1
|
Matsubara H, Chujo S, Mase Y, Muramoto Y, Kato K, Kondo M. Effects of angle of incidence of stimulus light on photopic electroretinograms of zebrafish larvae. Sci Rep 2024; 14:14733. [PMID: 38926421 PMCID: PMC11208667 DOI: 10.1038/s41598-024-65017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
In electroretinographic (ERG) recordings of zebrafish, the light stimulus is usually delivered by a fiber optic cable. The purpose of this study was to determine whether the angle of incidence of the stimulus light from the fiber optic cable will affect the amplitudes and implicit times of the ERGs of zebrafish larvae. The larvae were positioned on their side with the right eye pointed upward. The light stimuli were delivered by a fiber optic cable from three directions of the larvae: frontal 0° (F0°), dorsal 30°(D30°), and ventral 30°(V30°). Photopic ERGs were recorded from 16 larvae at age 5-6 days post-fertilization. Our results showed that the mean amplitude of the b-wave elicited at D30° and V30° stimulation was significantly smaller than that elicited at F0° stimulation (P = 0.014 and P = 0.019, respectively). In addition, the mean amplitude of the d-wave elicited at D30° and V30° stimulation was significantly smaller than that elicited at F0° stimulation (P < 0.0001 and P = 0.015, respectively). However, the difference between the b-wave amplitudes elicited at D30° and V30° stimuli were not significant (P = 0.98), and the d-wave amplitudes were also not significantly different (P = 0.20). The average b-wave amplitudes elicited at D30° stimulation was 84.6 ± 15.7% and V30° stimulation was 84.8 ± 17.4% relative to that of F0° stimulation. The average d-wave amplitudes elicited by D30° stimulation was 85.5 ± 15.2% and by V30° stimulation was 79.0 ± 11.0% relative to that of F0° stimulation. The differences in the implicit times of the b- and d-wave elicited by the different directions of stimulation were not significant (P = 0.52 and P = 0.14, respectively). We conclude that the amplitude of the photopic ERGs is affected by the angle of the incident light. Thus, it would be better to use ganzfeld stimuli to elicit maximum b- and d-wave amplitudes of the photopic ERGs of zebrafish larvae.
Collapse
Affiliation(s)
- Hisashi Matsubara
- Department of Ophthalmology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Shinichiro Chujo
- Department of Ophthalmology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yoko Mase
- Department of Ophthalmology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yukiko Muramoto
- Department of Ophthalmology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kumiko Kato
- Department of Ophthalmology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
2
|
Hathibelagal AR, Prajapati V, Jayagopi I, Jalali S, Ganeshrao SB. Age-related decline in function of ON and OFF visual pathways. PLoS One 2022; 17:e0261489. [PMID: 35316274 PMCID: PMC8939797 DOI: 10.1371/journal.pone.0261489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/08/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose A simple psychophysical paradigm is available as a digital application in iOS devices such as iPad to measure the function of ON and OFF visual pathways. However, an age-matched normative database is not readily available. The purpose of the study is to evaluate the response of ON and OFF visual pathways as a function of age. Methods 158 normal healthy adults (84 males and 74 females) whose age ranged 18–80 years participated in the study. None of them had any ocular disease (except cataract of grade II or less) and visual acuity of ≤ 20/25. Monocular testing (only one eye) was performed on the ‘EyeSpeed’ application on an iPad at 40cm distance. The targets ranged between 1 to 3 light or dark squares presented randomly in a noise background and participants responded by indicating the number of squares by touching the screen as fast as possible. The main outcome variables are reaction time, accuracy and performance index (1 / speed * accuracy). Results The median reaction time was shorter (Median (IQR): 1.53s (0.49) [dark] Vs 1.76s (0.58) [light], p < 0.001) and accuracy was higher (97.21% (3.30) [dark] Vs 95.15% (5.10) [light], p < 0.001) for dark targets than the light targets. Performance index and reaction time for both target types significantly correlated with age (ρ = -0.41 to -0.43; p < 0.001). Conclusions This normative database will be useful to quantify disease-specific defects. More importantly, the ON pathway function can potentially serve as a surrogate for rod photoreceptor function.
Collapse
Affiliation(s)
- Amithavikram R. Hathibelagal
- Brien Holden Institute of Optometry and Vision Sciences, L V Prasad Eye Institute, Hyderabad, India
- Prof. Brien Holden Eye Research Center, L V Prasad Eye Institute, Hyderabad, India
- * E-mail:
| | - Vishal Prajapati
- Brien Holden Institute of Optometry and Vision Sciences, L V Prasad Eye Institute, Hyderabad, India
- Prof. Brien Holden Eye Research Center, L V Prasad Eye Institute, Hyderabad, India
| | - Indrani Jayagopi
- Brien Holden Institute of Optometry and Vision Sciences, L V Prasad Eye Institute, Hyderabad, India
- Prof. Brien Holden Eye Research Center, L V Prasad Eye Institute, Hyderabad, India
| | - Subhadra Jalali
- Srimati Kanuri Santhamma Centre for vitreoretinal diseases, L V Prasad Eye Institute, Hyderabad, India
- Jasti V Ramanamma Children’s Eye Care Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Shonraj Ballae Ganeshrao
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| |
Collapse
|
3
|
Yu Z, Turner MH, Baudin J, Rieke F. Adaptation in cone photoreceptors contributes to an unexpected insensitivity of primate On parasol retinal ganglion cells to spatial structure in natural images. eLife 2022; 11:e70611. [PMID: 35285798 PMCID: PMC8956286 DOI: 10.7554/elife.70611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 03/13/2022] [Indexed: 02/06/2023] Open
Abstract
Neural circuits are constructed from nonlinear building blocks, and not surprisingly overall circuit behavior is often strongly nonlinear. But neural circuits can also behave near linearly, and some circuits shift from linear to nonlinear behavior depending on stimulus conditions. Such control of nonlinear circuit behavior is fundamental to neural computation. Here, we study a surprising stimulus dependence of the responses of macaque On (but not Off) parasol retinal ganglion cells: these cells respond nonlinearly to spatial structure in some stimuli but near linearly to spatial structure in others, including natural inputs. We show that these differences in the linearity of the integration of spatial inputs can be explained by a shift in the balance of excitatory and inhibitory synaptic inputs that originates at least partially from adaptation in the cone photoreceptors. More generally, this highlights how subtle asymmetries in signaling - here in the cone signals - can qualitatively alter circuit computation.
Collapse
Affiliation(s)
- Zhou Yu
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Maxwell H Turner
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Jacob Baudin
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Fred Rieke
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| |
Collapse
|
4
|
Ramamoorthy P, Alexander NL, Frankfort BJ. Abnormal perception of pattern-induced flicker colors in subjects with glaucoma. J Vis 2022; 22:5. [PMID: 35133432 PMCID: PMC8842510 DOI: 10.1167/jov.22.2.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Pattern-induced flicker colors (PIFCs) are subjective colors that can be elicited with rotation of an achromatic stimulus such as the Benham disk. The perceptive mechanisms underlying PIFCs are not well-understood, but are thought to be generated primarily by retinal cell types which may be dysfunctional in glaucoma. Using a custom computer-based system, we tested PIFC perception across several Benham disk parameters, including the rates of acceleration and deceleration, rotational direction, and image contrast in both control and glaucoma subjects. We defined the Benham perception limit (BPL) during acceleration as the rotational speed at which PIFCs were first detected (Benham perception limit for acceleration) and the BPL during deceleration as the rotational speed at which PIFCs were extinguished (Benham perception limit for deceleration). In general, we found that glaucoma subjects perceived PIFCs less frequently than control subjects. For all subjects, we found that slower rates of acceleration and deceleration resulted in a lower Benham perception limit for acceleration and a higher Benham perception limit for deceleration, suggesting that PIFCs were both more easily detected and extinguished. Finally, subjects with glaucoma required increased rotational speeds during acceleration to detect PIFCs under certain conditions. Further study is needed to determine if these findings can be used to enhance clinical detection strategies.
Collapse
Affiliation(s)
| | - Nicole L Alexander
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA.,
| | - Benjamin J Frankfort
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA.,
| |
Collapse
|
5
|
Dendro-somatic synaptic inputs to ganglion cells contradict receptive field and connectivity conventions in the mammalian retina. Curr Biol 2022; 32:315-328.e4. [PMID: 34822767 PMCID: PMC8792273 DOI: 10.1016/j.cub.2021.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 01/26/2023]
Abstract
The morphology of retinal neurons strongly influences their physiological function. Ganglion cell (GC) dendrites ramify in distinct strata of the inner plexiform layer (IPL) so that GCs responding to light increments (ON) or decrements (OFF) receive appropriate excitatory inputs. This vertical stratification prescribes response polarity and ensures consistent connectivity between cell types, whereas the lateral extent of GC dendritic arbors typically dictates receptive field (RF) size. Here, we identify circuitry in mouse retina that contradicts these conventions. AII amacrine cells are interneurons understood to mediate "crossover" inhibition by relaying excitatory input from the ON layer to inhibitory outputs in the OFF layer. Ultrastructural and physiological analyses show, however, that some AIIs deliver powerful inhibition to OFF GC somas and proximal dendrites in the ON layer, rendering the inhibitory RFs of these GCs smaller than their dendritic arbors. This OFF pathway, avoiding entirely the OFF region of the IPL, challenges several tenets of retinal circuitry. These results also indicate that subcellular synaptic organization can vary within a single population of neurons according to their proximity to potential postsynaptic targets.
Collapse
|
6
|
Young BK, Ramakrishnan C, Ganjawala T, Wang P, Deisseroth K, Tian N. An uncommon neuronal class conveys visual signals from rods and cones to retinal ganglion cells. Proc Natl Acad Sci U S A 2021; 118:e2104884118. [PMID: 34702737 PMCID: PMC8612366 DOI: 10.1073/pnas.2104884118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 01/01/2023] Open
Abstract
Neurons in the central nervous system (CNS) are distinguished by the neurotransmitter types they release, their synaptic connections, morphology, and genetic profiles. To fully understand how the CNS works, it is critical to identify all neuronal classes and reveal their synaptic connections. The retina has been extensively used to study neuronal development and circuit formation. Here, we describe a previously unidentified interneuron in mammalian retina. This interneuron shares some morphological, physiological, and molecular features with retinal bipolar cells, such as receiving input from photoreceptors and relaying visual signals to retinal ganglion cells. It also shares some features with amacrine cells (ACs), particularly Aii-ACs, such as their neurite morphology in the inner plexiform layer, the expression of some AC-specific markers, and possibly the release of the inhibitory neurotransmitter glycine. Thus, we unveil an uncommon interneuron, which may play an atypical role in vision.
Collapse
Affiliation(s)
- Brent K Young
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, UT 84132
- Interdepartmental Neuroscience Program, University of Utah, Salt Lake City, UT 84114
| | | | - Tushar Ganjawala
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202
| | - Ping Wang
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, UT 84132
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
| | - Ning Tian
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, UT 84132;
- Interdepartmental Neuroscience Program, University of Utah, Salt Lake City, UT 84114
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84132
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84132
- Veterans Affairs Medical Center, Salt Lake City, UT 84148
| |
Collapse
|
7
|
Hoseini-Yazdi H, Read SA, Alonso-Caneiro D, Collins MJ. Retinal OFF-Pathway Overstimulation Leads to Greater Accommodation-Induced Choroidal Thinning. Invest Ophthalmol Vis Sci 2021; 62:5. [PMID: 34636878 PMCID: PMC8525845 DOI: 10.1167/iovs.62.13.5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose To examine the interactions between accommodation and overstimulation of the retinal ON- and OFF-pathways, and their association with changes in choroidal thickness (ChT) and vascularity. Methods Optical coherence tomography imaging of the choroid of twenty young adults (ages 25 ± 5 years) was performed before and after a series of 30-minute-long viewing tasks, including reading a bright text on dark background (ON-pathway overstimulation) and dark text on bright background (OFF-pathway overstimulation), and a control task of viewing a movie with unbiased ON-/OFF-pathway activation. The viewing tasks were performed with relaxed, and 5 diopter (D) accommodation (induced by soft contact lenses) demands. Both reading texts were matched for the mean luminance (35 cd/m2), luminance contrast (87%), and letter size (approximately 11.8 arc minutes). The change in ChT from baseline associated with contrast polarity and accommodation was examined using linear mixed model analysis. Results The subfoveal ChT decreased significantly by −7 ± 1 µm with 5 D accommodation compared with relaxed accommodation (−3 ± 1 µm; P < 0.001), and by −9 ± 1 µm with OFF-pathway compared with ON-pathway overstimulation (−4 ± 1 µm; P = 0.002) and the control condition (−2 ± 1 µm; P < 0.001). Overstimulation of the OFF-pathway, but not the ON-pathway, resulted in a significantly greater choroidal thinning compared with the control condition, both at relaxed (−7 ± 1 µm; P = 0.003) and 5 D (−11 ± 1 µm; P = 0.005) accommodation levels. Similar changes were also observed for macular total, stromal, and luminal ChT. Conclusions Retinal OFF-pathway stimulation enhanced the choroidal thinning associated with accommodation, thereby providing a potential mechanism that involves accommodation and the retinal OFF-signaling pathway, linking near work and myopia.
Collapse
Affiliation(s)
- Hosein Hoseini-Yazdi
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Scott A Read
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - David Alonso-Caneiro
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Michael J Collins
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
8
|
Fusz K, Kovács-Öller T, Kóbor P, Szabó-Meleg E, Völgyi B, Buzás P, Telkes I. Regional Variation of Gap Junctional Connections in the Mammalian Inner Retina. Cells 2021; 10:2396. [PMID: 34572046 PMCID: PMC8466939 DOI: 10.3390/cells10092396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 11/24/2022] Open
Abstract
The retinas of many species show regional specialisations that are evident in the differences in the processing of visual input from different parts of the visual field. Regional specialisation is thought to reflect an adaptation to the natural visual environment, optical constraints, and lifestyle of the species. Yet, little is known about regional differences in synaptic circuitry. Here, we were interested in the topographical distribution of connexin-36 (Cx36), the major constituent of electrical synapses in the retina. We compared the retinas of mice, rats, and cats to include species with different patterns of regional specialisations in the analysis. First, we used the density of Prox1-immunoreactive amacrine cells as a marker of any regional specialisation, with higher cell density signifying more central regions. Double-labelling experiments showed that Prox1 is expressed in AII amacrine cells in all three species. Interestingly, large Cx36 plaques were attached to about 8-10% of Prox1-positive amacrine cell somata, suggesting the strong electrical coupling of pairs or small clusters of cell bodies. When analysing the regional changes in the volumetric density of Cx36-immunoreactive plaques, we found a tight correlation with the density of Prox1-expressing amacrine cells in the ON, but not in the OFF sublamina in all three species. The results suggest that the relative contribution of electrical synapses to the ON- and OFF-pathways of the retina changes with retinal location, which may contribute to functional ON/OFF asymmetries across the visual field.
Collapse
Affiliation(s)
- Katalin Fusz
- Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary; (K.F.); (P.K.); (I.T.)
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (T.K.-Ö.); (E.S.-M.); (B.V.)
- Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Tamás Kovács-Öller
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (T.K.-Ö.); (E.S.-M.); (B.V.)
- Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE NAP-2 Retinal Electrical Synapses Research Group, 7624 Pécs, Hungary
| | - Péter Kóbor
- Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary; (K.F.); (P.K.); (I.T.)
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (T.K.-Ö.); (E.S.-M.); (B.V.)
- Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Edina Szabó-Meleg
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (T.K.-Ö.); (E.S.-M.); (B.V.)
- Institute of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Béla Völgyi
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (T.K.-Ö.); (E.S.-M.); (B.V.)
- Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE NAP-2 Retinal Electrical Synapses Research Group, 7624 Pécs, Hungary
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary
| | - Péter Buzás
- Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary; (K.F.); (P.K.); (I.T.)
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (T.K.-Ö.); (E.S.-M.); (B.V.)
- Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Ildikó Telkes
- Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary; (K.F.); (P.K.); (I.T.)
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (T.K.-Ö.); (E.S.-M.); (B.V.)
- Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
9
|
Archer DR, Alitto HJ, Usrey WM. Stimulus Contrast Affects Spatial Integration in the Lateral Geniculate Nucleus of Macaque Monkeys. J Neurosci 2021; 41:6246-6256. [PMID: 34103362 PMCID: PMC8287990 DOI: 10.1523/jneurosci.2946-20.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 11/21/2022] Open
Abstract
Gain-control mechanisms adjust neuronal responses to accommodate the wide range of stimulus conditions in the natural environment. Contrast gain control and extraclassical surround suppression are two manifestations of gain control that govern the responses of neurons in the early visual system. Understanding how these two forms of gain control interact has important implications for the detection and discrimination of stimuli across a range of contrast conditions. Here, we report that stimulus contrast affects spatial integration in the lateral geniculate nucleus of alert macaque monkeys (male and female), whereby neurons exhibit a reduction in the strength of extraclassical surround suppression and an expansion in the preferred stimulus size with low-contrast stimuli compared with high-contrast stimuli. Effects were greater for magnocellular neurons than for parvocellular neurons, indicating stream-specific interactions between stimulus contrast and stimulus size. Within the magnocellular pathway, contrast-dependent effects were comparable for ON-center and OFF-center neurons, despite ON neurons having larger receptive fields, less pronounced surround suppression, and more pronounced contrast gain control than OFF neurons. Together, these findings suggest that the parallel streams delivering visual information from retina to primary visual cortex, serve not only to broaden the range of signals delivered to cortex, but also to provide a substrate for differential interactions between stimulus contrast and stimulus size that may serve to improve stimulus detection and stimulus discrimination under pathway-specific lower and higher contrast conditions, respectively.SIGNIFICANCE STATEMENT Stimulus contrast is a salient feature of visual scenes. Here we examine the influence of stimulus contrast on spatial integration in the lateral geniculate nucleus (LGN). Our results demonstrate that increases in contrast generally increase extraclassical suppression and decrease the size of optimal stimuli, indicating a reduction in the extent of visual space from which LGN neurons integrate signals. Differences between magnocellular and parvocellular neurons are noteworthy and further demonstrate that the feedforward parallel pathways to cortex increase the range of information conveyed for downstream cortical processing, a range broadened by diversity in the ON and OFF pathways. These results have important implications for more complex visual processing that underly the detection and discrimination of stimuli under varying natural conditions.
Collapse
Affiliation(s)
- Darlene R Archer
- Center for Neuroscience, University of California, Davis, Davis, California 95616
- SUNY College of Optometry, New York, New York 10036
- Center for Neural Science, New York University, New York, New York 10003
| | - Henry J Alitto
- Center for Neuroscience, University of California, Davis, Davis, California 95616
| | - W Martin Usrey
- Center for Neuroscience, University of California, Davis, Davis, California 95616
| |
Collapse
|
10
|
Tao X, Sabharwal J, Wu SM, Frankfort BJ. Intraocular Pressure Elevation Compromises Retinal Ganglion Cell Light Adaptation. Invest Ophthalmol Vis Sci 2021; 61:15. [PMID: 33064129 PMCID: PMC7571289 DOI: 10.1167/iovs.61.12.15] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Purpose Functional adaptation to ambient light is a key characteristic of retinal ganglion cells (RGCs), but little is known about how adaptation is affected by factors that are harmful to RGC health. We explored adaptation-induced changes to RGC physiology when exposed to increased intraocular pressure (IOP), a major risk factor for glaucoma. Methods Wild-type mice of both sexes were subjected to 2 weeks of IOP elevation using the bead model. Retinas were assessed using a multielectrode array to record RGC responses to checkerboard white noise stimulation under both scotopic and photopic light levels. This information was used to calculate a spike-triggered average (STA) for each RGC with which to compare between lighting levels. Results Low but not high IOP elevation resulted in several distinct RGC functional changes: (1) diminished adaptation-dependent receptive field (RF) center-surround interactions; (2) increased likelihood of a scotopic STA; and (3) increased spontaneous firing rate. Center RF size change with lighting level varied among RGCs, and both the center and surround STA peak times were consistently increased under scotopic illumination, although none of these properties were impacted by IOP level. Conclusions These findings provide novel evidence that RGCs exhibit reduced light-dependent adaptation and increased excitability when IOP is elevated to low but not high levels. These results may reveal functional changes that occur early in glaucoma, which can potentially be used to identify patients with glaucoma at earlier stages when intervention is most beneficial.
Collapse
Affiliation(s)
- Xiaofeng Tao
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Jasdeep Sabharwal
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States
| | - Samuel M Wu
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States
| | - Benjamin J Frankfort
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
11
|
Mazade R, Jin J, Pons C, Alonso JM. Functional Specialization of ON and OFF Cortical Pathways for Global-Slow and Local-Fast Vision. Cell Rep 2020; 27:2881-2894.e5. [PMID: 31167135 DOI: 10.1016/j.celrep.2019.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/07/2019] [Accepted: 04/30/2019] [Indexed: 12/20/2022] Open
Abstract
Visual information is processed in the cortex by ON and OFF pathways that respond to light and dark stimuli. Responses to darks are stronger, faster, and driven by a larger number of cortical neurons than responses to lights. Here, we demonstrate that these light-dark cortical asymmetries reflect a functional specialization of ON and OFF pathways for different stimulus properties. We show that large long-lasting stimuli drive stronger cortical responses when they are light, whereas small fast stimuli drive stronger cortical responses when they are dark. Moreover, we show that these light-dark asymmetries are preserved under a wide variety of luminance conditions that range from photopic to low mesopic light. Our results suggest that ON and OFF pathways extract different spatiotemporal information from visual scenes, making OFF local-fast signals better suited to maximize visual acuity and ON global-slow signals better suited to guide the eye movements needed for retinal image stabilization.
Collapse
Affiliation(s)
- Reece Mazade
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY 10036, USA
| | - Jianzhong Jin
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY 10036, USA
| | - Carmen Pons
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY 10036, USA
| | - Jose-Manuel Alonso
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY 10036, USA.
| |
Collapse
|
12
|
Chima AS, Formankiewicz MA, Waugh SJ. Interocular ND filter suppression: Eccentricity and luminance polarity effects. J Vis 2020; 20:35. [PMID: 32735341 PMCID: PMC7424104 DOI: 10.1167/jov.20.7.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The depth and extent of interocular suppression were measured in binocularly normal observers who unilaterally adapted to neutral density (ND) filters (0, 1.5, 2, and 3 ND). Suppression was measured by dichoptically matching sectors of a ring presented to the adapted eye to a fixed contrast contiguous ring presented to the non-adapted eye. Other rings of alternating polarity were viewed binocularly. Rings were defined by luminance (L), luminance with added dynamic binary luminance noise (LM), and contrast modulating the same noise (CM). Interocular suppression depth increased with increasing ND, nearing significance (p = 0.058) for 1.5 ND. For L and LM stimuli, suppression depth across eccentricity (±12° visual field) differed for luminance increment (white) versus luminance decrement (black) stimuli, potentially confounding eccentricity results. Suppression for increment-only (white) luminance stimuli was steeper centrally and extended across the visual field, but was deeper for L than for LM stimuli. Suppression for decrement-only (black) luminance stimuli revealed only central suppression. Suppression was deeper with CM than LM stimuli, suggesting that CM stimuli are extracted in areas receiving predominantly binocular input which may be more sensitive to binocular disruption. Increment (white) luminance stimuli demonstrate deeper interocular suppression in the periphery than decrement (black) stimuli, so they are more sensitive to changes in peripheral suppression. Asymmetry of suppression in the periphery for opposite polarity luminance stimuli may be due to interocular receptive field size mismatch as a result of dark adaptation separately affecting ON and OFF pathways. Clinically, measurement of suppression with CM stimuli may provide the best information about post-combination binocularity.
Collapse
|
13
|
Ramamurthy DL, Recanzone GH. Age-related changes in sound onset and offset intensity coding in auditory cortical fields A1 and CL of rhesus macaques. J Neurophysiol 2020; 123:1015-1025. [PMID: 31995426 DOI: 10.1152/jn.00373.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inhibition plays a key role in shaping sensory processing in the central auditory system and has been implicated in sculpting receptive field properties such as sound intensity coding and also in shaping temporal patterns of neuronal firing such as onset- or offset-evoked responses. There is substantial evidence supporting a decrease in inhibition throughout the ascending auditory pathway in geriatric animals. We therefore examined intensity coding of onset (ON) and offset (OFF) responses in auditory cortex of aged and young monkeys. A large proportion of cells in the primary auditory cortex (A1) and the caudolateral field (CL) displayed nonmonotonic rate-level functions for OFF responses in addition to nonmonotonic coding of ON responses. Aging differentially affected ON and OFF responses; the magnitude of effects was generally greater for ON responses. In addition to higher firing rates, neurons in old monkeys exhibited a significant increase in the proportion of monotonic rate-level functions and had higher best intensities than those in young monkeys. OFF responses in young monkeys displayed a range of intensity coding relationships with ON responses of the same cells, ranging from highly similar to highly dissimilar. Dissimilarity in ON/OFF coding was greater in CL and was reduced with aging, which was largely explained by a preferential decrease in the percentage of cells with nonmonotonic coding of ON and OFF responses. The changes we observed are consistent with previously demonstrated alterations in inhibition in the ascending auditory pathway of primates and could be involved in age-related deficits in the temporal processing of sounds.NEW & NOTEWORTHY Aging has a major impact on intensity coding of neurons in auditory cortex of rhesus macaques. Neural responses to sound onset and offset were affected to different extents, and their rate-level functions became more mutually similar, which could be accounted for by the loss of nonmonotonic intensity coding in geriatric monkeys. These findings were consistent with weakened inhibition in the central auditory system and could contribute to auditory processing deficits in elderly subjects.
Collapse
Affiliation(s)
| | - Gregg H Recanzone
- Center for Neuroscience, University of California, Davis, California.,Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California
| |
Collapse
|
14
|
Chen J, Mandel HB, Fitzgerald JE, Clark DA. Asymmetric ON-OFF processing of visual motion cancels variability induced by the structure of natural scenes. eLife 2019; 8:e47579. [PMID: 31613221 PMCID: PMC6884396 DOI: 10.7554/elife.47579] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 10/12/2019] [Indexed: 02/05/2023] Open
Abstract
Animals detect motion using a variety of visual cues that reflect regularities in the natural world. Experiments in animals across phyla have shown that motion percepts incorporate both pairwise and triplet spatiotemporal correlations that could theoretically benefit motion computation. However, it remains unclear how visual systems assemble these cues to build accurate motion estimates. Here, we used systematic behavioral measurements of fruit fly motion perception to show how flies combine local pairwise and triplet correlations to reduce variability in motion estimates across natural scenes. By generating synthetic images with statistics controlled by maximum entropy distributions, we show that the triplet correlations are useful only when images have light-dark asymmetries that mimic natural ones. This suggests that asymmetric ON-OFF processing is tuned to the particular statistics of natural scenes. Since all animals encounter the world's light-dark asymmetries, many visual systems are likely to use asymmetric ON-OFF processing to improve motion estimation.
Collapse
Affiliation(s)
- Juyue Chen
- Interdepartmental Neuroscience ProgramYale UniversityNew HavenUnited States
| | - Holly B Mandel
- Department of Molecular, Cellular and Developmental BiologyYale UniversityNew HavenUnited States
| | - James E Fitzgerald
- Janelia Research CampusHoward Hughes Medical InstituteAshburnUnited States
| | - Damon A Clark
- Interdepartmental Neuroscience ProgramYale UniversityNew HavenUnited States
- Department of Molecular, Cellular and Developmental BiologyYale UniversityNew HavenUnited States
- Department of PhysicsYale UniversityNew HavenUnited States
- Department of NeuroscienceYale UniversityNew HavenUnited States
| |
Collapse
|
15
|
Miura K, Sugita Y, Furukawa T, Kawano K. Two-frame apparent motion presented with an inter-stimulus interval reverses optokinetic responses in mice. Sci Rep 2018; 8:17816. [PMID: 30546049 PMCID: PMC6292883 DOI: 10.1038/s41598-018-36260-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/19/2018] [Indexed: 11/08/2022] Open
Abstract
Two successive image frames presented with a blank inter-stimulus interval (ISI) induce reversals of perceived motion in humans. This illusory effect is a manifestation of the temporal properties of image filters embedded in the visual processing pathway. In the present study, ISI experiments were performed to identify the temporal characteristics of vision underlying optokinetic responses (OKRs) in mice. These responses are thought to be mediated by subcortical visual processing. OKRs of C57BL/6 J mice, induced by a 1/4-wavelength shift of a square-wave grating presented with and without an ISI were recorded. When a 1/4-wavelength shift was presented without, or with shorter ISIs (≤106.7 ms), OKRs were induced in the direction of the shift, with progressively decreasing amplitude as the ISI increased. However, when ISIs were 213.3 ms or longer, OKR direction reversed. Similar dependence on ISIs was also obtained using a sinusoidal grating. We subsequently quantitatively estimated temporal filters based on the ISI effects. We found that filters with biphasic impulse response functions could reproduce the ISI and temporal frequency dependence of the mouse OKR. Comparison with human psychophysics and behaviors suggests that mouse vision has more sluggish response dynamics to light signals than that of humans.
Collapse
Affiliation(s)
- Kenichiro Miura
- Department of Integrative Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Yuko Sugita
- Department of Integrative Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kenji Kawano
- Department of Integrative Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Kopp-Scheinpflug C, Sinclair JL, Linden JF. When Sound Stops: Offset Responses in the Auditory System. Trends Neurosci 2018; 41:712-728. [DOI: 10.1016/j.tins.2018.08.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/30/2018] [Accepted: 08/10/2018] [Indexed: 11/17/2022]
|
17
|
Pathway-Specific Asymmetries between ON and OFF Visual Signals. J Neurosci 2018; 38:9728-9740. [PMID: 30249795 DOI: 10.1523/jneurosci.2008-18.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/08/2018] [Accepted: 09/12/2018] [Indexed: 01/07/2023] Open
Abstract
Visual processing is largely organized into ON and OFF pathways that signal stimulus increments and decrements, respectively. These pathways exhibit natural pairings based on morphological and physiological similarities, such as ON and OFF α-ganglion cells in the mammalian retina. Several studies have noted asymmetries in the properties of ON and OFF pathways. For example, the spatial receptive fields (RFs) of OFF α-cells are systematically smaller than ON α-cells. Analysis of natural scenes suggests that these asymmetries are optimal for visual encoding. To test the generality of ON/OFF asymmetries, we measured the spatiotemporal RF properties of multiple RGC types in rat retina. Through a quantitative and serial classification, we identified three functional pairs of ON and OFF RGCs. We analyzed the structure of their RFs and compared spatial integration, temporal integration, and gain across ON and OFF pairs. Similar to previous results from the cat and primate, RGC types with larger spatial RFs exhibited briefer temporal integration and higher gain. However, each pair of ON and OFF RGC types exhibited distinct asymmetric relationships between RF properties, some of which were opposite to the findings of previous reports. These results reveal the functional organization of six RGC types in the rodent retina and indicate that ON/OFF asymmetries are pathway specific.SIGNIFICANCE STATEMENT Circuits that process sensory input frequently process increments separately from decrements, so-called ON and OFF responses. Theoretical studies indicate that this separation, and associated asymmetries in ON and OFF pathways, may be beneficial for encoding natural stimuli. However, the generality of ON and OFF pathway asymmetries has not been tested. Here we compare the functional properties of three distinct pairs of ON and OFF pathways in the rodent retina and show that their asymmetries are pathway specific. These results provide a new view on the partitioning of vision across diverse ON and OFF signaling pathways.
Collapse
|
18
|
Takeshita D, Smeds L, Ala-Laurila P. Processing of single-photon responses in the mammalian On and Off retinal pathways at the sensitivity limit of vision. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0073. [PMID: 28193818 PMCID: PMC5312023 DOI: 10.1098/rstb.2016.0073] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2016] [Indexed: 12/21/2022] Open
Abstract
Visually guided behaviour at its sensitivity limit relies on single-photon responses originating in a small number of rod photoreceptors. For decades, researchers have debated the neural mechanisms and noise sources that underlie this striking sensitivity. To address this question, we need to understand the constraints arising from the retinal output signals provided by distinct retinal ganglion cell types. It has recently been shown in the primate retina that On and Off parasol ganglion cells, the cell types likely to underlie light detection at the absolute visual threshold, differ fundamentally not only in response polarity, but also in the way they handle single-photon responses originating in rods. The On pathway provides the brain with a thresholded, low-noise readout and the Off pathway with a noisy, linear readout. We outline the mechanistic basis of these different coding strategies and analyse their implications for detecting the weakest light signals. We show that high-fidelity, nonlinear signal processing in the On pathway comes with costs: more single-photon responses are lost and their propagation is delayed compared with the Off pathway. On the other hand, the responses of On ganglion cells allow better intensity discrimination compared with the Off ganglion cell responses near visual threshold. This article is part of the themed issue ‘Vision in dim light’.
Collapse
Affiliation(s)
- Daisuke Takeshita
- Department of Biosciences, University of Helsinki, PO Box 65, 00014 University of Helsinki, Finland
| | - Lina Smeds
- Department of Biosciences, University of Helsinki, PO Box 65, 00014 University of Helsinki, Finland
| | - Petri Ala-Laurila
- Department of Biosciences, University of Helsinki, PO Box 65, 00014 University of Helsinki, Finland .,Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, PO Box 12200, 00076 Aalto, Finland
| |
Collapse
|
19
|
Freed MA. Asymmetry between ON and OFF α ganglion cells of mouse retina: integration of signal and noise from synaptic inputs. J Physiol 2017; 595:6979-6991. [PMID: 28913831 PMCID: PMC5685833 DOI: 10.1113/jp274736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/12/2017] [Indexed: 01/12/2023] Open
Abstract
KEY POINTS Bipolar and amacrine cells presynaptic to the ON sustained α cell of mouse retina provide currents with a higher signal-to-noise power ratio (SNR) than those presynaptic to the OFF sustained α cell. Yet the ON cell loses proportionately more SNR from synaptic inputs to spike output than the OFF cell does. The higher SNR of ON bipolar cells at the beginning of the ON pathway compensates for losses incurred by the ON ganglion cell, and improves the processing of positive contrasts. ABSTRACT ON and OFF pathways in the retina include functional pairs of neurons that, at first glance, appear to have symmetrically similar responses to brightening and darkening, respectively. Upon careful examination, however, functional pairs exhibit asymmetries in receptive field size and response kinetics. Until now, descriptions of how light-adapted retinal circuitry maintains a preponderance of signal over the noise have not distinguished between ON and OFF pathways. Here I present evidence of marked asymmetries between members of a functional pair of sustained α ganglion cells in the mouse retina. The ON cell exhibited a proportionately greater loss of signal-to-noise power ratio (SNR) from its presynaptic arrays to its postsynaptic currents. Thus the ON cell combines signal and noise from its presynaptic arrays of bipolar and amacrine cells less efficiently than the OFF cell does. Yet the inefficiency of the ON cell is compensated by its presynaptic arrays providing a higher SNR than the arrays presynaptic to the OFF cell, apparently to improve visual processing of positive contrasts. Dynamic clamp experiments were performed that introduced synaptic conductances into ON and OFF cells. When the amacrine-modulated conductance was removed, the ON cell's spike train exhibited an increase in SNR. The OFF cell, however, showed the opposite effect of removing amacrine input, which was a decrease in SNR. Thus ON and OFF cells have different modes of synaptic integration with direct effects on the SNR of the spike output.
Collapse
Affiliation(s)
- Michael A. Freed
- Department of NeuroscienceUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
20
|
Cowan CS, Sabharwal J, Wu SM. Space-time codependence of retinal ganglion cells can be explained by novel and separable components of their receptive fields. Physiol Rep 2017; 4:4/17/e12952. [PMID: 27604400 PMCID: PMC5027358 DOI: 10.14814/phy2.12952] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 11/24/2022] Open
Abstract
Reverse correlation methods such as spike‐triggered averaging consistently identify the spatial center in the linear receptive fields (RFs) of retinal ganglion cells (GCs). However, the spatial antagonistic surround observed in classical experiments has proven more elusive. Tests for the antagonistic surround have heretofore relied on models that make questionable simplifying assumptions such as space–time separability and radial homogeneity/symmetry. We circumvented these, along with other common assumptions, and observed a linear antagonistic surround in 754 of 805 mouse GCs. By characterizing the RF's space–time structure, we found the overall linear RF's inseparability could be accounted for both by tuning differences between the center and surround and differences within the surround. Finally, we applied this approach to characterize spatial asymmetry in the RF surround. These results shed new light on the spatiotemporal organization of GC linear RFs and highlight a major contributor to its inseparability.
Collapse
Affiliation(s)
- Cameron S Cowan
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas Department of Neuroscience, Baylor College of Medicine, Houston, Texas
| | - Jasdeep Sabharwal
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas Department of Neuroscience, Baylor College of Medicine, Houston, Texas Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
| | - Samuel M Wu
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas Department of Neuroscience, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
21
|
Elevated IOP alters the space-time profiles in the center and surround of both ON and OFF RGCs in mouse. Proc Natl Acad Sci U S A 2017; 114:8859-8864. [PMID: 28760976 DOI: 10.1073/pnas.1706994114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glaucoma is a leading cause of blindness worldwide, and is characterized by progressive retinal ganglion cell (RGC) death. An experimental model of glaucoma has been established by elevating the intraocular pressure (IOP) via microbead occlusion of ocular fluid outflow in mice. Studies in this model have found visual dysfunction that varied with adaptational state, occurred before anatomical changes, and affected OFF RGCs more than ON RGCs. These results indicate subtle alterations in the underlying retinal circuitry that could help identify disease before irreversible RGC changes. Therefore, we looked at how RGC function was altered with elevated IOP under both photopic and scotopic conditions. We first found that responses to light offset are diminished with IOP elevation along with a concomitant decrease in receptive field center size for OFF RGCs. In addition, the antagonistic surround strength and size was reduced in ON RGCs. Furthermore, elevation of IOP significantly accelerated the photopic temporal tuning of RGC center responses in both ON and OFF RGCs. We found that some of the IOP-induced functional changes to OFF RGCs relied on ON cross-over pathways, indicating dysfunction in inner retinal circuitry. Overall, these results suggest that IOP alters multiple functions in the retina depending on the adaptational state. They provide a basis for designing multiple functional tests for early detection of glaucoma and for circuit-specific therapeutic targets in treatment of this blinding disease.
Collapse
|
22
|
Ishii T, Homma K, Mano A, Akagi T, Shigematsu Y, Shimoda Y, Inoue H, Kakinuma Y, Kaneda M. Novel channel-mediated choline transport in cholinergic neurons of the mouse retina. J Neurophysiol 2017; 118:1952-1961. [PMID: 28701543 DOI: 10.1152/jn.00506.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 06/23/2017] [Accepted: 07/05/2017] [Indexed: 11/22/2022] Open
Abstract
Choline uptake into the presynaptic terminal of cholinergic neurons is mediated by the high-affinity choline transporter and is essential for acetylcholine synthesis. In a previous study, we reported that P2X2 purinoceptors are selectively expressed in OFF-cholinergic amacrine cells of the mouse retina. Under specific conditions, P2X2 purinoceptors acquire permeability to large cations, such as N-methyl-d-glucamine, and therefore potentially could act as a noncanonical pathway for choline entry into neurons. We tested this hypothesis in OFF-cholinergic amacrine cells of the mouse retina. ATP-induced choline currents were observed in OFF-cholinergic amacrine cells, but not in ON-cholinergic amacrine cells, in mouse retinal slice preparations. High-affinity choline transporters are expressed at higher levels in ON-cholinergic amacrine cells than in OFF-cholinergic amacrine cells. In dissociated preparations of cholinergic amacrine cells, ATP-activated cation currents arose from permeation of extracellular choline. We also examined the pharmacological properties of choline currents. Pharmacologically, α,β-methylene ATP did not produce a cation current, whereas ATPγS and benzoyl-benzoyl-ATP (BzATP) activated choline currents. However, the amplitude of the choline current activated by BzATP was very small. The choline current activated by ATP was strongly inhibited by pyridoxalphosphate-6-azophenyl-2',4'-sulfonic acid. Accordingly, P2X2 purinoceptors expressed in HEK-293T cells were permeable to choline and similarly functioned as a choline uptake pathway. Our physiological and pharmacological findings support the hypothesis that P2 purinoceptors, including P2X2 purinoceptors, function as a novel choline transport pathway and may provide a new regulatory mechanism for cholinergic signaling transmission at synapses in OFF-cholinergic amacrine cells of the mouse retina.NEW & NOTEWORTHY Choline transport across the membrane is exerted by both the high-affinity and low-affinity choline transporters. We found that choline can permeate P2 purinergic receptors, including P2X2 purinoceptors, in cholinergic neurons of the retina. Our findings show the presence of a novel choline transport pathway in cholinergic neurons. Our findings also indicate that the permeability of P2X2 purinergic receptors to choline observed in the heterologous expression system may have a physiological relevance in vivo.
Collapse
Affiliation(s)
- Toshiyuki Ishii
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Kohei Homma
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Asuka Mano
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Takumi Akagi
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Yasuhide Shigematsu
- Medical Research Institute, Tokyo Women's Medical University, Tokyo, Japan; and
| | - Yukio Shimoda
- Medical Research Institute, Tokyo Women's Medical University, Tokyo, Japan; and
| | - Hiroyoshi Inoue
- Department of Chemistry, Keio University School of Medicine, Tokyo, Japan
| | | | - Makoto Kaneda
- Department of Physiology, Nippon Medical School, Tokyo, Japan;
| |
Collapse
|
23
|
van der Heijden ME, Shah P, Cowan CS, Yang Z, Wu SM, Frankfort BJ. Effects of Chronic and Acute Intraocular Pressure Elevation on Scotopic and Photopic Contrast Sensitivity in Mice. Invest Ophthalmol Vis Sci 2017; 57:3077-87. [PMID: 27286365 PMCID: PMC4913820 DOI: 10.1167/iovs.16-19312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE To compare the impact of intraocular pressure (IOP) elevation on scotopic and photopic contrast sensitivity in mice. METHODS We chronically elevated the IOP of wild-type mice via injection of polystyrene beads or acutely via injection of highly cohesive sodium hyaluronate. Some eyes with chronically elevated IOP were treated with either topical brimonidine tartrate 0.1% or brinzolamide 1%. Scotopic and photopic contrast sensitivity was assessed at peak spatiotemporal frequencies at multiple time points, with an established optokinetic technique. Retinal ganglion cell (RGC) counts were determined with an antibody to class III beta-tubulin. Correlations among IOP level, RGC count, and scotopic or photopic contrast sensitivity were performed. RESULTS Six weeks of IOP elevation caused a generalized reduction of photopic contrast sensitivity and a preferential reduction of scotopic contrast sensitivity at peak spatiotemporal frequencies. The administration of brinzolamide but not brimonidine caused a significant reduction in cumulative IOP, whereas brimonidine, but not brinzolamide, prevented RGC loss. Both brimonidine and brinzolamide prevented contrast sensitivity loss, but brimonidine did so at earlier time points and across a wider range of lighting conditions. Following either chronic or acute IOP elevation, scotopic contrast sensitivity was impacted most prominently by IOP level and not by RGC count, while photopic contrast sensitivity was impacted by a combination of factors. CONCLUSIONS It is possible that scotopic-specific retinal circuitry is altered preferentially by IOP elevation, and that changes in scotopic contrast sensitivity will assist with glaucoma detection. Brimonidine appears to prevent RGC loss via an IOP-independent mechanism.
Collapse
Affiliation(s)
- Meike E van der Heijden
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States 2Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States
| | - Priya Shah
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Cameron S Cowan
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States 2Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States
| | - Zhuo Yang
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Samuel M Wu
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States 2Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States
| | - Benjamin J Frankfort
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States 2Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
24
|
Distinct subcomponents of mouse retinal ganglion cell receptive fields are differentially altered by light adaptation. Vision Res 2017; 131:96-105. [PMID: 28087445 DOI: 10.1016/j.visres.2016.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/12/2016] [Accepted: 12/22/2016] [Indexed: 12/11/2022]
Abstract
The remarkable dynamic range of vision is facilitated by adaptation of retinal sensitivity to ambient lighting conditions. An important mechanism of sensitivity adaptation is control of the spatial and temporal window over which light is integrated. The retina accomplishes this by switching between parallel synaptic pathways with differing kinetics and degrees of synaptic convergence. However, the relative shifts in spatial and temporal integration are not well understood - particularly in the context of the antagonistic spatial surround. Here, we resolve these issues by characterizing the adaptation-induced changes to spatiotemporal integration in the linear receptive field center and surround of mouse retinal ganglion cells. While most ganglion cells lose their antagonistic spatial surround under scotopic conditions, a strong surround is maintained in a subset. We then applied a novel technique that allowed us to analyze the receptive field as a triphasic temporal filter in the center and a biphasic filter in the surround. The temporal tuning of the surround was relatively maintained across adaptation conditions compared to the center, which greatly increased its temporal integration. Though all phases of the center's triphasic temporal response slowed, some shifted significantly less. Additionally, adaptation differentially shifted ON and OFF pathway temporal tuning, reducing their asymmetry under scotopic conditions. Finally, spatial integration was significantly increased by dark adaptation in some cells while it decreased it in others. These findings provide novel insight into how adaptation adjusts visual information processing by altering fundamental properties of ganglion cell receptive fields, such as center-surround antagonism and space-time integration.
Collapse
|
25
|
Sabharwal J, Seilheimer RL, Cowan CS, Wu SM. The ON Crossover Circuitry Shapes Spatiotemporal Profile in the Center and Surround of Mouse OFF Retinal Ganglion Cells. Front Neural Circuits 2016; 10:106. [PMID: 28066192 PMCID: PMC5177742 DOI: 10.3389/fncir.2016.00106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/07/2016] [Indexed: 11/22/2022] Open
Abstract
Retinal ganglion cells (RGCs) are often grouped based on their functional properties. Many of these functional properties, such as receptive field (RF) size, are driven by specific retinal circuits. In this report, we determined the role of the ON bipolar cell (BC) mediated crossover circuitry in shaping the center and surround of OFF RGCs. We recorded from a large population of mouse RGCs using a multielectrode array (MEA) while pharmacologically removing the ON BC-mediated crossover circuit. OFF sustained and transient responses to whole field stimuli are lost under scotopic conditions, but maintained under photopic conditions. Though photopic light responses were grossly maintained, we found that photopic light response properties were altered. Using linear RF mapping, we found a significant reduction in the antagonistic surround and a decrease in size of the RF center. Using a novel approach to separate the distinct temporal filters present in the RF center, we see that the crossover pathway contributes specifically to the sluggish antagonistic filter in the center. These results provide new insight into the role of crossover pathways in driving RGCs and also demonstrate that the distinct inputs driving the RF center can be isolated and assayed by RGC activity.
Collapse
Affiliation(s)
- Jasdeep Sabharwal
- Medical Scientist Training Program, Baylor College of MedicineHouston, TX, USA; Department of Neuroscience, Baylor College of MedicineHouston, TX, USA; Department of Ophthalmology, Baylor College of MedicineHouston, TX, USA
| | - Robert L Seilheimer
- Medical Scientist Training Program, Baylor College of MedicineHouston, TX, USA; Department of Ophthalmology, Baylor College of MedicineHouston, TX, USA
| | - Cameron S Cowan
- Department of Ophthalmology, Baylor College of Medicine Houston, TX, USA
| | - Samuel M Wu
- Department of Neuroscience, Baylor College of MedicineHouston, TX, USA; Department of Ophthalmology, Baylor College of MedicineHouston, TX, USA
| |
Collapse
|
26
|
Orientation Tuning Depends on Spatial Frequency in Mouse Visual Cortex. eNeuro 2016; 3:eN-NWR-0217-16. [PMID: 27699210 PMCID: PMC5039332 DOI: 10.1523/eneuro.0217-16.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 11/21/2022] Open
Abstract
The response properties of neurons to sensory stimuli have been used to identify their receptive fields and to functionally map sensory systems. In primary visual cortex, most neurons are selective to a particular orientation and spatial frequency of the visual stimulus. Using two-photon calcium imaging of neuronal populations from the primary visual cortex of mice, we have characterized the response properties of neurons to various orientations and spatial frequencies. Surprisingly, we found that the orientation selectivity of neurons actually depends on the spatial frequency of the stimulus. This dependence can be easily explained if one assumed spatially asymmetric Gabor-type receptive fields. We propose that receptive fields of neurons in layer 2/3 of visual cortex are indeed spatially asymmetric, and that this asymmetry could be used effectively by the visual system to encode natural scenes.
Collapse
|
27
|
Cooper EA. A normalized contrast-encoding model exhibits bright/dark asymmetries similar to early visual neurons. Physiol Rep 2016; 4:4/7/e12746. [PMID: 27044852 PMCID: PMC4831320 DOI: 10.14814/phy2.12746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/24/2016] [Indexed: 01/15/2023] Open
Abstract
Biological sensory systems share a number of organizing principles. One such principle is the formation of parallel streams. In the visual system, information about bright and dark features is largely conveyed via two separate streams: the ON and OFF pathways. While brightness and darkness can be considered symmetric and opposite forms of visual contrast, the response properties of cells in the ON and OFF pathways are decidedly asymmetric. Here, we ask whether a simple contrast‐encoding model predicts asymmetries for brights and darks that are similar to the asymmetries found in the ON and OFF pathways. Importantly, this model does not include any explicit differences in how the visual system represents brights and darks, but it does include a common normalization mechanism. The phenomena captured by the model include (1) nonlinear contrast response functions, (2) greater nonlinearities in the responses to darks, and (3) larger responses to dark contrasts. We report a direct, quantitative comparison between these model predictions and previously published electrophysiological measurements from the retina and thalamus (guinea pig and cat, respectively). This work suggests that the simple computation of visual contrast may account for a range of early visual processing nonlinearities. Assessing explicit models of sensory representations is essential for understanding which features of neuronal activity these models can and cannot predict, and for investigating how early computations may reverberate through the sensory pathways.
Collapse
Affiliation(s)
- Emily A Cooper
- Department of Psychological & Brain Sciences, Dartmouth College, Hanover, New Hampshire
| |
Collapse
|
28
|
Asymmetry of Drosophila ON and OFF motion detectors enhances real-world velocity estimation. Nat Neurosci 2016; 19:706-715. [PMID: 26928063 DOI: 10.1038/nn.4262] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/29/2016] [Indexed: 12/13/2022]
Abstract
The reliable estimation of motion across varied surroundings represents a survival-critical task for sighted animals. How neural circuits have adapted to the particular demands of natural environments, however, is not well understood. We explored this question in the visual system of Drosophila melanogaster. Here, as in many mammalian retinas, motion is computed in parallel streams for brightness increments (ON) and decrements (OFF). When genetically isolated, ON and OFF pathways proved equally capable of accurately matching walking responses to realistic motion. To our surprise, detailed characterization of their functional tuning properties through in vivo calcium imaging and electrophysiology revealed stark differences in temporal tuning between ON and OFF channels. We trained an in silico motion estimation model on natural scenes and discovered that our optimized detector exhibited differences similar to those of the biological system. Thus, functional ON-OFF asymmetries in fly visual circuitry may reflect ON-OFF asymmetries in natural environments.
Collapse
|
29
|
Zhao L, Sendek C, Davoodnia V, Lashgari R, Dul MW, Zaidi Q, Alonso JM. Effect of Age and Glaucoma on the Detection of Darks and Lights. Invest Ophthalmol Vis Sci 2015; 56:7000-6. [PMID: 26513506 DOI: 10.1167/iovs.15-16753] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We have shown previously that normal observers detect dark targets faster and more accurately than light targets, when presented in noisy backgrounds. We investigated how these differences in detection time and accuracy are affected by age and ganglion cell pathology associated with glaucoma. METHODS We asked 21 glaucoma patients, 21 age-similar controls, and 5 young control observers to report as fast as possible the number of 1 to 3 light or dark targets. The targets were positioned at random in a binary noise background, within the central 30° of the visual field. RESULTS We replicate previous findings that darks are detected faster and more accurately than lights. We extend these findings by demonstrating that differences in detection of darks and lights are found reliably across different ages and in observers with glaucoma. We show that differences in detection time increase at a rate of approximately 55 msec/dB at early stages of glaucoma and then remain constant at later stages at approximately 800 msec. In normal subjects, differences in detection time increase with age at a rate of approximately 8 msec/y. We also demonstrate that the accuracy to detect lights and darks is significantly correlated with the severity of glaucoma and that the mean detection time is significantly longer for subjects with glaucoma than age-similar controls. CONCLUSIONS We conclude that differences in detection of darks and lights can be demonstrated over a wide range of ages, and asymmetries in dark/light detection increase with age and early stages of glaucoma.
Collapse
Affiliation(s)
- Linxi Zhao
- Department of Biological and Visual Sciences State University of New York, College of Optometry, New York, New York, United States
| | - Caroline Sendek
- Department of Biological and Visual Sciences State University of New York, College of Optometry, New York, New York, United States
| | - Vandad Davoodnia
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran
| | - Reza Lashgari
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran
| | - Mitchell W Dul
- Department of Biological and Visual Sciences State University of New York, College of Optometry, New York, New York, United States
| | - Qasim Zaidi
- Department of Biological and Visual Sciences State University of New York, College of Optometry, New York, New York, United States
| | - Jose-Manuel Alonso
- Department of Biological and Visual Sciences State University of New York, College of Optometry, New York, New York, United States
| |
Collapse
|
30
|
Jiang Y, Purushothaman G, Casagrande VA. The functional asymmetry of ON and OFF channels in the perception of contrast. J Neurophysiol 2015; 114:2816-29. [PMID: 26334011 DOI: 10.1152/jn.00560.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/02/2015] [Indexed: 12/25/2022] Open
Abstract
To fully understand the relationship between perception and single neural responses, one should take into consideration the early stages of sensory processing. Few studies, however, have directly examined the neural underpinning of visual perception in the lateral geniculate nucleus (LGN), only one synapse away from the retina. In this study we recorded from LGN parvocellular (P) ON-center and OFF-center neurons while monkeys either passively viewed or actively detected a full range of contrasts. We found that OFF neurons were more sensitive in detecting negative contrasts than ON neurons were in detecting positive contrasts. Also, OFF neurons had higher spontaneous activities, higher peak response amplitudes, and were more sustained than ON neurons in their contrast responses. Puzzlingly, OFF neurons failed to show any significant correlations with the monkeys' perceptual choices, despite their greater contrast sensitivities. If, however, choice probabilities were calculated from interspike intervals instead of spike counts (thus taking into account the higher firing rates of OFF neurons), OFF neurons but not ON neurons were significantly correlated with behavioral choices. Taken together, these results demonstrate in awake, behaving animals that: 1) the ON and OFF pathways do not simply mirror each other in their functionality but instead carry qualitatively different types of information, and 2) the responses of ON and OFF neurons can be correlated with perceptual choices even in the absence of physical stimuli and interneuronal correlations.
Collapse
Affiliation(s)
- Yaoguang Jiang
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Gopathy Purushothaman
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; and
| | - Vivien A Casagrande
- Department of Psychology, Vanderbilt University, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; and Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
31
|
Abstract
New measurements of nerve cells in the eye show how very dim lights are processed by night-vision pathways.
Collapse
Affiliation(s)
- Paul R Martin
- Save Sight Institute and School of Medical Sciences, University of Sydney, Australia.
| |
Collapse
|
32
|
Purgert RJ, Lukasiewicz PD. Differential encoding of spatial information among retinal on cone bipolar cells. J Neurophysiol 2015. [PMID: 26203104 DOI: 10.1152/jn.00287.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The retina is the first stage of visual processing. It encodes elemental features of visual scenes. Distinct cone bipolar cells provide the substrate for this to occur. They encode visual information, such as color and luminance, a principle known as parallel processing. Few studies have directly examined whether different forms of spatial information are processed in parallel among cone bipolar cells. To address this issue, we examined the spatial information encoded by mouse ON cone bipolar cells, the subpopulation excited by increments in illumination. Two types of spatial processing were identified. We found that ON cone bipolar cells with axons ramifying in the central inner plexiform layer were tuned to preferentially encode small stimuli. By contrast, ON cone bipolar cells with axons ramifying in the proximal inner plexiform layer, nearest the ganglion cell layer, were tuned to encode both small and large stimuli. This dichotomy in spatial tuning is attributable to amacrine cells providing stronger inhibition to central ON cone bipolar cells compared with proximal ON cone bipolar cells. Furthermore, background illumination altered this difference in spatial tuning. It became less pronounced in bright light, as amacrine cell-driven inhibition became pervasive among all ON cone bipolar cells. These results suggest that differential amacrine cell input determined the distinct spatial encoding properties among ON cone bipolar cells. These findings enhance the known parallel processing capacity of the retina.
Collapse
Affiliation(s)
- Robert J Purgert
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri; and
| | - Peter D Lukasiewicz
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri; and Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
33
|
Victor JD, Thengone DJ, Rizvi SM, Conte MM. A perceptual space of local image statistics. Vision Res 2015; 117:117-35. [PMID: 26130606 DOI: 10.1016/j.visres.2015.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 05/28/2015] [Accepted: 05/30/2015] [Indexed: 11/17/2022]
Abstract
Local image statistics are important for visual analysis of textures, surfaces, and form. There are many kinds of local statistics, including those that capture luminance distributions, spatial contrast, oriented segments, and corners. While sensitivity to each of these kinds of statistics have been well-studied, much less is known about visual processing when multiple kinds of statistics are relevant, in large part because the dimensionality of the problem is high and different kinds of statistics interact. To approach this problem, we focused on binary images on a square lattice - a reduced set of stimuli which nevertheless taps many kinds of local statistics. In this 10-parameter space, we determined psychophysical thresholds to each kind of statistic (16 observers) and all of their pairwise combinations (4 observers). Sensitivities and isodiscrimination contours were consistent across observers. Isodiscrimination contours were elliptical, implying a quadratic interaction rule, which in turn determined ellipsoidal isodiscrimination surfaces in the full 10-dimensional space, and made predictions for sensitivities to complex combinations of statistics. These predictions, including the prediction of a combination of statistics that was metameric to random, were verified experimentally. Finally, check size had only a mild effect on sensitivities over the range from 2.8 to 14min, but sensitivities to second- and higher-order statistics was substantially lower at 1.4min. In sum, local image statistics form a perceptual space that is highly stereotyped across observers, in which different kinds of statistics interact according to simple rules.
Collapse
Affiliation(s)
- Jonathan D Victor
- Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, United States.
| | - Daniel J Thengone
- Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, United States
| | - Syed M Rizvi
- Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, United States
| | - Mary M Conte
- Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, United States
| |
Collapse
|
34
|
Fortenbach CR, Kessler C, Peinado Allina G, Burns ME. Speeding rod recovery improves temporal resolution in the retina. Vision Res 2015; 110:57-67. [PMID: 25748270 DOI: 10.1016/j.visres.2015.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/16/2015] [Accepted: 02/19/2015] [Indexed: 10/23/2022]
Abstract
The temporal resolution of the visual system progressively increases with light intensity. Under scotopic conditions, temporal resolution is relatively poor, and may be limited by both retinal and cortical processes. Rod photoresponses themselves are quite slow because of the slowly deactivating biochemical cascade needed for light transduction. Here, we have used a transgenic mouse line with faster than normal rod phototransduction deactivation (RGS9-overexpressors) to test whether rod signaling to second-order retinal neurons is rate-limited by phototransduction or by other mechanisms. We compared electrical responses of individual wild-type and RGS9-overexpressing (RGS9-ox) rods to steady illumination and found that RGS9-ox rods required 2-fold brighter light for comparable activation, owing to faster G-protein deactivation. When presented with flickering stimuli, RGS9-ox rods showed greater magnitude fluctuations around a given steady-state current amplitude. Likewise, in vivo electroretinography (ERG) and whole-cell recording from OFF-bipolar, rod bipolar, and horizontal cells of RGS9-ox mice displayed larger than normal magnitude flicker responses, demonstrating an improved ability to transmit frequency information across the rod synapse. Slow phototransduction recovery therefore limits synaptic transmission of increments and decrements of light intensity across the first retinal synapse in normal retinas, apparently sacrificing temporal responsiveness for greater overall sensitivity in ambient light.
Collapse
Affiliation(s)
| | - Christopher Kessler
- Center for Neuroscience, University of California Davis, Davis, CA 95616, United States.
| | - Gabriel Peinado Allina
- Center for Neuroscience, University of California Davis, Davis, CA 95616, United States.
| | - Marie E Burns
- Center for Neuroscience, University of California Davis, Davis, CA 95616, United States; Depts. of Ophthalmology & Vision Science and Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, United States.
| |
Collapse
|
35
|
Abstract
In many sensory systems, the neural signal splits into multiple parallel pathways. For example, in the mammalian retina, ~20 types of retinal ganglion cells transmit information about the visual scene to the brain. The purpose of this profuse and early pathway splitting remains unknown. We examine a common instance of splitting into ON and OFF neurons excited by increments and decrements of light intensity in the visual scene, respectively. We test the hypothesis that pathway splitting enables more efficient encoding of sensory stimuli. Specifically, we compare a model system with an ON and an OFF neuron to one with two ON neurons. Surprisingly, the optimal ON-OFF system transmits the same information as the optimal ON-ON system, if one constrains the maximal firing rate of the neurons. However, the ON-OFF system uses fewer spikes on average to transmit this information. This superiority of the ON-OFF system is also observed when the two systems are optimized while constraining their mean firing rate. The efficiency gain for the ON-OFF split is comparable with that derived from decorrelation, a well known processing strategy of early sensory systems. The gain can be orders of magnitude larger when the ecologically important stimuli are rare but large events of either polarity. The ON-OFF system also provides a better code for extracting information by a linear downstream decoder. The results suggest that the evolution of ON-OFF diversification in sensory systems may be driven by the benefits of lowering average metabolic cost, especially in a world in which the relevant stimuli are sparse.
Collapse
|
36
|
Komban SJ, Kremkow J, Jin J, Wang Y, Lashgari R, Li X, Zaidi Q, Alonso JM. Neuronal and perceptual differences in the temporal processing of darks and lights. Neuron 2014; 82:224-34. [PMID: 24698277 PMCID: PMC3980847 DOI: 10.1016/j.neuron.2014.02.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2014] [Indexed: 11/20/2022]
Abstract
Visual information is mediated by two major thalamic pathways that signal light decrements (OFF) and increments (ON) in visual scenes, the OFF pathway being faster than the ON. Here, we demonstrate that this OFF temporal advantage is transferred to visual cortex and has a correlate in human perception. OFF-dominated cortical neurons in cats responded ∼3 ms faster to visual stimuli than ON-dominated cortical neurons, and dark-mediated suppression in ON-dominated neurons peaked ∼14 ms faster than light-mediated suppression in OFF-dominated neurons. Consistent with the neuronal differences, human observers were 6-14 ms faster at detecting darks than lights and better at discriminating dark than light flickers. Neuronal and perceptual differences both vanished if backgrounds were biased toward darks. Our results suggest that the cortical OFF pathway is faster than the ON pathway at increasing and suppressing visual responses, and these differences have parallels in the human visual perception of lights and darks.
Collapse
Affiliation(s)
- Stanley Jose Komban
- Graduate Center for Vision Research, SUNY College of Optometry, New York, NY, 10036, USA
| | - Jens Kremkow
- Graduate Center for Vision Research, SUNY College of Optometry, New York, NY, 10036, USA
| | - Jianzhong Jin
- Graduate Center for Vision Research, SUNY College of Optometry, New York, NY, 10036, USA
| | - Yushi Wang
- Graduate Center for Vision Research, SUNY College of Optometry, New York, NY, 10036, USA
| | - Reza Lashgari
- Graduate Center for Vision Research, SUNY College of Optometry, New York, NY, 10036, USA; School of Electrical Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran
| | - Xiaobing Li
- Graduate Center for Vision Research, SUNY College of Optometry, New York, NY, 10036, USA
| | - Qasim Zaidi
- Graduate Center for Vision Research, SUNY College of Optometry, New York, NY, 10036, USA
| | - Jose-Manuel Alonso
- Graduate Center for Vision Research, SUNY College of Optometry, New York, NY, 10036, USA.
| |
Collapse
|
37
|
Neuronal nonlinearity explains greater visual spatial resolution for darks than lights. Proc Natl Acad Sci U S A 2014; 111:3170-5. [PMID: 24516130 DOI: 10.1073/pnas.1310442111] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Astronomers and physicists noticed centuries ago that visual spatial resolution is higher for dark than light stimuli, but the neuronal mechanisms for this perceptual asymmetry remain unknown. Here we demonstrate that the asymmetry is caused by a neuronal nonlinearity in the early visual pathway. We show that neurons driven by darks (OFF neurons) increase their responses roughly linearly with luminance decrements, independent of the background luminance. However, neurons driven by lights (ON neurons) saturate their responses with small increases in luminance and need bright backgrounds to approach the linearity of OFF neurons. We show that, as a consequence of this difference in linearity, receptive fields are larger in ON than OFF thalamic neurons, and cortical neurons are more strongly driven by darks than lights at low spatial frequencies. This ON/OFF asymmetry in linearity could be demonstrated in the visual cortex of cats, monkeys, and humans and in the cat visual thalamus. Furthermore, in the cat visual thalamus, we show that the neuronal nonlinearity is present at the ON receptive field center of ON-center neurons and ON receptive field surround of OFF-center neurons, suggesting an origin at the level of the photoreceptor. These results demonstrate a fundamental difference in visual processing between ON and OFF channels and reveal a competitive advantage for OFF neurons over ON neurons at low spatial frequencies, which could be important during cortical development when retinal images are blurred by immature optics in infant eyes.
Collapse
|
38
|
Akimov NP, Rentería RC. Dark rearing alters the normal development of spatiotemporal response properties but not of contrast detection threshold in mouse retinal ganglion cells. Dev Neurobiol 2014; 74:692-706. [PMID: 24408883 DOI: 10.1002/dneu.22164] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 12/20/2013] [Accepted: 01/06/2014] [Indexed: 12/27/2022]
Abstract
The mouse visual system is immature when the eyes open two weeks after birth. As in other mammals, some of the maturation that occurs in the subsequent weeks is known to depend on visual experience. Development of the retina, which as the first stage of vision provides the visual information to the brain, also depends on light-driven activity for proper development but has been less well studied than visual cortical development. The critical properties for retinal encoding of images include detection of contrast and responsiveness to the broad range of temporal stimulus frequencies present in natural stimuli. Here we show that contrast detection threshold and temporal frequency response characteristics of ON and OFF retinal ganglion cells (RGCs), which are poor at eye opening, subsequently undergo maturation, improving RGC performance. Further, we find that depriving mice of visual experience from before birth by rearing them in the dark causes ON and OFF RGCs to have smaller receptive field centers but does not affect their contrast detection threshold development. The modest developmental increase in temporal frequency responsiveness of RGCs in mice reared on a normal light cycle was inhibited by dark rearing only in ON but not OFF RGCs. Thus, these RGC response characteristics are in many ways unaffected by the experience-dependent changes to synaptic and spontaneous activity known to occur in the mouse retina in the two weeks after eye opening, but specific differences are apparent in the ON vs. OFF RGC populations.
Collapse
Affiliation(s)
- Nikolay P Akimov
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | | |
Collapse
|
39
|
Interacting linear and nonlinear characteristics produce population coding asymmetries between ON and OFF cells in the retina. J Neurosci 2013; 33:14958-73. [PMID: 24027295 DOI: 10.1523/jneurosci.1004-13.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The early visual system is a model for understanding the roles of cell populations in parallel processing. Cells in this system can be classified according to their responsiveness to different stimuli; a prominent example is the division between cells that respond to stimuli of opposite contrasts (ON vs OFF cells). These two cell classes display many asymmetries in their physiological characteristics (including temporal characteristics, spatial characteristics, and nonlinear characteristics) that, individually, are known to have important roles in population coding. Here we describe a novel distinction between the information that ON and OFF ganglion cell populations carry in mouse--that OFF cells are able to signal motion information about both light and dark objects, while ON cells have a selective deficit at signaling the motion of dark objects. We found that none of the previously reported asymmetries in physiological characteristics could account for this distinction. We therefore analyzed its basis via a recently developed linear-nonlinear-Poisson model that faithfully captures input/output relationships for a broad range of stimuli (Bomash et al., 2013). While the coding differences between ON and OFF cell populations could not be ascribed to the linear or nonlinear components of the model individually, they had a simple explanation in the way that these components interact. Sensory transformations in other systems can likewise be described by these models, and thus our findings suggest that similar interactions between component properties may help account for the roles of cell classes in population coding more generally.
Collapse
|
40
|
Shi L, Shinomori K. Amplitude difference and similar time course of impulse responses in positive- and negative-contrast detection. Vision Res 2013. [PMID: 23200865 DOI: 10.1016/j.visres.2012.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Temporal impulse response functions (IRFs) were measured to investigate the temporal characteristics of positive- and negative-contrast detection in human vision. The IRFs were estimated using models from sequential double-pulse thresholds measured by the psi method. The results indicated that thresholds for positive contrast detection were significantly higher than those for negative contrast detection. However, positive- and negative-contrast IRFs were similar except for the first peak amplitude, reflecting the difference in sensitivity that originates from the summation operation rather than the linear filtering of the visual system.
Collapse
Affiliation(s)
- Lin Shi
- Department of Engineering, Graduate School of Engineering, Kochi University of Technology, Japan.
| | | |
Collapse
|
41
|
Bomash I, Roudi Y, Nirenberg S. A virtual retina for studying population coding. PLoS One 2013; 8:e53363. [PMID: 23341940 PMCID: PMC3544815 DOI: 10.1371/journal.pone.0053363] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 11/30/2012] [Indexed: 11/29/2022] Open
Abstract
At every level of the visual system – from retina to cortex – information is encoded in the activity of large populations of cells. The populations are not uniform, but contain many different types of cells, each with its own sensitivities to visual stimuli. Understanding the roles of the cell types and how they work together to form collective representations has been a long-standing goal. This goal, though, has been difficult to advance, and, to a large extent, the reason is data limitation. Large numbers of stimulus/response relationships need to be explored, and obtaining enough data to examine even a fraction of them requires a great deal of experiments and animals. Here we describe a tool for addressing this, specifically, at the level of the retina. The tool is a data-driven model of retinal input/output relationships that is effective on a broad range of stimuli – essentially, a virtual retina. The results show that it is highly reliable: (1) the model cells carry the same amount of information as their real cell counterparts, (2) the quality of the information is the same – that is, the posterior stimulus distributions produced by the model cells closely match those of their real cell counterparts, and (3) the model cells are able to make very reliable predictions about the functions of the different retinal output cell types, as measured using Bayesian decoding (electrophysiology) and optomotor performance (behavior). In sum, we present a new tool for studying population coding and test it experimentally. It provides a way to rapidly probe the actions of different cell classes and develop testable predictions. The overall aim is to build constrained theories about population coding and keep the number of experiments and animals to a minimum.
Collapse
Affiliation(s)
- Illya Bomash
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Yasser Roudi
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Sheila Nirenberg
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
42
|
Buldyrev I, Taylor WR. Inhibitory mechanisms that generate centre and surround properties in ON and OFF brisk-sustained ganglion cells in the rabbit retina. J Physiol 2012; 591:303-25. [PMID: 23045347 DOI: 10.1113/jphysiol.2012.243113] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Lateral inhibition produces the centre-surround organization of retinal receptive fields, in which inhibition driven by the mean luminance enhances the sensitivity of ganglion cells to spatial and temporal contrast. Surround inhibition is generated in both synaptic layers; however, the synaptic mechanisms within the inner plexiform layer are not well characterized within specific classes of retinal ganglion cell. Here, we compared the synaptic circuits generating concentric centre-surround receptive fields in ON and OFF brisk-sustained ganglion cells (BSGCs) in the rabbit retina. We first characterized the synaptic inputs to the centre of ON BSGCs, for comparison with previous results from OFF BSGCs. Similar to wide-field ganglion cells, the spatial extent of the excitatory centre and inhibitory surround was larger for the ON than the OFF BSGCs. The results indicate that the surrounds of ON and OFF BSGCs are generated in both the outer and the inner plexiform layers. The inner plexiform layer surround inhibition comprised GABAergic suppression of excitatory inputs from bipolar cells. However, ON and OFF BSGCs displayed notable differences. Surround suppression of excitatory inputs was weaker in ON than OFF BSGCs, and was mediated largely by GABA(C) receptors in ON BSGCs, and by both GABA(A) and GABA(C) receptors in OFF BSGCs. Large ON pathway-mediated glycinergic inputs to ON and OFF BSGCs also showed surround suppression, while much smaller GABAergic inputs showed weak, if any, spatial tuning. Unlike OFF BSGCs, which receive strong glycinergic crossover inhibition from the ON pathway, the ON BSGCs do not receive crossover inhibition from the OFF pathway. We compare and discuss possible roles for glycinergic inhibition in the two cell types.
Collapse
Affiliation(s)
- Ilya Buldyrev
- Casey Eye Institute, Department of Ophthalmology, School of Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
43
|
Meytlis M, Nichols Z, Nirenberg S. Determining the role of correlated firing in large populations of neurons using white noise and natural scene stimuli. Vision Res 2012; 70:44-53. [PMID: 22885035 PMCID: PMC3980944 DOI: 10.1016/j.visres.2012.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 07/13/2012] [Accepted: 07/14/2012] [Indexed: 11/21/2022]
Abstract
The role of correlated firing in representing information has been a subject of much discussion. Several studies in retina, visual cortex, somatosensory cortex, and motor cortex, have suggested that it plays only a minor role, carrying <10% of the total information carried by the neurons (Gawne & Richmond, 1993; Nirenberg et al., 2001; Oram et al., 2001; Petersen, Panzeri, & Diamond, 2001; Rolls et al., 2003). A limiting factor of these studies, however, is that they were carried out using pairs of neurons; how the results extend to large populations was not clear. Recently, new methods for modeling network firing patterns have been developed (Nirenberg & Pandarinath, 2012; Pillow et al., 2008), opening the door to answering this question for more complete populations. One study, Pillow et al. (2008), showed that including correlations increased information by a modest amount, ~20%; however, this work used only a single retina (primate) and a white noise stimulus. Here we performed the analysis using several retinas (mouse) and both white noise and natural scene stimuli. The results showed that correlations added little information when white noise stimuli were used (~13%), similar to Pillow et al.'s findings, and essentially no information when natural scene stimuli were used. Further, the results showed that ignoring correlations did not change the quality of the information carried by the population (as measured by comparing the full pattern of decoding errors). These results suggest generalization: the pairwise analysis in several species show that correlations account for very little of the total information. Now, the analysis with large populations in two species show a similar result, that correlations still account for only a small fraction of the total information, and, most significantly, the amount is not statistically significant when natural stimuli are used, making rapid advances in the study of population coding possible.
Collapse
Affiliation(s)
- Marsha Meytlis
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10065, United States
| | | | | |
Collapse
|
44
|
Abstract
ON and OFF visual pathways originate in the retina at the synapse between photoreceptor and bipolar cells. OFF bipolar cells are shorter in length and use receptors with faster kinetics than ON bipolar cells and, therefore, process information faster. Here, we demonstrate that this temporal advantage is maintained through thalamocortical processing, with OFF visual responses reaching cortex ~3-6 ms before ON visual responses. Faster OFF visual responses could be demonstrated in recordings from large populations of cat thalamic neurons representing the center of vision (both X and Y) and from subpopulations making connection with the same cortical orientation column. While the OFF temporal advantage diminished as visual responses reached their peak, the integral of the impulse response was greater in OFF than ON neurons. Given the stimulus preferences from OFF and ON channels, our results indicate that darks are processed faster than lights in the thalamocortical pathway.
Collapse
|
45
|
Lefebvre J, Perkins TJ. Neural population densities shape network correlations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:021914. [PMID: 22463251 DOI: 10.1103/physreve.85.021914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 11/08/2011] [Indexed: 05/31/2023]
Abstract
The way sensory microcircuits manage cellular response correlations is a crucial question in understanding how such systems integrate external stimuli and encode information. Most sensory systems exhibit heterogeneities in terms of population sizes and features, which all impact their dynamics. This work addresses how correlations between the dynamics of neural ensembles depend on the relative size or density of excitatory and inhibitory populations. To do so, we study an apparently symmetric system of coupled stochastic differential equations that model the evolution of the populations' activities. Excitatory and inhibitory populations are connected by reciprocal recurrent connections, and both receive different stimuli exhibiting a certain level of correlation with each other. A stability analysis is performed, which reveals an intrinsic asymmetry in the distribution of the fixed points with respect to the threshold of the nonlinearities. Based on this, we show how the cross correlation between the population responses depends on the density of the inhibitory population, and that a specific ratio between both population sizes leads to a state of zero correlation. We show that this so-called asynchronous state subsists, despite the presence of stimulus correlation, and most importantly, that it occurs only in asymmetrical systems where one population outnumbers the other. Using linear approximations, we derive analytical expressions for the root of the cross-correlation function and study how the asynchronous state is impacted by the model's parameters. This work suggests a possible explanation for why inhibitory cells outnumber excitatory cells in the visual system.
Collapse
Affiliation(s)
- Jérémie Lefebvre
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada.
| | | |
Collapse
|
46
|
Abstract
Recent physiological studies claim that dark stimuli have access to greater neuronal resources than light stimuli in early visual pathway. We used two sets of novel stimuli to examine the functional consequences of this dark dominance in human observers. We show that increment and decrement thresholds are equal when controlled for adaptation and eye movements. However, measurements for salience differences at high contrasts show that darks are detected pronouncedly faster and more accurately than lights when presented against uniform binary noise. In addition, the salience advantage for darks is abolished when the background distribution is adjusted to control for the irradiation illusion. The threshold equality suggests that the highest sensitivities of neurons in the ON and OFF channels are similar, whereas the salience difference is consistent with a population advantage for the OFF system.
Collapse
|
47
|
Spectral and temporal sensitivity of cone-mediated responses in mouse retinal ganglion cells. J Neurosci 2011; 31:7670-81. [PMID: 21613480 DOI: 10.1523/jneurosci.0629-11.2011] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The retina uses two photoreceptor types to encode the wide range of light intensities in the natural environment. Rods mediate vision in dim light, whereas cones mediate vision in bright light. Mouse photoreceptors include only 3% cones, and the majority of these coexpress two opsins (short- and middle-wavelength sensitive, S and M), with peak sensitivity to either ultraviolet (360 nm) or green light (508 nm). The M/S-opsin ratio varies across the retina but has not been characterized functionally, preventing quantitative study of cone-mediated vision. Furthermore, physiological and behavioral measurements suggested that mouse retina supports relatively slow temporal processing (peak sensitivity, ∼ 2-5 Hz) compared to primates; however, past studies used visible wavelengths that are inefficient at stimulating mouse S-opsin. Here, we measured the M/S-opsin expression ratio across the mouse retina, as reflected by ganglion cell responses in vitro, and probed cone-mediated ganglion cell temporal properties using ultraviolet light stimulation and linear systems analysis. From recordings in mice lacking rod function (Gnat1(-/-), Rho(-/-)), we estimate ∼ 70% M-opsin expression in far dorsal retina, dropping to <5% M-opsin expression throughout ventral retina. In mice lacking cone function (Gnat2(cpfl3)), light-adapted rod-mediated responses peaked at ∼ 5-7 Hz. In wild-type mice, cone-mediated responses peaked at ∼ 10 Hz, with substantial responsiveness up to ∼ 30 Hz. Therefore, despite the small percentage of cones, cone-mediated responses in mouse ganglion cells are fast and robust, similar to those in primates. These measurements enable quantitative analysis of cone-mediated responses at all levels of the visual system.
Collapse
|
48
|
Qu J, Myhr KL. The morphology and intrinsic excitability of developing mouse retinal ganglion cells. PLoS One 2011; 6:e21777. [PMID: 21765913 PMCID: PMC3135603 DOI: 10.1371/journal.pone.0021777] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 06/11/2011] [Indexed: 11/18/2022] Open
Abstract
The retinal ganglion cells (RGCs) have diverse morphology and physiology. Although some studies show that correlations between morphological properties and physiological properties exist in cat RGCs, these properties are much less distinct and their correlations are unknown in mouse RGCs. In this study, using three-dimensional digital neuron reconstruction, we systematically analyzed twelve morphological parameters of mouse RGCs as they developed in the first four postnatal weeks. The development of these parameters fell into three different patterns and suggested that contact from bipolar cells and eye opening might play important roles in RGC morphological development. Although there has been a general impression that the morphological parameters are not independent, such as RGCs with larger dendritic fields usually have longer but sparser dendrites, there was not systematic study and statistical analysis proving it. We used Pearson's correlation coefficients to determine the relationship among these morphological parameters and demonstrated that many morphological parameters showed high statistical correlation. In the same cells we also measured seven physiological parameters using whole-cell patch-clamp recording, focusing on intrinsic excitability. We previously reported the increase in intrinsic excitability in mouse RGCs during early postnatal development. Here we showed that strong correlations also existed among many physiological parameters that measure the intrinsic excitability. However, Pearson's correlation coefficient revealed very limited correlation across morphological and physiological parameters. In addition, principle component analysis failed to separate RGCs into clusters using combined morphological and physiological parameters. Therefore, despite strong correlations within the morphological parameters and within the physiological parameters, postnatal mouse RGCs had only limited correlation between morphology and physiology. This may be due to developmental immaturity, or to selection of parameters.
Collapse
Affiliation(s)
- Juan Qu
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Karen L. Myhr
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
49
|
Nirenberg S, Bomash I, Pillow JW, Victor JD. Heterogeneous response dynamics in retinal ganglion cells: the interplay of predictive coding and adaptation. J Neurophysiol 2010; 103:3184-94. [PMID: 20357061 PMCID: PMC2888242 DOI: 10.1152/jn.00878.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 03/31/2010] [Indexed: 11/22/2022] Open
Abstract
To make efficient use of their limited signaling capacity, sensory systems often use predictive coding. Predictive coding works by exploiting the statistical regularities of the environment--specifically, by filtering the sensory input to remove its predictable elements, thus enabling the neural signal to focus on what cannot be guessed. To do this, the neural filters must remove the environmental correlations. If predictive coding is to work well in multiple environments, sensory systems must adapt their filtering properties to fit each environment's statistics. Using the visual system as a model, we determine whether this happens. We compare retinal ganglion cell dynamics in two very different environments: white noise and natural. Because natural environments have more power than that of white noise at low temporal frequencies, predictive coding is expected to produce a suppression of low frequencies and an enhancement of high frequencies, compared with the behavior in a white-noise environment. We find that this holds, but only in part. First, predictive coding behavior is not uniform: most on cells manifest it, whereas off cells, on average, do not. Overlaid on this nonuniformity between cell classes is further nonuniformity within both cell classes. These findings indicate that functional considerations beyond predictive coding play an important role in shaping the dynamics of sensory adaptation. Moreover, the differences in behavior between on and off cell classes add to the growing evidence that these classes are not merely homogeneous mirror images of each other and suggest that their roles in visual processing are more complex than expected from the classic view.
Collapse
Affiliation(s)
- Sheila Nirenberg
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | |
Collapse
|