific adaptation in an insect neuron. J Neurophysiol 2013; 110:2217-26. [PMID: 23945779 DOI: 10.1152/jn.00057.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Reduced neuronal activation to repetitive stimulation is a common feature of information processing in nervous systems. Such stimulus-specific adaptation (SSA) occurs in many systems, but the underlying neural mechanisms are not well understood. The Neoconocephalus (Orthoptera, Tettigoniidae) TN-1 auditory neuron exhibits an SSA-like process, characterized by reliably detecting deviant pulses after response cessation to common standard pulses. Therefore, TN-1 provides a model system to study the cellular mechanisms underlying SSA with an identified neuron. Here we test the hypothesis that dendritic mechanisms underlie TN-1 response cessation to fast-pulse rate repeated signals. Electrically stimulating TN-1 with either high-rate or continuous-current pulses resulted in a decreased ability in TN-1 to generate action potentials but failed to elicit cessation of spiking activity as observed with acoustic stimulation. BAPTA injection into TN-1 delayed the onset of response cessation to fast-pulse rate acoustic stimuli in TN-1 but did not eliminate it. These results indicate that calcium-mediated processes contribute to the fast cessation of spiking activity in TN-1 but are insufficient to cause spike cessation on its own. Replacing normal saline with low-Na(+) saline (replacing sodium chloride with either lithium chloride or choline chloride) eliminated response cessation, and TN-1 no longer responded selectively to the deviant pulses. Sodium-mediated potassium channels are the most likely candidates underlying sodium-mediated response suppression in TN-1, triggered by Na(+) influx in dendritic regions activated by acoustic stimuli. On the basis of these results, we present a model for a cellular mechanism for SSA in a single auditory neuron.
Collapse
|
48
|
Mill RW, Bőhm TM, Bendixen A, Winkler I, Denham SL. Modelling the emergence and dynamics of perceptual organisation in auditory streaming. PLoS Comput Biol 2013; 9:e1002925. [PMID: 23516340 PMCID: PMC3597549 DOI: 10.1371/journal.pcbi.1002925] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 12/31/2012] [Indexed: 11/29/2022] Open
Abstract
Many sound sources can only be recognised from the pattern of sounds they emit, and not from the individual sound events that make up their emission sequences. Auditory scene analysis addresses the difficult task of interpreting the sound world in terms of an unknown number of discrete sound sources (causes) with possibly overlapping signals, and therefore of associating each event with the appropriate source. There are potentially many different ways in which incoming events can be assigned to different causes, which means that the auditory system has to choose between them. This problem has been studied for many years using the auditory streaming paradigm, and recently it has become apparent that instead of making one fixed perceptual decision, given sufficient time, auditory perception switches back and forth between the alternatives—a phenomenon known as perceptual bi- or multi-stability. We propose a new model of auditory scene analysis at the core of which is a process that seeks to discover predictable patterns in the ongoing sound sequence. Representations of predictable fragments are created on the fly, and are maintained, strengthened or weakened on the basis of their predictive success, and conflict with other representations. Auditory perceptual organisation emerges spontaneously from the nature of the competition between these representations. We present detailed comparisons between the model simulations and data from an auditory streaming experiment, and show that the model accounts for many important findings, including: the emergence of, and switching between, alternative organisations; the influence of stimulus parameters on perceptual dominance, switching rate and perceptual phase durations; and the build-up of auditory streaming. The principal contribution of the model is to show that a two-stage process of pattern discovery and competition between incompatible patterns can account for both the contents (perceptual organisations) and the dynamics of human perception in auditory streaming. The sound waves produced by objects in the environment mix together before reaching the ears. Before we can make sense of an auditory scene, our brains must solve the puzzle of how to disassemble the sound waveform into groupings that correspond to the original source signals. How is this feat accomplished? We propose that the auditory system continually scans the structure of incoming signals in search of clues to indicate which pieces belong together. For instance, sound events may belong together if they have similar features, or form part of a clear temporal pattern. However this process is complicated by lack of knowledge of future events and the many possible ways in which even a simple sound sequence can be decomposed. The biological solution is multistability: one possible interpretation of a sound is perceived initially, which then gives way to another interpretation, and so on. We propose a model of auditory multistability, in which fragmental descriptions of the signal compete and cooperate to explain the sound scene. We demonstrate, using simplified experimental stimuli, that the model can account for both the contents (perceptual organisations) and the dynamics of human perception in auditory streaming.
Collapse
Affiliation(s)
- Robert W. Mill
- MRC Institute of Hearing Research, Nottingham, United Kingdom
| | - Tamás M. Bőhm
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, MTA, Budapest, Hungary
- Department of Telecommunications and Media Informatics, Budapest University of Technology and Economics, Budapest, Hungary
- * E-mail:
| | | | - István Winkler
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, MTA, Budapest, Hungary
- Institute for Psychology, University of Szeged, Szeged, Hungary
| | - Susan L. Denham
- Cognition Institute and School of Psychology, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
49
|
Ayala YA, Malmierca MS. Stimulus-specific adaptation and deviance detection in the inferior colliculus. Front Neural Circuits 2013; 6:89. [PMID: 23335883 PMCID: PMC3547232 DOI: 10.3389/fncir.2012.00089] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 11/02/2012] [Indexed: 11/26/2022] Open
Abstract
Deviancy detection in the continuous flow of sensory information into the central nervous system is of vital importance for animals. The task requires neuronal mechanisms that allow for an efficient representation of the environment by removing statistically redundant signals. Recently, the neuronal principles of auditory deviance detection have been approached by studying the phenomenon of stimulus-specific adaptation (SSA). SSA is a reduction in the responsiveness of a neuron to a common or repetitive sound while the neuron remains highly sensitive to rare sounds (Ulanovsky et al., 2003). This phenomenon could enhance the saliency of unexpected, deviant stimuli against a background of repetitive signals. SSA shares many similarities with the evoked potential known as the “mismatch negativity,” (MMN) and it has been linked to cognitive process such as auditory memory and scene analysis (Winkler et al., 2009) as well as to behavioral habituation (Netser et al., 2011). Neurons exhibiting SSA can be found at several levels of the auditory pathway, from the inferior colliculus (IC) up to the auditory cortex (AC). In this review, we offer an account of the state-of-the art of SSA studies in the IC with the aim of contributing to the growing interest in the single-neuron electrophysiology of auditory deviance detection. The dependence of neuronal SSA on various stimulus features, e.g., probability of the deviant stimulus and repetition rate, and the roles of the AC and inhibition in shaping SSA at the level of the IC are addressed.
Collapse
Affiliation(s)
- Yaneri A Ayala
- Laboratory for the Neurobiology of Hearing, Auditory Neurophysiology Unit, Institute of Neuroscience of Castilla y León, University of Salamanca Salamanca, Spain
| | | |
Collapse
|
50
|
Ayala YA, Pérez-González D, Duque D, Nelken I, Malmierca MS. Frequency discrimination and stimulus deviance in the inferior colliculus and cochlear nucleus. Front Neural Circuits 2013; 6:119. [PMID: 23335885 PMCID: PMC3544151 DOI: 10.3389/fncir.2012.00119] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/19/2012] [Indexed: 11/17/2022] Open
Abstract
Auditory neurons that exhibit stimulus-specific adaptation (SSA) decrease their response to common tones while retaining responsiveness to rare ones. We recorded single-unit responses from the inferior colliculus (IC) where SSA is known to occur and we explored for the first time SSA in the cochlear nucleus (CN) of rats. We assessed an important functional outcome of SSA, the extent to which frequency discriminability depends on sensory context. For this purpose, pure tones were presented in an oddball sequence as standard (high probability of occurrence) or deviant (low probability of occurrence) stimuli. To study frequency discriminability under different probability contexts, we varied the probability of occurrence and the frequency separation between tones. The neuronal sensitivity was estimated in terms of spike-count probability using signal detection theory. We reproduced the finding that many neurons in the IC exhibited SSA, but we did not observe significant SSA in our CN sample. We concluded that strong SSA is not a ubiquitous phenomenon in the CN. As predicted, frequency discriminability was enhanced in IC when stimuli were presented in an oddball context, and this enhancement was correlated with the degree of SSA shown by the neurons. In contrast, frequency discrimination by CN neurons was independent of stimulus context. Our results demonstrated that SSA is not widespread along the entire auditory pathway, and suggest that SSA increases frequency discriminability of single neurons beyond that expected from their tuning curves.
Collapse
Affiliation(s)
- Yaneri A Ayala
- Auditory Neurophysiology Laboratory, Institute of Neuroscience of Castilla y León, University of Salamanca Salamanca, Spain
| | | | | | | | | |
Collapse
|