1
|
Jain S, LaFrancois JJ, Gerencer K, Botterill JJ, Kennedy M, Criscuolo C, Scharfman HE. Increasing adult-born neurons protects mice from epilepsy. eLife 2024; 12:RP90893. [PMID: 39446467 PMCID: PMC11501206 DOI: 10.7554/elife.90893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Neurogenesis occurs in the adult brain in the hippocampal dentate gyrus, an area that contains neurons which are vulnerable to insults and injury, such as severe seizures. Previous studies showed that increasing adult neurogenesis reduced neuronal damage after these seizures. Because the damage typically is followed by chronic life-long seizures (epilepsy), we asked if increasing adult-born neurons would prevent epilepsy. Adult-born neurons were selectively increased by deleting the pro-apoptotic gene Bax from Nestin-expressing progenitors. Tamoxifen was administered at 6 weeks of age to conditionally delete Bax in Nestin-CreERT2Baxfl/fl mice. Six weeks after tamoxifen administration, severe seizures (status epilepticus; SE) were induced by injection of the convulsant pilocarpine. After mice developed epilepsy, seizure frequency was quantified for 3 weeks. Mice with increased adult-born neurons exhibited fewer chronic seizures. Postictal depression was reduced also. These results were primarily in female mice, possibly because they were more affected by Bax deletion than males, consistent with sex differences in Bax. The female mice with enhanced adult-born neurons also showed less neuronal loss of hilar mossy cells and hilar somatostatin-expressing neurons than wild-type females or males, which is notable because loss of these two hilar cell types is implicated in epileptogenesis. The results suggest that selective Bax deletion to increase adult-born neurons can reduce experimental epilepsy, and the effect shows a striking sex difference. The results are surprising in light of past studies showing that suppressing adult-born neurons can also reduce chronic seizures.
Collapse
Affiliation(s)
- Swati Jain
- Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - John J LaFrancois
- Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Kasey Gerencer
- Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Justin J Botterill
- Department of Anatomy, Physiology, & Pharmacology, College of Medicine, University of SaskatchewanSaskatoonCanada
| | - Meghan Kennedy
- Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Chiara Criscuolo
- Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric ResearchOrangeburgUnited States
- Departments of Child and Adolescent Psychiatry, New York University Grossman School of MedicineNew YorkUnited States
| | - Helen E Scharfman
- Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric ResearchOrangeburgUnited States
- Departments of Child and Adolescent Psychiatry, New York University Grossman School of MedicineNew YorkUnited States
- Departments of Neuroscience & Physiology, Psychiatry, and the Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| |
Collapse
|
2
|
Frazer NB, Kaas GA, Firmin CG, Gamazon ER, Hatzopoulos AK. BMP Antagonist Gremlin 2 Regulates Hippocampal Neurogenesis and Is Associated with Seizure Susceptibility and Anxiety. eNeuro 2024; 11:ENEURO.0213-23.2024. [PMID: 39349059 PMCID: PMC11493175 DOI: 10.1523/eneuro.0213-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 10/02/2024] Open
Abstract
The Bone Morphogenetic Protein (BMP) signaling pathway is vital in neural progenitor cell proliferation, specification, and differentiation. The BMP signaling antagonist Gremlin 2 (Grem2) is the most potent natural inhibitor of BMP expressed in the adult brain; however its function remains unknown. To address this knowledge gap, we have analyzed mice lacking Grem2 via homologous recombination (Grem2-/- ). Histological analysis of brain sections revealed significant scattering of CA3 pyramidal cells within the dentate hilus in the hippocampus of Grem2-/- mice. Furthermore, the number of proliferating neural stem cells and neuroblasts was significantly decreased in the subgranular zone of Grem2-/- mice compared with that of wild-type (WT) controls. Due to the role of hippocampal neurogenesis in neurological disorders, we tested mice on a battery of neurobehavioral tests. Grem2-/- mice exhibited increased anxiety on the elevated zero maze in response to acute and chronic stress. Specifically, male Grem2-/- mice showed increased anxiogenesis following chronic stress, and this was correlated with higher levels of BMP signaling and decreased proliferation in the dentate gyrus. Additionally, when chemically challenged with kainic acid, Grem2-/- mice displayed a higher susceptibility to and increased severity of seizures compared with WTs. Together, our data indicate that Grem2 regulates BMP signaling and is vital in maintaining homeostasis in adult hippocampal neurogenesis and structure. Furthermore, the lack of Grem2 contributes to the development and progression of neurogenesis-related disorders such as anxiety and epilepsy.
Collapse
Affiliation(s)
- Nicolette B Frazer
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
| | - Garrett A Kaas
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Caroline G Firmin
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Eric R Gamazon
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Antonis K Hatzopoulos
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| |
Collapse
|
3
|
Neumann AM, Britsch S. Molecular Genetics of Acquired Temporal Lobe Epilepsy. Biomolecules 2024; 14:669. [PMID: 38927072 PMCID: PMC11202058 DOI: 10.3390/biom14060669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
An epilepsy diagnosis reduces a patient's quality of life tremendously, and it is a fate shared by over 50 million people worldwide. Temporal lobe epilepsy (TLE) is largely considered a nongenetic or acquired form of epilepsy that develops in consequence of neuronal trauma by injury, malformations, inflammation, or a prolonged (febrile) seizure. Although extensive research has been conducted to understand the process of epileptogenesis, a therapeutic approach to stop its manifestation or to reliably cure the disease has yet to be developed. In this review, we briefly summarize the current literature predominately based on data from excitotoxic rodent models on the cellular events proposed to drive epileptogenesis and thoroughly discuss the major molecular pathways involved, with a focus on neurogenesis-related processes and transcription factors. Furthermore, recent investigations emphasized the role of the genetic background for the acquisition of epilepsy, including variants of neurodevelopmental genes. Mutations in associated transcription factors may have the potential to innately increase the vulnerability of the hippocampus to develop epilepsy following an injury-an emerging perspective on the epileptogenic process in acquired forms of epilepsy.
Collapse
Affiliation(s)
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, 89081 Ulm, Germany;
| |
Collapse
|
4
|
Mardones MD, Rostam KD, Nickerson MC, Gupta K. Canonical Wnt activator Chir99021 prevents epileptogenesis in the intrahippocampal kainate mouse model of temporal lobe epilepsy. Exp Neurol 2024; 376:114767. [PMID: 38522659 PMCID: PMC11058011 DOI: 10.1016/j.expneurol.2024.114767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
The Wnt signaling pathway mediates the development of dentate granule cell neurons in the hippocampus. These neurons are central to the development of temporal lobe epilepsy and undergo structural and physiological remodeling during epileptogenesis, which results in the formation of epileptic circuits. The pathways responsible for granule cell remodeling during epileptogenesis have yet to be well defined, and represent therapeutic targets for the prevention of epilepsy. The current study explores Wnt signaling during epileptogenesis and for the first time describes the effect of Wnt activation using Wnt activator Chir99021 as a novel anti-epileptogenic therapeutic approach. Focal mesial temporal lobe epilepsy was induced by intrahippocampal kainate (IHK) injection in wild-type and POMC-eGFP transgenic mice. Wnt activator Chir99021 was administered daily, beginning 3 h after seizure induction, and continued up to 21-days. Immature granule cell morphology was quantified in the ipsilateral epileptogenic zone and the contralateral peri-ictal zone 14 days after IHK, targeting the end of the latent period. Bilateral hippocampal electrocorticographic recordings were performed for 28-days, 7-days beyond treatment cessation. Hippocampal behavioral tests were performed after completion of Chir99021 treatment. Consistent with previous studies, IHK resulted in the development of epilepsy after a 14 day latent period in this well-described mouse model. Activation of the canonical Wnt pathway with Chir99021 significantly reduced bilateral hippocampal seizure number and duration. Critically, this effect was retained after treatment cessation, suggesting a durable antiepileptogenic change in epileptic circuitry. Morphological analyses demonstrated that Wnt activation prevented pathological remodeling of the primary dendrite in both the epileptogenic zone and peri-ictal zone, changes in which may serve as a biomarker of epileptogenesis and anti-epileptogenic treatment response in pre-clinical studies. These findings were associated with improved object location memory with Chir99021 treatment after IHK. This study provides novel evidence that canonical Wnt activation prevents epileptogenesis in the IHK mouse model of mesial temporal lobe epilepsy, preventing pathological remodeling of dentate granule cells. Wnt signaling may therefore play a key role in mesial temporal lobe epileptogenesis, and Wnt modulation may represent a novel therapeutic strategy in the prevention of epilepsy.
Collapse
Affiliation(s)
- Muriel D Mardones
- Indiana University, Stark Neurosciences Research Institute, W 15th St, Indianapolis, IN 46202, United States of America; Indiana University, Department of Neurosurgery, W 16th St, Indianapolis, IN 46202, United States of America.
| | - Kevin D Rostam
- Indiana University, Stark Neurosciences Research Institute, W 15th St, Indianapolis, IN 46202, United States of America.
| | - Margaret C Nickerson
- Indiana University, Stark Neurosciences Research Institute, W 15th St, Indianapolis, IN 46202, United States of America.
| | - Kunal Gupta
- Medical College of Wisconsin, Department of Neurosurgery, 8701 Watertown Plank Rd, Milwaukee, WI 53226, United States of America; Medical College of Wisconsin, Neuroscience Research Center, 8701 Watertown Plank Rd, Milwaukee, WI 53226, United States of America; Indiana University, Stark Neurosciences Research Institute, W 15th St, Indianapolis, IN 46202, United States of America; Indiana University, Department of Neurosurgery, W 16th St, Indianapolis, IN 46202, United States of America.
| |
Collapse
|
5
|
Jhaveri DJ, McGonigal A, Becker C, Benoliel JJ, Nandam LS, Soncin L, Kotwas I, Bernard C, Bartolomei F. Stress and Epilepsy: Towards Understanding of Neurobiological Mechanisms for Better Management. eNeuro 2023; 10:ENEURO.0200-23.2023. [PMID: 37923391 PMCID: PMC10626502 DOI: 10.1523/eneuro.0200-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/03/2023] [Accepted: 09/20/2023] [Indexed: 11/07/2023] Open
Abstract
Stress has been identified as a major contributor to human disease and is postulated to play a substantial role in epileptogenesis. In a significant proportion of individuals with epilepsy, sensitivity to stressful events contributes to dynamic symptomatic burden, notably seizure occurrence and frequency, and presence and severity of psychiatric comorbidities [anxiety, depression, posttraumatic stress disorder (PTSD)]. Here, we review this complex relationship between stress and epilepsy using clinical data and highlight key neurobiological mechanisms including the hypothalamic-pituitary-adrenal (HPA) axis dysfunction, altered neuroplasticity within limbic system structures, and alterations in neurochemical pathways such as brain-derived neurotrophic factor (BNDF) linking epilepsy and stress. We discuss current clinical management approaches of stress that help optimize seizure control and prevention, as well as psychiatric comorbidities associated with epilepsy. We propose that various shared mechanisms of stress and epilepsy present multiple avenues for the development of new symptomatic and preventative treatments, including disease modifying therapies aimed at reducing epileptogenesis. This would require close collaborations between clinicians and basic scientists to integrate data across multiple scales, from genetics to systems biology, from clinical observations to fundamental mechanistic insights. In future, advances in machine learning approaches and neuromodulation strategies will enable personalized and targeted interventions to manage and ultimately treat stress-related epileptogenesis.
Collapse
Affiliation(s)
- Dhanisha J Jhaveri
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4067, Australia
- Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Aileen McGonigal
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4067, Australia
- Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4067, Australia
- Mater Epilepsy Unit, Department of Neurosciences, Mater Hospital, Brisbane, QLD 4101, Australia
| | - Christel Becker
- Institut National de la Santé et de la Recherche Médicale, Unité 1124, Université Paris Cité, Paris, 75006, France
| | - Jean-Jacques Benoliel
- Institut National de la Santé et de la Recherche Médicale, Unité 1124, Université Paris Cité, Paris, 75006, France
- Site Pitié-Salpêtrière, Service de Biochimie Endocrinienne et Oncologie, Assistance Publique Hôpitaux de Paris, Sorbonne Université, Paris, 75651, France
| | - L Sanjay Nandam
- Turner Inst for Brain & Mental Health, Faculty of Medicine, Nursing and Health Sciences, School of Psychological Sciences, Monash University, Melbourne, 3800, Australia
| | - Lisa Soncin
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, 13005, France
- Laboratoire d'Anthropologie et de Psychologie Cliniques, Cognitives et Sociales, Côte d'Azur University, Nice, 06300, France
| | - Iliana Kotwas
- Epileptology and Cerebral Rhythmology, Assistance Publique Hôpitaux de Marseille, Timone Hospital, Marseille, 13005, France
| | - Christophe Bernard
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, 13005, France
| | - Fabrice Bartolomei
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, 13005, France
- Epileptology and Cerebral Rhythmology, Assistance Publique Hôpitaux de Marseille, Timone Hospital, Marseille, 13005, France
| |
Collapse
|
6
|
Chen L, Xu Y, Cheng H, Li Z, Lai N, Li M, Ruan Y, Zheng Y, Fei F, Xu C, Ma J, Wang S, Gu Y, Han F, Chen Z, Wang Y. Adult-born neurons in critical period maintain hippocampal seizures via local aberrant excitatory circuits. Signal Transduct Target Ther 2023; 8:225. [PMID: 37280192 DOI: 10.1038/s41392-023-01433-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 03/15/2023] [Accepted: 04/06/2023] [Indexed: 06/08/2023] Open
Abstract
Temporal lobe epilepsy (TLE), one common type of medically refractory epilepsy, is accompanied with altered adult-born dentate granule cells (abDGCs). However, the causal role of abDGCs in recurrent seizures of TLE is not fully understood. Here, taking advantage of optogenetic and chemogenetic tools to selectively manipulate abDGCs in a reversible manner, combined with Ca2+ fiber photometry, trans-synaptic viral tracing, in vivo/vitro electrophysiology approaches, we aimed to test the role of abDGCs born at different period of epileptogenic insult in later recurrent seizures in mouse TLE models. We found that abDGCs were functionally inhibited during recurrent seizures. Optogenetic activation of abDGCs significantly extended, while inhibition curtailed, the seizure duration. This seizure-modulating effect was attributed to specific abDGCs born at a critical early phase after kindled status, which experienced specific type of circuit re-organization. Further, abDGCs extended seizure duration via local excitatory circuit with early-born granule cells (ebDGCs). Repeated modulation of "abDGC-ebDGC" circuit may easily induce a change of synaptic plasticity, and achieve long-term anti-seizure effects in both kindling and kainic acid-induced TLE models. Together, we demonstrate that abDGCs born at a critical period of epileptogenic insult maintain seizure duration via local aberrant excitatory circuits, and inactivation of these aberrant circuits can long-termly alleviate severity of seizures. This provides a deeper and more comprehensive understanding of the potential pathological changes of abDGCs circuit and may be helpful for the precise treatment in TLE.
Collapse
Affiliation(s)
- Liying Chen
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yingwei Xu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Heming Cheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhongxia Li
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Rehabilitation Medical Center Department, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Nanxi Lai
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Menghan Li
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yeping Ruan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fan Fei
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiao Ma
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuang Wang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Gu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yi Wang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Zhejiang Rehabilitation Medical Center Department, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
7
|
Gudenschwager-Basso EK, Shandra O, Volanth T, Patel DC, Kelly C, Browning JL, Wei X, Harris EA, Mahmutovic D, Kaloss AM, Correa FG, Decker J, Maharathi B, Robel S, Sontheimer H, VandeVord PJ, Olsen ML, Theus MH. Atypical Neurogenesis, Astrogliosis, and Excessive Hilar Interneuron Loss Are Associated with the Development of Post-Traumatic Epilepsy. Cells 2023; 12:1248. [PMID: 37174647 PMCID: PMC10177146 DOI: 10.3390/cells12091248] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/02/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) remains a significant risk factor for post-traumatic epilepsy (PTE). The pathophysiological mechanisms underlying the injury-induced epileptogenesis are under investigation. The dentate gyrus-a structure that is highly susceptible to injury-has been implicated in the evolution of seizure development. METHODS Utilizing the murine unilateral focal control cortical impact (CCI) injury, we evaluated seizure onset using 24/7 EEG video analysis at 2-4 months post-injury. Cellular changes in the dentate gyrus and hilus of the hippocampus were quantified by unbiased stereology and Imaris image analysis to evaluate Prox1-positive cell migration, astrocyte branching, and morphology, as well as neuronal loss at four months post-injury. Isolation of region-specific astrocytes and RNA-Seq were performed to determine differential gene expression in animals that developed post-traumatic epilepsy (PTE+) vs. those animals that did not (PTE-), which may be associated with epileptogenesis. RESULTS CCI injury resulted in 37% PTE incidence, which increased with injury severity and hippocampal damage. Histological assessments uncovered a significant loss of hilar interneurons that coincided with aberrant migration of Prox1-positive granule cells and reduced astroglial branching in PTE+ compared to PTE- mice. We uniquely identified Cst3 as a PTE+-specific gene signature in astrocytes across all brain regions, which showed increased astroglial expression in the PTE+ hilus. CONCLUSIONS These findings suggest that epileptogenesis may emerge following TBI due to distinct aberrant cellular remodeling events and key molecular changes in the dentate gyrus of the hippocampus.
Collapse
Affiliation(s)
| | - Oleksii Shandra
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, USA
| | - Troy Volanth
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24061, USA
| | - Dipan C. Patel
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24061, USA
| | - Colin Kelly
- Translational Biology Medicine and Health Graduate Program, Blacksburg, VA 24061, USA
| | - Jack L. Browning
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24061, USA
| | - Xiaoran Wei
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA (E.A.H.)
| | - Elizabeth A. Harris
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA (E.A.H.)
| | - Dzenis Mahmutovic
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Alexandra M. Kaloss
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA (E.A.H.)
| | | | - Jeremy Decker
- Department of Biomedical Engineering and Mechanics, Blacksburg, VA 24061, USA
| | - Biswajit Maharathi
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Stefanie Robel
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - Pamela J. VandeVord
- Department of Biomedical Engineering and Mechanics, Blacksburg, VA 24061, USA
| | | | - Michelle H. Theus
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA (E.A.H.)
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Engineered Health, Viginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
8
|
Peripheral Regulation of Central Brain-Derived Neurotrophic Factor Expression through the Vagus Nerve. Int J Mol Sci 2023; 24:ijms24043543. [PMID: 36834953 PMCID: PMC9964523 DOI: 10.3390/ijms24043543] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The brain-derived neurotrophic factor (BDNF) is an extensively studied neurotrophin es sential for both developing the brain and maintaining adult brain function. In the adult hippocampus, BDNF is critical for maintaining adult neurogenesis. Adult hippocampal neurogenesis is involved not only in memory formation and learning ability, but also mood regulation and stress responses. Accordingly, decreased levels of BDNF, accompanied by low levels of adult neurogenesis, occurs in brains of older adults with impaired cognitive function and in those of patients with major depression disorder. Therefore, elucidating the mechanisms that maintain hippocampal BDNF levels is biologically and clinically important. It has been revealed that signalling from peripheral tissues contribute to the regulation of BDNF expression in the brain across the blood-brain barrier. Moreover, recent studies indicated evidence that neuronal pathways can also be a mechanism by which peripheral tissues signal to the brain for the regulation of BDNF expression. In this review, we give an overview of the current status in the regulation of central BDNF expression by peripheral signalling, with a special interest in the regulation of hippocampal BDNF levels by signals via the vagus nerve. Finally, we discuss the relationship between signalling from peripheral tissues and age-associated control of central BDNF expression.
Collapse
|
9
|
Sack AS. Adult-Born Granule Cells Contribute to Dentate Gyrus Circuit Reorganization after Traumatic Brain Injury. J Neurosci 2023; 43:879-881. [PMID: 36754637 PMCID: PMC9908312 DOI: 10.1523/jneurosci.1994-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 02/10/2023] Open
Affiliation(s)
- Anne-Sophie Sack
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
10
|
Boros M, Sóki N, Molnár A, Ábrahám H. Morphological study of the postnatal hippocampal development in the TRPV1 knockout mice. Temperature (Austin) 2023; 10:102-120. [PMID: 37187833 PMCID: PMC10177702 DOI: 10.1080/23328940.2023.2167444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 01/15/2023] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel with polymodal sensory function. TRPV1 links to fever, while, according to previous studies on TRPV1 knock-out (KO) mice, the role of the channel in the generation of febrile seizure is debated. In the hippocampal formation, functional TRPV1 channels are expressed by Cajal-Retzius cells, which have a role in guidance of migrating neurons during development. Despite the developmental aspects of febrile seizure as well as of Cajal-Retzius cells, no information is available about the hippocampal development in TRPV1 KO mouse. Therefore, in the present work postnatal development of the hippocampal formation was studied in TRPV1 KO mice. Several morphological characteristics including neuronal positioning and maturation, synaptogenesis and myelination were examined with light microscopy following immunohistochemical detection of protein markers of various neurons, synapses, and myelination. Regarding the cytoarchitectonics, neuronal migration, morphological, and neurochemical maturation, no substantial difference could be detected between TRPV1 KO and wild-type control mice. Our data indicate that synapse formation and myelination occur similarly in TRPV1 KO and in control animals. We have found slightly, but not significantly larger numbers of persisting Cajal-Retzius cells in the KO mice than in controls. Our result strengthens previous suggestion concerning the role of TRPV1 channel in the postnatal apoptotic cell death of Cajal-Retzius cells. However, the fact that the hippocampus of KO mice lacks major developmental abnormalities supports the use of TRPV1 KO in various animal models of diseases and pathological conditions.
Collapse
Affiliation(s)
- Melinda Boros
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Pécs, Hungary
| | - Noémi Sóki
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Pécs, Hungary
| | - Abigél Molnár
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Pécs, Hungary
| | - Hajnalka Ábrahám
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Pécs, Hungary
- Institute for the Psychology of Special Needs, Bárczi Gusztáv Faculty of Special Needs Education, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
11
|
Kasahara Y, Nakashima H, Nakashima K. Seizure-induced hilar ectopic granule cells in the adult dentate gyrus. Front Neurosci 2023; 17:1150283. [PMID: 36937666 PMCID: PMC10017466 DOI: 10.3389/fnins.2023.1150283] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Epilepsy is a chronic neurological disorder characterized by hypersynchronous spontaneous recurrent seizures, and affects approximately 50 million people worldwide. Cumulative evidence has revealed that epileptogenic insult temporarily increases neurogenesis in the hippocampus; however, a fraction of the newly generated neurons are integrated abnormally into the existing neural circuits. The abnormal neurogenesis, including ectopic localization of newborn neurons in the hilus, formation of abnormal basal dendrites, and disorganization of the apical dendrites, rewires hippocampal neural networks and leads to the development of spontaneous seizures. The central roles of hilar ectopic granule cells in regulating hippocampal excitability have been suggested. In this review, we introduce recent findings about the migration of newborn granule cells to the dentate hilus after seizures and the roles of seizure-induced ectopic granule cells in the epileptic brain. In addition, we delineate possible intrinsic and extrinsic mechanisms underlying this abnormality. Finally, we suggest that the regulation of seizure-induced ectopic cells can be a promising target for epilepsy therapy and provide perspectives on future research directions.
Collapse
|
12
|
Aloi MS, Thompson SJ, Quartapella N, Noebels JL. Loss of functional System x-c uncouples aberrant postnatal neurogenesis from epileptogenesis in the hippocampus of Kcna1-KO mice. Cell Rep 2022; 41:111696. [PMID: 36417872 PMCID: PMC9753929 DOI: 10.1016/j.celrep.2022.111696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/29/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022] Open
Abstract
Mutations in Kv1.1 (Kcna1) voltage-gated potassium channels in humans and mice generate network hyperexcitability, enhancing aberrant postnatal neurogenesis in the dentate subgranular zone, resulting in epilepsy and hippocampal hypertrophy. While Kcna1 loss stimulates proliferation of progenitor cell subpopulations, the identity of extrinsic molecular triggers linking network hyperexcitability to aberrant postnatal neurogenesis remains incomplete. System x-c (Sxc) is an inducible glutamate/cysteine antiporter that regulates extracellular glutamate. Here, we find that the functional unit of Sxc, xCT (Slc7a11), is upregulated in regions of Kcna1 knockout (KO) hippocampus, suggesting a contribution to both hyperplasia and epilepsy. However, Slc7a11 KO suppressed and rescued hippocampal enlargement without altering seizure severity in Kcna1-Slc7a11-KO mice. Microglial activation, but not astrocytosis, was also reduced. Our study identifies Sxc-mediated glutamate homeostasis as an essential non-synaptic trigger coupling aberrant postnatal neurogenesis and neuroimmune crosstalk, revealing that neurogenesis and epileptogenesis in the dentate gyrus are not mutually contingent events.
Collapse
Affiliation(s)
- Macarena S Aloi
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA; Blue Bird Circle Developmental Neurogenetics Laboratory, Houston, TX, USA
| | - Samantha J Thompson
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA; Blue Bird Circle Developmental Neurogenetics Laboratory, Houston, TX, USA
| | - Nicholas Quartapella
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA; Blue Bird Circle Developmental Neurogenetics Laboratory, Houston, TX, USA; Department of BioSciences, Rice University, Houston, TX, USA
| | - Jeffrey L Noebels
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA; Blue Bird Circle Developmental Neurogenetics Laboratory, Houston, TX, USA.
| |
Collapse
|
13
|
Mardones MD, Gupta K. Transcriptome Profiling of the Hippocampal Seizure Network Implicates a Role for Wnt Signaling during Epileptogenesis in a Mouse Model of Temporal Lobe Epilepsy. Int J Mol Sci 2022; 23:12030. [PMID: 36233336 PMCID: PMC9569502 DOI: 10.3390/ijms231912030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
Mesial temporal lobe epilepsy (mTLE) is a life-threatening condition characterized by recurrent hippocampal seizures. mTLE can develop after exposure to risk factors such as febrile seizure, trauma, and infection. Within the latent period between exposure and onset of epilepsy, pathological remodeling events occur that contribute to epileptogenesis. The molecular mechanisms responsible are currently unclear. We used the mouse intrahippocampal kainite model of mTLE to investigate transcriptional dysregulation in the ipsilateral and contralateral dentate gyrus (DG), representing the epileptogenic zone (EZ) and peri-ictal zone (PIZ). DG were analyzed after 3, 7, and 14 days by RNA sequencing. In both the EZ and PIZ, transcriptional dysregulation was dynamic over the epileptogenic period with early expression of genes representing cell signaling, migration, and proliferation. Canonical Wnt signaling was upregulated in the EZ and PIZ at 3 days. Expression of inflammatory genes differed between the EZ and PIZ, with early expression after 3 days in the PIZ and delayed expression after 7-14 days in the EZ. This suggests that critical gene changes occur early in the hippocampal seizure network and that Wnt signaling may play a role within the latent epileptogenic period. These findings may help to identify novel therapeutic targets that could prevent epileptogenesis.
Collapse
Affiliation(s)
- Muriel D Mardones
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kunal Gupta
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
14
|
Kang YJ, Lee SH, Boychuk JA, Butler CR, Juras JA, Cloyd RA, Smith BN. Adult Born Dentate Granule Cell Mediated Upregulation of Feedback Inhibition in a Mouse Model of Traumatic Brain Injury. J Neurosci 2022; 42:7077-7093. [PMID: 36002261 PMCID: PMC9480876 DOI: 10.1523/jneurosci.2263-21.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
Post-traumatic epilepsy (PTE) and behavioral comorbidities frequently develop after traumatic brain injury (TBI). Aberrant neurogenesis of dentate granule cells (DGCs) after TBI may contribute to the synaptic reorganization that occurs in PTE, but how neurogenesis at different times relative to the injury contributes to feedback inhibition and recurrent excitation in the dentate gyrus is unknown. Thus, we examined whether DGCs born at different postnatal ages differentially participate in feedback inhibition and recurrent excitation in the dentate gyrus using the controlled cortical impact (CCI) model of TBI. Both sexes of transgenic mice expressing channelrhodopsin2 (ChR2) in postnatally born DGCs were used for optogenetic activation of three DGC cohorts: postnatally early born DGCs, or those born just before or after CCI. We performed whole-cell patch-clamp recordings from ChR2-negative, mature DGCs and parvalbumin-expressing basket cells (PVBCs) in hippocampal slices to determine whether optogenetic activation of postnatally born DGCs increases feedback inhibition and/or recurrent excitation in mice 8-10 weeks after CCI and whether PVBCs are targets of ChR2-positive DGCs. In the dentate gyrus ipsilateral to CCI, activation of ChR2-expressing DGCs born before CCI produced increased feedback inhibition in ChR2-negative DGCs and increased excitation in PVBCs compared with those from sham controls. This upregulated feedback inhibition was less prominent in DGCs born early in life or after CCI. Surprisingly, ChR2-positive DGC activation rarely evoked recurrent excitation in mature DGCs from any cohort. These results support that DGC birth date-related increased feedback inhibition in of DGCs may contribute to altered excitability after TBI.SIGNIFICANCE STATEMENT Dentate granule cells (DGCs) control excitability of the dentate gyrus through synaptic interactions with inhibitory GABAergic interneurons. Persistent changes in DGC synaptic connectivity develop after traumatic brain injury, contributing to hyperexcitability in post-traumatic epilepsy (PTE). However, the impact of DGC neurogenesis on synaptic reorganization, especially on inhibitory circuits, after brain injury is not adequately described. Here, upregulation of feedback inhibition in mature DGCs from male and female mice was associated with increased excitation of parvalbumin-expressing basket cells by postnatally born DGCs, providing novel insights into underlying mechanisms of altered excitability after brain injury. A better understanding of these inhibitory circuit changes can help formulate hypotheses for development of novel, evidence-based treatments for post-traumatic epilepsy by targeting birth date-specific subsets of DGCs.
Collapse
Affiliation(s)
- Young-Jin Kang
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
| | - Sang-Hun Lee
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
- Epilepsy Research Center, University of Kentucky, Lexington, Kentucky 40536
| | - Jeffery A Boychuk
- Epilepsy Research Center, University of Kentucky, Lexington, Kentucky 40536
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
| | - Corwin R Butler
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
| | - J Anna Juras
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
| | - Ryan A Cloyd
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
| | - Bret N Smith
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
- Epilepsy Research Center, University of Kentucky, Lexington, Kentucky 40536
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536
| |
Collapse
|
15
|
Adenosine A 2A receptors control synaptic remodeling in the adult brain. Sci Rep 2022; 12:14690. [PMID: 36038626 PMCID: PMC9424208 DOI: 10.1038/s41598-022-18884-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/22/2022] [Indexed: 01/04/2023] Open
Abstract
The molecular mechanisms underlying circuit re-wiring in the mature brain remains ill-defined. An eloquent example of adult circuit remodelling is the hippocampal mossy fiber (MF) sprouting found in diseases such as temporal lobe epilepsy. The molecular determinants underlying this retrograde re-wiring remain unclear. This may involve signaling system(s) controlling axon specification/growth during neurodevelopment reactivated during epileptogenesis. Since adenosine A2A receptors (A2AR) control axon formation/outgrowth and synapse stabilization during development, we now examined the contribution of A2AR to MF sprouting. A2AR blockade significantly attenuated status epilepticus(SE)-induced MF sprouting in a rat pilocarpine model. This involves A2AR located in dentate granule cells since their knockdown selectively in dentate granule cells reduced MF sprouting, most likely through the ability of A2AR to induce the formation/outgrowth of abnormal secondary axons found in rat hippocampal neurons. These A2AR should be activated by extracellular ATP-derived adenosine since a similar prevention/attenuation of SE-induced hippocampal MF sprouting was observed in CD73 knockout mice. These findings demonstrate that A2AR contribute to epilepsy-related MF sprouting, most likely through the reactivation of the ability of A2AR to control axon formation/outgrowth observed during neurodevelopment. These results frame the CD73-A2AR axis as a regulator of circuit remodeling in the mature brain.
Collapse
|
16
|
Victor TR, Hage Z, Tsirka SE. Prophylactic administration of cannabidiol reduces microglial inflammatory response to kainate-induced seizures and neurogenesis. Neuroscience 2022; 500:1-11. [PMID: 35700815 DOI: 10.1016/j.neuroscience.2022.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
Microglia, the dynamic innate immune cells of the central nervous system, become activated in epilepsy. The process of microglial activation in epilepsy results in the creation of an inflammatory environment around the site of seizure onset, which contributes to the epileptogenic process and epilepsy progression. Cannabidiol (CBD) has been effective for use as an adjunctive treatment for two severe pediatric seizure disorders. Newly recognized as an Food and Drug Administration (FDA)-approved drug treatment in epilepsy, it has gained in popularity primarily for pain management. Although CBD is readily available in stores and online retailers, its mechanism of action and specifically its effects on microglia and their functions are yet fully understood. In this study, we examine the effects of commercially available CBD on microglia inflammatory activation and neurogenic response, in the presence and absence of seizures. We use systemic administration of kainate to elicit seizures in mice, which are assessed behaviorally. Artisanal CBD is given in different modes of administration and timing to dissect its effect on seizure intensity, microglial activation and aberrant seizure-related neurogenesis. CBD significantly dampens microglial migration and accumulation to the hippocampus. While long term artisanal CBD use does not prevent or lessen seizure severity, CBD is a promising adjunctive partner for its ability to depress epileptogenic processes. These studies indicate that artisanal CBD is beneficial as it both decreases inflammation in the CNS and reduces the number of ectopic neurons deposited in the hippocampal area post seizure.
Collapse
Affiliation(s)
- Tanya R Victor
- Molecular and Cellular Pharmacology Graduate Program, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794, United States
| | - Zachary Hage
- Molecular and Cellular Pharmacology Graduate Program, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794, United States
| | - Stella E Tsirka
- Molecular and Cellular Pharmacology Graduate Program, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794, United States.
| |
Collapse
|
17
|
Godale CM, Parkins EV, Gross C, Danzer SC. Impact of Raptor and Rictor Deletion on Hippocampal Pathology Following Status Epilepticus. J Mol Neurosci 2022; 72:1243-1258. [PMID: 35618880 PMCID: PMC9571976 DOI: 10.1007/s12031-022-02030-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
Abstract
Neuronal hyperactivation of the mTOR signaling pathway may play a role in driving the pathological sequelae that follow status epilepticus. Animal studies using pharmacological tools provide support for this hypothesis, however, systemic inhibition of mTOR-a growth pathway active in every mammalian cell-limits conclusions on cell type specificity. To circumvent the limitations of pharmacological approaches, we developed a viral/genetic strategy to delete Raptor or Rictor, inhibiting mTORC1 or mTORC2, respectively, from excitatory hippocampal neurons after status epilepticus in mice. Raptor or Rictor was deleted from roughly 25% of hippocampal granule cells, with variable involvement of other hippocampal neurons, after pilocarpine status epilepticus. Status epilepticus induced the expected loss of hilar neurons, sprouting of granule cell mossy fiber axons and reduced c-Fos activation. Gene deletion did not prevent these changes, although Raptor loss reduced the density of c-Fos-positive granule cells overall relative to Rictor groups. Findings demonstrate that mTOR signaling can be effectively modulated with this approach and further reveal that blocking mTOR signaling in a minority (25%) of granule cells is not sufficient to alter key measures of status epilepticus-induced pathology. The approach is suitable for producing higher deletion rates, and altering the timing of deletion, which may lead to different outcomes.
Collapse
Affiliation(s)
- Christin M Godale
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, CincinnatiCincinnati, OH, ML200145229, USA
- University of Cincinnati, Neuroscience Graduate Program, Cincinnati, OH, USA
| | - Emma V Parkins
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati, Neuroscience Graduate Program, Cincinnati, OH, USA
| | - Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati, Neuroscience Graduate Program, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, CincinnatiCincinnati, OH, ML200145229, USA.
- University of Cincinnati, Neuroscience Graduate Program, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
18
|
Dohm-Hansen S, Donoso F, Lucassen PJ, Clarke G, Nolan YM. The gut microbiome and adult hippocampal neurogenesis: A new focal point for epilepsy? Neurobiol Dis 2022; 170:105746. [DOI: 10.1016/j.nbd.2022.105746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/13/2022] [Accepted: 04/29/2022] [Indexed: 02/07/2023] Open
|
19
|
Kim CK, Sachdev PS, Braidy N. Recent Neurotherapeutic Strategies to Promote Healthy Brain Aging: Are we there yet? Aging Dis 2022; 13:175-214. [PMID: 35111369 PMCID: PMC8782556 DOI: 10.14336/ad.2021.0705] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
Owing to the global exponential increase in population ageing, there is an urgent unmet need to develop reliable strategies to slow down and delay the ageing process. Age-related neurodegenerative diseases are among the main causes of morbidity and mortality in our contemporary society and represent a major socio-economic burden. There are several controversial factors that are thought to play a causal role in brain ageing which are continuously being examined in experimental models. Among them are oxidative stress and brain inflammation which are empirical to brain ageing. Although some candidate drugs have been developed which reduce the ageing phenotype, their clinical translation is limited. There are several strategies currently in development to improve brain ageing. These include strategies such as caloric restriction, ketogenic diet, promotion of cellular nicotinamide adenine dinucleotide (NAD+) levels, removal of senescent cells, 'young blood' transfusions, enhancement of adult neurogenesis, stem cell therapy, vascular risk reduction, and non-pharmacological lifestyle strategies. Several studies have shown that these strategies can not only improve brain ageing by attenuating age-related neurodegenerative disease mechanisms, but also maintain cognitive function in a variety of pre-clinical experimental murine models. However, clinical evidence is limited and many of these strategies are awaiting findings from large-scale clinical trials which are nascent in the current literature. Further studies are needed to determine their long-term efficacy and lack of adverse effects in various tissues and organs to gain a greater understanding of their potential beneficial effects on brain ageing and health span in humans.
Collapse
Affiliation(s)
- Chul-Kyu Kim
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Perminder S Sachdev
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| |
Collapse
|
20
|
The Influence of Gut Microbiota on Neurogenesis: Evidence and Hopes. Cells 2022; 11:cells11030382. [PMID: 35159192 PMCID: PMC8834402 DOI: 10.3390/cells11030382] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
Adult neurogenesis (i.e., the life-long generation of new neurons from undifferentiated neuronal precursors in the adult brain) may contribute to brain repair after damage, and participates in plasticity-related processes including memory, cognition, mood and sensory functions. Among the many intrinsic (oxidative stress, inflammation, and ageing), and extrinsic (environmental pollution, lifestyle, and diet) factors deemed to impact neurogenesis, significant attention has been recently attracted by the myriad of saprophytic microorganismal communities inhabiting the intestinal ecosystem and collectively referred to as the gut microbiota. A growing body of evidence, mainly from animal studies, reveal the influence of microbiota and its disease-associated imbalances on neural stem cell proliferative and differentiative activities in brain neurogenic niches. On the other hand, the long-claimed pro-neurogenic activity of natural dietary compounds endowed with antioxidants and anti-inflammatory properties (such as polyphenols, polyunsaturated fatty acids, or pro/prebiotics) may be mediated, at least in part, by their action on the intestinal microflora. The purpose of this review is to summarise the available information regarding the influence of the gut microbiota on neurogenesis, analyse the possible underlying mechanisms, and discuss the potential implications of this emerging knowledge for the fight against neurodegeneration and brain ageing.
Collapse
|
21
|
Han W, Jiang L, Song X, Li T, Chen H, Cheng L. VEGF Modulates Neurogenesis and Microvascular Remodeling in Epileptogenesis After Status Epilepticus in Immature Rats. Front Neurol 2022; 12:808568. [PMID: 35002944 PMCID: PMC8739962 DOI: 10.3389/fneur.2021.808568] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
Neurogenesis and angiogenesis are widely recognized to occur during epileptogenesis and important in brain development. Because vascular endothelial growth factor (VEGF) is a critical neurovascular target in neurological diseases, its effect on neurogenesis, microvascular remodeling and epileptogenesis in the immature brain after lithium-pilocarpine-induced status epilepticus (SE) was investigated. The dynamic changes in and the correlation between hippocampal neurogenesis and microvascular remodeling after SE and the influence of VEGF or SU5416 injection into the lateral ventricles at different stages after SE on neurogenesis and microvascular remodeling through regulation of VEGF expression were assessed by immunofluorescence and immunohistochemistry. Western blot analysis revealed that the VEGFR2 signaling pathway promotes phosphorylated ERK and phosphorylated AKT expression. The effects of VEGF expression regulation at different stages after SE on pathological changes in hippocampal structure and spontaneous recurrent seizures (SRS) were evaluated by Nissl staining and electroencephalography (EEG). The results showed that hippocampal neurogenesis after SE is related to microvascular regeneration. VEGF promotion in the acute period and inhibition in the latent period after SE alleviates loss of hippocampal neuron, abnormal vascular regeneration and inhibits neural stem cells (NSCs) ectopic migration, which may effectively alleviate SRS severity. Interfering with VEGF via the AKT and ERK pathways in different phases after SE may be a promising strategy for treating and preventing epilepsy in children.
Collapse
Affiliation(s)
- Wei Han
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Li Jiang
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xiaojie Song
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Tianyi Li
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Hengsheng Chen
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Li Cheng
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
22
|
Deficits in Behavioral and Neuronal Pattern Separation in Temporal Lobe Epilepsy. J Neurosci 2021; 41:9669-9686. [PMID: 34620720 PMCID: PMC8612476 DOI: 10.1523/jneurosci.2439-20.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 11/21/2022] Open
Abstract
In temporal lobe epilepsy, the ability of the dentate gyrus to limit excitatory cortical input to the hippocampus breaks down, leading to seizures. The dentate gyrus is also thought to help discriminate between similar memories by performing pattern separation, but whether epilepsy leads to a breakdown in this neural computation, and thus to mnemonic discrimination impairments, remains unknown. Here we show that temporal lobe epilepsy is characterized by behavioral deficits in mnemonic discrimination tasks, in both humans (females and males) and mice (C57Bl6 males, systemic low-dose kainate model). Using a recently developed assay in brain slices of the same epileptic mice, we reveal a decreased ability of the dentate gyrus to perform certain forms of pattern separation. This is because of a subset of granule cells with abnormal bursting that can develop independently of early EEG abnormalities. Overall, our results linking physiology, computation, and cognition in the same mice advance our understanding of episodic memory mechanisms and their dysfunction in epilepsy.SIGNIFICANCE STATEMENT People with temporal lobe epilepsy (TLE) often have learning and memory impairments, sometimes occurring earlier than the first seizure, but those symptoms and their biological underpinnings are poorly understood. We focused on the dentate gyrus, a brain region that is critical to avoid confusion between similar memories and is anatomically disorganized in TLE. We show that both humans and mice with TLE experience confusion between similar situations. This impairment coincides with a failure of the dentate gyrus to disambiguate similar input signals because of pathologic bursting in a subset of neurons. Our work bridges seizure-oriented and memory-oriented views of the dentate gyrus function, suggests a mechanism for cognitive symptoms in TLE, and supports a long-standing hypothesis of episodic memory theories.
Collapse
|
23
|
Santos VR, Melo IS, Pacheco ALD, Castro OWD. Life and death in the hippocampus: What's bad? Epilepsy Behav 2021; 121:106595. [PMID: 31759972 DOI: 10.1016/j.yebeh.2019.106595] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 01/13/2023]
Abstract
The hippocampal formation is crucial for the generation and regulation of several brain functions, including memory and learning processes; however, it is vulnerable to neurological disorders, such as epilepsy. Temporal lobe epilepsy (TLE), the most common type of epilepsy, changes the hippocampal circuitry and excitability, under the contribution of both neuronal degeneration and abnormal neurogenesis. Classically, neurodegeneration affects sensitive areas of the hippocampus, such as dentate gyrus (DG) hilus, as well as specific fields of the Ammon's horn, CA3, and CA1. In addition, the proliferation, migration, and abnormal integration of newly generated hippocampal granular cells (GCs) into the brain characterize TLE neurogenesis. Robust studies over the years have intensely discussed the effects of death and life in the hippocampus, though there are still questions to be answered about their possible benefits and risks. Here, we review the impacts of death and life in the hippocampus, discussing its influence on TLE, providing new perspectives or insights for the implementation of new possible therapeutic targets. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Victor Rodrigues Santos
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil.
| | - Igor Santana Melo
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, Brazil
| | | | - Olagide Wagner de Castro
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, Brazil.
| |
Collapse
|
24
|
Moura DMS, de Sales IRP, Brandão JA, Costa MR, Queiroz CM. Disentangling chemical and electrical effects of status epilepticus-induced dentate gyrus abnormalities. Epilepsy Behav 2021; 121:106575. [PMID: 31704249 DOI: 10.1016/j.yebeh.2019.106575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/10/2019] [Accepted: 09/14/2019] [Indexed: 01/06/2023]
Abstract
In rodents, status epilepticus (SE) triggered by chemoconvulsants can differently affect the proliferation and fate of adult-born dentate granule cells (DGCs). It is unknown whether abnormal neurogenesis results from intracellular signaling associated with drug-receptor interaction, paroxysmal activity, or both. To test the contribution of these factors, we systematically compared the effects of kainic acid (KA)- and pilocarpine (PL)-induced SE on the morphology and localization of DGCs generated before or after SE in the ipsi- and contralateral hippocampi of mice. Hippocampal insult was induced by unilateral intrahippocampal (ihpc) administration of KA or PL. We employed conditional doublecortin-dependent expression of the green fluorescent protein (GFP) to label adult-born cells committed to neuronal lineage either one month before (mature DGCs) or seven days after (immature DGCs) SE. Unilateral ihpc administration of KA and PL led to bilateral epileptiform discharges and focal and generalized behavioral seizures. However, drastic granule cell layer (GCL) dispersion occurred only in the ipsilateral side of KA injection, but not in PL-treated animals. Granule cell layer dispersion was accompanied by a significant reduction in neurogenesis after SE in the ipsilateral side of KA-treated animals, while neurogenesis increased in the contralateral side of KA-treated animals and both hippocampi of PL-treated animals. The ratio of ectopic neurons in the ipsilateral hippocampus was higher among immature as compared to mature neurons in the KA model (32.8% vs. 10.0%, respectively), while the occurrence of ectopic neurons in PL-treated animals was lower than 3% among both mature and immature DGCs. Collectively, our results suggest that KA- and PL-induced SE leads to distinct cellular alterations in mature and immature DGCs. We also show different local and secondary effects of KA or PL in the histological organization of the adult DG, suggesting that these unique epilepsy models may be complementary to our understanding of the disease. NEWroscience 2018.
Collapse
|
25
|
Gordon RY, Mikheeva IB, Shubina LV, Khutsian SS, Kitchigina VF. Kainate-Induced Degeneration of Hippocampal Neurons. Protective Effect of Activation of the Endocannabinoid System. Bull Exp Biol Med 2021; 171:327-332. [PMID: 34297297 DOI: 10.1007/s10517-021-05221-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Indexed: 12/19/2022]
Abstract
We studied the prolonged action of kainic acid on glutamatergic neurons in the dorsal hippocampus and the endocannabinoid-dependent protection against neurodegeneration. The pyramidal neurons of the CA3 field of the hippocampus, as well as granular and mossy cells of the dentate gyrus were examined. Light and electron microscopy revealed substantial damage to the components of the protein-synthesizing (rough endoplasmic reticulum, Golgi apparatus, and polyribosomes) and catabolic (lysosomes, autophagosomes, multivesicular structures, and lipofuscin formations) systems in all cells. Pyramidal and mossy neurons die mainly by the necrotic pathway. The death of granular cells occurred through both apoptosis and necrosis. The most vulnerable cells are mossy neurons located in the hilus. Activation of the endocannabinoid system induced by intracerebral injection of URB597, an inhibitor of degradation of endocannabinoid anandamide, protected the normal structure of the hippocampus and prevented neuronal damage and death induced by KA.
Collapse
Affiliation(s)
- R Ya Gordon
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia.
| | - I B Mikheeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | - L V Shubina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | - S S Khutsian
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | - V F Kitchigina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia
| |
Collapse
|
26
|
Mulle C, Crépel V. Regulation and dysregulation of neuronal circuits by KARs. Neuropharmacology 2021; 197:108699. [PMID: 34246686 DOI: 10.1016/j.neuropharm.2021.108699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Abstract
Kainate receptors (KARs) constitute a family of ionotropic glutamate receptors (iGluRs) with distinct physiological roles in synapses and neuronal circuits. Despite structural and biophysical commonalities with the other iGluRs, AMPA receptors and NMDA receptors, their role as post-synaptic receptors involved in shaping EPSCs to transmit signals across synapses is limited to a small number of synapses. On the other hand KARs regulate presynaptic release mechanisms and control ion channels and signaling pathways through non-canonical metabotropic actions. We review how these different KAR-dependent mechanisms concur to regulate the activity and plasticity of neuronal circuits in physiological conditions of activation of KARs by endogenous glutamate (as opposed to pharmacological activation by exogenous agonists). KARs have been implicated in neurological disorders, based on genetic association and on physiopathological studies. A well described example relates to temporal lobe epilepsy for which the aberrant recruitment of KARs at recurrent mossy fiber synapses takes part in epileptogenic neuronal activity. In conclusion, KARs certainly represent an underestimated actor in the regulation of neuronal circuits, and a potential therapeutic target awaiting more selective and efficient genetic tools and/or ligands.
Collapse
Affiliation(s)
- Christophe Mulle
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France.
| | - Valérie Crépel
- INMED, INSERM UMR1249, Aix-Marseille Université, Marseille, France
| |
Collapse
|
27
|
Wulsin AC, Kraus KL, Gaitonde KD, Suru V, Arafa SR, Packard BA, Herman JP, Danzer SC. The glucocorticoid receptor specific modulator CORT108297 reduces brain pathology following status epilepticus. Exp Neurol 2021; 341:113703. [PMID: 33745919 PMCID: PMC8169587 DOI: 10.1016/j.expneurol.2021.113703] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Glucocorticoid levels rise rapidly following status epilepticus and remain elevated for weeks after the injury. To determine whether glucocorticoid receptor activation contributes to the pathological sequelae of status epilepticus, mice were treated with a novel glucocorticoid receptor modulator, C108297. METHODS Mice were treated with either C108297 or vehicle for 10 days beginning one day after pilocarpine-induced status epilepticus. Baseline and stress-induced glucocorticoid secretion were assessed to determine whether hypothalamic-pituitary-adrenal axis hyperreactivity could be controlled. Status epilepticus-induced pathology was assessed by quantifying ectopic hippocampal granule cell density, microglial density, astrocyte density and mossy cell loss. Neuronal network function was examined indirectly by determining the density of Fos immunoreactive neurons following restraint stress. RESULTS Treatment with C108297 attenuated corticosterone hypersecretion after status epilepticus. Treatment also decreased the density of hilar ectopic granule cells and reduced microglial proliferation. Mossy cell loss, on the other hand, was not prevented in treated mice. C108297 altered the cellular distribution of Fos protein but did not restore the normal pattern of expression. INTERPRETATION Results demonstrate that baseline corticosterone levels can be normalized with C108297, and implicate glucocorticoid signaling in the development of structural changes following status epilepticus. These findings support the further development of glucocorticoid receptor modulators as novel therapeutics for the prevention of brain pathology following status epilepticus.
Collapse
Affiliation(s)
- Aynara C Wulsin
- Cincinnati Children's Hospital Medical Center, Department of Anesthesia, USA; Cincinnati Children's Hospital Medical Center, Department of Pediatrics, USA; University of Cincinnati, Medical Scientist Training Program, USA; University of Cincinnati, Neuroscience Graduate Program, USA
| | - Kimberly L Kraus
- Cincinnati Children's Hospital Medical Center, Department of Anesthesia, USA; University of Cincinnati, Medical Scientist Training Program, USA; University of Cincinnati, Neuroscience Graduate Program, USA
| | - Kevin D Gaitonde
- University of Cincinnati, Medical Scientist Training Program, USA
| | - Venkat Suru
- Cincinnati Children's Hospital Medical Center, Department of Anesthesia, USA
| | - Salwa R Arafa
- Cincinnati Children's Hospital Medical Center, Department of Anesthesia, USA
| | - Benjamin A Packard
- University of Cincinnati, Department of Pharmacology & Systems Physiology
| | - James P Herman
- University of Cincinnati, Department of Pharmacology & Systems Physiology
| | - Steve C Danzer
- Cincinnati Children's Hospital Medical Center, Department of Anesthesia, USA; Cincinnati Children's Hospital Medical Center, Department of Pediatrics, USA; University of Cincinnati, Medical Scientist Training Program, USA; University of Cincinnati, Neuroscience Graduate Program, USA.
| |
Collapse
|
28
|
Chen L, Wang Y, Chen Z. Adult Neurogenesis in Epileptogenesis: An Update for Preclinical Finding and Potential Clinical Translation. Curr Neuropharmacol 2021; 18:464-484. [PMID: 31744451 PMCID: PMC7457402 DOI: 10.2174/1570159x17666191118142314] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/31/2019] [Accepted: 11/18/2019] [Indexed: 12/22/2022] Open
Abstract
Epileptogenesis refers to the process in which a normal brain becomes epileptic, and is characterized by hypersynchronous spontaneous recurrent seizures involving a complex epileptogenic network. Current available pharmacological treatment of epilepsy is generally symptomatic in controlling seizures but is not disease-modifying in epileptogenesis. Cumulative evidence suggests that adult neurogenesis, specifically in the subgranular zone of the hippocampal dentate gyrus, is crucial in epileptogenesis. In this review, we describe the pathological changes that occur in adult neurogenesis in the epileptic brain and how adult neurogenesis is involved in epileptogenesis through different interventions. This is followed by a discussion of some of the molecular signaling pathways involved in regulating adult neurogenesis, which could be potential druggable targets for epileptogenesis. Finally, we provide perspectives on some possible research directions for future studies.
Collapse
Affiliation(s)
- Liying Chen
- Institute of Pharmacology & Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Institute of Pharmacology & Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
29
|
Hattiangady B, Kuruba R, Shuai B, Grier R, Shetty AK. Hippocampal Neural Stem Cell Grafting after Status Epilepticus Alleviates Chronic Epilepsy and Abnormal Plasticity, and Maintains Better Memory and Mood Function. Aging Dis 2020; 11:1374-1394. [PMID: 33269095 PMCID: PMC7673840 DOI: 10.14336/ad.2020.1020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022] Open
Abstract
Hippocampal damage after status epilepticus (SE) leads to multiple epileptogenic changes, which lead to chronic temporal lobe epilepsy (TLE). Morbidities such as spontaneous recurrent seizures (SRS) and memory and mood impairments are seen in a significant fraction of SE survivors despite the administration of antiepileptic drugs after SE. We examined the efficacy of bilateral intra-hippocampal grafting of neural stem/progenitor cells (NSCs) derived from the embryonic day 19 rat hippocampi, six days after SE for restraining SE-induced SRS, memory, and mood impairments in the chronic phase. Grafting of NSCs curtailed the progression of SRS at 3-5 months post-SE and reduced the frequency and severity of SRS activity when examined at eight months post-SE. Reduced SRS activity was also associated with improved memory function. Graft-derived cells migrated into different hippocampal cell layers, differentiated into GABA-ergic interneurons, astrocytes, and oligodendrocytes. Significant percentages of graft-derived cells also expressed beneficial neurotrophic factors such as the fibroblast growth factor-2, brain-derived neurotrophic factor, insulin-like growth factor-1 and glial cell line-derived neurotrophic factor. NSC grafting protected neuropeptide Y- and parvalbumin-positive host interneurons, diminished the abnormal migration of newly born neurons, and rescued the reelin+ interneurons in the dentate gyrus. Besides, grafting led to the maintenance of a higher level of normal neurogenesis in the chronic phase after SE and diminished aberrant mossy fiber sprouting in the dentate gyrus. Thus, intrahippocampal grafting of hippocampal NSCs shortly after SE considerably curbed the progression of epileptogenic processes and SRS, which eventually resulted in less severe chronic epilepsy devoid of significant cognitive and mood impairments.
Collapse
Affiliation(s)
- Bharathi Hattiangady
- 1Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.,2Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA.,3Department of Surgery (Neurosurgery) Duke University Medical Center, Durham, NC, USA.,4Research and Surgery Services, Durham Veterans Affairs Medical Center, Durham, NC, USA
| | - Ramkumar Kuruba
- 3Department of Surgery (Neurosurgery) Duke University Medical Center, Durham, NC, USA.,4Research and Surgery Services, Durham Veterans Affairs Medical Center, Durham, NC, USA
| | - Bing Shuai
- 1Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.,2Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA.,3Department of Surgery (Neurosurgery) Duke University Medical Center, Durham, NC, USA.,4Research and Surgery Services, Durham Veterans Affairs Medical Center, Durham, NC, USA
| | - Remedios Grier
- 3Department of Surgery (Neurosurgery) Duke University Medical Center, Durham, NC, USA.,4Research and Surgery Services, Durham Veterans Affairs Medical Center, Durham, NC, USA
| | - Ashok K Shetty
- 1Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.,2Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA.,3Department of Surgery (Neurosurgery) Duke University Medical Center, Durham, NC, USA.,4Research and Surgery Services, Durham Veterans Affairs Medical Center, Durham, NC, USA
| |
Collapse
|
30
|
Status epilepticus induced Gadd45b is required for augmented dentate neurogenesis. Stem Cell Res 2020; 49:102102. [PMID: 33279798 DOI: 10.1016/j.scr.2020.102102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/11/2020] [Accepted: 11/23/2020] [Indexed: 11/20/2022] Open
Abstract
In animal models with temporal lobe epilepsy (TLE), the status epilepticus (SE) leads to a dramatic increase in number of newly born neuron in the subgranular zone (SGZ) of dentate gyrus. How the SE confers a modulation in the dentate neurogenesis is mostly unknown. Gadd45b is involved in epigenetic gene activation by DNA demethylation. This study was performed to present a novel mechanism underling SE-induced dentate neurogenesis. A transient induction (12 hrs to 3 days) of Gadd45b was observed in dentate gyrus of mice after pilocarpine-induced SE. Labeling the dividing cells with BrdU, we next found that the induction of Gadd45b was required to increase the rate of cell proliferation in the dentate gyrus at 7 and 14 days after SE. Afterward, the DNA methylation levels for candidate growth factor genes critical for the adult neurogenesis were assayed with Sequenom MassARRAY Analyzer. The results indicated that Gadd45b was necessary for SE-induced DNA demethylation of specific promoters and expression of corresponding genes in the dentate gyrus, including brain-derived neurotrophic factor (BDNF) and fibroblast growth factor-2 (FGF-2). Using Timm staining, we further suggested that SE-induced Gadd45b might contribute to the subsequent mossy fiber sprouting (MFS) in the chronically epileptic hippocampus via epigenetic regulation of dentate neurogenesis at early stage after SE. Together, Gadd45b links pilocarpine-induced SE to epigenetic DNA modification of secreted factors in the dentate gyrus, leading to extrinsic modulation on the neurogenesis.
Collapse
|
31
|
|
32
|
Save L, Baude A, Cossart R. Temporal Embryonic Origin Critically Determines Cellular Physiology in the Dentate Gyrus. Cereb Cortex 2020; 29:2639-2652. [PMID: 29878074 DOI: 10.1093/cercor/bhy132] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/12/2018] [Indexed: 01/19/2023] Open
Abstract
The dentate gyrus, the entry gate to the hippocampus, comprises 3 types of glutamatergic cells, the granule, the mossy and the semilunar granule cells. Whereas accumulating evidence indicates that specification of subclasses of neocortical neurons starts at the time of their final mitotic divisions, when cellular diversity is specified in the Dentate Gyrus remains largely unknown. Here we show that semilunar cells, like mossy cells, originate from the earliest stages of developmental neurogenesis and that early born neurons form age-matched circuits with each other. Besides morphology, adult semilunar cells display characteristic electrophysiological features that differ from most neurons but are shared among early born granule cells. Therefore, an early birthdate specifies adult granule cell physiology and connectivity whereas additional factors may combine to produce morphological identity.
Collapse
Affiliation(s)
- Laurène Save
- Inserm, Marseille, France.,Aix-Marseille University, UMR, Marseille, France.,INMED, Marseille, France
| | - Agnès Baude
- Inserm, Marseille, France.,Aix-Marseille University, UMR, Marseille, France.,INMED, Marseille, France
| | - Rosa Cossart
- Inserm, Marseille, France.,Aix-Marseille University, UMR, Marseille, France.,INMED, Marseille, France
| |
Collapse
|
33
|
Kerloch T, Clavreul S, Goron A, Abrous DN, Pacary E. Dentate Granule Neurons Generated During Perinatal Life Display Distinct Morphological Features Compared With Later-Born Neurons in the Mouse Hippocampus. Cereb Cortex 2020; 29:3527-3539. [PMID: 30215686 DOI: 10.1093/cercor/bhy224] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/06/2018] [Indexed: 02/07/2023] Open
Abstract
In nonhuman mammals and in particular in rodents, most granule neurons of the dentate gyrus (DG) are generated during development and yet little is known about their properties compared with adult-born neurons. Although it is generally admitted that these populations are morphologically indistinguishable once mature, a detailed analysis of developmentally born neurons is lacking. Here, we used in vivo electroporation to label dentate granule cells (DGCs) generated in mouse embryos (E14.5) or in neonates (P0) and followed their morphological development up to 6 months after birth. By comparison with mature retrovirus-labeled DGCs born at weaning (P21) or young adult (P84) stages, we provide the evidence that perinatally born neurons, especially embryonically born cells, are morphologically distinct from later-born neurons and are thus easily distinguishable. In addition, our data indicate that semilunar and hilar GCs, 2 populations in ectopic location, are generated during the embryonic and the neonatal periods, respectively. Thus, our findings provide new insights into the development of the different populations of GCs in the DG and open new questions regarding their function in the brain.
Collapse
Affiliation(s)
- Thomas Kerloch
- INSERM U1215, Neurocentre Magendie, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | - Solène Clavreul
- INSERM U1215, Neurocentre Magendie, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | - Adeline Goron
- INSERM U1215, Neurocentre Magendie, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | - Djoher Nora Abrous
- INSERM U1215, Neurocentre Magendie, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | - Emilie Pacary
- INSERM U1215, Neurocentre Magendie, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| |
Collapse
|
34
|
Tang FL, Wang J, Itokazu Y, Yu RK. Enhanced Susceptibility to Chemoconvulsant-Induced Seizures in Ganglioside GM3 Synthase Knockout Mice. ASN Neuro 2020; 12:1759091420938175. [PMID: 32664815 PMCID: PMC7364800 DOI: 10.1177/1759091420938175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ganglioside GM3 synthase (α-2,3-sialyltransferase, ST3GAL5, GM3S) is a key enzyme involved in the biosynthesis of gangliosides. ST3GAL5 deficiency causes an absence of GM3 and all downstream biosynthetic derivatives. The affected individuals manifest deafness, severe irritability, intractable seizures, and profound intellectual disability. To investigate whether deficiency of GM3 is involved in seizure susceptibility, we induced seizures with different chemoconvulsants in ST3GAL5 knockout mice. We report here that ST3GAL5 knockout mice are hyperactive and more susceptible to seizures induced by chemoconvulsants, including kainate and pilocarpine, compared with normal controls. In the hippocampal dentate gyrus, loss of GM3 aggravates seizure-induced aberrant neurogenesis. These data indicate that GM3 and gangliosides derived from GM3 may serve as important regulators of epilepsy and may play an important role in aberrant neurogenesis associated with seizures.
Collapse
Affiliation(s)
- Fu-Lei Tang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, United States
| | - Jing Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, United States
| | - Yukata Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, United States
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, United States
| |
Collapse
|
35
|
Victor TR, Tsirka SE. Microglial contributions to aberrant neurogenesis and pathophysiology of epilepsy. NEUROIMMUNOLOGY AND NEUROINFLAMMATION 2020; 7:234-247. [PMID: 33154976 PMCID: PMC7641338 DOI: 10.20517/2347-8659.2020.02] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microglia are dynamic cells that constitute the brain's innate immune system. Recently, research has demonstrated microglial roles beyond immunity, which include homeostatic roles in the central nervous system. The function of microglia is an active area of study, with insights into changes in neurogenesis and synaptic pruning being discovered in both health and disease. In epilepsy, activated microglia contribute to several changes that occur during epileptogenesis. In this review, we focus on the effects of microglia on neurogenesis and synaptic pruning, and discuss the current state of anti-seizure drugs and how they affect microglia during these processes. Our understanding of the role of microglia post-seizure is still limited and may be pivotal in recognizing new therapeutic targets for seizure intervention.
Collapse
Affiliation(s)
- Tanya R Victor
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Stella E Tsirka
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
36
|
Nemirovich-Danchenko NM, Khodanovich MY. Telomerase Gene Editing in the Neural Stem Cells in vivo as a Possible New Approach against Brain Aging. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420040092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Sasaki-Takahashi N, Shinohara H, Shioda S, Seki T. The polarity and properties of radial glia-like neural stem cells are altered by seizures with status epilepticus: Study using an improved mouse pilocarpine model of epilepsy. Hippocampus 2020; 30:250-262. [PMID: 32101365 DOI: 10.1002/hipo.23153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/04/2019] [Accepted: 08/19/2019] [Indexed: 01/08/2023]
Abstract
In the adult mouse hippocampus, new neurons are produced by radial glia-like (RGL) neural stem cells in the subgranular zone, which extend their apical processes toward the molecular layer, and express the astrocyte marker glial fibrillary acidic protein, but not the astrocyte marker S100β. In rodent models of epilepsy, adult hippocampal neurogenesis was reported to be increased after acute and mild seizures, but to be decreased by chronic and severe epilepsy. In the present study, we investigated how the severity of seizures affects neurogenesis and RGL neural stem cells in acute stages of epilepsy, using an improved mouse pilocarpine model in which pilocarpine-induced hypothermia was prevented by maintaining body temperature, resulting in a high incidence rate of epileptic seizures and low rate of mortality. In mice that experienced seizures without status epilepticus (SE), the number of proliferating progenitors and immature neurons were significantly increased, whereas no changes were observed in RGL cells. In mice that experienced seizures with SE, the number of proliferating progenitors and immature neurons were unchanged, but the number of RGL cells with an apical process was significantly reduced. Furthermore, the processes of the majority of RGL cells extended inversely toward the hilus, and about half of the aberrant RGL cells expressed S100β. These results suggest that seizures with SE lead to changes in the polarity and properties of RGL neural stem cells, which may direct them toward astrocyte differentiation, resulting in the reduction of neural stem cells producing new granule cells. This also suggests the possibility that cell polarity of RGL stem cells is important for maintaining the stemness of adult neural stem cells.
Collapse
Affiliation(s)
| | - Hiroshi Shinohara
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Seiji Shioda
- Institute for Advanced Bioscience Research, Hoshi University, Tokyo, Japan
| | - Tatsunori Seki
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
38
|
Neuronal network remodeling and Wnt pathway dysregulation in the intra-hippocampal kainate mouse model of temporal lobe epilepsy. PLoS One 2019; 14:e0215789. [PMID: 31596871 PMCID: PMC6785072 DOI: 10.1371/journal.pone.0215789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/20/2019] [Indexed: 01/19/2023] Open
Abstract
Mouse models of mesial temporal lobe epilepsy recapitulate aspects of human epilepsy, which is characterized by neuronal network remodeling in the hippocampal dentate gyrus. Observational studies suggest that this remodeling is associated with altered Wnt pathway signaling, although this has not been experimentally examined. We used the well-characterized mouse intrahippocampal kainate model of temporal lobe epilepsy to examine associations between hippocampal neurogenesis and altered Wnt signaling after seizure induction. Tissue was analyzed using immunohistochemistry and confocal microscopy, and gene expression analysis was performed by RT-qPCR on RNA extracted from anatomically micro-dissected dentate gyri. Seizures increased neurogenesis and dendritic arborization of newborn hippocampal dentate granule cells in peri-ictal regions, and decreased neurogenesis in the ictal zone, 2-weeks after kainate injection. Interestingly, administration of the novel canonical Wnt pathway inhibitor XAV939 daily for 2-weeks after kainate injection further increased dendritic arborization in peri-ictal regions after seizure, without an effect on baseline neurogenesis in control animals. Transcriptome analysis of dentate gyri demonstrated significant canonical Wnt gene dysregulation in kainate-injected mice across all regions for Wnt3, 5a and 9a. Intriguingly, certain Wnt genes demonstrated differential patterns of dysregulation between the ictal and peri-ictal zones, most notably Wnt5B, 7B and DKK-1. Together, these results demonstrate regional variation in Wnt pathway dysregulation early after seizure induction, and surprisingly, suggest that some Wnt-mediated effects might actually temper aberrant neurogenesis after seizures. The Wnt pathway may therefore provide suitable targets for novel therapies that prevent network remodeling and the development of epileptic foci in high-risk patients.
Collapse
|
39
|
Abstract
Compelling evidence indicates that hippocampal dentate granule cells are generated throughout human life and into old age. While animal studies demonstrate that these new neurons are important for memory function, animal research also implicates these cells in the pathogenesis of temporal lobe epilepsy. Several recent preclinical studies in rodents now suggest that targeting these new neurons can have disease-modifying effects in epilepsy.
Collapse
Affiliation(s)
- Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Anesthesia, University of Cincinnati, Cincinnati, OH, USA.,Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Center for Pediatric Neuroscience, Cincinnati Children's Hospital, Cincinnati, OH, USA
| |
Collapse
|
40
|
Kalinina A, Maletta T, Carr J, Lehmann H, Fournier NM. Spatial exploration induced expression of immediate early genes Fos and Zif268 in adult-born neurons Is reduced after pentylenetetrazole kindling. Brain Res Bull 2019; 152:74-84. [PMID: 31279580 DOI: 10.1016/j.brainresbull.2019.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 01/05/2023]
Abstract
Seizure activity stimulates adult neurogenesis, the birth of new neurons, in the hippocampus. Many new neurons that develop in the presence of repeatedly induced seizures acquire abnormal morphological and functional characteristics that can promote network hyperexcitability and hippocampal dysfunction. However, the impact of seizure induced neurogenesis on behaviour remains poorly understood. In this study, we investigated whether adult-born neurons generated immediately before and during chronic seizures were capable of integration into behaviorally relevant hippocampal networks. Adult rats underwent pentylenetetrazole (PTZ) kindling for either 1 or 2 weeks. Proliferating cells were labelled with BrdU immediately before kindling commenced. Twenty-four hours after receiving their last kindling treatment, rats were placed in a novel environment and allowed to freely explore for 30 min. The rats were euthanized 90 min later to examine for behaviourally-induced immediate early gene expression (c-fos, Zif268). Using this approach, we found that PTZ kindled rats did not differ from control rats in regards to exploratory behaviour, but there was a marked attenuation in behaviour-induced expression of Fos and Zif268 for rats that received 2 weeks of PTZ kindling. Further examination revealed that PTZ kindled rats showed reduced colocalization of Fos and Zif268 in 2.5 week old BrdU + cells. The proportion of immature granule cells (doublecortin-positive) expressing behaviorally induced Zif268 was also significantly lower for PTZ kindled rats than control rats. These results suggest that chronic seizures can potentially disrupt the ability of adult-born cells to functionally integrate into hippocampal circuits important for the processing of spatial information.
Collapse
Affiliation(s)
- Alena Kalinina
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada
| | - Teresa Maletta
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada
| | - Joshua Carr
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada
| | - Hugo Lehmann
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada
| | - Neil M Fournier
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada.
| |
Collapse
|
41
|
Altered Synaptic Drive onto Birthdated Dentate Granule Cells in Experimental Temporal Lobe Epilepsy. J Neurosci 2019; 39:7604-7614. [PMID: 31270158 DOI: 10.1523/jneurosci.0654-18.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 12/29/2022] Open
Abstract
Dysregulated adult hippocampal neurogenesis occurs in many temporal lobe epilepsy (TLE) models. Most dentate granule cells (DGCs) generated in response to an epileptic insult develop features that promote increased excitability, including ectopic location, persistent hilar basal dendrites (HBDs), and mossy fiber sprouting. However, some appear to integrate normally and even exhibit reduced excitability compared to other DGCs. To examine the relationship between DGC birthdate, morphology, and network integration in a model of TLE, we retrovirally birthdated either early-born [EB; postnatal day (P)7] or adult-born (AB; P60) DGCs. Male rats underwent pilocarpine-induced status epilepticus (SE) or sham treatment at P56. Three to six months after SE or sham treatment, we used whole-cell patch-clamp and fluorescence microscopy to record spontaneous excitatory and inhibitory currents from birthdated DGCs. We found that both AB and EB populations of DGCs recorded from epileptic rats received increased excitatory input compared with age-matched controls. Interestingly, when AB populations were separated into normally integrated (normotopic) and aberrant (ectopic or HBD-containing) subpopulations, only the aberrant populations exhibited a relative increase in excitatory input (amplitude, frequency, and charge transfer). The ratio of excitatory-to-inhibitory input was most dramatically upregulated for ectopically localized DGCs. These data provide definitive physiological evidence that aberrant integration of post-SE, AB DGCs contributes to increased synaptic drive and support the idea that ectopic DGCs serve as putative hub cells to promote seizures.SIGNIFICANCE STATEMENT Adult dentate granule cell (DGC) neurogenesis is altered in rodent models of temporal lobe epilepsy (TLE). Some of the new neurons show abnormal morphology and integration, but whether adult-generated DGCs contribute to the development of epilepsy is controversial. We examined the synaptic inputs of age-defined populations of DGCs using electrophysiological recordings and fluorescent retroviral reporter birthdating. DGCs generated neonatally were compared with those generated in adulthood, and adult-born (AB) neurons with normal versus aberrant morphology or integration were examined. We found that AB, ectopically located DGCs exhibit the most pro-excitatory physiological changes, implicating this population in seizure generation or progression.
Collapse
|
42
|
Leibowitz JA, Natarajan G, Zhou J, Carney PR, Ormerod BK. Sustained somatostatin gene expression reverses kindling-induced increases in the number of dividing Type-1 neural stem cells in the hippocampi of behaviorally responsive rats. Epilepsy Res 2019; 150:78-94. [PMID: 30735971 DOI: 10.1016/j.eplepsyres.2019.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/18/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022]
Abstract
Neurogenesis persists throughout life in the hippocampi of all mammals, including humans. In the healthy hippocampus, relatively quiescent Type-1 neural stem cells (NSCs) can give rise to more proliferative Type-2a neural progenitor cells (NPCs), which generate neuronal-committed Type-2b NPCs that mature into Type-3 neuroblasts. Many Type-3 neuroblasts survive and mature into functionally integrated granule neurons over several weeks. In kindling models of epilepsy, neurogenesis is drastically upregulated and many new neurons form aberrant connections that could support epileptogenesis and/or seizures. We have shown that sustained vector-mediated hippocampal somatostatin (SST) expression can both block epileptogenesis and reverse seizure susceptibility in fully kindled rats. Here we test whether adeno-associated virus (AAV) vector-mediated sustained SST expression modulates hippocampal neurogenesis and microglial activation in fully kindled rats. We found significantly more dividing Type-1 NSCs and a corresponding increased number of surviving new neurons in the hippocampi of kindled versus sham-kindled rats. Increased numbers of activated microglia were found in the granule cell layer and hilus of kindled rats at both time points. After intrahippocampal injection with either eGFP or SST-eGFP vector, we found similar numbers of dividing Type-1 NSCs and -2 NPCs and surviving BrdU+ neurons and glia in the hippocampi of kindled rats. Upon observed variability in responses to SST-eGFP (2/4 rats exhibited Grade 0 seizures in the test session), we conducted an additional experiment. We found significantly fewer dividing Type-1 NSCs in the hippocampi of SST-eGFP vector-treated responder rats (5/13 rats) relative to SST-eGFP vector-treated non-responders and eGFP vector-treated controls that exhibited high-grade seizures on the test session. The number of activated microglia was upregulated in the GCL and hilus of kindled rats, regardless of vector treatment. These data support the hypothesis that sustained SST expression exerts antiepileptic effects potentially through normalization of neurogenesis and suggests that abnormally high proliferating Type-1 NSC numbers may be a cellular mechanism of epilepsy.
Collapse
Affiliation(s)
| | - Gowri Natarajan
- Department of Neurology and Pediatrics, USA; Neuroscience Program, USA
| | - Junli Zhou
- Department of Neurology and Pediatrics, USA; Neuroscience Program, USA
| | - Paul R Carney
- Department of Neurology and Pediatrics, USA; Neuroscience Program, USA; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brandi K Ormerod
- J. Crayton Pruitt Family Department of Biomedical Engineering, USA; Department of Neuroscience, USA; McKnight Brain Institute, USA.
| |
Collapse
|
43
|
The role of adult hippocampal neurogenesis in brain health and disease. Mol Psychiatry 2019; 24:67-87. [PMID: 29679070 PMCID: PMC6195869 DOI: 10.1038/s41380-018-0036-2] [Citation(s) in RCA: 396] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/15/2018] [Accepted: 01/31/2018] [Indexed: 12/18/2022]
Abstract
Adult neurogenesis in the dentate gyrus of the hippocampus is highly regulated by a number of environmental and cell-intrinsic factors to adapt to environmental changes. Accumulating evidence suggests that adult-born neurons may play distinct physiological roles in hippocampus-dependent functions, such as memory encoding and mood regulation. In addition, several brain diseases, such as neurological diseases and mood disorders, have deleterious effects on adult hippocampal neurogenesis, and some symptoms of those diseases can be partially explained by the dysregulation of adult hippocampal neurogenesis. Here we review a possible link between the physiological functions of adult-born neurons and their roles in pathological conditions.
Collapse
|
44
|
Fares J, Bou Diab Z, Nabha S, Fares Y. Neurogenesis in the adult hippocampus: history, regulation, and prospective roles. Int J Neurosci 2018; 129:598-611. [PMID: 30433866 DOI: 10.1080/00207454.2018.1545771] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The hippocampus is one of the sites in the mammalian brain that is capable of continuously generating controversy. Adult neurogenesis is a remarkable process, and yet an intensely debatable topic in contemporary neuroscience due to its distinctiveness and conceivable impact on neural activity. The belief that neurogenesis continues through adulthood has provoked remarkable efforts to describe how newborn neurons differentiate and incorporate into the adult brain. It has also encouraged studies that investigate the consequences of inadequate neurogenesis in neuropsychiatric and neurodegenerative diseases and explore the potential role of neural progenitor cells in brain repair. The adult nervous system is not static; it is subjected to morphological and physiological alterations at various levels. This plastic mechanism guarantees that the behavioral regulation of the adult nervous system is adaptable in response to varying environmental stimuli. Three regions of the adult brain, the olfactory bulb, the hypothalamus, and the hippocampal dentate gyrus, contain new-born neurons that exhibit an essential role in the natural functional circuitry of the adult brain. Purpose/Aim: This article explores current advancements in adult hippocampal neurogenesis by presenting its history and evolution and studying its association with neural plasticity. The article also discusses the prospective roles of adult hippocampal neurogenesis and describes the intracellular, extracellular, pathological, and environmental factors involved in its regulation. Abbreviations AHN Adult hippocampal neurogenesis AKT Protein kinase B BMP Bone Morphogenic Protein BrdU Bromodeoxyuridine CNS Central nervous system DG Dentate gyrus DISC1 Disrupted-in-schizophrenia 1 FGF-2 Fibroblast Growth Factor 2 GABA Gamma-aminobutyric acid Mbd1 Methyl-CpG-binding domain protein 1 Mecp2 Methyl-CpG-binding protein 2 mTOR Mammalian target of rapamycin NSCs Neural stem cells OB Olfactory bulb; P21: cyclin-dependent kinase inhibitor 1 RBPj Recombination Signal Binding protein for Immunoglobulin Kappa J Region RMS Rostral migratory Stream SGZ Subgranular zone Shh Sonic hedgehog SOX2 SRY (sex determining region Y)-box 2 SVZ Subventricular zone Wnt3 Wingless-type mouse mammary tumor virus.
Collapse
Affiliation(s)
- Jawad Fares
- a Neuroscience Research Center , Faculty of Medical Sciences , Lebanese University , Beirut , Lebanon.,b Department of Neurological Surgery Feinberg School of Medicine , Northwestern University , Chicago , Illinois , USA
| | - Zeina Bou Diab
- a Neuroscience Research Center , Faculty of Medical Sciences , Lebanese University , Beirut , Lebanon
| | - Sanaa Nabha
- a Neuroscience Research Center , Faculty of Medical Sciences , Lebanese University , Beirut , Lebanon
| | - Youssef Fares
- a Neuroscience Research Center , Faculty of Medical Sciences , Lebanese University , Beirut , Lebanon.,c Department of Neurosurgery Faculty of Medical Sciences , Lebanese University , Beirut , Lebanon
| |
Collapse
|
45
|
Human induced pluripotent stem cell-derived MGE cell grafting after status epilepticus attenuates chronic epilepsy and comorbidities via synaptic integration. Proc Natl Acad Sci U S A 2018; 116:287-296. [PMID: 30559206 PMCID: PMC6320542 DOI: 10.1073/pnas.1814185115] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study provides evidence that human induced pluripotent stem cell (hiPSC)-derived medial ganglionic eminence (MGE) cell grafting into the hippocampus after status epilepticus can greatly reduce the frequency of spontaneous seizures in the chronic phase through both antiepileptogenic and antiepileptic effects. The antiepileptogenic changes comprised reductions in host interneuron loss, abnormal neurogenesis, and aberrant mossy fiber sprouting, whereas the antiepileptic effects were evident from an increased occurrence of seizures after silencing of graft-derived interneurons. Additional curative impacts of grafting comprised improved cognitive and mood function. The results support the application of autologous human MGE cell therapy for temporal lobe epilepsy. Autologous cell therapy is advantageous as such a paradigm can avoid immune suppression and promote enduring graft–host integration. Medial ganglionic eminence (MGE)-like interneuron precursors derived from human induced pluripotent stem cells (hiPSCs) are ideal for developing patient-specific cell therapy in temporal lobe epilepsy (TLE). However, their efficacy for alleviating spontaneous recurrent seizures (SRS) or cognitive, memory, and mood impairments has never been tested in models of TLE. Through comprehensive video- electroencephalographic recordings and a battery of behavioral tests in a rat model, we demonstrate that grafting of hiPSC-derived MGE-like interneuron precursors into the hippocampus after status epilepticus (SE) greatly restrained SRS and alleviated cognitive, memory, and mood dysfunction in the chronic phase of TLE. Graft-derived cells survived well, extensively migrated into different subfields of the hippocampus, and differentiated into distinct subclasses of inhibitory interneurons expressing various calcium-binding proteins and neuropeptides. Moreover, grafting of hiPSC-MGE cells after SE mediated several neuroprotective and antiepileptogenic effects in the host hippocampus, as evidenced by reductions in host interneuron loss, abnormal neurogenesis, and aberrant mossy fiber sprouting in the dentate gyrus (DG). Furthermore, axons from graft-derived interneurons made synapses on the dendrites of host excitatory neurons in the DG and the CA1 subfield of the hippocampus, implying an excellent graft–host synaptic integration. Remarkably, seizure-suppressing effects of grafts were significantly reduced when the activity of graft-derived interneurons was silenced by a designer drug while using donor hiPSC-MGE cells expressing designer receptors exclusively activated by designer drugs (DREADDs). These results implied the direct involvement of graft-derived interneurons in seizure control likely through enhanced inhibitory synaptic transmission. Collectively, the results support a patient-specific MGE cell grafting approach for treating TLE.
Collapse
|
46
|
Zhou QG, Nemes AD, Lee D, Ro EJ, Zhang J, Nowacki AS, Dymecki SM, Najm IM, Suh H. Chemogenetic silencing of hippocampal neurons suppresses epileptic neural circuits. J Clin Invest 2018; 129:310-323. [PMID: 30507615 DOI: 10.1172/jci95731] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/30/2018] [Indexed: 01/06/2023] Open
Abstract
We investigated how pathological changes in newborn hippocampal dentate granule cells (DGCs) lead to epilepsy. Using a rabies virus-mediated retrograde tracing system and a designer receptors exclusively activated by designer drugs (DREADD) chemogenetic method, we demonstrated that newborn hippocampal DGCs are required for the formation of epileptic neural circuits and the induction of spontaneous recurrent seizures (SRS). A rabies virus-mediated mapping study revealed that aberrant circuit integration of hippocampal newborn DGCs formed excessive de novo excitatory connections as well as recurrent excitatory loops, allowing the hippocampus to produce, amplify, and propagate excessive recurrent excitatory signals. In epileptic mice, DREADD-mediated-specific suppression of hippocampal newborn DGCs dramatically reduced epileptic spikes and SRS in an inducible and reversible manner. Conversely, specific activation of hippocampal newborn DGCs increased both epileptic spikes and SRS. Our study reveals an essential role for hippocampal newborn DGCs in the formation and function of epileptic neural circuits, providing critical insights into DGCs as a potential therapeutic target for treating epilepsy.
Collapse
Affiliation(s)
- Qi-Gang Zhou
- Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing, China
| | | | - Daehoon Lee
- Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Eun Jeoung Ro
- Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jing Zhang
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing, China
| | - Amy S Nowacki
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Susan M Dymecki
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Imad M Najm
- Epilepsy Center, Neurological Institute, and
| | - Hoonkyo Suh
- Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
47
|
Bao H, Song J. Treating Brain Disorders by Targeting Adult Neural Stem Cells. Trends Mol Med 2018; 24:991-1006. [PMID: 30447904 PMCID: PMC6351137 DOI: 10.1016/j.molmed.2018.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/15/2022]
Abstract
Adult neurogenesis, a developmental process of generating functionally integrated neurons from neural stem cells, occurs throughout life in the hippocampus of the mammalian brain and highlights the plastic nature of the mature central nervous system. Substantial evidence suggests that new neurons participate in cognitive and affective brain functions and aberrant adult neurogenesis contributes to various brain disorders. Focusing on adult hippocampal neurogenesis, we review recent findings that advance our understanding of the key properties and potential functions of adult neural stem cells. We further discuss the key evidence demonstrating the causal role of aberrant hippocampal neurogenesis and various brain disorders. Finally, we propose strategies aimed at simultaneously correcting stem cells and their niche for treating brain disorders.
Collapse
Affiliation(s)
- Hechen Bao
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Juan Song
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
48
|
Thompson KW, Suchomelova L, Wasterlain CG. Treatment of early life status epilepticus: What can we learn from animal models? Epilepsia Open 2018; 3:169-179. [PMID: 30564776 PMCID: PMC6293069 DOI: 10.1002/epi4.12271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Treatment of status epilepticus (SE) in infants and children is challenging. There is a recognition that a broad set of developmental processes need to be considered to fully appreciate the physiologic complexity of severe seizures, and seizure outcomes, in infants and children. The development and use of basic models to elucidate important mechanisms will help further our understanding of these processes. Here we review some of the key experimental models and consider several areas relevant to treatment that could lead to productive translational research. Terminating seizures quickly is essential. Understanding pharmacoresistance of SE as it relates to receptor trafficking will be critical to seizure termination. Once a severe seizure is terminated, how will the developing brain respond? Basic studies suggest that there are important acute and long‐term histopathologic, and pathophysiologic, consequences that, if left unaddressed, will produce long‐lasting deficits on the form and function of the central nervous system. To fully utilize the evidence that basic models produce, age‐ and development‐ and model‐specific frameworks have to be considered carefully. Studies have demonstrated that severe seizures can cause perturbations to developmental processes during critical periods of development that lead to life‐long deficits. Unfortunately, some of the drugs that are commonly used to treat seizures may also produce negative outcomes by enhancing Cl‐‐mediated depolarization, or by accelerating programmed cell death. More research is needed to understand these phenomena and their relevance to the human condition, and to develop rational drugs that protect the developing brain from severe seizures to the fullest extent possible.
Collapse
Affiliation(s)
- Kerry W Thompson
- Department of Biology Occidental College Los Angeles California U.S.A
| | - Lucie Suchomelova
- Department of Neurology David Geffen School of Medicine at UCLA Los Angeles California U.S.A
| | - Claude G Wasterlain
- VA Greater Los Angeles Health Care System Los Angeles California U.S.A.,Department of Neurology David Geffen School of Medicine at UCLA Los Angeles California U.S.A.,Brain Research Institute UCLA Los Angeles California U.S.A
| |
Collapse
|
49
|
|
50
|
Sarubbo F, Moranta D, Pani G. Dietary polyphenols and neurogenesis: Molecular interactions and implication for brain ageing and cognition. Neurosci Biobehav Rev 2018; 90:456-470. [DOI: 10.1016/j.neubiorev.2018.05.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 04/05/2018] [Accepted: 05/07/2018] [Indexed: 12/17/2022]
|