1
|
Sergeant CJ, Moore JW, Whited DC, Pitman KJ, Connor M, Sexton EK. An interdisciplinary synthesis of floodplain ecosystem dynamics in a rapidly deglaciating watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169245. [PMID: 38072264 DOI: 10.1016/j.scitotenv.2023.169245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/04/2023] [Accepted: 12/07/2023] [Indexed: 01/18/2024]
Abstract
Glacier retreat is rapidly transforming some watersheds, with ramifications for water supply, ecological succession, important species such as Pacific salmon (Oncorhynchus spp.), and cultural uses of landscapes. To advance a more holistic understanding of the evolution of proglacial landscapes, we integrate multiple lines of knowledge starting in the early 1900s with contemporary data from the Taaltsux̱éi (Tulsequah) Watershed in British Columbia, Canada. Our objectives were to: 1) synthesize recent historical geography and Indigenous Knowledge, including glacier dynamics, and hydrology; 2) describe the limnology of a proglacial lake; 3) quantify decadal-scale downstream physical floodplain change; and 4) characterize riverine physical, chemical, and biological differences relative to distance from the proglacial lake. Since 1982, the Tulsequah Glacier has receded 0.07 km/yr, exposing a cold, deep, and growing proglacial lake. The downstream floodplain is rapidly changing; satellite imagery analysis revealed a 14 % increase in vegetation from 2003 to 2017 and Indigenous Knowledge described increases in vegetation and wildlife habitat over the last century. Contemporary measurements of physical-chemical water properties differed across sites representing the upper and lower watershed, and mainstem and off-channel habitats. Catches of juvenile salmonids in the upper watershed (closer to the glacier) were mostly limited to warmer, clearer groundwater-fed channels, whereas in the lower watershed there were salmonids in both groundwater-fed and mainstem habitats. There was limited zooplankton taxa diversity from the proglacial lake and benthic macroinvertebrates in the river. Collectively, our synthesis suggests that the transformation of proglacial landscapes experiencing rapid ice loss can be influenced by interlinked abiotic processes of glacier retreat, lake formation, and altered hydrology, as well as corresponding biological processes such as beaver repopulation, wetland formation, and riparian vegetation growth. These factors, along with expected increases to proglacial lake productivity and salmon habitat suitability, are an important consideration for forward-looking watershed management of glacier-fed rivers.
Collapse
Affiliation(s)
- Christopher J Sergeant
- Flathead Lake Biological Station, University of Montana, 32125 Bio Station Ln, Polson, MT 59860-6815, USA.
| | - Jonathan W Moore
- Earth2Ocean Research Group, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| | - Diane C Whited
- Flathead Lake Biological Station, University of Montana, 32125 Bio Station Ln, Polson, MT 59860-6815, USA.
| | - Kara J Pitman
- Earth2Ocean Research Group, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Mark Connor
- Lands, Resources, and Fisheries, Taku River Tlingit First Nation, P.O. Box 132, Atlin, BC V0W 1A0, Canada.
| | - Erin K Sexton
- Flathead Lake Biological Station, University of Montana, 32125 Bio Station Ln, Polson, MT 59860-6815, USA.
| |
Collapse
|
2
|
Touchette D, Gostinčar C, Whyte LG, Altshuler I. Lichen-associated microbial members are prevalent in the snow microbiome of a sub-arctic alpine tundra. FEMS Microbiol Ecol 2023; 99:fiad151. [PMID: 37977855 DOI: 10.1093/femsec/fiad151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/27/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023] Open
Abstract
Snow is the largest component of the cryosphere, with its cover and distribution rapidly decreasing over the last decade due to climate warming. It is imperative to characterize the snow (nival) microbial communities to better understand the role of microorganisms inhabiting these rapidly changing environments. Here, we investigated the core nival microbiome, the cultivable microbial members, and the microbial functional diversity of the remote Uapishka mountain range, a massif of alpine sub-arctic tundra and boreal forest. Snow samples were taken over a two-month interval along an altitude gradient with varying degree of anthropogenic traffic and vegetation cover. The core snow alpine tundra/boreal microbiome, which was present across all samples, constituted of Acetobacterales, Rhizobiales and Acidobacteriales bacterial orders, and of Mycosphaerellales and Lecanorales fungal orders, with the dominant fungal taxa being associated with lichens. The snow samples had low active functional diversity, with Richness values ranging from 0 to 19.5. The culture-based viable microbial enumeration ranged from 0 to 8.05 × 103 CFUs/mL. We isolated and whole-genome sequenced five microorganisms which included three fungi, one alga, and one potentially novel bacterium of the Lichenihabitans genus; all of which appear to be part of lichen-associated taxonomic clades.
Collapse
Affiliation(s)
- D Touchette
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, H9X 3V9, Canada
- River Ecosystems Laboratory, ALPOLE, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, CH-1950, Sion, Switzerland
| | - C Gostinčar
- University of Ljubljana, Department of Biology, Biotechnical Faculty, Ljubljana 1000, Slovenia
| | - L G Whyte
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, H9X 3V9, Canada
| | - I Altshuler
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, H9X 3V9, Canada
- MACE Laboratory, ALPOLE, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, CH-1950, Sion, Switzerland
| |
Collapse
|
3
|
Zhong ZP, Vik D, Rapp JZ, Zablocki O, Maughan H, Temperton B, Deming JW, Sullivan MB. Lower viral evolutionary pressure under stable versus fluctuating conditions in subzero Arctic brines. MICROBIOME 2023; 11:174. [PMID: 37550784 PMCID: PMC10405475 DOI: 10.1186/s40168-023-01619-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/12/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Climate change threatens Earth's ice-based ecosystems which currently offer archives and eco-evolutionary experiments in the extreme. Arctic cryopeg brine (marine-derived, within permafrost) and sea ice brine, similar in subzero temperature and high salinity but different in temporal stability, are inhabited by microbes adapted to these extreme conditions. However, little is known about their viruses (community composition, diversity, interaction with hosts, or evolution) or how they might respond to geologically stable cryopeg versus fluctuating sea ice conditions. RESULTS We used long- and short-read viromics and metatranscriptomics to study viruses in Arctic cryopeg brine, sea ice brine, and underlying seawater, recovering 11,088 vOTUs (~species-level taxonomic unit), a 4.4-fold increase of known viruses in these brines. More specifically, the long-read-powered viromes doubled the number of longer (≥25 kb) vOTUs generated and recovered more hypervariable regions by >5-fold compared to short-read viromes. Distribution assessment, by comparing to known viruses in public databases, supported that cryopeg brine viruses were of marine origin yet distinct from either sea ice brine or seawater viruses, while 94% of sea ice brine viruses were also present in seawater. A virus-encoded, ecologically important exopolysaccharide biosynthesis gene was identified, and many viruses (~half of metatranscriptome-inferred "active" vOTUs) were predicted as actively infecting the dominant microbial genera Marinobacter and Polaribacter in cryopeg and sea ice brines, respectively. Evolutionarily, microdiversity (intra-species genetic variations) analyses suggested that viruses within the stable cryopeg brine were under significantly lower evolutionary pressures than those in the fluctuating sea ice environment, while many sea ice brine virus-tail genes were under positive selection, indicating virus-host co-evolutionary arms races. CONCLUSIONS Our results confirmed the benefits of long-read-powered viromics in understanding the environmental virosphere through significantly improved genomic recovery, expanding viral discovery and the potential for biological inference. Evidence of viruses actively infecting the dominant microbes in subzero brines and modulating host metabolism underscored the potential impact of viruses on these remote and underexplored extreme ecosystems. Microdiversity results shed light on different strategies viruses use to evolve and adapt when extreme conditions are stable versus fluctuating. Together, these findings verify the value of long-read-powered viromics and provide foundational data on viral evolution and virus-microbe interactions in Earth's destabilized and rapidly disappearing cryosphere. Video Abstract.
Collapse
Affiliation(s)
- Zhi-Ping Zhong
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Dean Vik
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Josephine Z Rapp
- Department of Biology, Université Laval, Québec, QC, Canada
- Center for Northern Studies (CEN), Université Laval, Québec, QC, Canada
| | - Olivier Zablocki
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | | | - Ben Temperton
- School of Biosciences, University of Exeter, Exeter, Devon, UK
| | - Jody W Deming
- School of Oceanography and Astrobiology Program, University of Washington, Seattle, WA, USA.
| | - Matthew B Sullivan
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA.
- Department of Microbiology, Ohio State University, Columbus, OH, USA.
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA.
- Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
4
|
Carrión-Mero P, Tiviano I, Hervas E, Jaya-Montalvo M, Malavé-Hernández J, Solórzano J, Berrezueta E, Morante-Carballo F. Water Sowing and harvesting application for water management on the slopes of a volcano. Heliyon 2023; 9:e16029. [PMID: 37206048 PMCID: PMC10189417 DOI: 10.1016/j.heliyon.2023.e16029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/21/2023] Open
Abstract
The present study aims to elaborate a hydrogeological characterisation in the Water Sowing and Harvesting context. The study is focused on rural parishes in the Ecuadorian Andes that, despite their proximity to snow sources (Chimborazo glaciers), need more supply of this resource, to satisfy the demand of a population of 70,466 inhabitants. The study is based on hydrology and geomorphological analysis, a geophysical exploration, and a definition of water management strategies. The application of non-destructive geophysical methods and Geographic Information Systems support the hydrogeological study and the proposal of strategies for sustainable water management on the slopes of the Chimborazo volcano. An aquifer potential was identified (sand, gravel and fractured porphyritic andesites) with resistivity values between 51.3 and 157 Ω m at an approximate depth of 30 m from the geophysical characterisation addressed. This potential saturated zone is on the southern slope of the Chimborazo volcano within the hydrographic watershed, with favourable drainage networks for water accumulation. The aquifer shows a high-water saturation level but uncontrolled losses. As a consequence of these characteristics, alternatives for managing water resources are proposed, such as wells construction, using Water Sowing and Harvesting system methods ("camellones") based on Nature-Based Solutions, dam construction and environmental education. The different proposals are associated with the four sustainability axes of Brundtland (economic, social, environmental and cultural axis) and contribute to the sixth objective of the Sustainable Development Goal 2030 Agenda.
Collapse
Affiliation(s)
- Paúl Carrión-Mero
- Facultad de Ingeniería Ciencias de la Tierra (FICT), ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
- Centro de Investigación y Proyectos Aplicados a las Ciencias de la Tierra, CIPAT-ESPOL, Polytechnic University, Escuela Superior Politécnica del Litoral (ESPOL), Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, 09-01-5863 Guayaquil, Ecuador
- Corresponding author. Facultad de Ingeniería Ciencias de la Tierra (FICT), ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador.
| | - Inés Tiviano
- Facultad de Ingeniería Ciencias de la Tierra (FICT), ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
- Centro de Investigación y Proyectos Aplicados a las Ciencias de la Tierra, CIPAT-ESPOL, Polytechnic University, Escuela Superior Politécnica del Litoral (ESPOL), Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, 09-01-5863 Guayaquil, Ecuador
| | - Edgar Hervas
- Facultad de Ingeniería Ciencias de la Tierra (FICT), ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
- Centro de Investigación y Proyectos Aplicados a las Ciencias de la Tierra, CIPAT-ESPOL, Polytechnic University, Escuela Superior Politécnica del Litoral (ESPOL), Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, 09-01-5863 Guayaquil, Ecuador
| | - María Jaya-Montalvo
- Facultad de Ingeniería Ciencias de la Tierra (FICT), ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
- Centro de Investigación y Proyectos Aplicados a las Ciencias de la Tierra, CIPAT-ESPOL, Polytechnic University, Escuela Superior Politécnica del Litoral (ESPOL), Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, 09-01-5863 Guayaquil, Ecuador
- Corresponding author. Facultad de Ingeniería Ciencias de la Tierra (FICT), ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador.
| | - Jenifer Malavé-Hernández
- Centro de Investigación y Proyectos Aplicados a las Ciencias de la Tierra, CIPAT-ESPOL, Polytechnic University, Escuela Superior Politécnica del Litoral (ESPOL), Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, 09-01-5863 Guayaquil, Ecuador
| | - Joselyne Solórzano
- Facultad de Ingeniería Ciencias de la Tierra (FICT), ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
- Centro de Investigación y Proyectos Aplicados a las Ciencias de la Tierra, CIPAT-ESPOL, Polytechnic University, Escuela Superior Politécnica del Litoral (ESPOL), Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, 09-01-5863 Guayaquil, Ecuador
| | - Edgar Berrezueta
- Departamento de Recursos para la Transición Ecológica, Instituto Geológico y Minero de España (IGME, CSIC), Oviedo 33005, Spain
| | - Fernando Morante-Carballo
- Centro de Investigación y Proyectos Aplicados a las Ciencias de la Tierra, CIPAT-ESPOL, Polytechnic University, Escuela Superior Politécnica del Litoral (ESPOL), Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, 09-01-5863 Guayaquil, Ecuador
- Geo-Recursos y Aplicaciones GIGA, Campus Gustavo Galindo, ESPOL Polytechnic University, Km. 30.5 Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador
- Facultad de Ciencias Naturales y Matemáticas, ESPOL Polytechnic University, Guayaquil 09015863, Ecuador
| |
Collapse
|
5
|
Pittino F, Zawierucha K, Poniecka E, Buda J, Rosatelli A, Zordan S, Azzoni RS, Diolaiuti G, Ambrosini R, Franzetti A. Functional and Taxonomic Diversity of Anaerobes in Supraglacial Microbial Communities. Microbiol Spectr 2023; 11:e0100422. [PMID: 36939373 PMCID: PMC10100660 DOI: 10.1128/spectrum.01004-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 02/16/2023] [Indexed: 03/21/2023] Open
Abstract
Cryoconite holes are small ponds present on the surface of most glaciers filled with meltwater and sediment at the bottom. Although they are characterized by extreme conditions, they host bacterial communities with high taxonomic and functional biodiversity. Despite that evidence for a potential niche for anaerobic microorganisms and anaerobic processes has recently emerged, the composition of the microbial communities of the cryoconite reported so far has not shown the relevant presence of anaerobic taxa. We hypothesize that this is due to the lower growth yield of anaerobes compared to aerobic microorganisms. In this work, we aim at evaluating whether the anaerobic bacterial community represents a relevant fraction of the biodiversity of the cryoconite and at describing its structure and functions. We collected sediment samples from cryoconite holes on the Forni Glacier (Italy) and sequenced both 16S rRNA amplicon genes and 16S rRNA amplicon transcripts at different times of the day along a clear summer day. Results showed that a relevant fraction of taxa has been detected only by 16S rRNA transcripts and was undetectable in 16S rRNA gene amplicons. Furthermore, in the transcript approach, anaerobic taxa were overrepresented compared with DNA sequencing. The metatranscriptomics approach was used also to investigate the expression of the main metabolic functions. Results showed the occurrence of syntrophic and commensalism relationships among fermentative bacteria, hydrogenothrophs, and consumers of fermentation end products, which have never been reported so far in cryoconite. IMPORTANCE Recent evidence disclosed the presence of a potential niche for anaerobic microorganisms and anaerobic processes in supraglacial sediments (cryoconite), but a detailed description of the structure and functions of the anaerobic population is still lacking. This work used rRNA and mRNA sequencing and demonstrated that anaerobes are very active in these environments and represent a relevant albeit neglected part of the ecosystem functions in these environments.
Collapse
Affiliation(s)
- Francesca Pittino
- Department of Earth and Environmental Sciences (DISAT)–University of Milano-Bicocca, Milano, Italy
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Krzysztof Zawierucha
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Ewa Poniecka
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jakub Buda
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Asia Rosatelli
- Department of Earth and Environmental Sciences (DISAT)–University of Milano-Bicocca, Milano, Italy
| | - Simone Zordan
- Department of Earth and Environmental Sciences (DISAT)–University of Milano-Bicocca, Milano, Italy
| | - Roberto S. Azzoni
- Department of Earth Science “Ardito Desio,” University of Milan, Milano, Italy
| | - Guglielmina Diolaiuti
- Department of Environmental Science and Policy (ESP), University of Milan, Milano, Italy
| | - Roberto Ambrosini
- Department of Environmental Science and Policy (ESP), University of Milan, Milano, Italy
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences (DISAT)–University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
6
|
Campbell JL, Driscoll CT, Jones JA, Boose ER, Dugan HA, Groffman PM, Jackson CR, Jones JB, Juday GP, Lottig NR, Penaluna BE, Ruess RW, Suding K, Thompson JR, Zimmerman JK. Forest and Freshwater Ecosystem Responses to Climate Change and Variability at US LTER Sites. Bioscience 2022. [DOI: 10.1093/biosci/biab124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Forest and freshwater ecosystems are tightly linked and together provide important ecosystem services, but climate change is affecting their species composition, structure, and function. Research at nine US Long Term Ecological Research sites reveals complex interactions and cascading effects of climate change, some of which feed back into the climate system. Air temperature has increased at all sites, and those in the Northeast have become wetter, whereas sites in the Northwest and Alaska have become slightly drier. These changes have altered streamflow and affected ecosystem processes, including primary production, carbon storage, water and nutrient cycling, and community dynamics. At some sites, the direct effects of climate change are the dominant driver altering ecosystems, whereas at other sites indirect effects or disturbances and stressors unrelated to climate change are more important. Long-term studies are critical for understanding the impacts of climate change on forest and freshwater ecosystems.
Collapse
Affiliation(s)
| | | | - Julia A Jones
- Oregon State University , Corvallis, Oregon, United States
| | - Emery R Boose
- Harvard University , Petersham, Massachusetts, United States
| | - Hilary A Dugan
- University of Wisconsin , Madison, Wisconsin, United States
| | - Peter M Groffman
- City University of New York, and with the Cary Institute of Ecosystem Studies , Millbrook, New York, United States
| | | | - Jeremy B Jones
- University of Alaska Fairbanks , Fairbanks, Alaska, United States
| | - Glenn P Juday
- University of Alaska Fairbanks , Fairbanks, Alaska, United States
| | - Noah R Lottig
- University of Wisconsin's Trout Lake Station , Boulder Junction, Wisconsin, United States
| | | | - Roger W Ruess
- University of Alaska Fairbanks , Fairbanks, Alaska, United States
| | | | | | - Jess K Zimmerman
- University of Puerto Rico-Rio Piedras , San Juan, Puerto Rico, United States
| |
Collapse
|
7
|
Pan Y, Sun Z, Pan Z, Zhang S, Li X, Ma R. Influence of permafrost and hydrogeology on seasonal and spatial variations in water chemistry of an alpine river in the northeastern Qinghai-Tibet Plateau, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155227. [PMID: 35421504 DOI: 10.1016/j.scitotenv.2022.155227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Known as the third pole of the world, the Qinghai-Tibet Plateau has been experiencing rapid permafrost warming and thawing over the last few decades. However, the impact of permafrost distribution and hydrogeology on river hydrochemistry in alpine areas remains unclear. This study conducted four sampling campaigns to reveal the temporal and spatial variations in and factors driving river hydrochemistry in the upper reaches of the Heihe River, the northeastern Qinghai-Tibet Plateau. We found that the concentrations of major ions and total dissolved solids (TDS) in river water showed substantial seasonal variations; the concentrations were generally lower during the initial thawing and thawed periods than during the initial freezing period. However, solute fluxes during the thawed period were much higher than those during the frozen period. The concentrations of major ions and TDS gradually decreased to a minimum from the permafrost meander (PM) section to the seasonal frost meander (SFM) section and then increased the seasonal frost canyon section. Using the revised forward model, we found that river solutes were contributed by carbonate weathering (mean 38.9%) > sulfide oxidation (22.9%) > evaporite dissolution (20.2%) > atmospheric precipitation (8.7%) > silicate weathering (5.0%) > glacial meltwater (4.3%). The higher TDS, Na+, Cl-, Ca2+, Mg2+, and SO42- concentrations in the PM section reflected the influence of freeze-out fractionation. The concentrations of major ions and TDS were lowest in the SFM section, indicating that the riparian porous aquifer was essential in regulating river hydrochemistry, thus reducing its spatiotemporal variations in the alpine area. In the mountain glacier-hillslope-riparian porous aquifer-river system, the river was mainly recharged by groundwater with insufficient water-rock interactions due to the rapid flow owing to the high elevation difference and high permeability of the riparian quaternary porous aquifers. Our findings provide insights into the construction of hydrogeochemical models in alpine areas and are practically important for the scientific management of water resources in the Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Yanxi Pan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, Hubei, PR China
| | - Ziyong Sun
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, Hubei, PR China; School of Environmental Studies, China University of Geosciences, Wuhan 430078, Hubei, PR China.
| | - Zhao Pan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, Hubei, PR China
| | - Shuxun Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, Hubei, PR China
| | - Xin Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, Hubei, PR China
| | - Rui Ma
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, Hubei, PR China; School of Environmental Studies, China University of Geosciences, Wuhan 430078, Hubei, PR China
| |
Collapse
|
8
|
Bourquin M, Busi SB, Fodelianakis S, Peter H, Washburne A, Kohler TJ, Ezzat L, Michoud G, Wilmes P, Battin TJ. The microbiome of cryospheric ecosystems. Nat Commun 2022; 13:3087. [PMID: 35655063 PMCID: PMC9163120 DOI: 10.1038/s41467-022-30816-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/20/2022] [Indexed: 01/03/2023] Open
Abstract
The melting of the cryosphere is among the most conspicuous consequences of climate change, with impacts on microbial life and related biogeochemistry. However, we are missing a systematic understanding of microbiome structure and function across cryospheric ecosystems. Here, we present a global inventory of the microbiome from snow, ice, permafrost soils, and both coastal and freshwater ecosystems under glacier influence. Combining phylogenetic and taxonomic approaches, we find that these cryospheric ecosystems, despite their particularities, share a microbiome with representatives across the bacterial tree of life and apparent signatures of early and constrained radiation. In addition, we use metagenomic analyses to define the genetic repertoire of cryospheric bacteria. Our work provides a reference resource for future studies on climate change microbiology. The cryosphere includes those parts of Earth where water or soil is frozen, such as snow, ice, glaciers and permafrost soils. Here, the authors present a global inventory of cryospheric microbial communities and their genetic repertoires.
Collapse
Affiliation(s)
- Massimo Bourquin
- River Ecosystems Laboratory, Centre for Alpine and Polar Environmental Research (ALPOLE), École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland.
| | - Susheel Bhanu Busi
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, 7, avenue des Hauts-Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Stilianos Fodelianakis
- River Ecosystems Laboratory, Centre for Alpine and Polar Environmental Research (ALPOLE), École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Hannes Peter
- River Ecosystems Laboratory, Centre for Alpine and Polar Environmental Research (ALPOLE), École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | | | - Tyler J Kohler
- River Ecosystems Laboratory, Centre for Alpine and Polar Environmental Research (ALPOLE), École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Leïla Ezzat
- River Ecosystems Laboratory, Centre for Alpine and Polar Environmental Research (ALPOLE), École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Grégoire Michoud
- River Ecosystems Laboratory, Centre for Alpine and Polar Environmental Research (ALPOLE), École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, 7, avenue des Hauts-Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg.,Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Tom J Battin
- River Ecosystems Laboratory, Centre for Alpine and Polar Environmental Research (ALPOLE), École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland.
| |
Collapse
|
9
|
|
10
|
Varliero G, Anesio AM, Barker GLA. A Taxon-Wise Insight Into Rock Weathering and Nitrogen Fixation Functional Profiles of Proglacial Systems. Front Microbiol 2021; 12:627437. [PMID: 34621246 PMCID: PMC8491546 DOI: 10.3389/fmicb.2021.627437] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
The Arctic environment is particularly affected by global warming, and a clear trend of the ice retreat is observed worldwide. In proglacial systems, the newly exposed terrain represents different environmental and nutrient conditions compared to later soil stages. Therefore, proglacial systems show several environmental gradients along the soil succession where microorganisms are active protagonists of the soil and carbon pool formation through nitrogen fixation and rock weathering. We studied the microbial succession of three Arctic proglacial systems located in Svalbard (Midtre Lovénbreen), Sweden (Storglaciären), and Greenland (foreland close to Kangerlussuaq). We analyzed 65 whole shotgun metagenomic soil samples for a total of more than 400 Gb of sequencing data. Microbial succession showed common trends typical of proglacial systems with increasing diversity observed along the forefield chronosequence. Microbial trends were explained by the distance from the ice edge in the Midtre Lovénbreen and Storglaciären forefields and by total nitrogen (TN) and total organic carbon (TOC) in the Greenland proglacial system. Furthermore, we focused specifically on genes associated with nitrogen fixation and biotic rock weathering processes, such as nitrogenase genes, obcA genes, and genes involved in cyanide and siderophore synthesis and transport. Whereas we confirmed the presence of these genes in known nitrogen-fixing and/or rock weathering organisms (e.g., Nostoc, Burkholderia), in this study, we also detected organisms that, even if often found in soil and proglacial systems, have never been related to nitrogen-fixing or rock weathering processes before (e.g., Fimbriiglobus, Streptomyces). The different genera showed different gene trends within and among the studied systems, indicating a community constituted by a plurality of organisms involved in nitrogen fixation and biotic rock weathering, and where the latter were driven by different organisms at different soil succession stages.
Collapse
Affiliation(s)
- Gilda Varliero
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | | | - Gary L. A. Barker
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
11
|
Rapp JZ, Sullivan MB, Deming JW. Divergent Genomic Adaptations in the Microbiomes of Arctic Subzero Sea-Ice and Cryopeg Brines. Front Microbiol 2021; 12:701186. [PMID: 34367102 PMCID: PMC8339730 DOI: 10.3389/fmicb.2021.701186] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
Subzero hypersaline brines are liquid microbial habitats within otherwise frozen environments, where concentrated dissolved salts prevent freezing. Such extreme conditions presumably require unique microbial adaptations, and possibly altered ecologies, but specific strategies remain largely unknown. Here we examined prokaryotic taxonomic and functional diversity in two seawater-derived subzero hypersaline brines: first-year sea ice, subject to seasonally fluctuating conditions; and ancient cryopeg, under relatively stable conditions geophysically isolated in permafrost. Overall, both taxonomic composition and functional potential were starkly different. Taxonomically, sea-ice brine communities (∼105 cells mL–1) had greater richness, more diversity and were dominated by bacterial genera, including Polaribacter, Paraglaciecola, Colwellia, and Glaciecola, whereas the more densely inhabited cryopeg brines (∼108 cells mL–1) lacked these genera and instead were dominated by Marinobacter. Functionally, however, sea ice encoded fewer accessory traits and lower average genomic copy numbers for shared traits, though DNA replication and repair were elevated; in contrast, microbes in cryopeg brines had greater genetic versatility with elevated abundances of accessory traits involved in sensing, responding to environmental cues, transport, mobile elements (transposases and plasmids), toxin-antitoxin systems, and type VI secretion systems. Together these genomic features suggest adaptations and capabilities of sea-ice communities manifesting at the community level through seasonal ecological succession, whereas the denser cryopeg communities appear adapted to intense bacterial competition, leaving fewer genera to dominate with brine-specific adaptations and social interactions that sacrifice some members for the benefit of others. Such cryopeg genomic traits provide insight into how long-term environmental stability may enable life to survive extreme conditions.
Collapse
Affiliation(s)
- Josephine Z Rapp
- School of Oceanography, University of Washington, Seattle, WA, United States
| | - Matthew B Sullivan
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, United States.,Department of Microbiology, Ohio State University, Columbus, OH, United States.,Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, United States.,Center of Microbiome Science, Ohio State University, Columbus, OH, United States
| | - Jody W Deming
- School of Oceanography, University of Washington, Seattle, WA, United States
| |
Collapse
|
12
|
Saggiomo M, Escalera L, Saggiomo V, Bolinesi F, Mangoni O. Phytoplankton Blooms Below the Antarctic Landfast Ice During the Melt Season Between Late Spring and Early Summer. JOURNAL OF PHYCOLOGY 2021; 57:541-550. [PMID: 33283272 DOI: 10.1111/jpy.13112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
Antarctic regions are known to be mainly dominated by diatoms in the water column under sea ice. In this study, we report for the first time two distinct phytoplankton blooms dominated by nanoflagellates (<15 µm) under the landfast ice in Terra Nova Bay during the late spring-early summer 2015/2016. The taxa included the pelagic Bolidophyceae Pentalamina corona, the Chrysophyceae Ochromonas spp. and the Chlorophyceae Chlamydomonas spp., typically found in fresh waters, and the Prymnesiophyceae Phaeocystis antarctica usually observed dominating in polynya areas. These species represented from 40% to 91% of the total phytoplankton community, a percentage contrasting with the prevalence of diatoms found previously. The dominance of nanoflagellates, rather than diatoms, during late spring and early summer may have important implications for trophic relationships in Antarctic waters and the presence of typical freshwater species could indicate a great input of continental waters related to environmental changes.
Collapse
Affiliation(s)
- Maria Saggiomo
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, 80121, Italy
| | - Laura Escalera
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, 80121, Italy
| | - Vincenzo Saggiomo
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, 80121, Italy
| | - Francesco Bolinesi
- Department of Biology, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Naples, 80126, Italy
| | - Olga Mangoni
- Department of Biology, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Naples, 80126, Italy
- CoNISMa, Piazzale Flaminio 9, Rome, 00196, Italy
| |
Collapse
|
13
|
Zawierucha K, Buda J, Jaromerska TN, Janko K, Gąsiorek P. Integrative approach reveals new species of water bears (Pilatobius, Grevenius, and Acutuncus) from Arctic cryoconite holes, with the discovery of hidden lineages of Hypsibius. ZOOL ANZ 2020. [DOI: 10.1016/j.jcz.2020.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Stibal M, Bradley JA, Edwards A, Hotaling S, Zawierucha K, Rosvold J, Lutz S, Cameron KA, Mikucki JA, Kohler TJ, Šabacká M, Anesio AM. Glacial ecosystems are essential to understanding biodiversity responses to glacier retreat. Nat Ecol Evol 2020; 4:686-687. [DOI: 10.1038/s41559-020-1163-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/03/2020] [Indexed: 11/09/2022]
|
15
|
Sharma Ghimire P, Tripathee L, Zhang Q, Guo J, Ram K, Huang J, Sharma CM, Kang S. Microbial mercury methylation in the cryosphere: Progress and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134150. [PMID: 32380618 DOI: 10.1016/j.scitotenv.2019.134150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 06/11/2023]
Abstract
Mercury (Hg) is one of the most toxic heavy metals, and its cycle is mainly controlled by oxidation-reduction reactions carried out by photochemical or microbial process under suitable conditions. The deposition and accumulation of methylmercury (MeHg) in various ecosystems, including the cryospheric components such as snow, meltwater, glaciers, and ice sheet, and subsequently in the food chain pose serious health concerns for living beings. Unlike the abundance of knowledge about the processes of MeHg production over land and oceans, little is known about the sources and production/degradation rate of MeHg in cryosphere systems. In addition, processes controlling the concentration of Hg and MeHg in the cryosphere remains poorly understood, and filling this scientific gap has been challenging. Therefore, it is essential to study and review the deposition and accumulation by biological, physical, and chemical mechanisms involved in Hg methylation in the cryosphere. This review attempts to address knowledge gaps in understanding processes, especially biotic and abiotic, applicable for Hg methylation in the cryosphere. First, we focus on the variability in Hg concentration and mechanisms of Hg methylation, including physical, chemical, microbial, and biological processes, and transportation in the cryosphere. Then, we elaborate on the mechanism of redox reactions and biotic and abiotic factors controlling Hg methylation and biogeochemistry of Hg in the cryosphere. We also present possible mechanisms of Hg methylation with an emphasis on microbial transformation and molecular function to understand variability in Hg concentration in the cryosphere. Recent advancements in the genetic and physicochemical mechanisms of Hg methylation are also presented. Finally, we summarize and propose a method to study the unsolved issues of Hg methylation in the cryosphere.
Collapse
Affiliation(s)
- Prakriti Sharma Ghimire
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Himalayan Environment Research Institute (HERI), Kathmandu, Nepal
| | - Lekhendra Tripathee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Himalayan Environment Research Institute (HERI), Kathmandu, Nepal.
| | - Qianggong Zhang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100085, China
| | - Junming Guo
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Kirpa Ram
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Jie Huang
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100085, China; Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Chhatra Mani Sharma
- Himalayan Environment Research Institute (HERI), Kathmandu, Nepal; Central Department of Environmental Science, Tribhuvan University, Kathmandu, Nepal
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100085, China.
| |
Collapse
|
16
|
Xu Y, Jones A, Rhoades A. A quantitative method to decompose SWE differences between regional climate models and reanalysis datasets. Sci Rep 2019; 9:16520. [PMID: 31712573 PMCID: PMC6848092 DOI: 10.1038/s41598-019-52880-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 10/23/2019] [Indexed: 11/21/2022] Open
Abstract
The simulation of snow water equivalent (SWE) remains difficult for regional climate models. Accurate SWE simulation depends on complex interacting climate processes such as the intensity and distribution of precipitation, rain-snow partitioning, and radiative fluxes. To identify the driving forces behind SWE difference between model and reanalysis datasets, and guide model improvement, we design a framework to quantitatively decompose the SWE difference contributed from precipitation distribution and magnitude, ablation, temperature and topography biases in regional climate models. We apply this framework within the California Sierra Nevada to four regional climate models from the North American Coordinated Regional Downscaling Experiment (NA-CORDEX) run at three spatial resolutions. Models generally predict less SWE compared to Landsat-Era Sierra Nevada Snow Reanalysis (SNSR) dataset. Unresolved topography associated with model resolution contribute to dry and warm biases in models. Refining resolution from 0.44° to 0.11° improves SWE simulation by 35%. To varying degrees across models, additional difference arises from spatial and elevational distribution of precipitation, cold biases revealed by topographic correction, uncertainties in the rain-snow partitioning threshold, and high ablation biases. This work reveals both positive and negative contributions to snow bias in climate models and provides guidance for future model development to enhance SWE simulation.
Collapse
Affiliation(s)
- Yun Xu
- Lawrence Berkeley National Laboratory, Earth and Environment Sciences Area, Berkeley, CA, 94720, USA.
| | - Andrew Jones
- Lawrence Berkeley National Laboratory, Earth and Environment Sciences Area, Berkeley, CA, 94720, USA
| | - Alan Rhoades
- Lawrence Berkeley National Laboratory, Earth and Environment Sciences Area, Berkeley, CA, 94720, USA
| |
Collapse
|
17
|
Vegetation dynamics in Alpine glacier forelands tackled from space. Sci Rep 2019; 9:13918. [PMID: 31558792 PMCID: PMC6763459 DOI: 10.1038/s41598-019-50273-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/10/2019] [Indexed: 11/11/2022] Open
Abstract
Monitoring of plant succession in glacier forelands has so far been restricted to field sampling. In this study, in situ vegetation sampling along a chronosequence between Little Ice Age (LIA) maximum extent and the recent glacier terminus at Jamtalferner in the Austrian Alps is compared to time series of the Normalized Difference Vegetation Index (NDVI) calculated from 13 Landsat scenes (1985–2016). The glacier terminus positions at 16 dates between the LIA maximum and 2015 were analysed from historical maps, orthophotos and LiDAR images. We sampled plots of different ages since deglaciation, from very recent to approx. 150 years: after 100 years, roughly 80% of the ground is covered by plants and ground cover does not increase significantly thereafter. The number of species increases from 10–20 species on young sites to 40–50 species after 100 years. The NDVI increases with the time of exposure from a mean of 0.11 for 1985–1991 to 0.20 in 2009 and 0.27 in 2016. As the increase in ground cover is clearly reproduced by the NDVI (R² ground cover/NDVI 0.84) – even for sparsely vegetated areas –, we see a great potential of satellite-borne NDVI to perform regional characterizations of glacier forelands for hydrological, ecological and hazard management-related applications.
Collapse
|
18
|
Kang S, Zhang Q, Qian Y, Ji Z, Li C, Cong Z, Zhang Y, Guo J, Du W, Huang J, You Q, Panday AK, Rupakheti M, Chen D, Gustafsson Ö, Thiemens MH, Qin D. Linking atmospheric pollution to cryospheric change in the Third Pole region: current progress and future prospects. Natl Sci Rev 2019; 6:796-809. [PMID: 34691935 PMCID: PMC8291388 DOI: 10.1093/nsr/nwz031] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 12/05/2018] [Accepted: 03/05/2019] [Indexed: 02/01/2023] Open
Abstract
The Tibetan Plateau and its surroundings are known as the Third Pole (TP). This region is noted for its high rates of glacier melt and the associated hydrological shifts that affect water supplies in Asia. Atmospheric pollutants contribute to climatic and cryospheric changes through their effects on solar radiation and the albedos of snow and ice surfaces; moreover, the behavior and fates within the cryosphere and environmental impacts of environmental pollutants are topics of increasing concern. In this review, we introduce a coordinated monitoring and research framework and network to link atmospheric pollution and cryospheric changes (APCC) within the TP region. We then provide an up-to-date summary of progress and achievements related to the APCC research framework, including aspects of atmospheric pollution's composition and concentration, spatial and temporal variations, trans-boundary transport pathways and mechanisms, and effects on the warming of atmosphere and changing in Indian monsoon, as well as melting of glacier and snow cover. We highlight that exogenous air pollutants can enter into the TP's environments and cause great impacts on regional climatic and environmental changes. At last, we propose future research priorities and map out an extended program at the global scale. The ongoing monitoring activities and research facilitate comprehensive studies of atmosphere-cryosphere interactions, represent one of China's key research expeditions to the TP and the polar regions and contribute to the global perspective of earth system science.
Collapse
Affiliation(s)
- Shichang Kang
- State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianggong Zhang
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, CAS, Beijing 100101, China
| | - Yun Qian
- Pacific Northwest National Laboratory (PNNL), Richland WA 99352, USA
| | - Zhenming Ji
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou 510275, China
| | - Chaoliu Li
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, CAS, Beijing 100101, China
| | - Zhiyuan Cong
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, CAS, Beijing 100101, China
| | - Yulan Zhang
- State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Junming Guo
- State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Wentao Du
- State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Jie Huang
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, CAS, Beijing 100101, China
| | - Qinglong You
- Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China
| | - Arnico K Panday
- International Centre for Integrated Mountain Development (ICIMOD), Kathmandu G. P. O. 3226, Nepal
| | - Maheswar Rupakheti
- Institute for Advanced Sustainability Studies (IASS), Potsdam 14467, Germany
| | - Deliang Chen
- Department of Earth Sciences, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - Örjan Gustafsson
- Department of Environmental Science and Analytical Chemistry, The Bolin Centre for Climate Research, Stockholm University, Stockholm 10691, Sweden
| | - Mark H Thiemens
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla CA 92093, USA
| | - Dahe Qin
- State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Casillo A, Parrilli E, Tutino ML, Corsaro MM. The outer membrane glycolipids of bacteria from cold environments: isolation, characterization, and biological activity. FEMS Microbiol Ecol 2019; 95:5519854. [DOI: 10.1093/femsec/fiz094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/14/2019] [Indexed: 01/18/2023] Open
Abstract
ABSTRACTLipopolysaccharides (LPSs) are the main components of the external leaflet of the outer membrane of Gram-negative bacteria. Microorganisms that colonize permanently or transiently cold habitats have evolved an array of structural adaptations, some of which involve components of bacterial membranes. These adaptations assure the perfect functionality of the membrane even at freezing or sub-freezing growth temperatures. This review summarizes the state-of-the-art information concerning the structural features of the LPSs produced by cold-adapted bacteria. The LPS structure has recently been elucidated from species mainly belonging to Gammaproteobacteria and Flavobacteriaceae. Although the reported structural heterogeneity may arise from the phylogenetic diversity of the analyzed source strains, some generalized trends can be deduced. For instance, it is clear that only a small portion of LPSs displays the O-chain. In addition, the biological activity of the lipid A portion from several cold-adapted strains is reported.
Collapse
Affiliation(s)
- Angela Casillo
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| | - Maria Luisa Tutino
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| | - Maria Michela Corsaro
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| |
Collapse
|
20
|
Kemppinen J, Niittynen P, Aalto J, le Roux PC, Luoto M. Water as a resource, stress and disturbance shaping tundra vegetation. OIKOS 2019. [DOI: 10.1111/oik.05764] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Julia Kemppinen
- Dept of Geosciences and Geography, Gustaf Hällströmin katu 2a, FIN–00014 Univ. of Helsinki Finland
| | - Pekka Niittynen
- Dept of Geosciences and Geography, Gustaf Hällströmin katu 2a, FIN–00014 Univ. of Helsinki Finland
| | - Juha Aalto
- Dept of Geosciences and Geography, Gustaf Hällströmin katu 2a, FIN–00014 Univ. of Helsinki Finland
- Finnish Meteorological Inst Finland
| | | | - Miska Luoto
- Dept of Geosciences and Geography, Gustaf Hällströmin katu 2a, FIN–00014 Univ. of Helsinki Finland
| |
Collapse
|
21
|
Muths E, Scherer RD, Amburgey SM, Corn PS. Twenty‐nine years of population dynamics in a small‐bodied montane amphibian. Ecosphere 2018. [DOI: 10.1002/ecs2.2522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- E. Muths
- Fort Collins Science Center U.S. Geological Survey 2150 Centre Avenue Fort Collins Colorado 80526 USA
| | - R. D. Scherer
- Conservation Science Partners 501 Old Town Square Fort Collins Colorado 80524 USA
| | - S. M. Amburgey
- Department of Ecosystem Science and Management The Pennsylvania State University University Park Pennsylvania 16802 USA
- Intercollege Degree Program in Ecology The Pennsylvania State University University Park Pennsylvania 16802 USA
| | - P. S. Corn
- Northern Rocky Mountain Science Center U.S. Geological Survey Missoula Montana 59801 USA
| |
Collapse
|
22
|
Dias LM, Folador ARC, Oliveira AM, Ramos RTJ, Silva A, Baraúna RA. Genomic Architecture of the Two Cold-Adapted Genera Exiguobacterium and Psychrobacter: Evidence of Functional Reduction in the Exiguobacterium antarcticum B7 Genome. Genome Biol Evol 2018; 10:731-741. [PMID: 29438502 PMCID: PMC5833320 DOI: 10.1093/gbe/evy029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2018] [Indexed: 11/12/2022] Open
Abstract
Exiguobacterium and Psychrobacter are bacterial genera with several cold-adapted species. These extremophiles are commonly isolated from the same habitats in Earth's cryosphere and have great ecological and biotechnological relevance. Thus, through comparative genomic analyses, it was possible to understand the functional diversity of these psychrotrophic and psychrophilic species and present new insights into the microbial adaptation to cold. The nucleotide identity between Exiguobacterium genomes was >90%. Three genomic islands were identified in the E. antarcticum B7 genome. These islands contained genes involved in flagella biosynthesis and chemotaxis, as well as enzymes for carotenoid biosynthesis. Clustering of cold shock proteins by Ka/Ks ratio suggests the occurrence of a positive selection over these genes. Neighbor-joining clustering of complete genomes showed that the E. sibiricum was the most closely related to E. antarcticum. A total of 92 genes were shared between Exiguobacterium and Psychrobacter. A reduction in the genomic content of E. antarcticum B7 was observed. It presented the smallest genome size of its genus and a lower number of genes because of the loss of many gene families compared with the other genomes. In our study, eight genomes of Exiguobacterium and Psychrobacter were compared and analysed. Psychrobacter showed higher genomic plasticity and E. antarcticum B7 presented a large decrease in genomic content without changing its ability to grow in cold environments.
Collapse
Affiliation(s)
- Larissa M Dias
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Adriana R C Folador
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Amanda M Oliveira
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Rommel T J Ramos
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Artur Silva
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Rafael A Baraúna
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| |
Collapse
|
23
|
Turchetti B, Selbmann L, Gunde-Cimerman N, Buzzini P, Sampaio JP, Zalar P. Cystobasidium alpinum sp. nov. and Rhodosporidiobolus oreadorum sp. nov. from European Cold Environments and Arctic Region. Life (Basel) 2018; 8:life8020009. [PMID: 29734727 PMCID: PMC6027198 DOI: 10.3390/life8020009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/30/2018] [Accepted: 05/04/2018] [Indexed: 11/16/2022] Open
Abstract
Over 80% of the Earth’s environments are permanently or periodically exposed to temperatures below 5 °C. Cold habitats harbour a wide diversity of psychrophilic and psychrotolerant yeasts. During ecological studies of yeast communities carried out in cold ecosystem in the Italian Alps, Svalbard (Norway, Arctic region), and Portugal, 23 yeast strains that could not be assigned to any known fungal taxa were isolated. In particular, two of them were first identified as Rhodotorula sp., showing the highest degree of D1/D2 sequence identity with Cystobasidum laryngis accounted to only 97% with the type strain (C. laryngis CBS 2221). The other 21 strains, exhibiting identical D1/D2 sequences, had low identity (97%) with Rhodosporidiobolus lusitaniae and Rhodosporidiobolus colostri. Similarly, ITS sequences of the type strains of the most closely related species (93⁻94%). In a 2-genes multilocus D1/D2 and ITS ML phylogenetic tree, the studied strains pooled in two well separated and supported groups. In order to classify the new 23 isolates based on phylogenetic evidences, we propose the description of two novel species Cystobasidium alpinum sp. nov. and Rhodosporidiobolus oreadorum sp. nov.
Collapse
Affiliation(s)
- Benedetta Turchetti
- Department of Agricultural, Food and Environmental Sciences & Industrial Yeasts Collection DBVPG, University of Perugia, 06121 Perugia, Italy.
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| | - Pietro Buzzini
- Department of Agricultural, Food and Environmental Sciences & Industrial Yeasts Collection DBVPG, University of Perugia, 06121 Perugia, Italy.
| | - José Paulo Sampaio
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Polona Zalar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
24
|
Bengtson Nash SM, Castrillon J, Eisenmann P, Fry B, Shuker JD, Cropp RA, Dawson A, Bignert A, Bohlin-Nizzetto P, Waugh CA, Polkinghorne BJ, Dalle Luche G, McLagan D. Signals from the south; humpback whales carry messages of Antarctic sea-ice ecosystem variability. GLOBAL CHANGE BIOLOGY 2018; 24:1500-1510. [PMID: 29284198 DOI: 10.1111/gcb.14035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/08/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
Southern hemisphere humpback whales (Megaptera novaeangliae) rely on summer prey abundance of Antarctic krill (Euphausia superba) to fuel one of the longest-known mammalian migrations on the planet. It is hypothesized that this species, already adapted to endure metabolic extremes, will be one of the first Antarctic consumers to show measurable physiological change in response to fluctuating prey availability in a changing climate; and as such, a powerful sentinel candidate for the Antarctic sea-ice ecosystem. Here, we targeted the sentinel parameters of humpback whale adiposity and diet, using novel, as well as established, chemical and biochemical markers, and assembled a time trend spanning 8 years. We show the synchronous, inter-annual oscillation of two measures of humpback whale adiposity with Southern Ocean environmental variables and climate indices. Furthermore, bulk stable isotope signatures provide clear indication of dietary compensation strategies, or a lower trophic level isotopic change, following years indicated as leaner years for the whales. The observed synchronicity of humpback whale adiposity and dietary markers, with climate patterns in the Southern Ocean, lends strength to the role of humpback whales as powerful Antarctic sea-ice ecosystem sentinels. The work carries significant potential to reform current ecosystem surveillance in the Antarctic region.
Collapse
Affiliation(s)
- Susan M Bengtson Nash
- Southern Ocean Persistent Organic Pollutants Program, The Environmental Futures Research Institute, Griffith University, Brisbane, Qld, Australia
| | - Juliana Castrillon
- Southern Ocean Persistent Organic Pollutants Program, The Environmental Futures Research Institute, Griffith University, Brisbane, Qld, Australia
| | - Pascale Eisenmann
- Southern Ocean Persistent Organic Pollutants Program, The Environmental Futures Research Institute, Griffith University, Brisbane, Qld, Australia
| | - Brian Fry
- The Australian River's Institute, Griffith University, Brisbane, Qld, Australia
| | - Jon D Shuker
- eResearch Services, Griffith University, Brisbane, Qld, Australia
| | - Roger A Cropp
- School of Environment, Griffith University, Brisbane, Qld, Australia
| | - Amanda Dawson
- Southern Ocean Persistent Organic Pollutants Program, The Environmental Futures Research Institute, Griffith University, Brisbane, Qld, Australia
| | | | | | - Courtney A Waugh
- Southern Ocean Persistent Organic Pollutants Program, The Environmental Futures Research Institute, Griffith University, Brisbane, Qld, Australia
- Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Greta Dalle Luche
- Southern Ocean Persistent Organic Pollutants Program, The Environmental Futures Research Institute, Griffith University, Brisbane, Qld, Australia
| | - David McLagan
- Southern Ocean Persistent Organic Pollutants Program, The Environmental Futures Research Institute, Griffith University, Brisbane, Qld, Australia
- University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Aster RC, Winberry JP. Glacial seismology. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:126801. [PMID: 28782729 DOI: 10.1088/1361-6633/aa8473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Seismic source and wave propagation studies contribute to understanding structure, transport, fracture mechanics, mass balance, and other processes within glaciers and surrounding environments. Glaciogenic seismic waves readily couple with the bulk Earth, and can be recorded by seismographs deployed at local to global ranges. Although the fracturing, ablating, melting, and/or highly irregular environment of active glaciers can be highly unstable and hazardous, informative seismic measurements can commonly be made at stable proximal ice or rock sites. Seismology also contributes more broadly to emerging studies of elastic and gravity wave coupling between the atmosphere, oceans, solid Earth, and cryosphere, and recent scientific and technical advances have produced glaciological/seismological collaborations across a broad range of scales and processes. This importantly includes improved insight into the responses of cryospheric systems to changing climate and other environmental conditions. Here, we review relevant fundamental physics and glaciology, and provide a broad review of the current state of glacial seismology and its rapidly evolving future directions.
Collapse
Affiliation(s)
- R C Aster
- Department of Geosciences and Warner College of Natural Resources, Colorado State University, CO, United States of America
| | | |
Collapse
|
26
|
Aalto J, Harrison S, Luoto M. Statistical modelling predicts almost complete loss of major periglacial processes in Northern Europe by 2100. Nat Commun 2017; 8:515. [PMID: 28894099 PMCID: PMC5593823 DOI: 10.1038/s41467-017-00669-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/18/2017] [Indexed: 12/02/2022] Open
Abstract
The periglacial realm is a major part of the cryosphere, covering a quarter of Earth’s land surface. Cryogenic land surface processes (LSPs) control landscape development, ecosystem functioning and climate through biogeochemical feedbacks, but their response to contemporary climate change is unclear. Here, by statistically modelling the current and future distributions of four major LSPs unique to periglacial regions at fine scale, we show fundamental changes in the periglacial climate realm are inevitable with future climate change. Even with the most optimistic CO2 emissions scenario (Representative Concentration Pathway (RCP) 2.6) we predict a 72% reduction in the current periglacial climate realm by 2050 in our climatically sensitive northern Europe study area. These impacts are projected to be especially severe in high-latitude continental interiors. We further predict that by the end of the twenty-first century active periglacial LSPs will exist only at high elevations. These results forecast a future tipping point in the operation of cold-region LSP, and predict fundamental landscape-level modifications in ground conditions and related atmospheric feedbacks. Cryogenic land surface processes characterise the periglacial realm and control landscape development and ecosystem functioning. Here, via statistical modelling, the authors predict a 72% reduction of the periglacial realm in Northern Europe by 2050, and almost complete disappearance by 2100.
Collapse
Affiliation(s)
- Juha Aalto
- Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, Gustaf Hällströmin katu 2a, 00014, Helsinki, Finland. .,Finnish Meteorological Institute, P.O. Box 503, FI-00101, Helsinki, Finland.
| | - Stephan Harrison
- College of Life and Environmental Sciences, University of Exeter, Penryn, TR10 9EZ, UK
| | - Miska Luoto
- Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, Gustaf Hällströmin katu 2a, 00014, Helsinki, Finland
| |
Collapse
|
27
|
|
28
|
|
29
|
Kohler TJ, Van Horn DJ, Darling JP, Takacs-Vesbach CD, McKnight DM. Nutrient treatments alter microbial mat colonization in two glacial meltwater streams from the McMurdo Dry Valleys, Antarctica. FEMS Microbiol Ecol 2016; 92:fiw049. [PMID: 26940086 DOI: 10.1093/femsec/fiw049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2016] [Indexed: 01/06/2023] Open
Abstract
Microbial mats are abundant in many alpine and polar aquatic ecosystems. With warmer temperatures, new hydrologic pathways are developing in these regions and increasing dissolved nutrient fluxes. In the McMurdo Dry Valleys, thermokarsting may release both nutrients and sediment, and has the potential to influence mats in glacial meltwater streams. To test the role of nutrient inputs on community structure, we created nutrient diffusing substrata (NDS) with agar enriched in N, P and N + P, with controls, and deployed them into two Dry Valley streams. We found N amendments (N and N + P) to have greater chlorophyll-a concentrations, total algal biovolume, more fine filamentous cyanobacteria and a higher proportion of live diatoms than other treatments. Furthermore, N treatments were substantially elevated in Bacteroidetes and the small diatom, Fistulifera pelliculosa. On the other hand, species richness was almost double in P and N + P treatments over others, and coccoid green algae and Proteobacteria were more abundant in both streams. Collectively, these data suggest that nutrients have the potential to stimulate growth and alter community structure in glacial meltwater stream microbial mats, and the recent erosion of permafrost and accelerated glacial melt will likely impact resident biota in polar lotic systems here and elsewhere.
Collapse
Affiliation(s)
- Tyler J Kohler
- Institute of Arctic and Alpine Research, University of Colorado, 1560 30th Street, Boulder, CO 80303, USA Faculty of Science, Department of Ecology, Charles University in Prague, Viničná 7, 12844 Prague 2, Prague, Czech Republic
| | - David J Van Horn
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Joshua P Darling
- Institute of Arctic and Alpine Research, University of Colorado, 1560 30th Street, Boulder, CO 80303, USA
| | | | - Diane M McKnight
- Institute of Arctic and Alpine Research, University of Colorado, 1560 30th Street, Boulder, CO 80303, USA
| |
Collapse
|
30
|
Boetius A, Anesio AM, Deming JW, Mikucki JA, Rapp JZ. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat Rev Microbiol 2015; 13:677-90. [PMID: 26344407 DOI: 10.1038/nrmicro3522] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Earth's cryosphere comprises those regions that are cold enough for water to turn into ice. Recent findings show that the icy realms of polar oceans, glaciers and ice sheets are inhabited by microorganisms of all three domains of life, and that temperatures below 0 °C are an integral force in the diversification of microbial life. Cold-adapted microorganisms maintain key ecological functions in icy habitats: where sunlight penetrates the ice, photoautotrophy is the basis for complex food webs, whereas in dark subglacial habitats, chemoautotrophy reigns. This Review summarizes current knowledge of the microbial ecology of frozen waters, including the diversity of niches, the composition of microbial communities at these sites and their biogeochemical activities.
Collapse
Affiliation(s)
- Antje Boetius
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany.,Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Alexandre M Anesio
- Bristol Glaciology Center, School of Geographical Sciences, University of Bristol, BS8 1SS, UK
| | - Jody W Deming
- School of Oceanography, Box 357940, University of Washington, Seattle, Washington 98195, USA
| | - Jill A Mikucki
- Department of Biology, 276 Bicentennial Way, Middlebury College, Middlebury, Vermont 05753, USA
| | - Josephine Z Rapp
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany.,Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| |
Collapse
|
31
|
SOMMARUGA RUBEN. When glaciers and ice sheets melt: consequences for planktonic organisms. JOURNAL OF PLANKTON RESEARCH 2015; 37:509-518. [PMID: 26869738 PMCID: PMC4747089 DOI: 10.1093/plankt/fbv027] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The current melting of glaciers and ice sheets is a consequence of climatic change and their turbid meltwaters are filling and enlarging many new proglacial and ice-contact lakes around the world, as well as affecting coastal areas. Paradoxically, very little is known on the ecology of turbid glacier-fed aquatic ecosystems even though they are at the origin of the most common type of lakes on Earth. Here, I discuss the consequences of those meltwaters for planktonic organisms. A remarkable characteristic of aquatic ecosystems receiving the discharge of meltwaters is their high content of mineral suspensoids, so-called glacial flour that poses a real challenge for filter-feeding planktonic taxa such as Daphnia and phagotrophic groups such as heterotrophic nanoflagellates. The planktonic food-web structure in highly turbid meltwater lakes seems to be truncated and microbially dominated. Low underwater light levels leads to unfavorable conditions for primary producers, but at the same time, cause less stress by UV radiation. Meltwaters are also a source of inorganic and organic nutrients that could stimulate secondary prokaryotic production and in some cases (e.g. in distal proglacial lakes) also phytoplankton primary production. How changes in turbidity and in other related environmental factors influence diversity, community composition and adaptation have only recently begun to be studied. Knowledge of the consequences of glacier retreat for glacier-fed lakes and coasts will be crucial to predict ecosystem trajectories regarding changes in biodiversity, biogeochemical cycles and function.
Collapse
|
32
|
Peters DPC, Loescher HW, SanClements MD, Havstad KM. Taking the pulse of a continent: expanding site-based research infrastructure for regional- to continental-scale ecology. Ecosphere 2014. [DOI: 10.1890/es13-00295.1] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
33
|
Abstract
Polar sea ice is one of the largest ecosystems on Earth. The liquid brine fraction of the ice matrix is home to a diverse array of organisms, ranging from tiny archaea to larger fish and invertebrates. These organisms can tolerate high brine salinity and low temperature but do best when conditions are milder. Thriving ice algal communities, generally dominated by diatoms, live at the ice/water interface and in recently flooded surface and interior layers, especially during spring, when temperatures begin to rise. Although protists dominate the sea ice biomass, heterotrophic bacteria are also abundant. The sea ice ecosystem provides food for a host of animals, with crustaceans being the most conspicuous. Uneaten organic matter from the ice sinks through the water column and feeds benthic ecosystems. As sea ice extent declines, ice algae likely contribute a shrinking fraction of the total amount of organic matter produced in polar waters.
Collapse
Affiliation(s)
- Kevin R Arrigo
- Department of Environmental Earth System Science, Stanford University, Stanford, California 94305;
| |
Collapse
|
34
|
|