1
|
Boudkkazi S, Debanne D. Enhanced Release Probability without Changes in Synaptic Delay during Analogue-Digital Facilitation. Cells 2024; 13:573. [PMID: 38607012 PMCID: PMC11011503 DOI: 10.3390/cells13070573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Neuronal timing with millisecond precision is critical for many brain functions such as sensory perception, learning and memory formation. At the level of the chemical synapse, the synaptic delay is determined by the presynaptic release probability (Pr) and the waveform of the presynaptic action potential (AP). For instance, paired-pulse facilitation or presynaptic long-term potentiation are associated with reductions in the synaptic delay, whereas paired-pulse depression or presynaptic long-term depression are associated with an increased synaptic delay. Parallelly, the AP broadening that results from the inactivation of voltage gated potassium (Kv) channels responsible for the repolarization phase of the AP delays the synaptic response, and the inactivation of sodium (Nav) channels by voltage reduces the synaptic latency. However, whether synaptic delay is modulated during depolarization-induced analogue-digital facilitation (d-ADF), a form of context-dependent synaptic facilitation induced by prolonged depolarization of the presynaptic neuron and mediated by the voltage-inactivation of presynaptic Kv1 channels, remains unclear. We show here that despite Pr being elevated during d-ADF at pyramidal L5-L5 cell synapses, the synaptic delay is surprisingly unchanged. This finding suggests that both Pr- and AP-dependent changes in synaptic delay compensate for each other during d-ADF. We conclude that, in contrast to other short- or long-term modulations of presynaptic release, synaptic timing is not affected during d-ADF because of the opposite interaction of Pr- and AP-dependent modulations of synaptic delay.
Collapse
Affiliation(s)
- Sami Boudkkazi
- Physiology Institute, University of Freiburg, 79104 Freiburg, Germany
- Unité de Neurobiologie des Canaux Ioniques et de la Synapse (UNIS), Institut National de la Santé et de la Recherche Médicale (INSERM), Aix-Marseille University, 13015 Marseille, France
| | - Dominique Debanne
- Unité de Neurobiologie des Canaux Ioniques et de la Synapse (UNIS), Institut National de la Santé et de la Recherche Médicale (INSERM), Aix-Marseille University, 13015 Marseille, France
| |
Collapse
|
2
|
Trigo F, Kawaguchi SY. Analogue signaling of somatodendritic synaptic activity to axon enhances GABA release in young cerebellar molecular layer interneurons. eLife 2023; 12:e85971. [PMID: 37565643 PMCID: PMC10421593 DOI: 10.7554/elife.85971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/21/2023] [Indexed: 08/12/2023] Open
Abstract
Axons are equipped with the digital signaling capacity by which they generate and faithfully propagate action potentials (APs), and also with the analogue signaling capacity by which subthreshold activity in dendrites and soma is transmitted down the axon. Despite intense work, the extent and physiological role for subthreshold synaptic activity reaching the presynaptic boutons has remained elusive because of the technical limitation to record from them. To address this issue, we made simultaneous patch-clamp recordings from the presynaptic varicosities of cerebellar GABAergic interneurons together with their parent soma or postsynaptic target cells in young rat slices and/or primary cultures. Our tour-de-force direct functional dissection indicates that the somatodendritic spontaneous excitatory synaptic potentials are transmitted down the axon for significant distances, depolarizing presynaptic boutons. These analogously transmitted excitatory synaptic potentials augment presynaptic Ca++ influx upon arrival of an immediately following AP through a mechanism that involves a voltage-dependent priming of the Ca++ channels, leading to an increase in GABA release, without any modification in the presynaptic AP waveform or residual Ca++. Our work highlights the role of the axon in synaptic integration.
Collapse
Affiliation(s)
- Federico Trigo
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente EstableMontevideoUruguay
| | - Shin-ya Kawaguchi
- Department of Biophysics, Graduate School of Science, Kyoto University Oiwake-choKyotoJapan
| |
Collapse
|
3
|
Le Guellec B, Gomez LC, Malagon G, Collin T, Marty A. Depolarization-induced bursts of miniature synaptic currents in individual synapses of developing cerebellum. J Gen Physiol 2023; 155:e202213212. [PMID: 37010482 PMCID: PMC10072220 DOI: 10.1085/jgp.202213212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/07/2022] [Accepted: 03/13/2023] [Indexed: 04/04/2023] Open
Abstract
In central synapses, spontaneous transmitter release observed in the absence of action potential firing is often considered as a random process lacking time or space specificity. However, when studying miniature glutamatergic currents at cerebellar synapses between parallel fibers and molecular layer interneurons, we found that these currents were sometimes organized in bursts of events occurring at high frequency (about 30 Hz). Bursts displayed homogeneous quantal size amplitudes. Furthermore, in the presence of the desensitization inhibitor cyclothiazide, successive events within a burst displayed quantal amplitude occlusion. Based on these findings, we conclude that bursts originate in individual synapses. Bursts were enhanced by increasing either the external potassium concentration or the external calcium concentration, and they were strongly inhibited when blocking voltage-gated calcium channels by cadmium. Bursts were prevalent in elevated potassium concentration during the formation of the molecular layer but were infrequent later in development. Since postsynaptic AMPA receptors are largely calcium permeant in developing parallel fiber-interneuron synapses, we propose that bursts involve presynaptic calcium transients implicating presynaptic voltage-gated calcium channels, together with postsynaptic calcium transients implicating postsynaptic AMPA receptors. These simultaneous pre- and postsynaptic calcium transients may contribute to the formation and/or stabilization of synaptic connections.
Collapse
Affiliation(s)
- Bastien Le Guellec
- Université Paris Cité, Saints Pères Paris Institute for the Neurosciences, CNRS, Paris, France
| | - Laura C. Gomez
- Université Paris Cité, Saints Pères Paris Institute for the Neurosciences, CNRS, Paris, France
| | - Gerardo Malagon
- Université Paris Cité, Saints Pères Paris Institute for the Neurosciences, CNRS, Paris, France
| | - Thibault Collin
- Université Paris Cité, Saints Pères Paris Institute for the Neurosciences, CNRS, Paris, France
| | - Alain Marty
- Université Paris Cité, Saints Pères Paris Institute for the Neurosciences, CNRS, Paris, France
| |
Collapse
|
4
|
Hirono M, Nakata M. Ghrelin signaling in the cerebellar cortex enhances GABAergic transmission onto Purkinje cells. Sci Rep 2023; 13:2150. [PMID: 36750743 PMCID: PMC9905081 DOI: 10.1038/s41598-023-29226-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Ghrelin, an orexigenic peptide ligand for growth hormone secretagogue receptor 1a (GHS-R1a), occurs not only in the stomach but also in the brain, and modulates neuronal activity and synaptic efficacy. Previous studies showed that GHS-R1a exists in the cerebellum, and ghrelin facilitates spontaneous firing of Purkinje cells (PCs). However, the effects of ghrelin on cerebellar GABAergic transmission have yet to be elucidated. We found that ghrelin enhanced GABAergic transmission between molecular layer interneurons (MLIs) and PCs using electrophysiological recordings in mouse cerebellar slices. This finding was consistent with the possibility that blocking synaptic transmission enhanced the ghrelin-induced facilitation of PC firing. Ghrelin profoundly increased the frequency of spontaneous inhibitory postsynaptic currents (IPSCs) in PCs without affecting miniature or stimulation-evoked IPSCs, whereas it significantly facilitated spontaneous firing of MLIs. This facilitation of MLI spiking disappeared during treatments with blockers of GHS-R1a, type 1 transient receptor potential canonical (TRPC1) channels and KCNQ channels. These results suggest that both activating TRPC1 channels and inhibiting KCNQ channels occur downstream the ghrelin-GHS-R1a signaling pathway probably in somatodendritic sites of MLIs. Thus, ghrelin can control PC firing directly and indirectly via its modulation of GABAergic transmission, thereby impacting activity in cerebellar circuitry.
Collapse
Affiliation(s)
- Moritoshi Hirono
- Department of Physiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-8509, Japan.
| | - Masanori Nakata
- Department of Physiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-8509, Japan
| |
Collapse
|
5
|
Kaleb K, Pedrosa V, Clopath C. Network-centered homeostasis through inhibition maintains hippocampal spatial map and cortical circuit function. Cell Rep 2021; 36:109577. [PMID: 34433026 PMCID: PMC8411119 DOI: 10.1016/j.celrep.2021.109577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/21/2021] [Accepted: 07/29/2021] [Indexed: 11/23/2022] Open
Abstract
Despite ongoing experiential change, neural activity maintains remarkable stability. Although this is thought to be mediated by homeostatic plasticity, what aspect of neural activity is conserved and how the flexibility necessary for learning and memory is maintained is not fully understood. Experimental studies suggest that there exists network-centered, in addition to the well-studied neuron-centered, control. Here we computationally study such a potential mechanism: input-dependent inhibitory plasticity (IDIP). In a hippocampal model, we show that IDIP can explain the emergence of active and silent place cells as well as remapping following silencing of active place cells. Furthermore, we show that IDIP can also stabilize recurrent dynamics while preserving firing rate heterogeneity and stimulus representation, as well as persistent activity after memory encoding. Hence, the establishment of global network balance with IDIP has diverse functional implications and may be able to explain experimental phenomena across different brain areas. Input-dependent inhibitory plasticity (IDIP) provides network-wide homeostasis IDIP can explain hippocampal remapping following place map silencing IDIP can also provide recurrent network homeostasis with firing rate diversity
Collapse
Affiliation(s)
- Klara Kaleb
- Bioengineering Department, Imperial College London, London, UK
| | - Victor Pedrosa
- Bioengineering Department, Imperial College London, London, UK; Sainsbury Wellcome Centre, UCL, London, UK
| | - Claudia Clopath
- Bioengineering Department, Imperial College London, London, UK.
| |
Collapse
|
6
|
Silva M, Tran V, Marty A. Calcium-dependent docking of synaptic vesicles. Trends Neurosci 2021; 44:579-592. [PMID: 34049722 DOI: 10.1016/j.tins.2021.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/23/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
The concentration of calcium ions in presynaptic terminals regulates transmitter release, but underlying mechanisms have remained unclear. Here we review recent studies that shed new light on this issue. Fast-freezing electron microscopy and total internal reflection fluorescence microscopy studies reveal complex calcium-dependent vesicle movements including docking on a millisecond time scale. Recordings from so-called 'simple synapses' indicate that calcium not only triggers exocytosis, but also modifies synaptic strength by controlling a final, rapid vesicle maturation step before release. Molecular studies identify several calcium-sensitive domains on Munc13 and on synaptotagmin-1 that are likely involved in bringing the vesicular and plasma membranes closer together in response to calcium elevation. Together, these results suggest that calcium-dependent vesicle docking occurs in a wide range of time domains and plays a crucial role in several phenomena including synaptic facilitation, post-tetanic potentiation, and neuromodulator-induced potentiation.
Collapse
Affiliation(s)
- Melissa Silva
- Université de Paris, SPPIN-Saints Pères Paris Institute for the Neurosciences, CNRS, F-75006 Paris, France
| | - Van Tran
- Université de Paris, SPPIN-Saints Pères Paris Institute for the Neurosciences, CNRS, F-75006 Paris, France
| | - Alain Marty
- Université de Paris, SPPIN-Saints Pères Paris Institute for the Neurosciences, CNRS, F-75006 Paris, France.
| |
Collapse
|
7
|
Alexander RPD, Bowie D. Intrinsic plasticity of cerebellar stellate cells is mediated by NMDA receptor regulation of voltage-gated Na + channels. J Physiol 2020; 599:647-665. [PMID: 33146903 DOI: 10.1113/jp280627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS We show that NMDA receptors (NMDARs) elicit a long-term increase in the firing rates of inhibitory stellate cells of the cerebellum NMDARs induce intrinsic plasticity through a Ca2+ - and CaMKII-dependent pathway that drives shifts in the activation and inactivation properties of voltage-gated Na+ (Nav ) channels An identical Ca2+ - and CaMKII-dependent signalling pathway is triggered during whole-cell recording which lowers the action potential threshold by causing a hyperpolarizing shift in the gating properties of Nav channels. Our findings open the more general possibility that NMDAR-mediated intrinsic plasticity found in other cerebellar neurons may involve similar shifts in Nav channel gating. ABSTRACT Memory storage in the mammalian brain is mediated not only by long-lasting changes in the efficacy of neurotransmitter receptors but also by long-term modifications to the activity of voltage-gated ion channels. Activity-dependent plasticity of voltage-gated ion channels, or intrinsic plasticity, is found throughout the brain in virtually all neuronal types, including principal cells and interneurons. Although intrinsic plasticity has been identified in neurons of the cerebellum, it has yet to be studied in inhibitory cerebellar stellate cells of the molecular layer which regulate activity outflow from the cerebellar cortex by feedforward inhibition onto Purkinje cells. The study of intrinsic plasticity in stellate cells has been particularly challenging as membrane patch breakthrough in electrophysiology experiments unintentionally triggers changes in spontaneous firing rates. Using cell-attached patch recordings to avoid disruption, we show that activation of extrasynaptic N-methyl-d-aspartate receptors (NMDARs) elicits a long-term increase in the firing properties of stellate cells by stimulating a rise in cytosolic Ca2+ and activation of Ca²⁺/calmodulin-dependent protein kinase II (CaMKII). An identical signalling pathway is triggered during whole-cell recording which lowers the action potential threshold by causing a hyperpolarizing shift in the gating properties of voltage-gated sodium (Nav ) channels. Together, our findings identify an unappreciated role of Nav channel-dependent intrinsic plasticity in cerebellar stellate cells which, in concert with non-canonical NMDAR signalling, provides the cerebellum with an unconventional mechanism to fine-tune motor behaviour.
Collapse
Affiliation(s)
- Ryan P D Alexander
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Derek Bowie
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| |
Collapse
|
8
|
Blanchard K, Zorrilla de San Martín J, Marty A, Llano I, Trigo FF. Differentially poised vesicles underlie fast and slow components of release at single synapses. J Gen Physiol 2020; 152:e201912523. [PMID: 32243497 PMCID: PMC7201884 DOI: 10.1085/jgp.201912523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/12/2020] [Indexed: 12/25/2022] Open
Abstract
In several types of central mammalian synapses, sustained presynaptic stimulation leads to a sequence of two components of synaptic vesicle release, reflecting the consecutive contributions of a fast-releasing pool (FRP) and of a slow-releasing pool (SRP). Previous work has shown that following common depletion by a strong stimulation, FRP and SRP recover with different kinetics. However, it has remained unclear whether any manipulation could lead to a selective enhancement of either FRP or SRP. To address this question, we have performed local presynaptic calcium uncaging in single presynaptic varicosities of cerebellar interneurons. These varicosities typically form "simple synapses" onto postsynaptic interneurons, involving several (one to six) docking/release sites within a single active zone. We find that strong uncaging laser pulses elicit two phases of release with time constants of ∼1 ms (FRP release) and ∼20 ms (SRP release). When uncaging was preceded by action potential-evoked vesicular release, the extent of SRP release was specifically enhanced. We interpret this effect as reflecting an increased likelihood of two-step release (docking then release) following the elimination of docked synaptic vesicles by action potential-evoked release. In contrast, a subthreshold laser-evoked calcium elevation in the presynaptic varicosity resulted in an enhancement of the FRP release. We interpret this latter effect as reflecting an increased probability of occupancy of docking sites following subthreshold calcium increase. In conclusion, both fast and slow components of release can be specifically enhanced by certain presynaptic manipulations. Our results have implications for the mechanism of docking site replenishment and the regulation of synaptic responses, in particular following activation of ionotropic presynaptic receptors.
Collapse
Affiliation(s)
- Kris Blanchard
- Université de Paris, SPPIN - Saints-Pères Paris Institute for the Neurosciences, Centre National de la Recherche Scientifique, UMR 8003, Paris, France
| | - Javier Zorrilla de San Martín
- Université de Paris, SPPIN - Saints-Pères Paris Institute for the Neurosciences, Centre National de la Recherche Scientifique, UMR 8003, Paris, France
| | - Alain Marty
- Université de Paris, SPPIN - Saints-Pères Paris Institute for the Neurosciences, Centre National de la Recherche Scientifique, UMR 8003, Paris, France
| | - Isabel Llano
- Université de Paris, SPPIN - Saints-Pères Paris Institute for the Neurosciences, Centre National de la Recherche Scientifique, UMR 8003, Paris, France
| | - Federico F Trigo
- Université de Paris, SPPIN - Saints-Pères Paris Institute for the Neurosciences, Centre National de la Recherche Scientifique, UMR 8003, Paris, France
| |
Collapse
|
9
|
Zbili M, Rama S, Yger P, Inglebert Y, Boumedine-Guignon N, Fronzaroli-Moliniere L, Brette R, Russier M, Debanne D. Axonal Na + channels detect and transmit levels of input synchrony in local brain circuits. SCIENCE ADVANCES 2020; 6:eaay4313. [PMID: 32494697 PMCID: PMC7202877 DOI: 10.1126/sciadv.aay4313] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 02/19/2020] [Indexed: 06/11/2023]
Abstract
Sensory processing requires mechanisms of fast coincidence detection to discriminate synchronous from asynchronous inputs. Spike threshold adaptation enables such a discrimination but is ineffective in transmitting this information to the network. We show here that presynaptic axonal sodium channels read and transmit precise levels of input synchrony to the postsynaptic cell by modulating the presynaptic action potential (AP) amplitude. As a consequence, synaptic transmission is facilitated at cortical synapses when the presynaptic spike is produced by synchronous inputs. Using dual soma-axon recordings, imaging, and modeling, we show that this facilitation results from enhanced AP amplitude in the axon due to minimized inactivation of axonal sodium channels. Quantifying local circuit activity and using network modeling, we found that spikes induced by synchronous inputs produced a larger effect on network activity than spikes induced by asynchronous inputs. Therefore, this input synchrony-dependent facilitation may constitute a powerful mechanism, regulating synaptic transmission at proximal synapses.
Collapse
Affiliation(s)
- Mickaël Zbili
- UNIS, INSERM, UMR 1072, Aix-Marseille Université, 13015, Marseille, France
| | - Sylvain Rama
- UNIS, INSERM, UMR 1072, Aix-Marseille Université, 13015, Marseille, France
| | - Pierre Yger
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Yanis Inglebert
- UNIS, INSERM, UMR 1072, Aix-Marseille Université, 13015, Marseille, France
| | | | | | - Romain Brette
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Michaël Russier
- UNIS, INSERM, UMR 1072, Aix-Marseille Université, 13015, Marseille, France
| | - Dominique Debanne
- UNIS, INSERM, UMR 1072, Aix-Marseille Université, 13015, Marseille, France
| |
Collapse
|
10
|
Malagon G, Miki T, Tran V, Gomez LC, Marty A. Incomplete vesicular docking limits synaptic strength under high release probability conditions. eLife 2020; 9:e52137. [PMID: 32228859 PMCID: PMC7136020 DOI: 10.7554/elife.52137] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/23/2020] [Indexed: 01/17/2023] Open
Abstract
Central mammalian synapses release synaptic vesicles in dedicated structures called docking/release sites. It has been assumed that when voltage-dependent calcium entry is sufficiently large, synaptic output attains a maximum value of one synaptic vesicle per action potential and per site. Here we use deconvolution to count synaptic vesicle output at single sites (mean site number per synapse: 3.6). When increasing calcium entry with tetraethylammonium in 1.5 mM external calcium concentration, we find that synaptic output saturates at 0.22 vesicle per site, not at 1 vesicle per site. Fitting the results with current models of calcium-dependent exocytosis indicates that the 0.22 vesicle limit reflects the probability of docking sites to be occupied by synaptic vesicles at rest, as only docked vesicles can be released. With 3 mM external calcium, the maximum output per site increases to 0.47, indicating an increase in docking site occupancy as a function of external calcium concentration.
Collapse
Affiliation(s)
- Gerardo Malagon
- Université de Paris, SPPIN-Saints Pères Paris Institute for the Neurosciences, CNRSParisFrance
- Department of Cell Biology and Physiology, Washington UniversitySt. LouisUnited States
| | - Takafumi Miki
- Université de Paris, SPPIN-Saints Pères Paris Institute for the Neurosciences, CNRSParisFrance
- Graduate School of Brain Science, Doshisha UniversityKyotoJapan
| | - Van Tran
- Université de Paris, SPPIN-Saints Pères Paris Institute for the Neurosciences, CNRSParisFrance
| | - Laura C Gomez
- Université de Paris, SPPIN-Saints Pères Paris Institute for the Neurosciences, CNRSParisFrance
| | - Alain Marty
- Université de Paris, SPPIN-Saints Pères Paris Institute for the Neurosciences, CNRSParisFrance
| |
Collapse
|
11
|
Zbili M, Debanne D. Past and Future of Analog-Digital Modulation of Synaptic Transmission. Front Cell Neurosci 2019; 13:160. [PMID: 31105529 PMCID: PMC6492051 DOI: 10.3389/fncel.2019.00160] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/08/2019] [Indexed: 01/12/2023] Open
Abstract
Action potentials (APs) are generally produced in response to complex summation of excitatory and inhibitory synaptic inputs. While it is usually considered as a digital event, both the amplitude and width of the AP are significantly impacted by the context of its emission. In particular, the analog variations in subthreshold membrane potential determine the spike waveform and subsequently affect synaptic strength, leading to the so-called analog-digital modulation of synaptic transmission. We review here the numerous evidence suggesting context-dependent modulation of spike waveform, the discovery analog-digital modulation of synaptic transmission in invertebrates and its recent validation in mammals. We discuss the potential roles of analog-digital transmission in the physiology of neural networks.
Collapse
Affiliation(s)
- Mickael Zbili
- UNIS, UMR 1072, INSERM AMU, Marseille, France.,CRNL, INSERM U1028-CNRS UMR5292-Université Claude Bernard Lyon1, Lyon, France
| | | |
Collapse
|
12
|
Delvendahl I, Müller M. Homeostatic plasticity—a presynaptic perspective. Curr Opin Neurobiol 2019; 54:155-162. [DOI: 10.1016/j.conb.2018.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/04/2018] [Indexed: 01/05/2023]
|
13
|
Pulido C, Marty A. A two-step docking site model predicting different short-term synaptic plasticity patterns. J Gen Physiol 2018; 150:1107-1124. [PMID: 29950400 PMCID: PMC6080900 DOI: 10.1085/jgp.201812072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022] Open
Abstract
Established models of vesicular docking/release sites can account for synaptic depression. By incorporating a separate predocked state and by assuming that docking site occupancy is <1 at rest, Pulido and Marty extend previous models and explain facilitating and nonmonotonic synaptic responses. The strength of synaptic transmission varies during trains of presynaptic action potentials, notably because of the depletion of synaptic vesicles available for release. It has remained unclear why some synapses display depression over time, whereas others facilitate or show a facilitation and depression sequence. Here we compare the predictions of various synaptic models assuming that several docking/release sites are acting in parallel. These models show variation of docking site occupancy during trains of action potentials due to vesicular release and site replenishment, which give rise to changes in synaptic strength. To conform with recent studies, we assume an initial docking site occupancy of <1, thus permitting site occupancy to increase during action potential trains and facilitation to occur. We consider both a standard one-step model and a more elaborate model that assumes a predocked state (two-step model). Whereas the one-step model predicts monotonic changes of synaptic strength during a train, the two-step model allows nonmonotonic changes, including the often-observed facilitation/depression sequence. Both models predict a partitioning of parameter space between initially depressing and facilitating synapses. Using data obtained from interneuron synapses in the cerebellum, we demonstrate an unusual form of depression/facilitation sequence for very high release probability after prolonged depolarization-induced transmitter release. These results indicate a depletion of predocked vesicles in the two-step model. By permitting docking site occupancy to be <1 at rest, and by incorporating a separate predocked state, we reveal that docking site models can be expanded to mimic the large variety of time-dependent changes of synaptic strength that have been observed during action potential trains. Furthermore, the two-step model provides an effective framework to identify the specific mechanisms responsible for short-term changes in synaptic strength.
Collapse
Affiliation(s)
- Camila Pulido
- Laboratory of Brain Physiology, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8118, Paris Descartes University, Paris, France
| | - Alain Marty
- Laboratory of Brain Physiology, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8118, Paris Descartes University, Paris, France
| |
Collapse
|
14
|
Abstract
Axons link distant brain regions and are usually considered as simple transmission cables in which reliable propagation occurs once an action potential has been generated. Safe propagation of action potentials relies on specific ion channel expression at strategic points of the axon such as nodes of Ranvier or axonal branch points. However, while action potentials are generally considered as the quantum of neuronal information, their signaling is not entirely digital. In fact, both their shape and their conduction speed have been shown to be modulated by activity, leading to regulations of synaptic latency and synaptic strength. We report here newly identified mechanisms of (1) safe spike propagation along the axon, (2) compartmentalization of action potential shape in the axon, (3) analog modulation of spike-evoked synaptic transmission and (4) alteration in conduction time after persistent regulation of axon morphology in central neurons. We discuss the contribution of these regulations in information processing.
Collapse
Affiliation(s)
- Sylvain Rama
- UNIS, UMR_S 1072, INSERM, Aix-Marseille Université, 13015 Marseille, France; Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Mickaël Zbili
- UNIS, UMR_S 1072, INSERM, Aix-Marseille Université, 13015 Marseille, France
| | - Dominique Debanne
- UNIS, UMR_S 1072, INSERM, Aix-Marseille Université, 13015 Marseille, France.
| |
Collapse
|
15
|
Rowan MJM, Christie JM. Rapid State-Dependent Alteration in K v3 Channel Availability Drives Flexible Synaptic Signaling Dependent on Somatic Subthreshold Depolarization. Cell Rep 2017; 18:2018-2029. [PMID: 28228266 DOI: 10.1016/j.celrep.2017.01.068] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/16/2016] [Accepted: 01/25/2017] [Indexed: 10/20/2022] Open
Abstract
In many neurons, subthreshold depolarization in the soma can transiently increase action-potential (AP)-evoked neurotransmission via analog-to-digital facilitation. The mechanisms underlying this form of short-term synaptic plasticity are unclear, in part, due to the relative inaccessibility of the axon to direct physiological interrogation. Using voltage imaging and patch-clamp recording from presynaptic boutons of cerebellar stellate interneurons, we observed that depolarizing somatic potentials readily spread into the axon, resulting in AP broadening, increased spike-evoked Ca2+ entry, and enhanced neurotransmission strength. Kv3 channels, which drive AP repolarization, rapidly inactivated upon incorporation of Kv3.4 subunits. This leads to fast susceptibility to depolarization-induced spike broadening and analog facilitation independent of Ca2+-dependent protein kinase C signaling. The spread of depolarization into the axon was attenuated by hyperpolarization-activated currents (Ih currents) in the maturing cerebellum, precluding analog facilitation. These results suggest that analog-to-digital facilitation is tempered by development or experience in stellate cells.
Collapse
Affiliation(s)
- Matthew J M Rowan
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Jason M Christie
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA.
| |
Collapse
|
16
|
Zorrilla de San Martin J, Trigo FF, Kawaguchi SY. Axonal GABA A receptors depolarize presynaptic terminals and facilitate transmitter release in cerebellar Purkinje cells. J Physiol 2017; 595:7477-7493. [PMID: 29072780 DOI: 10.1113/jp275369] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/20/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS GABAA receptors have been described in the axonal compartment of neurons; contrary to dendritic GABAA receptors, axonal GABAA receptors usually induce depolarizing responses. In this study we describe the presence of functional axonal GABAA receptors in cerebellar Purkinje cells by using a combination of direct patch-clamp recordings from the axon terminals and laser GABA photolysis. In Purkinje cells, axonal GABAA receptors are depolarizing and induce an increase in neurotransmitter release that results in a change of short-term synaptic plasticity. These results contribute to our understanding of the cellular mechanisms of action of axonal GABAA receptors and highlight the importance of the presynaptic compartment in neuronal computation. ABSTRACT In neurons of the adult brain, somatodendritic GABAA receptors (GABAA Rs) mediate fast synaptic inhibition and play a crucial role in synaptic integration. GABAA Rs are not only present in the somatodendritic compartment, but also in the axonal compartment where they modulate action potential (AP) propagation and transmitter release. Although presynaptic GABAA Rs have been reported in various brain regions, their mechanisms of action and physiological roles remain obscure, particularly at GABAergic boutons. Here, using a combination of direct whole-bouton or perforated patch-clamp recordings and local GABA photolysis in single axonal varicosities of cerebellar Purkinje cells, we investigate the subcellular localization and functional role of axonal GABAA Rs both in primary cultures and acute slices. Our results indicate that presynaptic terminals of PCs carry GABAA Rs that behave as auto-receptors; their activation leads to a depolarization of the terminal membrane after an AP due to the relatively high cytoplasmic Cl- concentration in the axon, but they do not modulate the AP itself. Paired recordings from different terminals of the same axon show that the GABAA R-mediated local depolarizations propagate substantially to neighbouring varicosities. Finally, the depolarization mediated by presynaptic GABAA R activation augmented Ca2+ influx and transmitter release, resulting in a marked effect on short-term plasticity. Altogether, our results reveal a mechanism by which presynaptic GABAA Rs influence neuronal computation.
Collapse
Affiliation(s)
- Javier Zorrilla de San Martin
- Laboratoire de Physiologie Cérébrale, Université Paris Descartes and Centre National de la Recherche Scientifique, CNRS UMR8118, Paris, France.,Current affiliation: INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Federico F Trigo
- Laboratoire de Physiologie Cérébrale, Université Paris Descartes and Centre National de la Recherche Scientifique, CNRS UMR8118, Paris, France
| | - Shin-Ya Kawaguchi
- Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto, Japan.,Society-Academia Collaboration for Innovation, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.,Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
17
|
The role of axonal Kv1 channels in CA3 pyramidal cell excitability. Sci Rep 2017; 7:315. [PMID: 28331203 PMCID: PMC5428268 DOI: 10.1038/s41598-017-00388-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 02/22/2017] [Indexed: 01/24/2023] Open
Abstract
Axonal ion channels control spike initiation and propagation along the axon and determine action potential waveform. We show here that functional suppression of axonal Kv1 channels with local puff of dendrotoxin (DTx), laser or mechanical axotomy significantly increased excitability measured in the cell body. Importantly, the functional effect of DTx puffing or axotomy was not limited to the axon initial segment but was also seen on axon collaterals. In contrast, no effects were observed when DTx was puffed on single apical dendrites or after single dendrotomy. A simple model with Kv1 located in the axon reproduced the experimental observations and showed that the distance at which the effects of axon collateral cuts are seen depends on the axon space constant. In conclusion, Kv1 channels located in the axon proper greatly participate in intrinsic excitability of CA3 pyramidal neurons. This finding stresses the importance of the axonal compartment in the regulation of intrinsic neuronal excitability.
Collapse
|
18
|
Ludwar BC, Evans CG, Cambi M, Cropper EC. Activity-dependent increases in [Ca 2+] i contribute to digital-analog plasticity at a molluscan synapse. J Neurophysiol 2017; 117:2104-2112. [PMID: 28275057 DOI: 10.1152/jn.00034.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/01/2017] [Accepted: 03/05/2017] [Indexed: 12/21/2022] Open
Abstract
In a type of short-term plasticity that is observed in a number of systems, synaptic transmission is potentiated by depolarizing changes in the membrane potential of the presynaptic neuron before spike initiation. This digital-analog form of plasticity is graded. The more depolarized the neuron, the greater the increase in the efficacy of synaptic transmission. In a number of systems, including the system presently under investigation, this type of modulation is calcium dependent, and its graded nature is presumably a consequence of a direct relationship between the intracellular calcium concentration ([Ca2+]i) and the effect on synaptic transmission. It is therefore of interest to identify factors that determine the magnitude of this type of calcium signal. We studied a synapse in Aplysia and demonstrate that there can be a contribution from currents activated during spiking. When neurons spike, there are localized increases in [Ca2+]i that directly trigger neurotransmitter release. Additionally, spiking can lead to global increases in [Ca2+]i that are reminiscent of those induced by subthreshold depolarization. We demonstrate that these spike-induced increases in [Ca2+]i result from the activation of a current not activated by subthreshold depolarization. Importantly, they decay with a relatively slow time constant. Consequently, with repeated spiking, even at a low frequency, they readily summate to become larger than increases in [Ca2+]i induced by subthreshold depolarization alone. When this occurs, global increases in [Ca2+]i induced by spiking play the predominant role in determining the efficacy of synaptic transmission.NEW & NOTEWORTHY We demonstrate that spiking can induce global increases in the intracellular calcium concentration ([Ca2+]i) that decay with a relatively long time constant. Consequently, summation of the calcium signal occurs even at low firing frequencies. As a result there is significant, persistent potentiation of synaptic transmission.
Collapse
Affiliation(s)
- Bjoern Ch Ludwar
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; and.,Department of Biology and Environmental Sciences, Longwood University, Farmville, Virginia
| | - Colin G Evans
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Monica Cambi
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Elizabeth C Cropper
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; and
| |
Collapse
|
19
|
Zbili M, Rama S, Debanne D. Dynamic Control of Neurotransmitter Release by Presynaptic Potential. Front Cell Neurosci 2016; 10:278. [PMID: 27994539 PMCID: PMC5136543 DOI: 10.3389/fncel.2016.00278] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/21/2016] [Indexed: 12/30/2022] Open
Abstract
Action potentials (APs) in the mammalian brain are thought to represent the smallest unit of information transmitted by neurons to their postsynaptic targets. According to this view, neuronal signaling is all-or-none or digital. Increasing evidence suggests, however, that subthreshold changes in presynaptic membrane potential before triggering the spike also determines spike-evoked release of neurotransmitter. We discuss here how analog changes in presynaptic voltage may regulate spike-evoked release of neurotransmitter through the modulation of biophysical state of voltage-gated potassium, calcium and sodium channels in the presynaptic compartment. The contribution of this regulation has been greatly underestimated and we discuss the impact for information processing in neuronal circuits.
Collapse
Affiliation(s)
- Mickael Zbili
- UNIS, UMR_S 1072, Institut National de la Santé et de la Recherche Médicale (INSERM), Aix-Marseille Université Marseille, France
| | - Sylvain Rama
- UNIS, UMR_S 1072, Institut National de la Santé et de la Recherche Médicale (INSERM), Aix-Marseille Université Marseille, France
| | - Dominique Debanne
- UNIS, UMR_S 1072, Institut National de la Santé et de la Recherche Médicale (INSERM), Aix-Marseille Université Marseille, France
| |
Collapse
|
20
|
Brunner J, Szabadics J. Analogue modulation of back-propagating action potentials enables dendritic hybrid signalling. Nat Commun 2016; 7:13033. [PMID: 27703164 PMCID: PMC5059477 DOI: 10.1038/ncomms13033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/25/2016] [Indexed: 02/06/2023] Open
Abstract
We report that back-propagating action potentials (bAPs) are not simply digital feedback signals in dendrites but also carry analogue information about the overall state of neurons. Analogue information about the somatic membrane potential within a physiological range (from -78 to -64 mV) is retained by bAPs of dentate gyrus granule cells as different repolarization speeds in proximal dendrites and as different peak amplitudes in distal regions. These location-dependent waveform changes are reflected by local calcium influx, leading to proximal enhancement and distal attenuation during somatic hyperpolarization. The functional link between these retention and readout mechanisms of the analogue content of bAPs critically depends on high-voltage-activated, inactivating calcium channels. The hybrid bAP and calcium mechanisms report the phase of physiological somatic voltage fluctuations and modulate long-term synaptic plasticity in distal dendrites. Thus, bAPs are hybrid signals that relay somatic analogue information, which is detected by the dendrites in a location-dependent manner.
Collapse
Affiliation(s)
- János Brunner
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 43 Szigony Street, Budapest 1083, Hungary
| | - János Szabadics
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 43 Szigony Street, Budapest 1083, Hungary
| |
Collapse
|
21
|
Presynaptic hyperpolarization induces a fast analogue modulation of spike-evoked transmission mediated by axonal sodium channels. Nat Commun 2015; 6:10163. [PMID: 26657943 PMCID: PMC4682119 DOI: 10.1038/ncomms10163] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 11/11/2015] [Indexed: 11/25/2022] Open
Abstract
In the mammalian brain, synaptic transmission usually depends on presynaptic action potentials (APs) in an all-or-none (or digital) manner. Recent studies suggest, however, that subthreshold depolarization in the presynaptic cell facilitates spike-evoked transmission, thus creating an analogue modulation of a digital process (or analogue–digital (AD) modulation). At most synapses, this process is slow and not ideally suited for the fast dynamics of neural networks. We show here that transmission at CA3–CA3 and L5–L5 synapses can be enhanced by brief presynaptic hyperpolarization such as an inhibitory postsynaptic potential (IPSP). Using dual soma–axon patch recordings and live imaging, we find that this hyperpolarization-induced AD facilitation (h-ADF) is due to the recovery from inactivation of Nav channels controlling AP amplitude in the axon. Incorporated in a network model, h-ADF promotes both pyramidal cell synchrony and gamma oscillations. In conclusion, cortical excitatory synapses in local circuits display hyperpolarization-induced facilitation of spike-evoked synaptic transmission that promotes network synchrony. 'Digital' spike-evoked transmission can be facilitated by slow subthreshold 'analogue' depolarisation of the presynaptic neuron. Here, the authors identify a novel, rapid form of digital-analogue facilitation in mammalian neurons whereby presynaptic hyperpolarisation enables de-inactivation of axonal Nav channels.
Collapse
|
22
|
de San Martin JZ, Jalil A, Trigo FF. Impact of single-site axonal GABAergic synaptic events on cerebellar interneuron activity. J Gen Physiol 2015; 146:477-93. [PMID: 26621773 PMCID: PMC4664828 DOI: 10.1085/jgp.201511506] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/13/2015] [Indexed: 11/29/2022] Open
Abstract
Axonal ionotropic receptors are present in a variety of neuronal types, and their function has largely been associated with the modulation of axonal activity and synaptic release. It is usually assumed that activation of axonal GABA(A)Rs comes from spillover, but in cerebellar molecular layer interneurons (MLIs) the GABA source is different: in these cells, GABA release activates presynaptic GABA(A) autoreceptors (autoRs) together with postsynaptic targets, producing an autoR-mediated synaptic event. The frequency of presynaptic, autoR-mediated miniature currents is twice that of their somatodendritic counterparts, suggesting that autoR-mediated responses have an important effect on interneuron activity. Here, we used local Ca(2+) photolysis in MLI axons of juvenile rats to evoke GABA release from individual varicosities to study the activation of axonal autoRs in single release sites. Our data show that single-site autoR conductances are similar to postsynaptic dendritic conductances. In conditions of high [Cl(-)](i), autoR-mediated conductances range from 1 to 5 nS; this corresponds to ∼30-150 GABA(A) channels per presynaptic varicosity, a value close to the number of channels in postsynaptic densities. Voltage responses produced by the activation of autoRs in single varicosities are amplified by a Na(v)-dependent mechanism and propagate along the axon with a length constant of 91 µm. Immunolabeling determination of synapse location shows that on average, one third of the synapses produce autoR-mediated signals that are large enough to reach the axon initial segment. Finally, we show that single-site activation of presynaptic GABA(A) autoRs leads to an increase in MLI excitability and thus conveys a strong feedback signal that contributes to spiking activity.
Collapse
Affiliation(s)
- Javier Zorrilla de San Martin
- Laboratoire de Physiologie Cérébrale, Université Paris Descartes and Centre National de la Recherche Scientifique, CNRS UMR8118, 75794 Paris, France
| | - Abdelali Jalil
- Laboratoire de Physiologie Cérébrale, Université Paris Descartes and Centre National de la Recherche Scientifique, CNRS UMR8118, 75794 Paris, France
| | - Federico F Trigo
- Laboratoire de Physiologie Cérébrale, Université Paris Descartes and Centre National de la Recherche Scientifique, CNRS UMR8118, 75794 Paris, France
| |
Collapse
|
23
|
Müllner F, Wierenga C, Bonhoeffer T. Precision of Inhibition: Dendritic Inhibition by Individual GABAergic Synapses on Hippocampal Pyramidal Cells Is Confined in Space and Time. Neuron 2015; 87:576-89. [DOI: 10.1016/j.neuron.2015.07.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 05/05/2015] [Accepted: 07/09/2015] [Indexed: 12/19/2022]
|
24
|
Bing YH, Wu MC, Chu CP, Qiu DL. Facial stimulation induces long-term depression at cerebellar molecular layer interneuron-Purkinje cell synapses in vivo in mice. Front Cell Neurosci 2015; 9:214. [PMID: 26106296 PMCID: PMC4460530 DOI: 10.3389/fncel.2015.00214] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/20/2015] [Indexed: 12/03/2022] Open
Abstract
Cerebellar long-term synaptic plasticity has been proposed to provide a cellular mechanism for motor learning. Numerous studies have demonstrated the induction and mechanisms of synaptic plasticity at parallel fiber–Purkinje cell (PF–PC), parallel fiber–molecular layer interneurons (PF–MLI) and mossy fiber–granule cell (MF–GC) synapses, but no study has investigated sensory stimulation-evoked synaptic plasticity at MLI–PC synapses in the cerebellar cortex of living animals. We studied the expression and mechanism of MLI–PC GABAergic synaptic plasticity induced by a train of facial stimulation in urethane-anesthetized mice by cell-attached recordings and pharmacological methods. We found that 1 Hz, but not a 2 Hz or 4 Hz, facial stimulation induced a long-term depression (LTD) of GABAergic transmission at MLI–PC synapses, which was accompanied with a decrease in the stimulation-evoked pause of spike firing in PCs, but did not induce a significant change in the properties of the sensory-evoked spike events of MLIs. The MLI–PC GABAergic LTD could be prevented by blocking cannabinoid type 1 (CB1) receptors, and could be pharmacologically induced by a CB1 receptor agonist. Additionally, 1 Hz facial stimulation delivered in the presence of a metabotropic glutamate receptor 1 (mGluR1) antagonist, JNJ16259685, still induced the MLI–PC GABAergic LTD, whereas blocking N-methyl-D-aspartate (NMDA) receptors during 1 Hz facial stimulation abolished the expression of MLI–PC GABAergic LTD. These results indicate that sensory stimulation can induce an endocannabinoid (eCB)-dependent LTD of GABAergic transmission at MLI–PC synapses via activation of NMDA receptors in cerebellar cortical Crus II in vivo in mice. Our results suggest that the sensory stimulation-evoked MLI–PC GABAergic synaptic plasticity may play a critical role in motor learning in animals.
Collapse
Affiliation(s)
- Yan-Hua Bing
- Cellular Function Research Center, Yanbian University Yanji, Jilin Province, China ; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University Yanji, Jilin Province, China
| | - Mao-Cheng Wu
- Cellular Function Research Center, Yanbian University Yanji, Jilin Province, China ; Department of Osteology, Affiliated Hospital of Yanbian University Yanji, Jilin Province, China
| | - Chun-Ping Chu
- Cellular Function Research Center, Yanbian University Yanji, Jilin Province, China
| | - De-Lai Qiu
- Cellular Function Research Center, Yanbian University Yanji, Jilin Province, China ; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University Yanji, Jilin Province, China
| |
Collapse
|
25
|
Pulido C, Trigo F, Llano I, Marty A. Vesicular Release Statistics and Unitary Postsynaptic Current at Single GABAergic Synapses. Neuron 2015; 85:159-172. [DOI: 10.1016/j.neuron.2014.12.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2014] [Indexed: 10/24/2022]
|
26
|
Modulation of spike-evoked synaptic transmission: The role of presynaptic calcium and potassium channels. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1933-9. [PMID: 25461842 DOI: 10.1016/j.bbamcr.2014.11.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 01/08/2023]
Abstract
Action potentials are usually considered as the smallest unit of neuronal information conveyed by presynaptic neurons to their postsynaptic target. Thus, neuronal signaling in brain circuits is all-or-none or digital. However, recent studies indicate that subthreshold analog variation in presynaptic membrane potential modulates spike-evoked transmission. The informational content of each presynaptic action potential is therefore greater than initially expected. This property constitutes a form of fast activity-dependent modulation of functional coupling. Therefore, it could have important consequences on information processing in neural networks in parallel with more classical forms of presynaptic short-term facilitation based on repetitive stimulation, modulation of presynaptic calcium or modifications of the release machinery. We discuss here how analog voltage shift in the presynaptic neuron may regulate spike-evoked release of neurotransmitter through the modulation of voltage-gated calcium and potassium channels in the axon and presynaptic terminal. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.
Collapse
|
27
|
Bialowas A, Rama S, Zbili M, Marra V, Fronzaroli-Molinieres L, Ankri N, Carlier E, Debanne D. Analog modulation of spike-evoked transmission in CA3 circuits is determined by axonal Kv1.1 channels in a time-dependent manner. Eur J Neurosci 2014; 41:293-304. [PMID: 25394682 DOI: 10.1111/ejn.12787] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/01/2014] [Accepted: 10/16/2014] [Indexed: 11/28/2022]
Abstract
Synaptic transmission usually depends on action potentials (APs) in an all-or-none (digital) fashion. Recent studies indicate, however, that subthreshold presynaptic depolarization may facilitate spike-evoked transmission, thus creating an analog modulation of spike-evoked synaptic transmission, also called analog-digital (AD) synaptic facilitation. Yet, the underlying mechanisms behind this facilitation remain unclear. We show here that AD facilitation at rat CA3-CA3 synapses is time-dependent and requires long presynaptic depolarization (5-10 s) for its induction. This depolarization-induced AD facilitation (d-ADF) is blocked by the specific Kv1.1 channel blocker dendrotoxin-K. Using fast voltage-imaging of the axon, we show that somatic depolarization used for induction of d-ADF broadened the AP in the axon through inactivation of Kv1.1 channels. Somatic depolarization enhanced spike-evoked calcium signals in presynaptic terminals, but not basal calcium. In conclusion, axonal Kv1.1 channels determine glutamate release in CA3 neurons in a time-dependent manner through the control of the presynaptic spike waveform.
Collapse
Affiliation(s)
- Andrzej Bialowas
- INSERM, UMR_S 1072, Marseille, France; Aix-Marseille Université, UNIS, Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Synaptic gain-of-function effects of mutant Cav2.1 channels in a mouse model of familial hemiplegic migraine are due to increased basal [Ca2+]i. J Neurosci 2014; 34:7047-58. [PMID: 24849341 DOI: 10.1523/jneurosci.2526-13.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Specific missense mutations in the CACNA1A gene, which encodes a subunit of voltage-gated CaV2.1 channels, are associated with familial hemiplegic migraine type 1 (FHM1), a rare monogenic subtype of common migraine with aura. We used transgenic knock-in (KI) mice harboring the human pathogenic FHM1 mutation S218L to study presynaptic Ca(2+) currents, EPSCs, and in vivo activity at the calyx of Held synapse. Whole-cell patch-clamp recordings of presynaptic terminals from S218L KI mice showed a strong shift of the calcium current I-V curve to more negative potentials, leading to an increase in basal [Ca(2+)]i, increased levels of spontaneous transmitter release, faster recovery from synaptic depression, and enhanced synaptic strength despite smaller action-potential-elicited Ca(2+) currents. The gain-of-function of transmitter release of the S218L mutant was reproduced in vivo, including evidence for an increased release probability, demonstrating its relevance for glutamatergic transmission. This synaptic phenotype may explain the misbalance between excitation and inhibition in neuronal circuits resulting in a persistent hyperexcitability state and other migraine-relevant mechanisms such as an increased susceptibility to cortical spreading depression.
Collapse
|
29
|
N-methyl-d-aspartate inhibits cerebellar Purkinje cell activity via the excitation of molecular layer interneurons under in vivo conditions in mice. Brain Res 2014; 1560:1-9. [PMID: 24642274 DOI: 10.1016/j.brainres.2014.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/06/2014] [Accepted: 03/07/2014] [Indexed: 11/20/2022]
Abstract
N-methyl-d-aspartate (NMDA) receptors play a key role in synaptic transmission, and are widely expressed on the membrane of granule cells, parallel fibers, and molecular layer interneurons (MLIs) in the cerebellar cortex of mammals. In cerebellar slices, activation of NMDA receptors increases inhibitory postsynaptic currents (IPSCs) of Purkinje cells (PCs). However, the effects of NMDA on the cerebellar network under in vivo conditions are currently unclear. In the present study, we examined the effects of NMDA on the spontaneous activity of PCs and MLIs in urethane-anesthetized mice by electrophysiological, pharmacological, and juxtacellular labeling methods. Our results revealed that cerebellar surface application of NMDA (5-200μM) reduced the PC simple spike (SS) firing rate in a dose-dependent manner. Application of GABAA receptor antagonist, SR95531 (20μM) abolished NMDA-induced inhibition of PCs spontaneous activity, and revealed NMDA-induced excitation of cerebellar PCs. NMDA receptor antagonist, DAP-V (250µM) did not affect the mean frequency of SS firing, but the SS firing rate of PCs became more regular than the control. In addition, NMDA increased the spike firing of both basket-type and stellate-type MLIs. Overall, these results indicated that NMDA-induced excitation of MLIs at the cerebellar surface may inhibit PC activity. Thus, NMDA receptors of MLIs may play a key role in regulating the spontaneous activity of PCs, and in information transmission and integration in cerebellar cortex.
Collapse
|
30
|
Bal M, Leitz J, Reese AL, Ramirez DMO, Durakoglugil M, Herz J, Monteggia LM, Kavalali ET. Reelin mobilizes a VAMP7-dependent synaptic vesicle pool and selectively augments spontaneous neurotransmission. Neuron 2013; 80:934-46. [PMID: 24210904 DOI: 10.1016/j.neuron.2013.08.024] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2013] [Indexed: 02/07/2023]
Abstract
Reelin is a glycoprotein that is critical for proper layering of neocortex during development as well as dynamic regulation of glutamatergic postsynaptic signaling in mature synapses. Here, we show that Reelin also acts presynaptically, resulting in robust rapid enhancement of spontaneous neurotransmitter release without affecting properties of evoked neurotransmission. This effect of Reelin requires a modest but significant increase in presynaptic Ca(2+) initiated via ApoER2 signaling. The specificity of Reelin action on spontaneous neurotransmitter release is encoded at the level of vesicular SNARE machinery as it requires VAMP7 and SNAP-25 but not synaptobrevin2, VAMP4, or vti1a. These results uncover a presynaptic regulatory pathway that utilizes the heterogeneity of synaptic vesicle-associated SNAREs and selectively augments action potential-independent neurotransmission.
Collapse
Affiliation(s)
- Manjot Bal
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Younger MA, Müller M, Tong A, Pym EC, Davis GW. A presynaptic ENaC channel drives homeostatic plasticity. Neuron 2013; 79:1183-96. [PMID: 23973209 PMCID: PMC3784986 DOI: 10.1016/j.neuron.2013.06.048] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2013] [Indexed: 11/26/2022]
Abstract
An electrophysiology-based forward genetic screen has identified two genes, pickpocket11 (ppk11) and pickpocket16 (ppk16), as being necessary for the homeostatic modulation of presynaptic neurotransmitter release at the Drosophila neuromuscular junction (NMJ). Pickpocket genes encode Degenerin/Epithelial Sodium channel subunits (DEG/ENaC). We demonstrate that ppk11 and ppk16 are necessary in presynaptic motoneurons for both the acute induction and long-term maintenance of synaptic homeostasis. We show that ppk11 and ppk16 are cotranscribed as a single mRNA that is upregulated during homeostatic plasticity. Acute pharmacological inhibition of a PPK11- and PPK16-containing channel abolishes the expression of short- and long-term homeostatic plasticity without altering baseline presynaptic neurotransmitter release, indicating remarkable specificity for homeostatic plasticity rather than NMJ development. Finally, presynaptic calcium imaging experiments support a model in which a PPK11- and PPK16-containing DEG/ENaC channel modulates presynaptic membrane voltage and, thereby, controls calcium channel activity to homeostatically regulate neurotransmitter release.
Collapse
Affiliation(s)
- Meg A. Younger
- Department of Biochemistry and Biophysics University of California, San Francisco San Francisco, CA 94941
| | - Martin Müller
- Department of Biochemistry and Biophysics University of California, San Francisco San Francisco, CA 94941
| | - Amy Tong
- Department of Biochemistry and Biophysics University of California, San Francisco San Francisco, CA 94941
| | - Edward C. Pym
- Department of Biochemistry and Biophysics University of California, San Francisco San Francisco, CA 94941
| | - Graeme W. Davis
- Department of Biochemistry and Biophysics University of California, San Francisco San Francisco, CA 94941
| |
Collapse
|
32
|
Gallos G, Townsend E, Yim P, Virag L, Zhang Y, Xu D, Bacchetta M, Emala CW. Airway epithelium is a predominant source of endogenous airway GABA and contributes to relaxation of airway smooth muscle tone. Am J Physiol Lung Cell Mol Physiol 2012. [PMID: 23204068 DOI: 10.1152/ajplung.00274.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic obstructive pulmonary disease and asthma are characterized by hyperreactive airway responses that predispose patients to episodes of acute airway constriction. Recent studies suggest a complex paradigm of GABAergic signaling in airways that involves GABA-mediated relaxation of airway smooth muscle. However, the cellular source of airway GABA and mechanisms regulating its release remain unknown. We questioned whether epithelium is a major source of GABA in the airway and whether the absence of epithelium-derived GABA contributes to greater airway smooth muscle force. Messenger RNA encoding glutamic acid decarboxylase (GAD) 65/67 was quantitatively measured in human airway epithelium and smooth muscle. HPLC quantified GABA levels in guinea pig tracheal ring segments under basal or stimulated conditions with or without epithelium. The role of endogenous GABA in the maintenance of an acetylcholine contraction in human airway and guinea pig airway smooth muscle was assessed in organ baths. A 37.5-fold greater amount of mRNA encoding GAD 67 was detected in human epithelium vs. airway smooth muscle cells. HPLC confirmed that guinea pig airways with intact epithelium have a higher constitutive elution of GABA under basal or KCl-depolarized conditions compared with epithelium-denuded airway rings. Inhibition of GABA transporters significantly suppressed KCl-mediated release of GABA from epithelium-intact airways, but tetrodotoxin was without effect. The presence of intact epithelium had a significant GABAergic-mediated prorelaxant effect on the maintenance of contractile tone. Airway epithelium is a predominant cellular source of endogenous GABA in the airway and contributes significant prorelaxant GABA effects on airway smooth muscle force.
Collapse
Affiliation(s)
- George Gallos
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, 622 W. 168 St., P&S Box 46, New York, NY 10032, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Debanne D, Bialowas A, Rama S. What are the mechanisms for analogue and digital signalling in the brain? Nat Rev Neurosci 2012. [PMID: 23187813 DOI: 10.1038/nrn3361] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Synaptic transmission in the brain generally depends on action potentials. However, recent studies indicate that subthreshold variation in the presynaptic membrane potential also determines spike-evoked transmission. The informational content of each presynaptic action potential is therefore greater than initially expected. The contribution of this synaptic property, which is a fast (from 0.01 to 10 s) and state-dependent modulation of functional coupling, has been largely underestimated and could have important consequences for our understanding of information processing in neural networks. We discuss here how the membrane voltage of the presynaptic terminal might modulate neurotransmitter release by mechanisms that do not involve a change in presynaptic Ca(2+) influx.
Collapse
Affiliation(s)
- Dominique Debanne
- INSERM, UMR_S 1072, and Aix-Marseille Université, UNIS, 13015, Marseille, France.
| | | | | |
Collapse
|
34
|
Rossi B, Ogden D, Llano I, Tan YP, Marty A, Collin T. Current and calcium responses to local activation of axonal NMDA receptors in developing cerebellar molecular layer interneurons. PLoS One 2012; 7:e39983. [PMID: 22761940 PMCID: PMC3384623 DOI: 10.1371/journal.pone.0039983] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 05/30/2012] [Indexed: 11/19/2022] Open
Abstract
In developing cerebellar molecular layer interneurons (MLIs), NMDA increases spontaneous GABA release. This effect had been attributed to either direct activation of presynaptic NMDA receptors (preNMDARs) or an indirect pathway involving activation of somato-dendritic NMDARs followed by passive spread of somatic depolarization along the axon and activation of axonal voltage dependent Ca(2+) channels (VDCCs). Using Ca(2+) imaging and electrophysiology, we searched for preNMDARs by uncaging NMDAR agonists either broadly throughout the whole field or locally at specific axonal locations. Releasing either NMDA or glutamate in the presence of NBQX using short laser pulses elicited current transients that were highly sensitive to the location of the spot and restricted to a small number of varicosities. The signal was abolished in the presence of high Mg(2+) or by the addition of APV. Similar paradigms yielded restricted Ca(2+) transients in interneurons loaded with a Ca(2+) indicator. We found that the synaptic effects of NMDA were not inhibited by blocking VDCCs but were impaired in the presence of the ryanodine receptor antagonist dantrolene. Furthermore, in voltage clamped cells, bath applied NMDA triggers Ca(2+) elevations and induces neurotransmitter release in the axonal compartment. Our results suggest the existence of preNMDARs in developing MLIs and propose their involvement in the NMDA-evoked increase in GABA release by triggering a Ca(2+)-induced Ca(2+) release process mediated by presynaptic Ca(2+) stores. Such a mechanism is likely to exert a crucial role in various forms of Ca(2+)-mediated synaptic plasticity.
Collapse
Affiliation(s)
- Bénédicte Rossi
- Laboratoire de Physiologie Cérébrale, CNRS-UMR 8118, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - David Ogden
- Laboratoire de Physiologie Cérébrale, CNRS-UMR 8118, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Isabel Llano
- Laboratoire de Physiologie Cérébrale, CNRS-UMR 8118, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Yusuf P. Tan
- Laboratoire de Physiologie Cérébrale, CNRS-UMR 8118, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Alain Marty
- Laboratoire de Physiologie Cérébrale, CNRS-UMR 8118, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Thibault Collin
- Laboratoire de Physiologie Cérébrale, CNRS-UMR 8118, Université Paris Descartes, Université Paris Diderot, Paris, France
- * E-mail:
| |
Collapse
|