1
|
Kida H, Toyoshima S, Kawakami R, Sakimoto Y, Mitsushima D. Properties of layer V pyramidal neurons in the primary motor cortex that represent acquired motor skills. Neuroscience 2024; 559:54-63. [PMID: 39209105 DOI: 10.1016/j.neuroscience.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Layer V neurons in primary motor cortex (M1) are required for motor skill learning. We analyzed training-induced plasticity using a whole-cell slice patch-clamp technique with a rotor rod task, and found that training induces diverse changes in intrinsic properties and synaptic plasticity in M1 layer V neurons. Although the causal relationship between specific cellular changes and motor performance is unclear, by linking individual motor performance to cellular/synaptic functions, we identified several cellular and synaptic parameters that represent acquired motor skills. With respect to cellular properties, motor performance was positively correlated with resting membrane potential and fast afterhyperpolarization, but not with the membrane resistance, capacitance, or threshold. With respect to synaptic function, the performance was positively correlated with AMPA receptor-mediated postsynaptic currents, but not with GABAA receptor-mediated postsynaptic currents. With respect to live imaging analysis in Thy1-YFP mice, we further demonstrated a cross-correlation between motor performance, spine head volume, and self-entropy per spine. In the present study, we identified several changes in M1 layer V pyramidal neurons after motor training that represent acquired motor skills. Furthermore, training increased extracellular acetylcholine levels known to promote synaptic plasticity, which is correlated with individual motor performance. These results suggest that systematic control of specific intracellular parameters and enhancement of synaptic plasticity in M1 layer V neurons may be useful for improving motor skills.
Collapse
Affiliation(s)
- H Kida
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan.
| | - S Toyoshima
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan
| | - R Kawakami
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Ehime 791-0295, Japan
| | - Y Sakimoto
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan
| | - D Mitsushima
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan; The Research Institute for Time Studies, Yamaguchi University, Yamaguchi 753-8511, Japan.
| |
Collapse
|
2
|
Libby AE, Solt CM, Jackman MR, Sherk VD, Foright RM, Johnson GC, Nguyen TT, Breit MJ, Hulett N, Rudolph MC, Roberson PA, Wellberg EA, Jambal P, Scalzo RL, Higgins J, Kumar TR, Wierman ME, Pan Z, Shankar K, Klemm DJ, Moreau KL, Kohrt WM, MacLean PS. Effects of follicle-stimulating hormone on energy balance and tissue metabolic health after loss of ovarian function. Am J Physiol Endocrinol Metab 2024; 326:E626-E639. [PMID: 38536037 PMCID: PMC11208003 DOI: 10.1152/ajpendo.00400.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024]
Abstract
Loss of ovarian function imparts increased susceptibility to obesity and metabolic disease. These effects are largely attributed to decreased estradiol (E2), but the role of increased follicle-stimulating hormone (FSH) in modulating energy balance has not been fully investigated. Previous work that blocked FSH binding to its receptor in mice suggested this hormone may play a part in modulating body weight and energy expenditure after ovariectomy (OVX). We used an alternate approach to isolate the individual and combined contributions of FSH and E2 in mediating energy imbalance and changes in tissue-level metabolic health. Female Wistar rats were ovariectomized and given the gonadotropin releasing hormone (GnRH) antagonist degarelix to suppress FSH production. E2 and FSH were then added back individually and in combination for a period of 3 wk. Energy balance, body mass composition, and transcriptomic profiles of individual tissues were obtained. In contrast to previous studies, suppression and replacement of FSH in our paradigm had no effect on body weight, body composition, food intake, or energy expenditure. We did, however, observe organ-specific effects of FSH that produced unique transcriptomic signatures of FSH in retroperitoneal white adipose tissue. These included reductions in biological processes related to lipogenesis and carbohydrate transport. In addition, rats administered FSH had reduced liver triglyceride concentration (P < 0.001), which correlated with FSH-induced changes at the transcriptomic level. Although not appearing to modulate energy balance after loss of ovarian function in rats, FSH may still impart tissue-specific effects in the liver and white adipose tissue that might affect the metabolic health of those organs.NEW & NOTEWORTHY We find no effect of follicle-stimulating hormone (FSH) on energy balance using a novel model in which rats are ovariectomized, subjected to gonadotropin-releasing hormone antagonism, and systematically given back FSH by osmotic pump. However, tissue-specific effects of FSH on adipose tissue and liver were observed in this study. These include unique transcriptomic signatures induced by the hormone and a stark reduction in hepatic triglyceride accumulation.
Collapse
Affiliation(s)
- Andrew E Libby
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Claudia M Solt
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Matthew R Jackman
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Vanessa D Sherk
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Center for Scientific Review, National Institutes of Health, Bethesda, Maryland, United States
| | - Rebecca M Foright
- Department of Anatomy and Cell Biology, University of Kansas Medical Campus, Kansas City, Kansas, United States
| | - Ginger C Johnson
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Thi-Tina Nguyen
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Matthew J Breit
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Nicholas Hulett
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Michael C Rudolph
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Campus, Oklahoma City, Oklahoma, United States
| | - Paul A Roberson
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Elizabeth A Wellberg
- Stephenson Cancer Center, University of Oklahoma Health Sciences Campus, Oklahoma City, Oklahoma, United States
| | - Purevsuren Jambal
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Rebecca L Scalzo
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Janine Higgins
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - T Rajendra Kumar
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Margaret E Wierman
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Zhaoxing Pan
- Section of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kartik Shankar
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Dwight J Klemm
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kerrie L Moreau
- Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Wendy M Kohrt
- Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Paul S MacLean
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
3
|
Abstract
Across vertebrate species, gonadal hormones coordinate physiology with behavior to facilitate social interactions essential for reproduction and survival. In adulthood, these hormones activate neural circuits that regulate behaviors presenting differently in females and males, such as parenting and territorial aggression. Yet long before sex-typical behaviors emerge at puberty, transient hormone production during sensitive periods of neurodevelopment establish the circuits upon which adult hormones act. How transitory waves of early-life hormone signaling exert lasting effects on the brain remains a central question. Here we discuss how perinatal estradiol signaling organizes cellular and molecular sex differences in the rodent brain. We review classic anatomic studies revealing sex differences in cell number, volume, and neuronal projections, and consider how single-cell sequencing methods enable distinction between sex-biased cell-type abundance and gene expression. Finally, we highlight the recent discovery of a gene regulatory program activated by estrogen receptor α (ERα) following the perinatal hormone surge. A subset of this program displays sustained sex-biased gene expression and chromatin accessibility throughout the postnatal sensitive period, demonstrating a bona fide epigenetic mechanism. We propose that ERα-expressing neurons throughout the social behavior network use similar gene regulatory programs to coordinate brain sexual differentiation.
Collapse
Affiliation(s)
- Bruno Gegenhuber
- Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Jessica Tollkuhn
- Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
4
|
Sakimoto Y, Shintani A, Yoshiura D, Goshima M, Kida H, Mitsushima D. A critical period for learning and plastic changes at hippocampal CA1 synapses. Sci Rep 2022; 12:7199. [PMID: 35504922 PMCID: PMC9065057 DOI: 10.1038/s41598-022-10453-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/24/2022] [Indexed: 02/07/2023] Open
Abstract
Postnatal development of hippocampal function has been reported in many mammalian species, including humans. To obtain synaptic evidence, we analyzed developmental changes in plasticity after an inhibitory avoidance task in rats. Learning performance was low in infants (postnatal 2 weeks) but clearly improved from the juvenile period (3-4 weeks) to adulthood (8 weeks). One hour after the training, we prepared brain slices and sequentially recorded miniature excitatory postsynaptic currents (mEPSCs) and inhibitory postsynaptic currents (mIPSCs) from the same hippocampal CA1 neuron. Although the training failed to affect the amplitude of either mEPSCs or mIPSCs at 2 weeks, it increased mEPSC, but not mIPSC, amplitude at 3 weeks. At 4 weeks, the training had increased the amplitude of both mEPSCs and mIPSCs, whereas mIPSC, but not mEPSC, amplitude was increased at 8 weeks. Because early-life physiological functions can affect performance, we also evaluated sensory-motor functions together with emotional state and found adequate sensory/motor functions from infancy to adulthood. Moreover, by analyzing performance of rats in multiple hippocampal-dependent tasks, we found that the developmental changes in the performance are task dependent. Taken together, these findings delineate a critical period for learning and plastic changes at hippocampal CA1 synapses.
Collapse
Affiliation(s)
- Yuya Sakimoto
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan.
| | - Ako Shintani
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan
| | - Daiki Yoshiura
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan
| | - Makoto Goshima
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan
| | - Hiroyuki Kida
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan
| | - Dai Mitsushima
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan.
- The Research Institute for Time Studies, Yamaguchi University, Yamaguchi, 753-8511, Japan.
| |
Collapse
|
5
|
Kipp BT, Nunes PT, Savage LM. Sex differences in cholinergic circuits and behavioral disruptions following chronic ethanol exposure with and without thiamine deficiency. Alcohol Clin Exp Res 2021; 45:1013-1027. [PMID: 33690917 DOI: 10.1111/acer.14594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Few studies have investigated differences in the vulnerabilities of males and females to alcohol use disorder and alcohol-related brain damage (ARBD). According to epidemiological and clinical findings, females appear to be more sensitive to the effects of alcohol and thiamine deficiency and have a worse prognosis in recovery from neurocognitive deficits compared with males. This study aimed to characterize the effects of chronic ethanol (EtOH) toxicity and thiamine deficiency across the sexes using rodent models. METHODS Male and female Sprague Dawley rats were assigned to chronic forced EtOH treatment (CET), pyrithiamine-induced thiamine deficiency (PTD), combined CET-PTD, or pair-fed (PF) control treatment conditions. Following treatments, spatial working memory was assessed during a spontaneous alternation task while measuring acetylcholine (ACh) in the prefrontal cortex (PFC) and the hippocampus (HPC). The animals also underwent an operant-based attentional set-shifting task (ASST) for the analysis of behavioral flexibility. RESULTS Female and male rats did not differ in terms of EtOH consumption; however, the CET and CET-PTD-treated female rats had lower BECs than male rats. Compared with the PF group, the CET, PTD, and CET-PTD groups exhibited spatial working memory impairments with corresponding reductions in ACh efflux in the PFC and HPC. The ASST revealed that CET-PTD-treated males and females displayed impairments marked by increased latency to make decisions. Thalamic shrinkage was prominent only in the CET-PTD and PTD treatment conditions, but no sex-specific effects were observed. CONCLUSIONS Although the CET and CET-PTD-treated females had lower BECs than the males, they demonstrated similar cognitive impairments. These results provide evidence that female rats experience behavioral and neurochemical disruptions at lower levels of alcohol exposure than males and that chronic EtOH and thiamine deficiencies produce a unique behavioral profile.
Collapse
Affiliation(s)
- Brian T Kipp
- Department of Psychology, Binghamton University of the State University of New York, New York, NY, USA
| | - Polliana T Nunes
- Department of Psychology, Binghamton University of the State University of New York, New York, NY, USA
| | - Lisa M Savage
- Department of Psychology, Binghamton University of the State University of New York, New York, NY, USA
| |
Collapse
|
6
|
Gavin KM, Melanson EL, Hildreth KL, Gibbons E, Bessesen DH, Kohrt WM. A Randomized Controlled Trial of Ovarian Suppression in Premenopausal Women: No Change in Free-Living Energy Expenditure. Obesity (Silver Spring) 2020; 28:2125-2133. [PMID: 33150745 PMCID: PMC7653843 DOI: 10.1002/oby.22978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/01/2020] [Accepted: 07/15/2020] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The purpose of this study was to determine whether suppression of ovarian function (gonadotropin-releasing hormone agonist [GnRHAG ]) for 24 weeks in premenopausal women approaching menopause causes changes in body composition and a decline in free-living physical activity energy expenditure (PAEE) and whether endurance exercise training attenuates the changes. METHODS Premenopausal women who were approaching menopause (mean [SD]: age 46 [3] years, BMI 26.3 [4.8] kg/m2 ) were randomized to 24 weeks of GnRHAG (n = 14), GnRHAG + Exercise (n = 11), or placebo (n = 9). Endurance exercise was performed 4 days per week with the goal of expending 200 to 300 kcal per session. Primary outcome measurements included body composition by dual-energy x-ray absorptiometry, total daily energy expenditure (TDEE), and PAEE by doubly labeled water, and resting energy expenditure (REE) by indirect calorimetry. RESULTS Changes in TDEE, PAEE, REE, or body composition were not different between groups. However, within the GnRHAG group, fat mass increased (mean [SE]: total 1.7 [0.4] kg, trunk 0.9 [0.2] kg, leg 0.6 [0.2] kg) and fat-free leg mass decreased (mean [SE]: -0.4 [0.2] kg) significantly. CONCLUSIONS In premenopausal women approaching menopause, ovarian hormone suppression resulted in increased adiposity without alterations in TDEE, PAEE, or REE.
Collapse
Affiliation(s)
- Kathleen M Gavin
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Eastern Colorado VA Geriatric, Research, Education, and Clinical Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Edward L Melanson
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Eastern Colorado VA Geriatric, Research, Education, and Clinical Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kerry L Hildreth
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ellie Gibbons
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Daniel H Bessesen
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Anschutz Health and Wellness Center, Aurora, Colorado, USA
| | - Wendy M Kohrt
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Eastern Colorado VA Geriatric, Research, Education, and Clinical Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
7
|
Gu J, Xu S, Liu Y, Chen X. Chlorpyrifos-induced toxicity has no gender selectivity in the early fetal brain. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 55:803-812. [PMID: 32602772 DOI: 10.1080/03601234.2020.1786326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organophosphorus pesticides induce gender-specific developmental neurotoxicity after birth, especially in adolescents and adults. However, whether and when the selectivity occurs in fetus remains unclear. In this study, we analyzed chlorpyrifos (CPF)-induced neurotoxicity in the early fetal brains of male and female mice. The gestational dams were administered 0, 1, 3, and 5 mg/(kg.d) CPF during gestational days (GD)7-11, and brains from the fetuses were isolated and analyzed on GD12. Fetal gender was identified by PCR technique based on male-specific Sry gene and Myog control gene. The body weight and head weight, the activity of acetylcholinesterase (AChE), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and the content of malondialdehyde (MDA), as well as the oxidative stress-related gene expression were examined. Our results showed that CPF pretreatment induced AChE inhibition in GD12 fetal brain. CPF treatment activated SOD and GPX but not CAT and MDA. For oxidative stress-related gene expression, CPF pretreatment increased mRNA expression of Sod1, Cat, Gpx1, and Gpx2 in the fetal brain on GD12. The statistical analysis did not show gender-selective CPF-induced toxicity. Moreover, our results showed that although the gestational exposure to CPF could elicit abnormalities in the early fetal brain, the toxicity observed was not gender-specific.
Collapse
Affiliation(s)
- Jiabin Gu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Shuai Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuqiong Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiaoping Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
8
|
Sakimoto Y, Kida H, Mitsushima D. Temporal dynamics of learning-promoted synaptic diversity in CA1 pyramidal neurons. FASEB J 2019; 33:14382-14393. [PMID: 31689120 PMCID: PMC6894079 DOI: 10.1096/fj.201801893rrr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although contextual learning requires plasticity at both excitatory and inhibitory (E/I) synapses in cornu ammonis 1 (CA1) neurons, the temporal dynamics across the neuronal population are poorly understood. Using an inhibitory avoidance task, we analyzed the dynamic changes in learning-induced E/I synaptic plasticity. The training strengthened GABAA receptor–mediated synapses within 1 min, peaked at 10 min, and lasted for over 60 min. The intracellular loop (Ser408−409) of GABAA receptor β3 subunit was also phosphorylated within 1 min of training. As the results of strengthening of α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor–mediated synapses, CA1 pyramidal neurons exhibited broad diversity of E/I synaptic currents within 5 min. Moreover, presynaptic glutamate release probability at basal dendrites also increased within 5 min. To further quantify the diversified E/I synaptic currents, we calculated self-entropy (bit) for individual neurons. The neurons showed individual levels of the parameter, which rapidly increased within 1 min of training and maintained for over 60 min. These results suggest that learning-induced synaptic plasticity is critical immediately following encoding rather than during the retrieval phase of the learning. Understanding the temporal dynamics along with the quantification of synaptic diversity would be necessary to identify a failure point for learning-promoted plasticity in cognitive disorders.—Sakimoto, Y., Kida, H., Mitsushima, D. Temporal dynamics of learning-promoted synaptic diversity in CA1 pyramidal neurons.
Collapse
Affiliation(s)
- Yuya Sakimoto
- Department of Physiology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Hiroyuki Kida
- Department of Physiology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Dai Mitsushima
- Department of Physiology, Graduate School of Medicine, Yamaguchi University, Ube, Japan.,The Research Institute for Time Studies, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
9
|
Melanson EL, Lyden K, Gibbons E, Gavin KM, Wolfe P, Wierman ME, Schwartz RS, Kohrt WM. Influence of Estradiol Status on Physical Activity in Premenopausal Women. Med Sci Sports Exerc 2019; 50:1704-1709. [PMID: 29509642 DOI: 10.1249/mss.0000000000001598] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study aimed to determine the effects of 5 months of ovarian hormone suppression in premenopausal women on objectively measured physical activity (PA). METHODS Participants (age, 35 ± 8 yr; body mass index, 27 ± 6 kg·m) received monthly intramuscular injections of gonadotropin-releasing hormone agonist (GnRHAG) therapy, which suppresses pituitary gonadotropins and results in suppression of ovarian sex hormones. Women were randomized to receive concurrent transdermal E2 (GnRHAG + E2; n = 30) or placebo (GnRHAG + PL, n = 31). PA was assessed for 1 wk before and during each month of the 5-month intervention using a hip-worn accelerometer (Actical, Mini Mitter Co., Inc., Bend, OR). Estimates of time spent in sedentary, light, and moderate-to-vigorous PA (MVPA) were derived using a previously published equation. Subsets of participants in each group were also randomized to a supervised progressive resistance exercise training program. RESULTS Total MVPA tended toward being higher (P = 0.08) in the GnRHAG + E2 group at month 4. There were no significant effects of intervention or time in sedentary or light PA. In the subset of women who did not participate in structured exercise training for which Actical data were obtained (n = 16 in each group), total MVPA was higher at month 4 (P = 0.01). CONCLUSIONS PA levels seem to be maintained at a higher level in women undergoing pharmacological suppression of ovarian function with E2 add-back when compared with women treated with placebo. These data provide proof-of-concept data that E2 contributes to the regulation of PA in humans. However, given the exploratory nature of this study, future confirmatory investigations will be necessary.
Collapse
Affiliation(s)
- Edward L Melanson
- Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO.,Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO.,Eastern Colorado VA Geriatric Research, Education, and Clinical Center, Aurora, CO
| | - Kate Lyden
- KAL Research and Consulting LLC, Denver, CO
| | - Ellie Gibbons
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kathleen M Gavin
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO.,Eastern Colorado VA Geriatric Research, Education, and Clinical Center, Aurora, CO
| | - Pamela Wolfe
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Margaret E Wierman
- Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO.,VA Eastern Colorado Health Care System, Aurora, CO
| | - Robert S Schwartz
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO.,Eastern Colorado VA Geriatric Research, Education, and Clinical Center, Aurora, CO
| | - Wendy M Kohrt
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO.,Eastern Colorado VA Geriatric Research, Education, and Clinical Center, Aurora, CO
| |
Collapse
|
10
|
Kida H, Tsuda Y, Ito N, Yamamoto Y, Owada Y, Kamiya Y, Mitsushima D. Motor Training Promotes Both Synaptic and Intrinsic Plasticity of Layer II/III Pyramidal Neurons in the Primary Motor Cortex. Cereb Cortex 2016; 26:3494-507. [PMID: 27193420 PMCID: PMC4961021 DOI: 10.1093/cercor/bhw134] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Motor skill training induces structural plasticity at dendritic spines in the primary motor cortex (M1). To further analyze both synaptic and intrinsic plasticity in the layer II/III area of M1, we subjected rats to a rotor rod test and then prepared acute brain slices. Motor skill consistently improved within 2 days of training. Voltage clamp analysis showed significantly higher α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-d-aspartate (AMPA/NMDA) ratios and miniature EPSC amplitudes in 1-day trained rats compared with untrained rats, suggesting increased postsynaptic AMPA receptors in the early phase of motor learning. Compared with untrained controls, 2-days trained rats showed significantly higher miniature EPSC amplitude and frequency. Paired-pulse analysis further demonstrated lower rates in 2-days trained rats, suggesting increased presynaptic glutamate release during the late phase of learning. One-day trained rats showed decreased miniature IPSC frequency and increased paired-pulse analysis of evoked IPSC, suggesting a transient decrease in presynaptic γ-aminobutyric acid (GABA) release. Moreover, current clamp analysis revealed lower resting membrane potential, higher spike threshold, and deeper afterhyperpolarization in 1-day trained rats—while 2-days trained rats showed higher membrane potential, suggesting dynamic changes in intrinsic properties. Our present results indicate dynamic changes in glutamatergic, GABAergic, and intrinsic plasticity in M1 layer II/III neurons after the motor training.
Collapse
Affiliation(s)
| | | | | | - Yui Yamamoto
- Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Yoshinori Kamiya
- Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, 4132 Urasa, Minami-uonuma, Niigata 949-7302, Japan
| | | |
Collapse
|
11
|
Moghadami S, Jahanshahi M, Sepehri H, Amini H. Gonadectomy reduces the density of androgen receptor-immunoreactive neurons in male rat's hippocampus: testosterone replacement compensates it. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2016; 12:5. [PMID: 26822779 PMCID: PMC4730763 DOI: 10.1186/s12993-016-0089-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/18/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND In the present study, the role of gonadectomy on memory impairment and the density of androgen receptor-immunoreactive neurons in rats' hippocampus as well as the ability of testosterone to compensate of memory and the density of androgen receptors in the hippocampus was evaluated. METHODS Adult male rats (except intact-no testosterone group) were bilaterally castrated, and behavioral tests performed 2 weeks later. Animals bilaterally cannulated into lateral ventricles and then received testosterone (10, 40 and 120 µg/0.5 µl DMSO) or vehicle (DMSO; 0.5 µl) for gonadectomized-vehicle group, 30 min before training in water maze test. The androgen receptor-immunoreactive neurons were detected by immunohistochemical technique in the hippocampal areas. RESULTS In the gonadectomized male rats, a memory deficit was found in Morris water maze test on test day (5th day) after DMSO administration. Gonadectomy decreased density of androgen receptor-immunoreactive neurons in the rats' hippocampus. The treatment with testosterone daily for 5 days attenuated memory deficits induced by gonadectomy. Testosterone also significantly increased the density of androgen receptor-immunoreactive neurons in the hippocampal areas. The intermediate dose of this hormone (40 µg) appeared to have a significant effect on spatial memory and the density of androgen receptor-immunoreactive neurons in gonadectomized rats' hippocampus. CONCLUSIONS The present study suggests that testosterone can compensate memory failure in gonadectomized rats. Also testosterone replacement can compensate the reduction of androgen receptor-immunoreactive neurons density in the rats' hippocampus after gonadectomy.
Collapse
Affiliation(s)
- Sajjad Moghadami
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Km 4 Gorgan-Sari Road (Shastcola), P.O. Box 4934174515, Gorgan, Iran.
| | - Mehrdad Jahanshahi
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Km 4 Gorgan-Sari Road (Shastcola), P.O. Box 4934174515, Gorgan, Iran.
| | - Hamid Sepehri
- Neuroscience Research Center, Department of Physiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Hossein Amini
- Neuroscience Research Center, Department of Pharmacology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
12
|
Melanson EL, Gavin KM, Shea KL, Wolfe P, Wierman ME, Schwartz RS, Kohrt WM. Regulation of energy expenditure by estradiol in premenopausal women. J Appl Physiol (1985) 2015; 119:975-81. [PMID: 26338457 DOI: 10.1152/japplphysiol.00473.2015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/01/2015] [Indexed: 11/22/2022] Open
Abstract
Suppressing sex hormones in women for 1 wk reduces resting energy expenditure (REE). The effects of more chronic suppression on REE and other components of total energy expenditure (TEE), and whether the reduction in REE is specifically due to loss of estradiol (E2), are not known. We compared the effects of 5 mo of sex hormone suppression (gonadotropin releasing hormone agonist therapy, GnRHAG) with placebo (PL) or E2 add-back therapy on REE and the components of TEE. Premenopausal women received GnRHAG (leuprolide acetate 3.75 mg/mo) and were randomized to receive transdermal therapy that was either E2 (0.075 mg/d; n = 24; means ± SD, aged = 37 ± 8 yr, BMI = 27.3 ± 6.2 kg/m(2)) or placebo (n = 21; aged = 34 ± 9 yr, BMI = 26.8 ± 6.2 kg/m(2)). REE was measured by using a metabolic cart, and TEE, sleep EE (SEE), exercise EE (ExEE, 2 × 30 min bench stepping), non-Ex EE (NExEE), and the thermic effect of feeding (TEF) were measured by using whole room indirect calorimetry. REE decreased in GnRHAG+PL [mean (95% CI), -54 (-98, -15) kcal/d], but not GnRHAG+E2 [+6 (-33, +45) kcal/d] (difference in between-group changes, P < 0.05). TEE decreased in GnRHAG+PL [-128 (-214, -41) kcal/d] and GnRHAG+E2 [-96 (-159, -32) kcal/d], with no significant difference in between-group changes (P = 0.55). SEE decreased similarly in both GnRHAG+PL [-0.07 (-0.12, -0.03) kcal/min] and GnRHAG+E2 [-0.07 (-0.12, -0.02) kcal/min]. ExEE decreased in GnRHAG+PL [-0.46 (-0.79, -0.13) kcal/min], but not GnRHAG+E2 [-0.30 (-0.65, +0.06) kcal/min]. There were no changes in TEF or NExEE in either group. In summary, chronic pharmacologic suppression of sex hormones reduced REE and this was prevented by E2 therapy.
Collapse
Affiliation(s)
- Edward L Melanson
- Division of Endocrinology, Metabolism, and Diabetes Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado and Denver Veterans Affairs Medical Center, Denver, Colorado
| | - Kathleen M Gavin
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado and Denver Veterans Affairs Medical Center, Denver, Colorado
| | - Karen L Shea
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado and Denver Veterans Affairs Medical Center, Denver, Colorado
| | - Pamela Wolfe
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado and
| | - Margaret E Wierman
- Division of Endocrinology, Metabolism, and Diabetes Denver Veterans Affairs Medical Center, Denver, Colorado
| | - Robert S Schwartz
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado and Denver Veterans Affairs Medical Center, Denver, Colorado
| | - Wendy M Kohrt
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado and Denver Veterans Affairs Medical Center, Denver, Colorado
| |
Collapse
|
13
|
Koebele SV, Bimonte-Nelson HA. Trajectories and phenotypes with estrogen exposures across the lifespan: What does Goldilocks have to do with it? Horm Behav 2015; 74:86-104. [PMID: 26122297 PMCID: PMC4829405 DOI: 10.1016/j.yhbeh.2015.06.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/14/2015] [Accepted: 06/04/2015] [Indexed: 01/04/2023]
Abstract
This article is part of a Special Issue "Estradiol and cognition". Estrogens impact the organization and activation of the mammalian brain in both sexes, with sex-specific critical windows. Throughout the female lifespan estrogens activate brain substrates previously organized by estrogens, and estrogens can induce non-transient brain and behavior changes into adulthood. Therefore, from early life through the transition to reproductive senescence and beyond, estrogens are potent modulators of the brain and behavior. Organizational, reorganizational, and activational hormone events likely impact the trajectory of brain profiles during aging. A "brain profile," or quantitative brain measurement for research purposes, is typically a snapshot in time, but in life a brain profile is anything but static--it is in flux, variable, and dynamic. Akin to this, the only thing continuous and consistent about hormone exposures across a female's lifespan is that they are noncontinuous and inconsistent, building and rebuilding on past exposures to create a present brain and behavioral landscape. Thus, hormone variation is especially rich in females, and is likely the destiny for maximal responsiveness in the female brain. The magnitude and direction of estrogenic effects on the brain and its functions depend on a myriad of factors; a "Goldilocks" phenomenon exists for estrogens, whereby if the timing, dose, and regimen for an individual are just right, markedly efficacious effects present. Data indicate that exogenously-administered estrogens can bestow beneficial cognitive effects in some circumstances, especially when initiated in a window of opportunity such as the menopause transition. Could it be that the age-related reduction in efficacy of estrogens reflects the closure of a late-in-life critical window occurring around the menopause transition? Information from classic and contemporary works studying organizational/activational estrogen actions, in combination with acknowledging the tendency for maximal responsiveness to cyclicity, will elucidate ways to extend sensitivity and efficacy into post-menopause.
Collapse
Affiliation(s)
- Stephanie V Koebele
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, USA
| | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, USA.
| |
Collapse
|
14
|
Kim HB, Kwon BJ, Cho HJ, Kim JW, Chon JW, Do MH, Park SY, Kim SY, Maeng SH, Park YK, Park JH. Long-term Treatment with Oriental Medicinal Herb Artemisia princeps Alters Neuroplasticity in a Rat Model of Ovarian Hormone Deficiency. Exp Neurobiol 2015; 24:71-83. [PMID: 25792871 PMCID: PMC4363335 DOI: 10.5607/en.2015.24.1.71] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/30/2015] [Accepted: 02/02/2015] [Indexed: 01/24/2023] Open
Abstract
Artemisia princeps (AP) is a flowering perennial used as a traditional medicine and dietary supplement across East Asia. No study has yet assessed its effects on synaptic plasticity in hippocampus and much less in a model of ovarian hormone deficiency. We examined the influence of chronic oral AP ethanol extract treatment in ovariectomized rats on the induction of long-term depression in a representative synapse (CA3-CA1) of the hippocampus. Ovariectomized rats demonstrated lower trabecular mean bone mineral densities than sham, validating the establishment of pathology. Against this background of pathology, AP-treated ovariectomized rats exhibited attenuated long-term depression (LTD) in CA1 relative to water-treated controls as measured by increased field excitatory post-synaptic potentials (fEPSP) activation averages over the post-stimulation period. While pathological significance of long-term depression (LTD) in ovariectomized rats is conflicting, that AP treatment significantly affected its induction offers justification for further study of its influences on plasticity and its related disorders.
Collapse
Affiliation(s)
- Hyun-Bum Kim
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, Korea
| | - Byeong-Jae Kwon
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, Korea
| | - Hyun-Ji Cho
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, Korea
| | - Ji-Won Kim
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, Korea
| | - Jeong-Woo Chon
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, Korea
| | - Moon-Ho Do
- College of Pharmacy, Gachon University, Incheon 406-799, Korea
| | - Sang-Yong Park
- Department of Oriental Medicinal Materials and Processing, College of Life Science, Kyung Hee University, Yongin 446-701, Korea
| | - Sun-Yeou Kim
- College of Pharmacy, Gachon University, Incheon 406-799, Korea
| | - Sung-Ho Maeng
- Department of East-West Medicine, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, Korea
| | - Yoo-Kyoung Park
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, Korea. ; Research Institute of Medical Nutrition, Kyung Hee University, Yongin 446-701, Korea
| | - Ji-Ho Park
- Department of East-West Medicine, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, Korea. ; Research Institute of Medical Nutrition, Kyung Hee University, Yongin 446-701, Korea
| |
Collapse
|
15
|
Urbán N, Guillemot F. Neurogenesis in the embryonic and adult brain: same regulators, different roles. Front Cell Neurosci 2014; 8:396. [PMID: 25505873 PMCID: PMC4245909 DOI: 10.3389/fncel.2014.00396] [Citation(s) in RCA: 346] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/05/2014] [Indexed: 12/12/2022] Open
Abstract
Neurogenesis persists in adult mammals in specific brain areas, known as neurogenic niches. Adult neurogenesis is highly dynamic and is modulated by multiple physiological stimuli and pathological states. There is a strong interest in understanding how this process is regulated, particularly since active neuronal production has been demonstrated in both the hippocampus and the subventricular zone (SVZ) of adult humans. The molecular mechanisms that control neurogenesis have been extensively studied during embryonic development. Therefore, we have a broad knowledge of the intrinsic factors and extracellular signaling pathways driving proliferation and differentiation of embryonic neural precursors. Many of these factors also play important roles during adult neurogenesis, but essential differences exist in the biological responses of neural precursors in the embryonic and adult contexts. Because adult neural stem cells (NSCs) are normally found in a quiescent state, regulatory pathways can affect adult neurogenesis in ways that have no clear counterpart during embryogenesis. BMP signaling, for instance, regulates NSC behavior both during embryonic and adult neurogenesis. However, this pathway maintains stem cell proliferation in the embryo, while it promotes quiescence to prevent stem cell exhaustion in the adult brain. In this review, we will compare and contrast the functions of transcription factors (TFs) and other regulatory molecules in the embryonic brain and in adult neurogenic regions of the adult brain in the mouse, with a special focus on the hippocampal niche and on the regulation of the balance between quiescence and activation of adult NSCs in this region.
Collapse
Affiliation(s)
- Noelia Urbán
- Department of Molecular Neurobiology, MRC National Institute for Medical Research London, UK
| | - François Guillemot
- Department of Molecular Neurobiology, MRC National Institute for Medical Research London, UK
| |
Collapse
|
16
|
A cholinergic trigger drives learning-induced plasticity at hippocampal synapses. Nat Commun 2014; 4:2760. [PMID: 24217681 PMCID: PMC3831287 DOI: 10.1038/ncomms3760] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 10/14/2013] [Indexed: 12/31/2022] Open
Abstract
Learning induces plastic changes in synapses. However, the regulatory molecules that orchestrate learning-induced synaptic changes are largely unknown. Although it is well established that cholinergic inputs from the medial septum modulate learning and memory, evidence for the cholinergic regulation of learning-induced synaptic plasticity is lacking. Here we find that the activation of muscarinic acetylcholine (ACh) receptors (mAChRs) mediates the contextual fear learning-driven strengthening of hippocampal excitatory pyramidal synapses through the synaptic incorporation of AMPA-type glutamate receptors (AMPARs). Contextual fear learning also enhances the strength of inhibitory synapses on hippocampal pyramidal CA1 neurons, in a manner mediated by the activation of, not mAChRs, but, nicotinic AChRs (nAChRs). We observe a significant correlation between the learning-induced increases in excitatory and inhibitory synaptic strength at individual pyramidal neurons. Understanding the mechanisms underlying cholinergic regulation of learning-induced hippocampal synaptic plasticity may help the development of new therapies for cognitive disorders. Cholinergic signalling modulates learning and memory; however, its influence on learning-induced synaptic plasticity is less clear. Mitsushima et al. show that acetylcholine simultaneously strengthens both excitatory and inhibitory synapses onto CA1 pyramidal neurons following an inhibitory avoidance task.
Collapse
|
17
|
Developmental trajectory of contextual learning and 24-h acetylcholine release in the hippocampus. Sci Rep 2014; 4:3738. [PMID: 24435246 PMCID: PMC3894550 DOI: 10.1038/srep03738] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 12/18/2013] [Indexed: 11/08/2022] Open
Abstract
To determine the developmental trajectory of hippocampal function in rats, we examined 24-h changes in extracellular acetylcholine (ACh) levels and contextual learning performance. Extracellular ACh significantly correlated with spontaneous behavior, exhibiting a 24-h rhythm in juvenile (4-week-old), pubertal (6-week-old), and adult (9- to 12-week-old) rats. Although juveniles of both sexes exhibited low ACh levels, adult males had higher ACh levels than adult females. Moreover, juveniles exhibited much more spontaneous activity than adults when they showed equivalent ACh levels. Similarly, juveniles of both sexes exhibited relatively low contextual learning performance. Because contextual learning performance was significantly increased only in males, adult males exhibited better performance than adult females. We also observed a developmental relationship between contextual learning and ACh levels. Scopolamine pretreatment blocked contextual learning and interrupted the correlation. Since long-term scopolamine treatment after weaning impaired contextual learning in juveniles, the cholinergic input may participate in the development of hippocampus.
Collapse
|
18
|
Bayless DW, Darling JS, Daniel JM. Mechanisms by which neonatal testosterone exposure mediates sex differences in impulsivity in prepubertal rats. Horm Behav 2013; 64:764-9. [PMID: 24126137 DOI: 10.1016/j.yhbeh.2013.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/30/2013] [Accepted: 10/03/2013] [Indexed: 11/25/2022]
Abstract
Neonatal testosterone, either acting directly or through its conversion to estradiol, can exert organizational effects on the brain and behavior. The goal of the current study was to examine sex differences and determine the role of neonatal testosterone on prefrontal cortex-dependent impulsive choice behavior in prepubertal rats. Male and female prepubertal rats were tested on the delay-based impulsive choice task. Impulsive choice was defined as choosing an immediate small food reward over a delayed large reward. In a first experiment to examine sex differences, males made significantly more impulsive choices than did females. In a second experiment to examine the organizational effects of testosterone, females treated with neonatal testosterone made significantly more impulsive choices than did control females and their performance was indistinguishable from that of control males. In a third experiment to determine if the effect of testosterone on performance is due to the actions of androgens or estrogens through its conversion to estradiol, males treated neonatally with the aromatase inhibitor formestane, which blocks the conversion of testosterone to estradiol, females treated neonatally with the non-aromatizable androgen dihydrotestosterone, and females treated neonatally with estradiol made significantly more impulsive choices than did control females and their performance was indistinguishable from that of control males. Results indicate that male pubertal rats display increased impulsive choice behavior as compared to females, that this sex difference results from organizing actions of testosterone during the neonatal period, and that this effect can result from both androgenic and estrogenic actions.
Collapse
Affiliation(s)
- Daniel W Bayless
- Department of Psychology, Tulane University, New Orleans, LA 70118, USA
| | | | | |
Collapse
|
19
|
Behavioral characteristics of ovariectomied Wistar rats trained in a maze. Effect of mental stress and castration for infradian rhythms. Bull Exp Biol Med 2013; 155:272-6. [PMID: 24131007 DOI: 10.1007/s10517-013-2130-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Four psychotypes differing by cognitive activity and psychoemotional reactions were distinguished in a population of orchiectomied Wistar rats and in a population of intact animals on the model of a complex cognitive test combined with the free choice method. With similar parameters of cognitive activity, the psychotypes of castrated rats were inferior to those of intact animals by the number of psychoemotional reactions and levels of locomotor activity. Infradian rhythms of spontaneous locomotor activity with a 4-day period were detected in intact and castrated rats. These rhythms did not change under the effect of mental stress, associated with food-getting behavior training, and did not depend on testosterone level.
Collapse
|
20
|
Floody OR. Oxotremorine delays and scopolamine accelerates sexual exhaustion when applied to the preoptic area in male hamsters. Pharmacol Biochem Behav 2013; 110:75-88. [DOI: 10.1016/j.pbb.2013.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/06/2013] [Accepted: 06/13/2013] [Indexed: 11/28/2022]
|
21
|
Kikuchi T, Tan H, Mihara T, Uchimoto K, Mitsushima D, Takase K, Morita S, Goto T, Andoh T, Kamiya Y. Effects of volatile anesthetics on the circadian rhythms of rat hippocampal acetylcholine release and locomotor activity. Neuroscience 2013; 237:151-60. [DOI: 10.1016/j.neuroscience.2013.01.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 10/27/2022]
|
22
|
Benninghoff J, Rauh W, Brantl V, Schloesser RJ, Moessner R, Möller HJ, Rujescu D. Cholinergic impact on neuroplasticity drives muscarinic M1 receptor mediated differentiation into neurons. World J Biol Psychiatry 2013; 14:241-6. [PMID: 22022845 DOI: 10.3109/15622975.2011.624121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Increasing evidence indicates that canonical neurotransmitters act as regulatory signals during neuroplasticity. Here, we report that muscarinic cholinergic neurotransmission stimulates differentiation of adult neural stem cells in vitro. METHODS Adult neural stem cells (ANSC) dissociated from the adult mouse hippocampus were expanded in culture with basic fibroblast growth factor (BFGF) and epidermal growth factor (EGF). RESULTS Carbachol (CCh), an analog of acetylcholine (ACh) significantly enhanced de novo differentiation into neurons on bFGF- and EGF-deprived stem cells as shown by the percentage of TUJ1 positive cells. By contrast, pirenzepine (PIR), a muscarinic M1 receptor antagonist, reduced the generation of neurons. CONCLUSION Activation of cholinergic signaling drives the de novo differentiation of uncommitted stem cells into neurons. These effects appear to be predominantly mediated via the muscarinic M1 receptor subtype.
Collapse
Affiliation(s)
- Jens Benninghoff
- Department of Psychiatry, LMU-University of Munich, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
23
|
Moreira L, Bins H, Toressan R, Ferro C, Harttmann T, Petribú K, Juruena MF, do Rosário MC, Ferrão YA. An exploratory dimensional approach to premenstrual manifestation of obsessive-compulsive disorder symptoms: a multicentre study. J Psychosom Res 2013; 74:313-9. [PMID: 23497833 DOI: 10.1016/j.jpsychores.2012.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 12/01/2012] [Accepted: 12/03/2012] [Indexed: 02/08/2023]
Abstract
OBJECTIVE In women with obsessive-compulsive disorder (OCD), symptom severity appears to fluctuate over the course of the menstrual cycle. The objective of this paper was to compare female OCD patients with and without premenstrual worsening of obsessive-compulsive symptoms (OCS), in terms of the clinical characteristics of OCD. METHODS This was a cross-sectional study involving 455 women with OCD, of whom 226 (49.7%) had experienced premenstrual OCS worsening and 229 (50.3%) had not (PMOCS-worse and PMOCS-same groups, respectively). Data were collected with the original and dimensional versions of the Yale-Brown obsessive-compulsive scale, as well as with the Beck Depression Inventory (BDI) and Beck anxiety inventory (BAI). RESULTS We found significant differences between the PMOCS-same and PMOCS-worse groups, the latter showing a higher frequency of suicidal ideation (P<.001), suicide attempts (P=.027), current use of selective serotonin reuptake inhibitors (P=.022), lifetime use of mood stabilisers (P=.015), and sexual/religious obsessions (P<.001; OR=1.90), as well as higher scores on the BDI (P<.001) and BAI (P<.001). CONCLUSION Underscoring the fact that OCD is a heterogeneous disorder, there appears to be a subgroup of female OCD patients in whom the premenstrual period is associated with a higher frequency of sexual/religious obsessions, depression, anxiety, and suicidality. This might be attributable to hormonal fluctuations. Further studies are warranted in order to investigate this hypothesis by evaluating such patients at different phases of the menstrual cycle, as well as measuring hormonal levels.
Collapse
Affiliation(s)
- Luciana Moreira
- The Brazilian Research Consortium on Obsessive-Compulsive Spectrum Disorders, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hawley WR, Grissom EM, Martin RC, Halmos MB, Bart CLS, Dohanich GP. Testosterone modulates spatial recognition memory in male rats. Horm Behav 2013; 63:559-65. [PMID: 23481590 DOI: 10.1016/j.yhbeh.2013.02.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 02/09/2013] [Accepted: 02/14/2013] [Indexed: 11/29/2022]
Abstract
A growing body of research indicates that testosterone influences spatial cognition in male rats; however, the overwhelming majority of studies have been conducted on tasks motivated by either food deprivation or water escape. The hippocampus-dependent version of the Y-maze task, which characterizes spatial recognition memory, capitalizes on the propensity of rats to gravitate toward novel spatial environments and is not contingent upon either appetite or the stress associated with water escape, two factors also affected by testosterone. Accordingly, the aim of the current study was to examine the effects of orchidectomy and subsequent testosterone treatment on spatial recognition memory. Orchidectomy did not impact spatial recognition memory when the delay between the information and retention trials of the Y-maze task was 24h. Alternatively, on the second Y-maze task, which featured a 48-h delay between trials, orchidectomy reduced, and treatments that produced higher levels of testosterone restored, preference for the arm associated with the novel spatial environment. Importantly, there were no differences in activity levels as a function of orchidectomy or testosterone treatment on either of the two tasks. Consistent with previous findings, orchidectomy attenuated, and testosterone treatment restored, both body weight gain and the relative weight of the androgen-sensitive ischiocavernosus muscle, which confirmed the efficacy of orchidectomy and testosterone treatments on physiological outcomes. Therefore, testosterone influenced spatial cognition on a task that minimized the influence of non-mnemonic factors and took advantage of the innate preference of rodents to seek out novel spatial environments.
Collapse
Affiliation(s)
- Wayne R Hawley
- Department of Psychology, Tulane University, New Orleans, LA 70118, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Rabin BM, Carrihill-Knoll KL, Long LV, Pitts SC, Hale BS. Effects of 17<i>β</i>-Estradiol on Cognitive Performance of Ovariectomized Female Rats Exposed to Space Radiation. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jbbs.2013.31007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Mild exercise increases dihydrotestosterone in hippocampus providing evidence for androgenic mediation of neurogenesis. Proc Natl Acad Sci U S A 2012; 109:13100-5. [PMID: 22807478 DOI: 10.1073/pnas.1210023109] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mild exercise activates hippocampal neurons through the glutamatergic pathway and also promotes adult hippocampal neurogenesis (AHN). We hypothesized that such exercise could enhance local androgen synthesis and cause AHN because hippocampal steroid synthesis is facilitated by activated neurons via N-methyl-D-aspartate receptors. Here we addressed this question using a mild-intense treadmill running model that has been shown to be a potent AHN stimulator. A mass-spectrometric analysis demonstrated that hippocampal dihydrotestosterone increased significantly, whereas testosterone levels did not increase significantly after 2 wk of treadmill running in both orchidectomized (ORX) and sham castrated (Sham) male rats. Furthermore, analysis of mRNA expression for the two isoforms of 5α-reductases (srd5a1, srd5a2) and for androgen receptor (AR) revealed that both increased in the hippocampus after exercise, even in ORX rats. All rats were injected twice with 5'-bromo-2'deoxyuridine (50 mg/kg body weight, i.p.) on the day before training. Mild exercise significantly increased AHN in both ORX and Sham rats. Moreover, the increase of doublecortin or 5'-bromo-2'deoxyuridine/NeuN-positive cells in ORX rats was blocked by s.c. flutamide, an AR antagonist. It was also found that application of an estrogen receptor antagonist, tamoxifen, did not suppress exercise-induced AHN. These results support the hypothesis that, in male animals, mild exercise enhances hippocampal synthesis of dihydrotestosterone and increases AHN via androgenenic mediation.
Collapse
|
27
|
Stelly CE, Cronin J, Daniel JM, Schrader LA. Long-term oestradiol treatment enhances hippocampal synaptic plasticity that is dependent on muscarinic acetylcholine receptors in ovariectomised female rats. J Neuroendocrinol 2012; 24:887-96. [PMID: 22313316 DOI: 10.1111/j.1365-2826.2012.02287.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Short-term oestradiol treatment modulates hippocampus-dependent memory and synaptic plasticity in the hippocampus. Long-term oestradiol treatment can also enhance hippocampus- dependent memory, although the effects of long-term oestradiol treatment on synaptic plasticity are unknown. We investigated the effects of long-term oestradiol treatment on synaptic plasticity at the Schaeffer Collateral/CA1 synapse in 8-month-old female rats. In addition, we determined the role of endogenous activation of muscarinic acetylcholine receptors (mAChRs) in synaptic transmission and plasticity using scopolamine (1 μm), an antagonist of mAChRs. Hippocampus slices from ovariectomised rats that were treated with oestradiol-containing capsules for 5 months were compared with slices from ovariectomised rats that received cholesterol-containing capsules. Unexpectedly, scopolamine application significantly increased the baseline field excitatory postsynaptic potentials (fEPSP) and decreased paired pulse facilitation (PPF) in slices from cholesterol-treated rats. Baseline fEPSPs and PPF were not significantly modulated in slices from oestradiol-treated rats by scopolamine. Slices from oestradiol-treated rats showed enhanced long-term potentiation relative to slices from cholesterol-treated rats. Scopolamine significantly reduced the magnitude of plasticity in slices from oestradiol-treated rats. Taken together, these results suggest that mAChRs have a significant effect on baseline synaptic transmission through a decrease in the probability of glutamate release in slices from cholesterol-treated rats. Long-term oestradiol treatment blocks this effect and enhances theta-burst stimulation-induced synaptic plasticity in the middle-aged female rat, and this effect is mediated by activation of mAChRs.
Collapse
Affiliation(s)
- C E Stelly
- Neuroscience Program, Tulane University, New Orleans, LA, USA
| | | | | | | |
Collapse
|
28
|
Hawley WR, Grissom EM, Barratt HE, Conrad TS, Dohanich GP. The effects of biological sex and gonadal hormones on learning strategy in adult rats. Physiol Behav 2012; 105:1014-20. [DOI: 10.1016/j.physbeh.2011.11.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/22/2011] [Accepted: 11/23/2011] [Indexed: 12/19/2022]
|
29
|
Wibowo E, Deurveilher S, Wassersug RJ, Semba K. Estradiol treatment modulates spontaneous sleep and recovery after sleep deprivation in castrated male rats. Behav Brain Res 2012; 226:456-64. [DOI: 10.1016/j.bbr.2011.09.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 09/29/2011] [Accepted: 09/30/2011] [Indexed: 12/28/2022]
|
30
|
Itou Y, Nochi R, Kuribayashi H, Saito Y, Hisatsune T. Cholinergic activation of hippocampal neural stem cells in aged dentate gyrus. Hippocampus 2011; 21:446-59. [PMID: 20054812 DOI: 10.1002/hipo.20761] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Adult hippocampal neurogenesis contributes to the hippocampal circuit's role in cognitive functioning. New neurons are generated from hippocampal neural stem cells (NSCs) throughout life, but their generation is substantially diminished in aged animals due to a decrease in NSC proliferation. Because acetylcholine (ACh) is an important neurotransmitter released in the hippocampus during learning and exercise that is known to decrease with aging, we investigated whether aged NSCs can respond to ACh. In this study, we found that cholinergic stimulation has a positive effect on NSC proliferation in both young adult (8-12 weeks old) and aged mice (>2 years old). In fresh hippocampal slices, we observed a rapid calcium increase in NSCs in the dentate gyrus after muscarinic cholinergic stimulation, in both age groups. Furthermore, we found that the exercise-induced promotion of aged NSC proliferation was abrogated by the specific lesioning of the septal cholinergic system. In turn, cholinergic activation by either eserine (physostigmine) or donepezil treatment promoted the proliferation of NSCs in aged mice. These results indicate that NSCs respond to cholinergic stimulation by proliferating in aged animals. Physiological and/or pharmacological cholinergic stimulation(s) may ameliorate cognitive decline in aged animals, by supporting adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Yoshie Itou
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | | | | | | | | |
Collapse
|
31
|
Siegel JA, Park BS, Raber J. Methamphetamine exposure during brain development alters the brain acetylcholine system in adolescent mice. J Neurochem 2011; 119:89-99. [PMID: 21824143 DOI: 10.1111/j.1471-4159.2011.07418.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Children exposed to methamphetamine during brain development as a result of maternal drug use have long-term hippocampus-dependent cognitive impairments, but the mechanisms underlying these impairments are not understood. The acetylcholine system plays an important role in cognitive function and potential methamphetamine-induced acetylcholine alterations may be related to methamphetamine-induced cognitive impairments. In this study, we investigated the potential long-term effects of methamphetamine exposure during hippocampal development on the acetylcholine system in adolescence mice on postnatal day 30 and in adult mice on postnatal day 90. Methamphetamine exposure increased the density of acetylcholine neurons in regions of the basal forebrain and the area occupied by acetylcholine axons in the hippocampus in adolescent female mice. In contrast, methamphetamine exposure did not affect the density of GABA cells or total neurons in the basal forebrain. Methamphetamine exposure also increased the number of muscarinic acetylcholine receptors in the hippocampus of adolescent male and female mice. Our results demonstrate for the first time that methamphetamine exposure during hippocampal development affects the acetylcholine system in adolescent mice and that these changes are more profound in females than males.
Collapse
Affiliation(s)
- Jessica A Siegel
- Department of Behavioral Neuroscience, ONPRC, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
32
|
Cholinergic influences on cortical development and adult neurogenesis. Behav Brain Res 2011; 221:379-88. [PMID: 21272598 DOI: 10.1016/j.bbr.2011.01.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 01/10/2011] [Accepted: 01/13/2011] [Indexed: 11/22/2022]
Abstract
In this review, we focus on immature neurons and their regulation by the cholinergic system, both during cortical development as well as during adult neurogenesis. We discuss various studies that indicate roles for acetylcholine in precursor development and neuronal differentiation. Cholinergic neurons projecting from the basal forebrain innervate the cerebral cortex during critical periods of neuronal development. Acetylcholine stimulation may help to promote a favourable environment for neuronal maturation. Afferents and their cortical target cells interact and are likely to influence each other during the establishment and refinement of connections. Intracortical cholinergic interneurons similarly have a local effect on cortical circuits. Reduced cholinergic innervation during development hence leads to reduced cortical thickness and dendritic abnormalities. Acetylcholine is also likely to play a critical role in neuronal plasticity, as shown in the visual and barrel cortices. Spontaneous nicotinic excitation is also important during a brief developmental window in the first postnatal weeks leading to waves of neural activity, likely to have an effect on neurite extension, target selection and synaptogenesis. In the hippocampus such activity plays a role in the maturation of GABAergic synapses during the developmental shift from depolarizing to hyperpolarizing transmission. The cholinergic system also seems likely to regulate hippocampal neurogenesis in the adult, positively promoting proliferation, differentiation, integration and potentially survival of newborn neurons.
Collapse
|
33
|
Mitsushima D. Sex differences in the septo-hippocampal cholinergic system in rats: behavioral consequences. Curr Top Behav Neurosci 2011; 8:57-71. [PMID: 21769723 DOI: 10.1007/7854_2010_95] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The hippocampus is processing temporal and spatial information in particular contexts or episodes. Using freely moving rats, we monitored extracellular levels of acetylcholine (ACh), a critical neurotransmitter activating hippocampal circuits. We found that the ACh release in the dorsal hippocampus increases during the period of learning or exploration, exhibiting a sex-specific 24-h release profile. Moreover, neonatal increase in circulating androgen not only androgenizes behavioral and hormonal features, but also produces male-type ACh release profile after the development. The results suggest neonatal sexual differentiation of septo-hippocampal cholinergic system. Environmental conditions (such as stress, housing or food) of animals further affected the ACh release.Although recent advances of neuroscience successfully revealed molecular/cellular mechanism of learning and memory, most research were performed using male animals at specific time period. Sex-specific or time-dependent hippocampal functions are still largely unknown.
Collapse
Affiliation(s)
- Dai Mitsushima
- Department of Physiology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura Kanazawaku, Yokohama, 236-0004, Japan.
| |
Collapse
|
34
|
Bowers JM, Waddell J, McCarthy MM. A developmental sex difference in hippocampal neurogenesis is mediated by endogenous oestradiol. Biol Sex Differ 2010; 1:8. [PMID: 21208470 PMCID: PMC3016241 DOI: 10.1186/2042-6410-1-8] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Accepted: 11/22/2010] [Indexed: 01/09/2023] Open
Abstract
Background Oestradiol is a steroid hormone that exerts extensive influence on brain development and is a powerful modulator of hippocampal structure and function. The hippocampus is a critical brain region regulating complex cognitive and emotional responses and is implicated in the aetiology of several mental health disorders, many of which exhibit some degree of sex difference. Many sex differences in the adult rat brain are determined by oestradiol action during a sensitive period of development. We had previously reported a sex difference in rates of cell genesis in the developing hippocampus of the laboratory rat. Males generate more new cells on average than females. The current study explored the effects of both exogenous and endogenous oestradiol on this sex difference. Methods New born male and female rat pups were injected with the mitotic marker 5-bromo-2-deoxyuridine (BrdU) and oestradiol or agents that antagonize oestradiol action. The effects on cell number, proliferation, differentiation and survival were assessed at several time points. Significant differences between groups were determined by two- or thee-Way ANOVA. Results Newborn males had higher rates of cell proliferation than females. Oestradiol treatment increased cell proliferation in neonatal females, but not males, and in the CA1 region many of these cells differentiated into neurons. The increased rate of proliferation induced by neonatal oestradiol persisted until at least 3 weeks of age, suggesting an organizational effect. Administering the aromatase inhibitor, formestane, or the oestrogen receptor antagonist, tamoxifen, significantly decreased the number of new cells in males but not females. Conclusion Endogenous oestradiol increased the rate of cell proliferation observed in newborn males compared to females. This sex difference in neonatal neurogenesis may have implications for adult differences in learning strategy, stress responsivity or vulnerability to damage or disease.
Collapse
Affiliation(s)
- J Michael Bowers
- Department of Physiology, University of Maryland, Baltimore School of Medicine Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
35
|
The effects of daidzin and its aglycon, daidzein, on the scopolamineinduced memory impairment in male mice. Arch Pharm Res 2010; 33:1685-90. [DOI: 10.1007/s12272-010-1019-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 07/05/2010] [Accepted: 07/07/2010] [Indexed: 11/25/2022]
|
36
|
Peripheral auditory processing changes seasonally in Gambel's white-crowned sparrow. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 196:581-99. [PMID: 20563817 DOI: 10.1007/s00359-010-0545-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 05/30/2010] [Accepted: 05/30/2010] [Indexed: 01/19/2023]
Abstract
Song in oscine birds is a learned behavior that plays important roles in breeding. Pronounced seasonal differences in song behavior and in the morphology and physiology of the neural circuit underlying song production are well documented in many songbird species. Androgenic and estrogenic hormones largely mediate these seasonal changes. Although much work has focused on the hormonal mechanisms underlying seasonal plasticity in songbird vocal production, relatively less work has investigated seasonal and hormonal effects on songbird auditory processing, particularly at a peripheral level. We addressed this issue in Gambel's white-crowned sparrow (Zonotrichia leucophrys gambelii), a highly seasonal breeder. Photoperiod and hormone levels were manipulated in the laboratory to simulate natural breeding and non-breeding conditions. Peripheral auditory function was assessed by measuring the auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAEs) of males and females in both conditions. Birds exposed to breeding-like conditions demonstrated elevated thresholds and prolonged peak latencies when compared with birds housed under non-breeding-like conditions. There were no changes in DPOAEs, however, which indicates that the seasonal differences in ABRs do not arise from changes in hair cell function. These results suggest that seasons and hormones impact auditory processing as well as vocal production in wild songbirds.
Collapse
|
37
|
Gillies GE, McArthur S. Estrogen actions in the brain and the basis for differential action in men and women: a case for sex-specific medicines. Pharmacol Rev 2010; 62:155-98. [PMID: 20392807 PMCID: PMC2879914 DOI: 10.1124/pr.109.002071] [Citation(s) in RCA: 480] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The classic view of estrogen actions in the brain was confined to regulation of ovulation and reproductive behavior in the female of all mammalian species studied, including humans. Burgeoning evidence now documents profound effects of estrogens on learning, memory, and mood as well as neurodevelopmental and neurodegenerative processes. Most data derive from studies in females, but there is mounting recognition that estrogens play important roles in the male brain, where they can be generated from circulating testosterone by local aromatase enzymes or synthesized de novo by neurons and glia. Estrogen-based therapy therefore holds considerable promise for brain disorders that affect both men and women. However, as investigations are beginning to consider the role of estrogens in the male brain more carefully, it emerges that they have different, even opposite, effects as well as similar effects in male and female brains. This review focuses on these differences, including sex dimorphisms in the ability of estradiol to influence synaptic plasticity, neurotransmission, neurodegeneration, and cognition, which, we argue, are due in a large part to sex differences in the organization of the underlying circuitry. There are notable sex differences in the incidence and manifestations of virtually all central nervous system disorders, including neurodegenerative disease (Parkinson's and Alzheimer's), drug abuse, anxiety, and depression. Understanding the cellular and molecular basis of sex differences in brain physiology and responses to estrogen and estrogen mimics is, therefore, vitally important for understanding the nature and origins of sex-specific pathological conditions and for designing novel hormone-based therapeutic agents that will have optimal effectiveness in men or women.
Collapse
Affiliation(s)
- Glenda E Gillies
- Centre for Neuroscience, Department of Medicine, Hammersmith Hospital, Imperial College Faculty of Medicine, DuCane Road, London W12ONN, UK.
| | | |
Collapse
|
38
|
Gonadal hormones modulate the potency of the disruptive effects of donepezil in male rats responding under a nonspatial operant learning and performance task. Behav Pharmacol 2010; 21:121-34. [PMID: 20177375 DOI: 10.1097/fbp.0b013e328337be3a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In contrast to estrogen in female rats, testosterone in male rats may decrease cholinergic activity in the brain, thereby attenuating behaviors mediated by the cholinergic system. To investigate this possibility, the interactive effects of the gonadal hormones and donepezil, an acetylcholinesterase (AChE) inhibitor, on the responding of male rats were examined under a multiple schedule of repeated acquisition and performance of response sequences and on AChE activity in specific brain regions. Donepezil dose-effect curves (0.56-10 mg/kg) were determined in males that were gonadally intact, gonadectomized (GX), GX with testosterone replacement (GX+T) or GX with estradiol replacement (GX+E). In all four groups, donepezil produced dose-dependent rate-decreasing and error-increasing effects in the acquisition and performance components. However, disruptions of response rate and accuracy in both components occurred at lower doses in GX and GX+E males than in intact males. The GX+E males also had the highest percentage of errors under control (saline) conditions in the acquisition components. In terms of AChE activity, GX males had higher levels in the prefrontal cortex, striatum and hippocampus, but lower levels in the midbrain, compared with intact males; hypothalamic and cortical levels were comparable for the GX and intact groups. Together, these results in male rats indicate that the potency of donepezil's disruptive effects on the responding under a complex operant procedure requiring learning and performance of response sequences depends upon the gonadal hormone status, and that the effects of testosterone on cholinergic activity vary among brain regions.
Collapse
|
39
|
Kozhemyakin M, Rajasekaran K, Kapur J. Central cholinesterase inhibition enhances glutamatergic synaptic transmission. J Neurophysiol 2010; 103:1748-57. [PMID: 20107127 DOI: 10.1152/jn.00949.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Central cholinergic overstimulation results in prolonged seizures of status epilepticus in humans and experimental animals. Cellular mechanisms of underlying seizures caused by cholinergic stimulation remain uncertain, but enhanced glutamatergic transmission is a potential mechanism. Paraoxon, an organophosphate cholinesterase inhibitor, enhanced glutamatergic transmission on hippocampal granule cells synapses by increasing the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) in a concentration-dependent fashion. The amplitude of mEPSCs was not increased, which suggested the possibility of enhanced action potential-dependent release. Analysis of EPSCs evoked by minimal stimulation revealed reduced failures and increased amplitude of evoked responses. The ratio of amplitudes of EPSCs evoked by paired stimuli was also altered. The effect of paraoxon on glutamatergic transmission was blocked by the muscarinic antagonist atropine and partially mimicked by carbachol. The nicotinic receptor antagonist α -bungarotoxin did not block the effects of paraoxon; however, nicotine enhanced glutamatergic transmission. These studies suggested that cholinergic overstimulation enhances glutamatergic transmission by enhancing neurotransmitter release from presynaptic terminals.
Collapse
Affiliation(s)
- Maxim Kozhemyakin
- Dept. of Neurology, University of Virginia-HSC, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
40
|
Mitsushima D. Sex Steroids and Acetylcholine Release in the Hippocampus. HORMONES OF THE LIMBIC SYSTEM 2010; 82:263-77. [DOI: 10.1016/s0083-6729(10)82014-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Mitsushima D, Takase K, Takahashi T, Kimura F. Activational and organisational effects of gonadal steroids on sex-specific acetylcholine release in the dorsal hippocampus. J Neuroendocrinol 2009; 21:400-5. [PMID: 19356199 DOI: 10.1111/j.1365-2826.2009.01848.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acetylcholine (ACh) release in the dorsal hippocampus increases during stress, exploration or learning, exhibiting sex-specific 24-h release profile. We review the role of gonadal steroids on the ACh release in the dorsal hippocampus. In our studies, we found that male rats showed higher extracellular ACh levels than females, but gonadectomy decreased ACh levels in both sexes of rats and subsequently eliminated the sex difference. To examine the sex difference under comparable gonadal steroid levels, we implanted steroid capsules after gonadectomy. Oestradiol supplementation maintained circulating oestradiol to the levels in proestrous female rats, whereas testosterone capsules maintained circulating testosterone to the levels similar to intact male rats. Under comparable gonadal steroids levels, ACh levels were sex-specific. Testosterone replacement in orchidectomised rats clearly restored ACh levels, which were greater than ovariectomised testosterone-primed rats. Similarly, oestradiol replacement in ovariectomised rats successfully restored ACh levels, which were higher than orchidectomised oestradiol-primed rats. These results suggest sex-specific activational effects of gonadal steroids on ACh release. To further examine the organisational effect, female pups were neonatally treated with oil, testosterone, oestradiol, or dihydrotestosterone. These rats were bilaterally ovariectomised and a testosterone capsule was implanted at postnatal week 8. Neonatal treatment of either testosterone or oestradiol clearly increased ACh levels, whereas neonatal dihydrotestosterone treatment failed to change levels. These results suggest that: (i) gonadal steroids maintain the sex-specific ACh release in the dorsal hippocampus and (ii) neonatal activation of oestrogen receptors is sufficient to mediate masculinisation of the septo-hippocampal cholinergic system.
Collapse
Affiliation(s)
- D Mitsushima
- Department of Physiology, Yokohama City University, Graduate School of Medicine, Yokohama, Japan.
| | | | | | | |
Collapse
|