1
|
Chen X, Hu J, Zhong H, Wu Q, Fang Z, Cai Y, Huang P, Abubakar YS, Zhou J, Naqvi NI, Wang Z, Zheng W. Vacuolar recruitment of retromer by a SNARE complex enables infection-related trafficking in rice blast. THE NEW PHYTOLOGIST 2024; 244:997-1012. [PMID: 39180241 DOI: 10.1111/nph.20069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/02/2024] [Indexed: 08/26/2024]
Abstract
The retromer complex is a conserved sorting machinery that maintains cellular protein homeostasis by transporting vesicles containing cargo proteins to defined destinations. It is known to sort proteins at the vacuole membranes for retrograde trafficking, preventing their degradation in the vacuole. However, the detailed mechanism of retromer recruitment to the vacuole membrane has not yet been elucidated. Here, we show that the vacuolar SNARE complex MoPep12-MoVti1-MoVam7-MoYkt6 regulates retromer-mediated vesicle trafficking by recruiting the retromer to the vacuole membrane, which promotes host invasion in Magnaporthe oryzae. Such recruitment is also essential for the retrieval of the autophagy regulator MoAtg8 and enables appressorium-mediated host penetration. Furthermore, the vacuolar SNARE subunits are involved in suppressing the host defense response by regulating the deployment of retromer-MoSnc1-mediated effector secretion. Altogether, our results provide insights into the mechanism of vacuolar SNAREs-dependent retromer recruitment which is necessary for pathogenicity-related membrane trafficking events in the rice blast fungus.
Collapse
Affiliation(s)
- Xin Chen
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
- Key Laboratory of Bio-pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Jiexiong Hu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
- Key Laboratory of Bio-pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Haoming Zhong
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
- Key Laboratory of Bio-pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Qiuqiu Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
- Key Laboratory of Bio-pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Zhenyu Fang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
- Key Laboratory of Bio-pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Yan Cai
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
- Key Laboratory of Bio-pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Panpan Huang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
- Key Laboratory of Bio-pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Yakubu Saddeeq Abubakar
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
- Key Laboratory of Bio-pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
- Department of Biochemistry, Faculty of Life Science, Ahmadu Bello University, Zaria, 810281, Nigeria
| | - Jie Zhou
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Naweed I Naqvi
- Temasek Life Sciences Laboratory, Department of Biological Sciences, National University of Singapore, Singapore, 117604, Singapore
| | - Zonghua Wang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Wenhui Zheng
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
- Key Laboratory of Bio-pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| |
Collapse
|
2
|
Chung T, Choi YE, Song K, Jung H. How coat proteins shape autophagy in plant cells. PLANT PHYSIOLOGY 2024:kiae426. [PMID: 39259569 DOI: 10.1093/plphys/kiae426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
Autophagy is a membrane trafficking pathway through which eukaryotic cells target their own cytoplasmic constituents for degradation in the lytic compartment. Proper biogenesis of autophagic organelles requires a conserved set of autophagy-related (ATG) proteins and their interacting factors, such as signalling phospholipid phosphatidylinositol 3-phosphate (PI3P) and coat complex II (COPII). The COPII machinery, which was originally identified as a membrane coat involved in the formation of vesicles budding from the endoplasmic reticulum, contributes to the initiation of autophagic membrane formation in yeast, metazoan, and plant cells; however, the exact mechanisms remain elusive. Recent studies using the plant model species Arabidopsis thaliana have revealed that plant-specific PI3P effectors are involved in autophagy. The PI3P effector FYVE2 interacts with the conserved PI3P effector ATG18 and with COPII components, indicating an additional role for the COPII machinery in the later stages of autophagosome biogenesis. In this Update, we examined recent research on plant autophagosome biogenesis and proposed working models on the functions of the COPII machinery in autophagy, including its potential roles in stabilizing membrane curvature and sealing the phagophore.
Collapse
Affiliation(s)
- Taijoon Chung
- Department of Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Ye Eun Choi
- Department of Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Kyoungjun Song
- Department of Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyera Jung
- Department of Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
3
|
Li X, Zheng J, Su J, Wang L, Luan L, Wang T, Bai F, Zhong Q, Gong Q. Myotubularin 2 interacts with SEC23A and negatively regulates autophagy at ER exit sites in Arabidopsis. Autophagy 2024:1-19. [PMID: 39177202 DOI: 10.1080/15548627.2024.2394302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024] Open
Abstract
Starvation- or stress-induced phosphatidylinositol 3-phosphate (PtdIns3P/PI3P) production at the endoplasmic reticulum (ER) subdomains organizes phagophore assembly and autophagosome formation. Coat protein complex II (COPII) vesicles budding from ER exit site (ERES) also contribute to autophagosome formation. Whether any PtdIns3P phosphatase functions at ERES to inhibit macroautophagy/autophagy is unknown. Here we report Myotubularin 2 (MTM2) of Arabidopsis as a PtdIns3P phosphatase that localizes to ERES and negatively regulates autophagy. MTM2 binds PtdIns3P with its PH-GRAM domain in vitro and acts toward PtdIns3P in vivo. Transiently expressed MTM2 colocalizes with ATG14b, a subunit of the phosphatidylinositol 3-kinase (PtdIns3K) complex, and overexpression of MTM2 blocks autophagic flux and causes over-accumulation of ATG18a, ATG5, and ATG8a. The mtm2 mutant has higher levels of autophagy and is more tolerant to starvation, whereas MTM2 overexpression leads to reduced autophagy and sensitivity to starvation. The phenotypes of mtm2 are suppressed by ATG2 mutation, suggesting that MTM2 acts upstream of ATG2. Importantly, MTM2 does not affect the endosomal functions of PtdIns3P. Instead, MTM2 specifically colocalizes with COPII coat proteins and is cradled by the ERES-defining protein SEC16. MTM2 interacts with SEC23A with its phosphatase domain and inhibits COPII-mediated protein secretion. Finally, a role for MTM2 in salt stress response is uncovered. mtm2 resembles the halophyte Thellungiella salsuginea in its efficient vacuolar compartmentation of Na+, maintenance of chloroplast integrity, and timely regulation of autophagy-related genes. Our findings reveal a balance between PtdIns3P synthesis and turnover in autophagosome formation, and provide a new link between autophagy and COPII function.Abbreviations: ATG: autophagy related; BFA: brefeldin A; BiFC: bimolecular fluorescence complementation; CHX: cycloheximide; ConA: concanamycin A; COPII: coat protein complex II; ER: endoplasmic reticulum; ERES: ER exit site; MS: Murashige and Skoog; MTM: myotubularin; MVB: multivesicular body; PAS: phagophore assembly site; PI: phosphoinositide; TEM: transmission electron microscopy; WT: wild-type.
Collapse
Affiliation(s)
- Xinjing Li
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Jing Zheng
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Jing Su
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Lin Wang
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, P. R. China
| | - Lin Luan
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Taotao Wang
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, P. R. China
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Qingqiu Gong
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
4
|
Gubas A, Attridge E, Jefferies HB, Nishimura T, Razi M, Kunzelmann S, Gilad Y, Mercer TJ, Wilson MM, Kimchi A, Tooze SA. WIPI2b recruitment to phagophores and ATG16L1 binding are regulated by ULK1 phosphorylation. EMBO Rep 2024; 25:3789-3811. [PMID: 39152217 PMCID: PMC11387628 DOI: 10.1038/s44319-024-00215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 08/19/2024] Open
Abstract
One of the key events in autophagy is the formation of a double-membrane phagophore, and many regulatory mechanisms underpinning this remain under investigation. WIPI2b is among the first proteins to be recruited to the phagophore and is essential for stimulating autophagy flux by recruiting the ATG12-ATG5-ATG16L1 complex, driving LC3 and GABARAP lipidation. Here, we set out to investigate how WIPI2b function is regulated by phosphorylation. We studied two phosphorylation sites on WIPI2b, S68 and S284. Phosphorylation at these sites plays distinct roles, regulating WIPI2b's association with ATG16L1 and the phagophore, respectively. We confirm WIPI2b is a novel ULK1 substrate, validated by the detection of endogenous phosphorylation at S284. Notably, S284 is situated within an 18-amino acid stretch, which, when in contact with liposomes, forms an amphipathic helix. Phosphorylation at S284 disrupts the formation of the amphipathic helix, hindering the association of WIPI2b with membranes and autophagosome formation. Understanding these intricacies in the regulatory mechanisms governing WIPI2b's association with its interacting partners and membranes, holds the potential to shed light on these complex processes, integral to phagophore biogenesis.
Collapse
Affiliation(s)
- Andrea Gubas
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Muscular Dystrophy UK, London, SE1 8QD, UK
| | - Eleanor Attridge
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Harold Bj Jefferies
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Taki Nishimura
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, Japan
| | - Minoo Razi
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Yuval Gilad
- The Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Adi Kimchi
- The Weizmann Institute of Science, Rehovot, Israel
| | - Sharon A Tooze
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
5
|
Isola D, Elazar Z. Phospholipid Supply for Autophagosome Biogenesis. J Mol Biol 2024; 436:168691. [PMID: 38944336 DOI: 10.1016/j.jmb.2024.168691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Autophagy is a cellular degradation pathway where double-membrane autophagosomes form de novo to engulf cytoplasmic material destined for lysosomal degradation. This process requires regulated membrane remodeling, beginning with the initial autophagosomal precursor and progressing to its elongation and maturation into a fully enclosed, fusion-capable vesicle. While the core protein machinery involved in autophagosome formation has been extensively studied over the past two decades, the role of phospholipids in this process has only recently been studied. This review focuses on the phospholipid composition of the phagophore membrane and the mechanisms that supply lipids to expand this unique organelle.
Collapse
Affiliation(s)
- Damilola Isola
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Zvulun Elazar
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel.
| |
Collapse
|
6
|
Baumann V, Achleitner S, Tulli S, Schuschnig M, Klune L, Martens S. Faa1 membrane binding drives positive feedback in autophagosome biogenesis via fatty acid activation. J Cell Biol 2024; 223:e202309057. [PMID: 38573225 PMCID: PMC10993510 DOI: 10.1083/jcb.202309057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/14/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024] Open
Abstract
Autophagy serves as a stress response pathway by mediating the degradation of cellular material within lysosomes. In autophagy, this material is encapsulated in double-membrane vesicles termed autophagosomes, which form from precursors referred to as phagophores. Phagophores grow by lipid influx from the endoplasmic reticulum into Atg9-positive compartments and local lipid synthesis provides lipids for their expansion. How phagophore nucleation and expansion are coordinated with lipid synthesis is unclear. Here, we show that Faa1, an enzyme activating fatty acids, is recruited to Atg9 vesicles by directly binding to negatively charged membranes with a preference for phosphoinositides such as PI3P and PI4P. We define the membrane-binding surface of Faa1 and show that its direct interaction with the membrane is required for its recruitment to phagophores. Furthermore, the physiological localization of Faa1 is key for its efficient catalysis and promotes phagophore expansion. Our results suggest a positive feedback loop coupling phagophore nucleation and expansion to lipid synthesis.
Collapse
Affiliation(s)
- Verena Baumann
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna, Austria
| | - Sonja Achleitner
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna, Austria
- Vienna BioCenter PhD Program, A Doctoral School of the University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Susanna Tulli
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna, Austria
| | - Martina Schuschnig
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna, Austria
| | - Lara Klune
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna, Austria
| | - Sascha Martens
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Gopaldass N, Mayer A. PROPPINs and membrane fission in the endo-lysosomal system. Biochem Soc Trans 2024; 52:1233-1241. [PMID: 38747700 DOI: 10.1042/bst20230897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 06/27/2024]
Abstract
PROPPINs constitute a conserved protein family with multiple members being expressed in many eukaryotes. PROPPINs have mainly been investigated for their role in autophagy, where they co-operate with several core factors for autophagosome formation. Recently, novel functions of these proteins on endo-lysosomal compartments have emerged. PROPPINs support the division of these organelles and the formation of tubulo-vesicular cargo carriers that mediate protein exit from them, such as those generated by the Retromer coat. In both cases, PROPPINs provide membrane fission activity. Integrating information from yeast and human cells this review summarizes the most important molecular features that allow these proteins to facilitate membrane fission and thus provide a critical element to endo-lysosomal protein traffic.
Collapse
Affiliation(s)
- Navin Gopaldass
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Andreas Mayer
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
8
|
Shatz O, Fraiberg M, Isola D, Das S, Gogoi O, Polyansky A, Shimoni E, Dadosh T, Dezorella N, Wolf SG, Elazar Z. Rim aperture of yeast autophagic membranes balances cargo inclusion with vesicle maturation. Dev Cell 2024; 59:911-923.e4. [PMID: 38447569 DOI: 10.1016/j.devcel.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 11/28/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024]
Abstract
Autophagy eliminates cytoplasmic material by engulfment in membranous vesicles targeted for lysosome degradation. Nonselective autophagy coordinates sequestration of bulk cargo with the growth of the isolation membrane (IM) in a yet-unknown manner. Here, we show that in the budding yeast Saccharomyces cerevisiae, IMs expand while maintaining a rim sufficiently wide for sequestration of large cargo but tight enough to mature in due time. An obligate complex of Atg24/Snx4 with Atg20 or Snx41 assembles locally at the rim in a spatially extended manner that specifically depends on autophagic PI(3)P. This assembly stabilizes the open rim to promote autophagic sequestration of large cargo in correlation with vesicle expansion. Moreover, constriction of the rim by the PI(3)P-dependent Atg2-Atg18 complex and clearance of PI(3)P by Ymr1 antagonize rim opening to promote autophagic maturation and consumption of small cargo. Tight regulation of membrane rim aperture by PI(3)P thus couples the mechanism and physiology of nonselective autophagy.
Collapse
Affiliation(s)
- Oren Shatz
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Milana Fraiberg
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Damilola Isola
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Shubhankar Das
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Olee Gogoi
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Alexandra Polyansky
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Eyal Shimoni
- Chemical Research Support, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Tali Dadosh
- Chemical Research Support, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Nili Dezorella
- Chemical Research Support, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Sharon G Wolf
- Chemical Research Support, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Zvulun Elazar
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel.
| |
Collapse
|
9
|
Kotani T, Yasuda Y, Nakatogawa H. Molecular Mechanism of Autophagy, Cytoplasmic Zoning by Lipid Membranes. J Biochem 2024; 175:155-165. [PMID: 37983716 DOI: 10.1093/jb/mvad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
Autophagy is a highly conserved intracellular degradation mechanism. The most distinctive feature of autophagy is the formation of double-membrane structures called autophagosomes, which compartmentalize portions of the cytoplasm. The outer membrane of the autophagosome fuses with the vacuolar/lysosomal membrane, leading to the degradation of the contents of the autophagosome. Approximately 30 years have passed since the identification of autophagy-related (ATG) genes and Atg proteins essential for autophagosome formation, and the primary functions of these Atg proteins have been elucidated. These achievements have significantly advanced our understanding of the mechanism of autophagosome formation. This article summarizes our current knowledge on how the autophagosome precursor is generated, and how the membrane expands and seals to complete the autophagosome.
Collapse
Affiliation(s)
- Tetsuya Kotani
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, S2-14 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Yuri Yasuda
- School of Life Science and Technology, Tokyo Institute of Technology, S2-14 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hitoshi Nakatogawa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, S2-14 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, S2-14 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
10
|
Noda NN. Structural view on autophagosome formation. FEBS Lett 2024; 598:84-106. [PMID: 37758522 DOI: 10.1002/1873-3468.14742] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Autophagy is a conserved intracellular degradation system in eukaryotes, involving the sequestration of degradation targets into autophagosomes, which are subsequently delivered to lysosomes (or vacuoles in yeasts and plants) for degradation. In budding yeast, starvation-induced autophagosome formation relies on approximately 20 core Atg proteins, grouped into six functional categories: the Atg1/ULK complex, the phosphatidylinositol-3 kinase complex, the Atg9 transmembrane protein, the Atg2-Atg18/WIPI complex, the Atg8 lipidation system, and the Atg12-Atg5 conjugation system. Additionally, selective autophagy requires cargo receptors and other factors, including a fission factor, for specific sequestration. This review covers the 30-year history of structural studies on core Atg proteins and factors involved in selective autophagy, examining X-ray crystallography, NMR, and cryo-EM techniques. The molecular mechanisms of autophagy are explored based on protein structures, and future directions in the structural biology of autophagy are discussed, considering the advancements in the era of AlphaFold.
Collapse
Affiliation(s)
- Nobuo N Noda
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| |
Collapse
|
11
|
Bueno-Arribas M, Cruz-Cuevas C, Navas MA, Escalante R, Vincent O. Coiled-coil-mediated dimerization of Atg16 is required for binding to the PROPPIN Atg21. Open Biol 2023; 13:230192. [PMID: 37989223 PMCID: PMC10688262 DOI: 10.1098/rsob.230192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/13/2023] [Indexed: 11/23/2023] Open
Abstract
PROPPINs/WIPIs are β-propeller proteins that bind phosphoinositides and contribute to the recruitment of protein complexes involved in membrane remodelling processes such as autophagosome formation and endosomal trafficking. Yeast Atg21 and mammalian WIPI2 interact with Atg16/ATG16L1 to mediate recruitment of the lipidation machinery to the autophagosomal membrane. Here, we used the reverse double two-hybrid method (RD2H) to identify residues in Atg21 and Atg16 critical for protein-protein binding. Although our results are generally consistent with the crystal structure of the Atg21-Atg16 complex reported previously, they also reveal that dimerization of the Atg16 coiled-coil domain is required for Atg21 binding. Furthermore, most of the residues identified in Atg21 are conserved in WIPI2 and we showed that these residues also mediate ATG16L1 binding. Strikingly, these residues occupy the same position in the β-propeller structure as residues in PROPPINs/WIPIs Hsv2 and WIPI4 that mediate Atg2/ATG2A binding, supporting the idea that these proteins use different amino acids at the same position to interact with different autophagic proteins. Finally, our findings demonstrate the effectiveness of the RD2H system to identify critical residues for protein-protein interactions and the utility of this method to generate combinatory mutants with a complete loss of binding capacity.
Collapse
Affiliation(s)
- Miranda Bueno-Arribas
- Instituto de Investigaciones Biomédicas Sols-Morreale CSIC-UAM, Madrid, 28029, Spain
| | - Celia Cruz-Cuevas
- Instituto de Investigaciones Biomédicas Sols-Morreale CSIC-UAM, Madrid, 28029, Spain
| | - María-Angeles Navas
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Ricardo Escalante
- Instituto de Investigaciones Biomédicas Sols-Morreale CSIC-UAM, Madrid, 28029, Spain
| | - Olivier Vincent
- Instituto de Investigaciones Biomédicas Sols-Morreale CSIC-UAM, Madrid, 28029, Spain
| |
Collapse
|
12
|
Valko A, Fracchiolla D. "Autophagic landscapes: on the paradox of survival through self-degradation" - a science-inspired exhibition. Autophagy 2023; 19:2601-2606. [PMID: 37191317 PMCID: PMC10392750 DOI: 10.1080/15548627.2023.2214031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023] Open
Abstract
The Complexity Science Hub Vienna is hosting an autophagy-based art exhibition that shows the artwork by Ayelen Valko and Dorotea Fracchiolla, two artists who are also scientists engaged in autophagy research. This exhibition, called "Autophagic landscapes: on the paradox of survival through self-degradation"-which will be open to the general public from January to May 2023-proposes a visual journey from entire organisms toward the interior of a single cell. The core ideas represented in the exhibited artworks are the molecular mechanisms and vesicular dynamics of autophagy-two phenomena that have been feeding the imagination of the two artists, inspiring the creation of art that depicts intriguing subcellular landscapes. Although the microscale bears very valuable aesthetic features, it is not a common subject in art. Correcting this is the main aim of this exhibition and of the two artists.
Collapse
|
13
|
Hitomi K, Kotani T, Noda NN, Kimura Y, Nakatogawa H. The Atg1 complex, Atg9, and Vac8 recruit PI3K complex I to the pre-autophagosomal structure. J Cell Biol 2023; 222:e202210017. [PMID: 37436710 PMCID: PMC10337603 DOI: 10.1083/jcb.202210017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/31/2023] [Accepted: 05/18/2023] [Indexed: 07/13/2023] Open
Abstract
In macroautophagy, cellular components are sequestered within autophagosomes and transported to lysosomes/vacuoles for degradation. Although phosphatidylinositol 3-kinase complex I (PI3KCI) plays a pivotal role in the regulation of autophagosome biogenesis, little is known about how this complex localizes to the pre-autophagosomal structure (PAS). In Saccharomyces cerevisiae, PI3KCI is composed of PI3K Vps34 and conserved subunits Vps15, Vps30, Atg14, and Atg38. In this study, we discover that PI3KCI interacts with the vacuolar membrane anchor Vac8, the PAS scaffold Atg1 complex, and the pre-autophagosomal vesicle component Atg9 via the Atg14 C-terminal region, the Atg38 C-terminal region, and the Vps30 BARA domain, respectively. While the Atg14-Vac8 interaction is constitutive, the Atg38-Atg1 complex interaction and the Vps30-Atg9 interaction are enhanced upon macroautophagy induction depending on Atg1 kinase activity. These interactions cooperate to target PI3KCI to the PAS. These findings provide a molecular basis for PAS targeting of PI3KCI during autophagosome biogenesis.
Collapse
Affiliation(s)
- Kanae Hitomi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Tetsuya Kotani
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Nobuo N. Noda
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Hitoshi Nakatogawa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
14
|
Shimizu T, Tamura N, Nishimura T, Saito C, Yamamoto H, Mizushima N. Comprehensive analysis of autophagic functions of WIPI family proteins and their implications for the pathogenesis of β-propeller associated neurodegeneration. Hum Mol Genet 2023; 32:2623-2637. [PMID: 37364041 PMCID: PMC10407718 DOI: 10.1093/hmg/ddad096] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
β-propellers that bind polyphosphoinositides (PROPPINs) are an autophagy-related protein family conserved throughout eukaryotes. The PROPPIN family includes Atg18, Atg21 and Hsv2 in yeast and WD-repeat protein interacting with phosphoinositides (WIPI)1-4 in mammals. Mutations in the WIPI genes are associated with human neuronal diseases, including β-propeller associated neurodegeneration (BPAN) caused by mutations in WDR45 (encoding WIPI4). In contrast to yeast PROPPINs, the functions of mammalian WIPI1-WIPI4 have not been systematically investigated. Although the involvement of WIPI2 in autophagy has been clearly shown, the functions of WIPI1, WIPI3 and WIPI4 in autophagy remain poorly understood. In this study, we comprehensively analyzed the roles of WIPI proteins by using WIPI-knockout (single, double and quadruple knockout) HEK293T cells and recently developed HaloTag-based reporters, which enable us to monitor autophagic flux sensitively and quantitatively. We found that WIPI2 was nearly essential for autophagy. Autophagic flux was unaffected or only slightly reduced by single deletion of WIPI3 (encoded by WDR45B) or WIPI4 but was profoundly reduced by double deletion of WIPI3 and WIPI4. Furthermore, we revealed variable effects of BPAN-related missense mutations on the autophagic activity of WIPI4. BPAN is characterized by neurodevelopmental and neurodegenerative abnormalities, and we found a possible association between the magnitude of the defect of the autophagic activity of WIPI4 mutants and the severity of neurodevelopmental symptoms. However, some of the BPAN-related missense mutations, which produce neurodegenerative signs, showed almost normal autophagic activity, suggesting that non-autophagic functions of WIPI4 may be related to neurodegeneration in BPAN.
Collapse
Affiliation(s)
- Takahiro Shimizu
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Norito Tamura
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Taki Nishimura
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
- PRESTO, Japan Science and Technology Agency, Tokyo 102-0076, Japan
| | - Chieko Saito
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hayashi Yamamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
- Department of Molecular Oncology, Nippon Medical School, Institute for Advanced Medical Sciences, Tokyo 113-8602, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
15
|
Marquardt L, Thumm M. Autophagic and non-autophagic functions of the Saccharomyces cerevisiae PROPPINs Atg18, Atg21 and Hsv2. Biol Chem 2023; 404:813-819. [PMID: 37139661 DOI: 10.1515/hsz-2023-0126] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023]
Abstract
Atg18, Atg21 and Hsv2 are homologous β-propeller proteins binding to PI3P and PI(3,5)P2. Atg18 is thought to organize lipid transferring protein complexes at contact sites of the growing autophagosome (phagophore) with both the ER and the vacuole. Atg21 is restricted to the vacuole phagophore contact, where it organizes part of the Atg8-lipidation machinery. The role of Hsv2 is less understood, it partly affects micronucleophagy. Atg18 is further involved in regulation of PI(3,5)P2 synthesis. Recently, a novel Atg18-retromer complex and its role in vacuole homeostasis and membrane fission was uncovered.
Collapse
Affiliation(s)
- Lisa Marquardt
- Institute of Cellular Biochemistry, University Medicine, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Michael Thumm
- Institute of Cellular Biochemistry, University Medicine, Humboldtallee 23, D-37073 Göttingen, Germany
| |
Collapse
|
16
|
Fu J, Zhao L, Pang Y, Chen H, Yamamoto H, Chen Y, Li Z, Mizushima N, Jia H. Apicoplast biogenesis mediated by ATG8 requires the ATG12-ATG5-ATG16L and SNAP29 complexes in Toxoplasma gondii. Autophagy 2023; 19:1258-1276. [PMID: 36095096 PMCID: PMC10012919 DOI: 10.1080/15548627.2022.2123639] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/02/2022] Open
Abstract
In apicomplexan parasites, the macroautophagy/autophagy machinery is repurposed to maintain the plastid-like organelle apicoplast. Previously, we showed that in Toxoplasma and Plasmodium, ATG12 interacts with ATG5 in a non-covalent manner, in contrast to the covalent interaction in most organisms. However, it remained unknown whether apicomplexan parasites have functional orthologs of ATG16L1, a protein that is essential for the function of the covalent ATG12-ATG5 complex in vivo in other organisms. Furthermore, the mechanism used by the autophagy machinery to maintain the apicoplast is unclear. We report that the ATG12-ATG5-ATG16L complex exists in Toxoplasma gondii (Tg). This complex is localized on isolated structures at the periphery of the apicoplast dependent on TgATG16L. Inducible depletion of TgATG12, TgATG5, or TgATG16L caused loss of the apicoplast and affected parasite growth. We found that a putative soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) protein, synaptosomal-associated protein 29 (TgSNAP29, Qbc SNARE), is required to maintain the apicoplast in T. gondii. TgSNAP29 depletion disrupted TgATG8 localization at the apicoplast. Additionally, we identified a putative ubiquitin-interacting motif-docking site (UDS) of TgATG8. Mutation of the UDS site abolished TgATG8 localization on the apicoplast but not lipidation. These findings suggest that the TgATG12-TgATG5-TgATG16L complex is required for biogenesis of the apicoplast, in which TgATG8 is translocated to the apicoplast via vesicles in a SNARE -dependent manner in T. gondii.Abbreviations: AID: auxin-inducible degron; CCD: coiled-coil domain; HFF: human foreskin fibroblast; IAA: indole-3-acetic acid; LAP: LC3-associated phagocytosis; NAA: 1-naphthaleneacetic acid; PtdIns3P: phosphatidylinositol-3-phosphate; SNARE: soluble N-ethylmaleimide sensitive factor attachment protein receptor; UDS: ubiquitin-interacting motif-docking site; UIM: ubiquitin-interacting motif.
Collapse
Affiliation(s)
- Jiawen Fu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, HeilongjiangChina
| | - Lin Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, HeilongjiangChina
| | - Yu Pang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, HeilongjiangChina
| | - Heming Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, HeilongjiangChina
| | - Hayashi Yamamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuntong Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, HeilongjiangChina
| | - Zhaoran Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, HeilongjiangChina
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Honglin Jia
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, HeilongjiangChina
| |
Collapse
|
17
|
Capitanio C, Bieber A, Wilfling F. How Membrane Contact Sites Shape the Phagophore. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231162495. [PMID: 37366413 PMCID: PMC10243513 DOI: 10.1177/25152564231162495] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 06/28/2023]
Abstract
During macroautophagy, phagophores establish multiple membrane contact sites (MCSs) with other organelles that are pivotal for proper phagophore assembly and growth. In S. cerevisiae, phagophore contacts have been observed with the vacuole, the ER, and lipid droplets. In situ imaging studies have greatly advanced our understanding of the structure and function of these sites. Here, we discuss how in situ structural methods like cryo-CLEM can give unprecedented insights into MCSs, and how they help to elucidate the structural arrangements of MCSs within cells. We further summarize the current knowledge of the contact sites in autophagy, focusing on autophagosome biogenesis in the model organism S. cerevisiae.
Collapse
Affiliation(s)
- Cristina Capitanio
- Department of Molecular Machines and
Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Aligning Science Across Parkinson's (ASAP)
Collaborative Research Network, Chevy Chase, MD, USA
| | - Anna Bieber
- Department of Molecular Machines and
Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Aligning Science Across Parkinson's (ASAP)
Collaborative Research Network, Chevy Chase, MD, USA
| | - Florian Wilfling
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt a. M., Germany
| |
Collapse
|
18
|
Marquardt L, Taylor M, Kramer F, Schmitt K, Braus GH, Valerius O, Thumm M. Vacuole fragmentation depends on a novel Atg18-containing retromer-complex. Autophagy 2023; 19:278-295. [PMID: 35574911 PMCID: PMC9809942 DOI: 10.1080/15548627.2022.2072656] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The yeast PROPPIN Atg18 folds as a β-propeller with two binding sites for phosphatidylinositol-3-phosphate (PtdIns3P) and PtdIns(3,5)P2 at its circumference. Membrane insertion of an amphipathic loop of Atg18 leads to membrane tubulation and fission. Atg18 has known functions at the PAS during macroautophagy, but the functional relevance of its endosomal and vacuolar pool is not well understood. Here we show in a proximity-dependent labeling approach and by co-immunoprecipitations that Atg18 interacts with Vps35, a central component of the retromer complex. The binding of Atg18 to Vps35 is competitive with the sorting nexin dimer Vps5 and Vps17. This suggests that Atg18 within the retromer can substitute for both the phosphoinositide binding and the membrane bending capabilities of these sorting nexins. Indeed, we found that Atg18-retromer is required for PtdIns(3,5)P2-dependent vacuolar fragmentation during hyperosmotic stress. The Atg18-retromer is further involved in the normal sorting of the integral membrane protein Atg9. However, PtdIns3P-dependent macroautophagy and the selective cytoplasm-to-vacuole targeting (Cvt) pathway are only partially affected by the Atg18-retromer. We expect that this is due to the plasticity of the different sorting pathways within the endovacuolar system.Abbreviations: BAR: bin/amphiphysin/Rvs; FOA: 5-fluoroorotic acid; PAS: phagophore assembly site; PROPPIN: beta-propeller that binds phosphoinositides; PtdIns3P: phosphatidylinositol-3-phosphate; PX: phox homology.
Collapse
Affiliation(s)
- Lisa Marquardt
- Institute of Cellular Biochemistry, University Medicine, Goettingen, Germany
| | - Matthew Taylor
- Institute of Cellular Biochemistry, University Medicine, Goettingen, Germany
| | - Florian Kramer
- Institute of Cellular Biochemistry, University Medicine, Goettingen, Germany
| | - Kerstin Schmitt
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-University, Goettingen, Germany
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-University, Goettingen, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-University, Goettingen, Germany
| | - Michael Thumm
- Institute of Cellular Biochemistry, University Medicine, Goettingen, Germany,CONTACT Michael Thumm ; Institute of Cellular Biochemistry, University Medicine, Humboldtallee 23, D-37073Goettingen, Germany
| |
Collapse
|
19
|
Exosomes Derived from Yak Follicular Fluid Increase 2-Hydroxyestradiol Secretion by Activating Autophagy in Cumulus Cells. Animals (Basel) 2022; 12:ani12223174. [PMID: 36428401 PMCID: PMC9686841 DOI: 10.3390/ani12223174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Exosomes in the follicular fluid can carry and transfer regulatory molecules to recipient cells, thus influencing their biological functions. However, the specific effects of yak follicular fluid exosomes on 2-hydroxyestrodiol (2-OHE2) secretion remain unknown. Here, we investigated whether yak follicular fluid exosomes can increase 2-OHE2 secretion through the activation of autophagy in cumulus cells (YCCs). In vitro cultured YCCs were treated with yak follicular fluid exosomes for 6, 12, and 24 h. The effects of yak follicular fluid exosomes on autophagy and 2-OHE2 secretion were evaluated through real-time quantitative fluorescence PCR (RT-qPCR), Western blotting (WB), transfected with RFP-GFP-LC3, immunohistochemistry, and ELISA. To further investigate whether 2-OHE2 secretion was related to autophagy, YCCs were administered with yak follicular fluid exosomes, 3-methyladenine (3-MA), and rapamycin (RAPA). The results revealed that treatment with yak follicular fluid exosomes activated autophagy in YCCs and increased 2-OHE2 secretion. Conversely, the inhibition of autophagy with 3-MA blocked these effects, suggesting that autophagy has an important role in 2-OHE2 secretion in YCCs. Treatment of YCCs with rapamycin showed similar results with yak follicular fluid exosomes as there was an increase in 2-OHE2 secretion due to the activation of autophagy in the treated cumulus cells. Our results demonstrate that autophagy is enhanced by yak follicular fluid exosomes, and this is associated with an increase in 2-OHE2 secretion in YCCs.
Collapse
|
20
|
Vps21 Directs the PI3K-PI(3)P-Atg21-Atg16 Module to Phagophores via Vps8 for Autophagy. Int J Mol Sci 2022; 23:ijms23179550. [PMID: 36076954 PMCID: PMC9455592 DOI: 10.3390/ijms23179550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 11/28/2022] Open
Abstract
Phosphatidylinositol 3-phosphate (PI(3)P) serves important functions in endocytosis, phagocytosis, and autophagy. PI(3)P is generated by Vps34 of the class III phosphatidylinositol 3-kinase (PI3K) complex. The Vps34-PI3K complex can be divided into Vps34-PI3K class II (containing Vps38, endosomal) and Vps34-PI3K class I (containing Atg14, autophagosomal). Most PI(3)Ps are associated with endosomal membranes. In yeast, the endosomal localization of Vps34 and PI(3)P is tightly regulated by Vps21-module proteins. At yeast phagophore assembly site (PAS) or mammalian omegasomes, PI(3)P binds to WD-repeat protein interacting with phosphoinositide (WIPI) proteins to further recruit two conjugation systems, Atg5-Atg12·Atg16 and Atg8-PE (LC3-II), to initiate autophagy. However, the spatiotemporal regulation of PI(3)P during autophagy remains obscure. Therefore, in this study, we determined the effect of Vps21 on localization and interactions of Vps8, Vps34, Atg21, Atg8, and Atg16 upon autophagy induction. The results showed that Vps21 was required for successive colocalizations and interactions of Vps8-Vps34 and Vps34-Atg21 on endosomes, and Atg21-Atg8/Atg16 on the PAS. In addition to disrupted localization of the PI3K complex II subunits Vps34 and Vps38 on endosomes, the localization of the PI3K complex I subunits Vps34 and Atg14, as well as Atg21, was partly disrupted from the PAS in vps21∆ cells. The impaired PI3K-PI(3)P-Atg21-Atg16 axis in vps21∆ cells might delay autophagy, which is consistent with the delay of early autophagy when Atg21 was absent. This study provides the first insight into the upstream sequential regulation of the PI3K-PI(3)P-Atg21-Atg16 module by Vps21 in autophagy.
Collapse
|
21
|
Popelka H, Uversky VN. Theater in the Self-Cleaning Cell: Intrinsically Disordered Proteins or Protein Regions Acting with Membranes in Autophagy. MEMBRANES 2022; 12:457. [PMID: 35629783 PMCID: PMC9143426 DOI: 10.3390/membranes12050457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 12/30/2022]
Abstract
Intrinsically disordered proteins and protein regions (IDPs/IDPRs) are mainly involved in signaling pathways, where fast regulation, temporal interactions, promiscuous interactions, and assemblies of structurally diverse components including membranes are essential. The autophagy pathway builds, de novo, a membrane organelle, the autophagosome, using carefully orchestrated interactions between proteins and lipid bilayers. Here, we discuss molecular mechanisms related to the protein disorder-based interactions of the autophagy machinery with membranes. We describe not only membrane binding phenomenon, but also examples of membrane remodeling processes including membrane tethering, bending, curvature sensing, and/or fragmentation of membrane organelles such as the endoplasmic reticulum, which is an important membrane source as well as cargo for autophagy. Summary of the current state of knowledge presented here will hopefully inspire new studies. A profound understanding of the autophagic protein-membrane interface is essential for advancements in therapeutic interventions against major human diseases, in which autophagy is involved including neurodegeneration, cancer as well as cardiovascular, metabolic, infectious, musculoskeletal, and other disorders.
Collapse
Affiliation(s)
- Hana Popelka
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| |
Collapse
|
22
|
Fission Yeast Autophagy Machinery. Cells 2022; 11:cells11071086. [PMID: 35406650 PMCID: PMC8997447 DOI: 10.3390/cells11071086] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 01/27/2023] Open
Abstract
Autophagy is a conserved process that delivers cytoplasmic components to the vacuole/lysosome. It plays important roles in maintaining cellular homeostasis and conferring stress resistance. In the fission yeast Schizosaccharomyces pombe, autophagy is important for cell survival under nutrient depletion and ER stress conditions. Experimental analyses of fission yeast autophagy machinery in the last 10 years have unveiled both similarities and differences in autophagosome biogenesis mechanisms between fission yeast and other model eukaryotes for autophagy research, in particular, the budding yeast Saccharomyces cerevisiae. More recently, selective autophagy pathways that deliver hydrolytic enzymes, the ER, and mitochondria to the vacuole have been discovered in fission yeast, yielding novel insights into how cargo selectivity can be achieved in autophagy. Here, we review the progress made in understanding the autophagy machinery in fission yeast.
Collapse
|
23
|
Molecular regulation of autophagosome formation. Biochem Soc Trans 2022; 50:55-69. [PMID: 35076688 PMCID: PMC9022990 DOI: 10.1042/bst20210819] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 01/04/2022] [Indexed: 12/11/2022]
Abstract
Macroautophagy, hereafter autophagy, is a degradative process conserved among eukaryotes, which is essential to maintain cellular homeostasis. Defects in autophagy lead to numerous human diseases, including various types of cancer and neurodegenerative disorders. The hallmark of autophagy is the de novo formation of autophagosomes, which are double-membrane vesicles that sequester and deliver cytoplasmic materials to lysosomes/vacuoles for degradation. The mechanism of autophagosome biogenesis entered a molecular era with the identification of autophagy-related (ATG) proteins. Although there are many unanswered questions and aspects that have raised some controversies, enormous advances have been done in our understanding of the process of autophagy in recent years. In this review, we describe the current knowledge about the molecular regulation of autophagosome formation, with a particular focus on budding yeast and mammalian cells.
Collapse
|
24
|
Iriondo MN, Etxaniz A, Antón Z, Montes LR, Alonso A. Molecular and mesoscopic geometries in autophagosome generation. A review. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183731. [PMID: 34419487 DOI: 10.1016/j.bbamem.2021.183731] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 01/18/2023]
Abstract
Autophagy is an essential process in cell self-repair and survival. The centre of the autophagic event is the generation of the so-called autophagosome (AP), a vesicle surrounded by a double membrane (two bilayers). The AP delivers its cargo to a lysosome, for degradation and re-use of the hydrolysis products as new building blocks. AP formation is a very complex event, requiring dozens of specific proteins, and involving numerous instances of membrane biogenesis and architecture, including membrane fusion and fission. Many stages of AP generation can be rationalised in terms of curvature, both the molecular geometry of lipids interpreted in terms of 'intrinsic curvature', and the overall mesoscopic curvature of the whole membrane, as observed with microscopy techniques. The present contribution intends to bring together the worlds of biophysics and cell biology of autophagy, in the hope that the resulting cross-pollination will generate abundant fruit.
Collapse
Affiliation(s)
- Marina N Iriondo
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, 48940 Leioa, Spain
| | - Asier Etxaniz
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, 48940 Leioa, Spain
| | - Zuriñe Antón
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, 48940 Leioa, Spain
| | - L Ruth Montes
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, 48940 Leioa, Spain
| | - Alicia Alonso
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, 48940 Leioa, Spain.
| |
Collapse
|
25
|
Non-coding RNA-mediated autophagy in cancer: A protumor or antitumor factor? Biochim Biophys Acta Rev Cancer 2021; 1876:188642. [PMID: 34715268 DOI: 10.1016/j.bbcan.2021.188642] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/17/2022]
Abstract
Autophagy, usually referred to as macroautophagy, is a cytoprotective behavior that helps cells, especially cancer cells, escape crises. However, the role of autophagy in cancer remains controversial. The induction of autophagy is favorable for tumor growth, as it can degrade damaged cell components accumulated during nutrient deficiency, chemotherapy, or other stresses in a timely manner. Whereas the antitumor effect of autophagy might be closely related to its crosstalk with metabolism, immunomodulation, and other pathways. Recent studies have verified that lncRNAs and circRNAs modulate autophagy in carcinogenesis, cancer cells proliferation, apoptosis, metastasis, and chemoresistance via multiple mechanisms. A comprehensive understanding of the regulatory relationships between ncRNAs and autophagy in cancer might resolve chemoresistance and also offer intervention strategies for cancer therapy. This review systematically displays the regulatory effects of lncRNAs and circRNAs on autophagy in the contexts of cancer initiation, progression, and resistance to chemo- or radiotherapy and provides a novel insight into cancer therapy.
Collapse
|
26
|
Vincent O, Antón-Esteban L, Bueno-Arribas M, Tornero-Écija A, Navas MÁ, Escalante R. The WIPI Gene Family and Neurodegenerative Diseases: Insights From Yeast and Dictyostelium Models. Front Cell Dev Biol 2021; 9:737071. [PMID: 34540850 PMCID: PMC8442847 DOI: 10.3389/fcell.2021.737071] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/12/2021] [Indexed: 02/01/2023] Open
Abstract
WIPIs are a conserved family of proteins with a characteristic 7-bladed β-propeller structure. They play a prominent role in autophagy, but also in other membrane trafficking processes. Mutations in human WIPI4 cause several neurodegenerative diseases. One of them is BPAN, a rare disease characterized by developmental delay, motor disorders, and seizures. Autophagy dysfunction is thought to play an important role in this disease but the precise pathological consequences of the mutations are not well established. The use of simple models such as the yeast Saccharomyces cerevisiae and the social amoeba Dictyostelium discoideum provides valuable information on the molecular and cellular function of these proteins, but also sheds light on possible pathways that may be relevant in the search for potential therapies. Here, we review the function of WIPIs as well as disease-causing mutations with a special focus on the information provided by these simple models.
Collapse
Affiliation(s)
- Olivier Vincent
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC/UAM, Madrid, Spain
| | - Laura Antón-Esteban
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC/UAM, Madrid, Spain
| | | | - Alba Tornero-Écija
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC/UAM, Madrid, Spain
| | - María-Ángeles Navas
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Ricardo Escalante
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC/UAM, Madrid, Spain
| |
Collapse
|
27
|
Strong LM, Chang C, Riley JF, Boecker CA, Flower TG, Buffalo CZ, Ren X, Stavoe AK, Holzbaur EL, Hurley JH. Structural basis for membrane recruitment of ATG16L1 by WIPI2 in autophagy. eLife 2021; 10:70372. [PMID: 34505572 PMCID: PMC8455133 DOI: 10.7554/elife.70372] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/01/2021] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a cellular process that degrades cytoplasmic cargo by engulfing it in a double-membrane vesicle, known as the autophagosome, and delivering it to the lysosome. The ATG12-5-16L1 complex is responsible for conjugating members of the ubiquitin-like ATG8 protein family to phosphatidylethanolamine in the growing autophagosomal membrane, known as the phagophore. ATG12-5-16L1 is recruited to the phagophore by a subset of the phosphatidylinositol 3-phosphate-binding seven-bladedß -propeller WIPI proteins. We determined the crystal structure of WIPI2d in complex with the WIPI2 interacting region (W2IR) of ATG16L1 comprising residues 207-230 at 1.85 Å resolution. The structure shows that the ATG16L1 W2IR adopts an alpha helical conformation and binds in an electropositive and hydrophobic groove between WIPI2 ß-propeller blades 2 and 3. Mutation of residues at the interface reduces or blocks the recruitment of ATG12-5-16 L1 and the conjugation of the ATG8 protein LC3B to synthetic membranes. Interface mutants show a decrease in starvation-induced autophagy. Comparisons across the four human WIPIs suggest that WIPI1 and 2 belong to a W2IR-binding subclass responsible for localizing ATG12-5-16 L1 and driving ATG8 lipidation, whilst WIPI3 and 4 belong to a second W34IR-binding subclass responsible for localizing ATG2, and so directing lipid supply to the nascent phagophore. The structure provides a framework for understanding the regulatory node connecting two central events in autophagy initiation, the action of the autophagic PI 3-kinase complex on the one hand and ATG8 lipidation on the other.
Collapse
Affiliation(s)
- Lisa M Strong
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, United States
| | - Chunmei Chang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, United States
| | - Julia F Riley
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, United States.,Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
| | - C Alexander Boecker
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, United States.,Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
| | - Thomas G Flower
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Cosmo Z Buffalo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Xuefeng Ren
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Andrea Kh Stavoe
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, United States
| | - Erika Lf Holzbaur
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, United States.,Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
| | - James H Hurley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, United States
| |
Collapse
|
28
|
Zhang S, Hama Y, Mizushima N. The evolution of autophagy proteins - diversification in eukaryotes and potential ancestors in prokaryotes. J Cell Sci 2021; 134:270774. [PMID: 34228793 DOI: 10.1242/jcs.233742] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a degradative pathway for cytoplasmic constituents, and is conserved across eukaryotes. Autophagy-related (ATG) genes have undergone extensive multiplications and losses in different eukaryotic lineages, resulting in functional diversification and specialization. Notably, even though bacteria and archaea do not possess an autophagy pathway, they do harbor some remote homologs of Atg proteins, suggesting that preexisting proteins were recruited when the autophagy pathway developed during eukaryogenesis. In this Review, we summarize our current knowledge on the distribution of Atg proteins within eukaryotes and outline the major multiplication and loss events within the eukaryotic tree. We also discuss the potential prokaryotic homologs of Atg proteins identified to date, emphasizing the evolutionary relationships and functional differences between prokaryotic and eukaryotic proteins.
Collapse
Affiliation(s)
- Sidi Zhang
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yutaro Hama
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
29
|
Barz S, Kriegenburg F, Sánchez-Martín P, Kraft C. Small but mighty: Atg8s and Rabs in membrane dynamics during autophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119064. [PMID: 34048862 PMCID: PMC8261831 DOI: 10.1016/j.bbamcr.2021.119064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/04/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022]
Abstract
Autophagy is a degradative pathway during which autophagosomes are formed that enwrap cytosolic material destined for turnover within the lytic compartment. Autophagosome biogenesis requires controlled lipid and membrane rearrangements to allow the formation of an autophagosomal seed and its subsequent elongation into a fully closed and fusion-competent double membrane vesicle. Different membrane remodeling events are required, which are orchestrated by the distinct autophagy machinery. An important player among these autophagy proteins is the small lipid-modifier Atg8. Atg8 proteins facilitate various aspects of autophagosome formation and serve as a binding platform for autophagy factors. Also Rab GTPases have been implicated in autophagosome biogenesis. As Atg8 proteins interact with several Rab GTPase regulators, they provide a possible link between autophagy progression and Rab GTPase activity. Here, we review central aspects in membrane dynamics during autophagosome biogenesis with a focus on Atg8 proteins and selected Rab GTPases.
Collapse
Affiliation(s)
- Saskia Barz
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| | - Franziska Kriegenburg
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Pablo Sánchez-Martín
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
30
|
Autophagy in Plant Abiotic Stress Management. Int J Mol Sci 2021; 22:ijms22084075. [PMID: 33920817 PMCID: PMC8071135 DOI: 10.3390/ijms22084075] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022] Open
Abstract
Plants can be considered an open system. Throughout their life cycle, plants need to exchange material, energy and information with the outside world. To improve their survival and complete their life cycle, plants have developed sophisticated mechanisms to maintain cellular homeostasis during development and in response to environmental changes. Autophagy is an evolutionarily conserved self-degradative process that occurs ubiquitously in all eukaryotic cells and plays many physiological roles in maintaining cellular homeostasis. In recent years, an increasing number of studies have shown that autophagy can be induced not only by starvation but also as a cellular response to various abiotic stresses, including oxidative, salt, drought, cold and heat stresses. This review focuses mainly on the role of autophagy in plant abiotic stress management.
Collapse
|
31
|
Ji C, Zhao H, Chen D, Zhang H, Zhao YG. β-propeller proteins WDR45 and WDR45B regulate autophagosome maturation into autolysosomes in neural cells. Curr Biol 2021; 31:1666-1677.e6. [PMID: 33636118 DOI: 10.1016/j.cub.2021.01.081] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/26/2020] [Accepted: 01/22/2021] [Indexed: 01/23/2023]
Abstract
Mutations in WDR45 and WDR45B cause the human neurological diseases β-propeller protein-associated neurodegeneration (BPAN) and intellectual disability (ID), respectively. WDR45 and WDR45B, along with WIPI1 and WIPI2, belong to a WD40 repeat-containing phosphatidylinositol-3-phosphate (PI(3)P)-binding protein family. Their yeast homolog Atg18 forms a complex with Atg2 and is required for autophagosome formation in part by tethering isolation membranes (IMs) (autophagosome precursor) to the endoplasmic reticulum (ER) to supply lipid for IM expansion in the autophagy pathway. The exact functions of WDR45/45B are unclear. We show here that WDR45/45B are specifically required for neural autophagy. In Wdr45/45b-depleted cells, the size of autophagosomes is decreased, and this is rescued by overexpression of ATG2A, providing in vivo evidence for the lipid transfer activity of ATG2-WIPI complexes. WDR45/45B are dispensable for the closure of autophagosomes but essential for the progression of autophagosomes into autolysosomes. WDR45/45B interact with the tether protein EPG5 and target it to late endosomes/lysosomes to promote autophagosome maturation. In the absence of Wdr45/45b, formation of the fusion machinery, consisting of SNARE proteins and EPG5, is dampened. BPAN- and ID-related mutations of WDR45/45B fail to rescue the autophagy defects in Wdr45/45b-deficient cells, possibly due to their impaired binding to EPG5. Promoting autophagosome maturation by inhibiting O-GlcNAcylation increases SNARE complex formation and facilitates the fusion of autophagosomes with late endosomes/lysosomes in Wdr45/45b double knockout (DKO) cells. Thus, our results uncover a novel function of WDR45/45B in autophagosome-lysosome fusion and provide molecular insights into the development of WDR45/WDR45B mutation-associated diseases.
Collapse
Affiliation(s)
- Cuicui Ji
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, No. 15 Datun Road, Chaoyang District, Beijing 100101, P.R. China
| | - Hongyu Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, No. 15 Datun Road, Chaoyang District, Beijing 100101, P.R. China
| | - Di Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, No. 15 Datun Road, Chaoyang District, Beijing 100101, P.R. China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, No. 15 Datun Road, Chaoyang District, Beijing 100101, P.R. China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China; Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yan G Zhao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
32
|
Popelka H, Reinhart EF, Metur SP, Leary KA, Ragusa MJ, Klionsky DJ. Membrane Binding and Homodimerization of Atg16 Via Two Distinct Protein Regions is Essential for Autophagy in Yeast. J Mol Biol 2021; 433:166809. [PMID: 33484718 DOI: 10.1016/j.jmb.2021.166809] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/27/2020] [Accepted: 01/03/2021] [Indexed: 12/29/2022]
Abstract
Macroautophagy is a bulk degradation mechanism in eukaryotic cells. Efficiency of an essential step of this process in yeast, Atg8 lipidation, relies on the presence of Atg16, a subunit of the Atg12-Atg5-Atg16 complex acting as the E3-like enzyme in the ubiquitination-like reaction. A current view on the functional structure of Atg16 in the yeast S. cerevisiae comes from the two crystal structures that reveal the Atg5-interacting α-helix linked via a flexible linker to another α-helix of Atg16, which then assembles into a homodimer. This view does not explain the results of previous in vitro studies revealing Atg16-dependent deformations of membranes and liposome-binding of the Atg12-Atg5 conjugate upon addition of Atg16. Here we show that Atg16 acts as both a homodimerizing and peripheral membrane-binding polypeptide. These two characteristics are imposed by the two distinct regions that are disordered in the nascent protein. Atg16 binds to membranes in vivo via the amphipathic α-helix (amino acid residues 113-131) that has a coiled-coil-like propensity and a strong hydrophobic face for insertion into the membrane. The other protein region (residues 64-99) possesses a coiled-coil propensity, but not amphipathicity, and is dispensable for membrane anchoring of Atg16. This region acts as a Leu-zipper essential for formation of the Atg16 homodimer. Mutagenic disruption in either of these two distinct domains renders Atg16 proteins that, in contrast to wild type, completely fail to rescue the autophagy-defective phenotype of atg16Δ cells. Together, the results of this study yield a model for the molecular mechanism of Atg16 function in macroautophagy.
Collapse
Affiliation(s)
- Hana Popelka
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Erin F Reinhart
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | - Shree Padma Metur
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Kelsie A Leary
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | - Michael J Ragusa
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
33
|
In vitro reconstitution of autophagic processes. Biochem Soc Trans 2020; 48:2003-2014. [PMID: 32897375 DOI: 10.1042/bst20200130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 11/17/2022]
Abstract
Autophagy is a lysosomal degradation system that involves de novo autophagosome formation. A lot of factors are involved in autophagosome formation, including dozens of Atg proteins that form supramolecular complexes, membrane structures including vesicles and organelles, and even membraneless organelles. Because these diverse higher-order structural components cooperate to mediate de novo formation of autophagosomes, it is too complicated to be elaborated only by cell biological approaches. Recent trials to regenerate each step of this phenomenon in vitro have started to elaborate on the molecular mechanisms of such a complicated process by simplification. In this review article, we outline the in vitro reconstitution trials in autophagosome formation, mainly focusing on the reports in the past few years and discussing the molecular mechanisms of autophagosome formation by comparing in vitro and in vivo observations.
Collapse
|
34
|
Abstract
Autophagy requires the formation of membrane vesicles, known as autophagosomes, that engulf cellular cargoes and subsequently recruit lysosomal hydrolases for the degradation of their contents. A number of autophagy-related proteins act to mediate the de novo biogenesis of autophagosomes and vesicular trafficking events that are required for autophagy. Of these proteins, ATG16L1 is a key player that has important functions at various stages of autophagy. Numerous recent studies have begun to unravel novel activities of ATG16L1, including interactions with proteins and lipids, and how these mediate its role during autophagy and autophagy-related processes. Various domains have been identified within ATG16L1 that mediate its functions in recognising single and double membranes and activating subsequent autophagy-related enzymatic activities required for the recruitment of lysosomes. These recent findings, as well as the historical discovery of ATG16L1, pathological relevance, unresolved questions and contradictory observations, will be discussed here.
Collapse
Affiliation(s)
- Noor Gammoh
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| |
Collapse
|
35
|
Sawa-Makarska J, Baumann V, Coudevylle N, von Bülow S, Nogellova V, Abert C, Schuschnig M, Graef M, Hummer G, Martens S. Reconstitution of autophagosome nucleation defines Atg9 vesicles as seeds for membrane formation. Science 2020; 369:eaaz7714. [PMID: 32883836 PMCID: PMC7610778 DOI: 10.1126/science.aaz7714] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 05/16/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022]
Abstract
Autophagosomes form de novo in a manner that is incompletely understood. Particularly enigmatic are autophagy-related protein 9 (Atg9)-containing vesicles that are required for autophagy machinery assembly but do not supply the bulk of the autophagosomal membrane. In this study, we reconstituted autophagosome nucleation using recombinant components from yeast. We found that Atg9 proteoliposomes first recruited the phosphatidylinositol 3-phosphate kinase complex, followed by Atg21, the Atg2-Atg18 lipid transfer complex, and the E3-like Atg12-Atg5-Atg16 complex, which promoted Atg8 lipidation. Furthermore, we found that Atg2 could transfer lipids for Atg8 lipidation. In selective autophagy, these reactions could potentially be coupled to the cargo via the Atg19-Atg11-Atg9 interactions. We thus propose that Atg9 vesicles form seeds that establish membrane contact sites to initiate lipid transfer from compartments such as the endoplasmic reticulum.
Collapse
Affiliation(s)
- Justyna Sawa-Makarska
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, 1030 Vienna, Austria.
| | - Verena Baumann
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
| | - Nicolas Coudevylle
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
| | - Sören von Bülow
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Veronika Nogellova
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
| | - Christine Abert
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
| | - Martina Schuschnig
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
| | - Martin Graef
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
- Institute for Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Sascha Martens
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, 1030 Vienna, Austria.
| |
Collapse
|
36
|
Metje-Sprink J, Groffmann J, Neumann P, Barg-Kues B, Ficner R, Kühnel K, Schalk AM, Binotti B. Crystal structure of the Rab33B/Atg16L1 effector complex. Sci Rep 2020; 10:12956. [PMID: 32737358 PMCID: PMC7395093 DOI: 10.1038/s41598-020-69637-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 07/14/2020] [Indexed: 12/03/2022] Open
Abstract
The Atg12-Atg5/Atg16L1 complex is recruited by WIPI2b to the site of autophagosome formation. Atg16L1 is an effector of the Golgi resident GTPase Rab33B. Here we identified a minimal stable complex of murine Rab33B(30–202) Q92L and Atg16L1(153–210). Atg16L1(153–210) comprises the C-terminal part of the Atg16L1 coiled-coil domain. We have determined the crystal structure of the Rab33B Q92L/Atg16L1(153–210) effector complex at 3.47 Å resolution. This structure reveals that two Rab33B molecules bind to the diverging α-helices of the dimeric Atg16L1 coiled-coil domain. We mutated Atg16L1 and Rab33B interface residues and found that they disrupt complex formation in pull-down assays and cellular co-localization studies. The Rab33B binding site of Atg16L1 comprises 20 residues and immediately precedes the WIPI2b binding site. Rab33B mutations that abolish Atg16L binding also abrogate Rab33B association with the Golgi stacks. Atg16L1 mutants that are defective in Rab33B binding still co-localize with WIPI2b in vivo. The close proximity of the Rab33B and WIPI2b binding sites might facilitate the recruitment of Rab33B containing vesicles to provide a source of lipids during autophagosome biogenesis.
Collapse
Affiliation(s)
- Janina Metje-Sprink
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077, Göttingen, Germany. .,Institute for Biosafety in Plant Biotechnology, Julius Kuehn-Institute, 06484, Quedlinburg, Germany.
| | - Johannes Groffmann
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Brigitte Barg-Kues
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Karin Kühnel
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077, Göttingen, Germany. .,Nature Communications, 4 Crinan Street, London, N1 9XW, UK.
| | - Amanda M Schalk
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077, Göttingen, Germany.,Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Beyenech Binotti
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077, Göttingen, Germany. .,Department of Biochemistry, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
37
|
Fracchiolla D, Chang C, Hurley JH, Martens S. A PI3K-WIPI2 positive feedback loop allosterically activates LC3 lipidation in autophagy. J Cell Biol 2020; 219:e201912098. [PMID: 32437499 PMCID: PMC7337497 DOI: 10.1083/jcb.201912098] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/18/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy degrades cytoplasmic cargo by its delivery to lysosomes within double membrane autophagosomes. Synthesis of the phosphoinositide PI(3)P by the autophagic class III phosphatidylinositol-3 kinase complex I (PI3KC3-C1) and conjugation of ATG8/LC3 proteins to phagophore membranes by the ATG12-ATG5-ATG16L1 (E3) complex are two critical steps in autophagosome biogenesis, connected by WIPI2. Here, we present a complete reconstitution of these events. On giant unilamellar vesicles (GUVs), LC3 lipidation is strictly dependent on the recruitment of WIPI2 that in turn depends on PI(3)P. Ectopically targeting E3 to membranes in the absence of WIPI2 is insufficient to support LC3 lipidation, demonstrating that WIPI2 allosterically activates the E3 complex. PI3KC3-C1 and WIPI2 mutually promote the recruitment of each other in a positive feedback loop. When both PI 3-kinase and LC3 lipidation reactions were performed simultaneously, positive feedback between PI3KC3-C1 and WIPI2 led to rapid LC3 lipidation with kinetics similar to that seen in cellular autophagosome formation.
Collapse
Affiliation(s)
- Dorotea Fracchiolla
- Department of Biochemistry and Cell Biology, Vienna BioCenter, Vienna, Austria
| | - Chunmei Chang
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA
| | - James H. Hurley
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA
| | - Sascha Martens
- Department of Biochemistry and Cell Biology, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
38
|
Munzel L, Neumann P, Otto FB, Krick R, Metje-Sprink J, Kroppen B, Karedla N, Enderlein J, Meinecke M, Ficner R, Thumm M. Atg21 organizes Atg8 lipidation at the contact of the vacuole with the phagophore. Autophagy 2020; 17:1458-1478. [PMID: 32515645 DOI: 10.1080/15548627.2020.1766332] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Coupling of Atg8 to phosphatidylethanolamine is crucial for the expansion of the crescent-shaped phagophore during cargo engulfment. Atg21, a PtdIns3P-binding beta-propeller protein, scaffolds Atg8 and its E3-like complex Atg12-Atg5-Atg16 during lipidation. The crystal structure of Atg21, in complex with the Atg16 coiled-coil domain, showed its binding at the bottom side of the Atg21 beta-propeller. Our structure allowed detailed analyses of the complex formation of Atg21 with Atg16 and uncovered the orientation of the Atg16 coiled-coil domain with respect to the membrane. We further found that Atg21 was restricted to the phagophore edge, near the vacuole, known as the vacuole isolation membrane contact site (VICS). We identified a specialized vacuolar subdomain at the VICS, typical of organellar contact sites, where the membrane protein Vph1 was excluded, while Vac8 was concentrated. Furthermore, Vac8 was required for VICS formation. Our results support a specialized organellar contact involved in controlling phagophore elongation. Abbreviations: FCCS: fluorescence cross correlation spectroscopy; NVJ: nucleus-vacuole junction; PAS: phagophore assembly site; PE: phosphatidylethanolamine; PROPPIN: beta-propeller that binds phosphoinositides; PtdIns3P: phosphatidylinositol- 3-phosphate; VICS: vacuole isolation membrane contact site.
Collapse
Affiliation(s)
- Lena Munzel
- Department of Cellular Biochemistry, University Medicine, Goettingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Florian B Otto
- Department of Cellular Biochemistry, University Medicine, Goettingen, Germany
| | - Roswitha Krick
- Department of Cellular Biochemistry, University Medicine, Goettingen, Germany
| | - Janina Metje-Sprink
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Benjamin Kroppen
- Department of Cellular Biochemistry, University Medicine, Goettingen, Germany
| | - Narain Karedla
- Physics Department III, University of Goettingen, Goettingen, Germany
| | - Jörg Enderlein
- Physics Department III, University of Goettingen, Goettingen, Germany
| | - Michael Meinecke
- Department of Cellular Biochemistry, University Medicine, Goettingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Michael Thumm
- Department of Cellular Biochemistry, University Medicine, Goettingen, Germany
| |
Collapse
|
39
|
Multi-site-mediated entwining of the linear WIR-motif around WIPI β-propellers for autophagy. Nat Commun 2020; 11:2702. [PMID: 32483132 PMCID: PMC7264293 DOI: 10.1038/s41467-020-16523-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 05/08/2020] [Indexed: 12/02/2022] Open
Abstract
WIPI proteins (WIPI1-4) are mammalian PROPPIN family phosphoinositide effectors essential for autophagosome biogenesis. In addition to phosphoinositides, WIPI proteins can recognize a linear WIPI-interacting-region (WIR)-motif, but the underlying mechanism is poorly understood. Here, we determine the structure of WIPI3 in complex with the WIR-peptide from ATG2A. Unexpectedly, the WIR-peptide entwines around the WIPI3 seven-bladed β-propeller and binds to three sites in blades 1–3. The N-terminal part of the WIR-peptide forms a short strand that augments the periphery of blade 2, the middle segment anchors into an inter-blade hydrophobic pocket between blades 2–3, and the C-terminal aromatic tail wedges into another tailored pocket between blades 1–2. Mutations in three peptide-binding sites disrupt the interactions between WIPI3/4 and ATG2A and impair the ATG2A-mediated autophagic process. Thus, WIPI proteins recognize the WIR-motif by multi-sites in multi-blades and this multi-site-mediated peptide-recognition mechanism could be applicable to other PROPPIN proteins. WIPI proteins are mammalian PROPPIN family phosphoinositide effectors that recognize a WIPI-interacting-region (WIR)-motif to recruit other regulators during autophagosome formation. Here, the authors combine structural and functional studies and present the crystal structure of human WIPI3 with a bound ATG2A WIR-peptide and observe that the WIR-motif binds to three sites in blades 1-3 of WIPI3 and mutating these binding sites impairs the ATG2A-mediated autophagic process.
Collapse
|
40
|
Emerging roles of ATG proteins and membrane lipids in autophagosome formation. Cell Discov 2020; 6:32. [PMID: 32509328 PMCID: PMC7248066 DOI: 10.1038/s41421-020-0161-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/21/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagosome biogenesis is a dynamic membrane event, which is executed by the sequential function of autophagy-related (ATG) proteins. Upon autophagy induction, a cup-shaped membrane structure appears in the cytoplasm, then elongates sequestering cytoplasmic materials, and finally forms a closed double membrane autophagosome. However, how this complex vesicle formation event is strictly controlled and achieved is still enigmatic. Recently, there is accumulating evidence showing that some ATG proteins have the ability to directly interact with membranes, transfer lipids between membranes and regulate lipid metabolism. A novel role for various membrane lipids in autophagosome formation is also emerging. Here, we highlight past and recent key findings on the function of ATG proteins related to autophagosome biogenesis and consider how ATG proteins control this dynamic membrane formation event to organize the autophagosome by collaborating with membrane lipids.
Collapse
|
41
|
Karow M, Fischer S, Meßling S, Konertz R, Riehl J, Xiong Q, Rijal R, Wagle P, S. Clemen C, Eichinger L. Functional Characterisation of the Autophagy ATG12~5/16 Complex in Dictyostelium discoideum. Cells 2020; 9:cells9051179. [PMID: 32397394 PMCID: PMC7290328 DOI: 10.3390/cells9051179] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022] Open
Abstract
Macroautophagy, a highly conserved and complex intracellular degradative pathway, involves more than 20 core autophagy (ATG) proteins, among them the hexameric ATG12~5/16 complex, which is part of the essential ubiquitin-like conjugation systems in autophagy. Dictyostelium discoideumatg5 single, atg5/12 double, and atg5/12/16 triple gene knock-out mutant strains displayed similar defects in the conjugation of ATG8 to phosphatidylethanolamine, development, and cell viability upon nitrogen starvation. This implies that ATG5, 12 and 16 act as a functional unit in canonical autophagy. Macropinocytosis of TRITC dextran and phagocytosis of yeast were significantly decreased in ATG5¯ and ATG5¯/12¯ and even further in ATG5¯/12¯/16¯ cells. In contrast, plaque growth on Klebsiella aerogenes was about twice as fast for ATG5¯ and ATG5¯/12¯/16¯ cells in comparison to AX2, but strongly decreased for ATG5¯/12¯ cells. Along this line, phagocytic uptake of Escherichia coli was significantly reduced in ATG5¯/12¯ cells, while no difference in uptake, but a strong increase in membrane association of E. coli, was seen for ATG5¯ and ATG5¯/12¯/16¯ cells. Proteasomal activity was also disturbed in a complex fashion, consistent with an inhibitory activity of ATG16 in the absence of ATG5 and/or ATG12. Our results confirm the essential function of the ATG12~5/16 complex in canonical autophagy, and furthermore are consistent with autophagy-independent functions of the complex and its individual components. They also strongly support the placement of autophagy upstream of the ubiquitin-proteasome system (UPS), as a fully functional UPS depends on autophagy.
Collapse
Affiliation(s)
- Malte Karow
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany; (M.K.); (S.F.); (S.M.); (R.K.); (J.R.)
| | - Sarah Fischer
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany; (M.K.); (S.F.); (S.M.); (R.K.); (J.R.)
| | - Susanne Meßling
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany; (M.K.); (S.F.); (S.M.); (R.K.); (J.R.)
| | - Roman Konertz
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany; (M.K.); (S.F.); (S.M.); (R.K.); (J.R.)
| | - Jana Riehl
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany; (M.K.); (S.F.); (S.M.); (R.K.); (J.R.)
| | - Qiuhong Xiong
- Institute of Biomedical Sciences, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China;
| | - Ramesh Rijal
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA;
| | - Prerana Wagle
- Bioinformatics Core Facility, CECAD Research Center, University of Cologne, 50931 Cologne, Germany;
| | - Christoph S. Clemen
- Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany;
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Ludwig Eichinger
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany; (M.K.); (S.F.); (S.M.); (R.K.); (J.R.)
- Correspondence: ; Tel.: +49-221-478-6928; Fax: +49-221-478-97524
| |
Collapse
|
42
|
Nakatogawa H. Mechanisms governing autophagosome biogenesis. Nat Rev Mol Cell Biol 2020; 21:439-458. [PMID: 32372019 DOI: 10.1038/s41580-020-0241-0] [Citation(s) in RCA: 457] [Impact Index Per Article: 114.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2020] [Indexed: 12/20/2022]
Abstract
Autophagosomes are double-membrane vesicles newly formed during autophagy to engulf a wide range of intracellular material and transport this autophagic cargo to lysosomes (or vacuoles in yeasts and plants) for subsequent degradation. Autophagosome biogenesis responds to a plethora of signals and involves unique and dynamic membrane processes. Autophagy is an important cellular mechanism allowing the cell to meet various demands, and its disruption compromises homeostasis and leads to various diseases, including metabolic disorders, neurodegeneration and cancer. Thus, not surprisingly, the elucidation of the molecular mechanisms governing autophagosome biogenesis has attracted considerable interest. Key molecules and organelles involved in autophagosome biogenesis, including autophagy-related (ATG) proteins and the endoplasmic reticulum, have been discovered, and their roles and relationships have been investigated intensely. However, several fundamental questions, such as what supplies membranes/lipids to build the autophagosome and how the membrane nucleates, expands, bends into a spherical shape and finally closes, have proven difficult to address. Nonetheless, owing to recent studies with new approaches and technologies, we have begun to unveil the mechanisms underlying these processes on a molecular level. We now know that autophagosome biogenesis is a highly complex process, in which multiple proteins and lipids from various membrane sources, supported by the formation of membrane contact sites, cooperate with biophysical phenomena, including membrane shaping and liquid-liquid phase separation, to ensure seamless segregation of the autophagic cargo. Together, these studies pave the way to obtaining a holistic view of autophagosome biogenesis.
Collapse
Affiliation(s)
- Hitoshi Nakatogawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
43
|
Martens S, Fracchiolla D. Activation and targeting of ATG8 protein lipidation. Cell Discov 2020; 6:23. [PMID: 32377373 PMCID: PMC7198486 DOI: 10.1038/s41421-020-0155-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/03/2020] [Indexed: 12/19/2022] Open
Abstract
ATG8 family proteins are evolutionary conserved ubiquitin-like modifiers, which become attached to the headgroup of the membrane lipid phosphatidylethanolamine in a process referred to as lipidation. This reaction is carried out analogous to the conjugation of ubiquitin to its target proteins, involving the E1-like ATG7, the E2-like ATG3 and the E3-like ATG12-ATG5-ATG16 complex, which determines the site of lipidation. ATG8 lipidation is a hallmark of autophagy where these proteins are involved in autophagosome formation, the fusion of autophagosomes with lysosomes and cargo selection. However, it has become evident that ATG8 lipidation also occurs in processes that are not directly related to autophagy. Here we discuss recent insights into the targeting of ATG8 lipidation in autophagy and other pathways with special emphasis on the recruitment and activation of the E3-like complex.
Collapse
Affiliation(s)
- Sascha Martens
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/5, 1030 Vienna, Austria
| | - Dorotea Fracchiolla
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/5, 1030 Vienna, Austria
| |
Collapse
|
44
|
Li W, Ren L, Zheng X, Liu J, Wang J, Ji T, Du G. 3- O-Acetyl-11-keto- β -boswellic acid ameliorated aberrant metabolic landscape and inhibited autophagy in glioblastoma. Acta Pharm Sin B 2020; 10:301-312. [PMID: 32082975 PMCID: PMC7016292 DOI: 10.1016/j.apsb.2019.12.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/02/2019] [Accepted: 11/25/2019] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma is the most common and aggressive primary tumor in the central nervous system, accounting for 12%-15% of all brain tumors. 3-O-Acetyl-11-keto-β-boswellic acid (AKBA), one of the most active ingredients of gum resin from Boswellia carteri Birdw., was reported to inhibit the growth of glioblastoma cells and subcutaneous glioblastoma. However, whether AKBA has antitumor effects on orthotopic glioblastoma and the underlying mechanisms are still unclear. An orthotopic mouse model was used to evaluate the anti-glioblastoma effects of AKBA. The effects of AKBA on tumor growth were evaluated using MRI. The effects on the alteration of metabolic landscape were detected by MALDI-MSI. The underlying mechanisms of autophagy reducing by AKBA treatment were determined by immunoblotting and immunofluorescence, respectively. Transmission electron microscope was used to check morphology of cells treated by AKBA. Our results showed that AKBA (100 mg/kg) significantly inhibited the growth of orthotopic U87-MG gliomas. Results from MALDI-MSI showed that AKBA improved the metabolic profile of mice with glioblastoma, while immunoblot assays revealed that AKBA suppressed the expression of ATG5, p62, LC3B, p-ERK/ERK, and P53, and increased the ratio of p-mTOR/mTOR. Taken together, these results suggested that the antitumor effects of AKBA were related to the normalization of aberrant metabolism in the glioblastoma and the inhibition of autophagy. AKBA could be a promising chemotherapy drug for glioblastoma.
Collapse
Key Words
- AKBA
- AKBA, 3-O-acetyl-11-keto-β-boswellic acid
- Autophagy
- DAPI, 4′,-6-diamidino-2-phenylindole
- G3P, glycerol-3-phosphate
- G6P, glucose-6-phosphate
- GBM, glioblastomas
- GL/FFA, glycerolipid/free fatty acid
- Glioblastoma
- IDH1/2, isocitrate dehydrogenases 1/2
- ITO, indium tin oxide
- LA, linoleic acid
- MALDI-MSI
- MALDI-MSI, matrix-assisted laser desorption ionization-mass spectrometry imaging
- NAA, N-acetyl-l-aspartic acid
- NEDC, N-(1-naphthyl) ethylenediamine dihydrochloride
- OA, oleic acid
- PA, phosphatidic acid
- PE, phosphatidylethanolamine
- PG, phosphatidylglycerols
- PI, phosphatidylinositol
- PS, phosphatidylserine
- Phospholipids
- TIC, total ion current
- TMZ, temozolomide
Collapse
Affiliation(s)
- Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jinyi Liu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Tengfei Ji
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
45
|
Zientara-Rytter K, Subramani S. Mechanistic Insights into the Role of Atg11 in Selective Autophagy. J Mol Biol 2019; 432:104-122. [PMID: 31238043 DOI: 10.1016/j.jmb.2019.06.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/19/2022]
Abstract
Macroautophagy (referred to hereafter as autophagy) is an intracellular degradation pathway in which the formation of a double-membrane vesicle called the autophagosome is a key event in the transport of multiple cytoplasmic cargo (e.g., proteins, protein aggregates, lipid droplets or organelles) to the vacuole (lysosome in mammals) for degradation and recycling. During this process, autophagosomes are formed de novo by membrane fusion events leading to phagophore formation initiated at the phagophore assembly site. In yeast, Atg11 and Atg17 function as protein scaffolds, essential for selective and non-selective types of autophagy, respectively. While Atg17 functions in non-selective autophagy are well-defined in the literature, less attention is concentrated on recent findings regarding the roles of Atg11 in selective autophagy. Here, we summarize current knowledge about the Atg11 scaffold protein and review recent findings in the context of its role in selective autophagy initiation and autophagosome formation.
Collapse
Affiliation(s)
- Katarzyna Zientara-Rytter
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| | - Suresh Subramani
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
46
|
de la Ballina LR, Munson MJ, Simonsen A. Lipids and Lipid-Binding Proteins in Selective Autophagy. J Mol Biol 2019; 432:135-159. [PMID: 31202884 DOI: 10.1016/j.jmb.2019.05.051] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 02/07/2023]
Abstract
Eukaryotic cells have the capacity to degrade intracellular components through a lysosomal degradation pathway called macroautophagy (henceforth referred to as autophagy) in which superfluous or damaged cytosolic entities are engulfed and separated from the rest of the cell constituents into double membraned vesicles known as autophagosomes. Autophagosomes then fuse with endosomes and lysosomes, where cargo is broken down into basic building blocks that are released to the cytoplasm for the cell to reuse. Autophagic degradation can target either cytoplasmic material in bulk (non-selective autophagy) or particular cargo in what is called selective autophagy. Proper autophagic turnover requires the orchestrated participation of several players that need to be tightly and temporally coordinated. Whereas a large number of autophagy-related (ATG) proteins have been identified and their functions and regulation are starting to be understood, there is substantially less knowledge regarding the specific lipids constituting the autophagic membranes as well as their role in initiating, enabling or regulating the autophagic process. This review focuses on lipids and their corresponding binding proteins that are crucial in the process of selective autophagy.
Collapse
Affiliation(s)
- Laura R de la Ballina
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Michael J Munson
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
47
|
Chung T. How phosphoinositides shape autophagy in plant cells. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:146-158. [PMID: 30824047 DOI: 10.1016/j.plantsci.2019.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/10/2019] [Accepted: 01/19/2019] [Indexed: 05/06/2023]
Abstract
Plant cells use autophagy to degrade their own cytoplasm in vacuoles, thereby not only recycling their breakdown products, but also ensuring the homeostasis of essential cytoplasmic constituents and organelles. Plants and other eukaryotes have a conserved set of core Autophagy-related (ATG) genes involved in the biogenesis of the autophagosome, the main autophagic compartment destined for the lytic vacuole. In the past decade, the core ATG genes were isolated from several plant species. The core ATG proteins include the components of the VACUOLAR PROTEIN SORTING 34 (VPS34) complex that is responsible for the local production of phosphatidylinositol 3-phosphate (PI3P) at the site of autophagosome formation. Dissecting the roles of PI3P and its effectors in autophagy is challenging, because of the multi-faceted links between autophagosomal and endosomal systems. This review highlights recent studies on putative plant PI3P effectors involved in autophagosome dynamics. Molecular mechanisms underlying the requirement of PI3P for autophagosome biogenesis and trafficking are also discussed.
Collapse
Affiliation(s)
- Taijoon Chung
- Department of Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
48
|
Harada K, Kotani T, Kirisako H, Sakoh-Nakatogawa M, Oikawa Y, Kimura Y, Hirano H, Yamamoto H, Ohsumi Y, Nakatogawa H. Two distinct mechanisms target the autophagy-related E3 complex to the pre-autophagosomal structure. eLife 2019; 8:43088. [PMID: 30810528 PMCID: PMC6405243 DOI: 10.7554/elife.43088] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/26/2019] [Indexed: 11/13/2022] Open
Abstract
In autophagy, Atg proteins organize the pre-autophagosomal structure (PAS) to initiate autophagosome formation. Previous studies in yeast revealed that the autophagy-related E3 complex Atg12-Atg5-Atg16 is recruited to the PAS via Atg16 interaction with Atg21, which binds phosphatidylinositol 3-phosphate (PI3P) produced at the PAS, to stimulate conjugation of the ubiquitin-like protein Atg8 to phosphatidylethanolamine. Here, we discover a novel mechanism for the PAS targeting of Atg12-Atg5-Atg16, which is mediated by the interaction of Atg12 with the Atg1 kinase complex that serves as a scaffold for PAS organization. While autophagy is partially defective without one of these mechanisms, cells lacking both completely lose the PAS localization of Atg12-Atg5-Atg16 and show no autophagic activity. As with the PI3P-dependent mechanism, Atg12-Atg5-Atg16 recruited via the Atg12-dependent mechanism stimulates Atg8 lipidation, but also has the specific function of facilitating PAS scaffold assembly. Thus, this study significantly advances our understanding of the nucleation step in autophagosome formation.
Collapse
Affiliation(s)
- Kumi Harada
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Tetsuya Kotani
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiromi Kirisako
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | | | - Yu Oikawa
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Hisashi Hirano
- Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | | | | | - Hitoshi Nakatogawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
49
|
Mitter AL, Schlotterhose P, Krick R. Gyp1 has a dual function as Ypt1 GAP and interaction partner of Atg8 in selective autophagy. Autophagy 2019; 15:1031-1050. [PMID: 30686108 DOI: 10.1080/15548627.2019.1569929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Macroautophagy/autophagy is a highly conserved intracellular vesicle transport pathway that prevents accumulation of harmful materials within cells. The dynamic assembly and disassembly of the different autophagic protein complexes at the so-called phagophore assembly site (PAS) is strictly regulated. Rab GTPases are major regulators of cellular vesicle trafficking, and the Rab GTPase Ypt1 and its GEF TRAPPIII have been implicated in autophagy. We show that Gyp1 acts as a Ypt1 GTPase-activating protein (GAP) for selective autophagic variants, such as the Cvt pathway or the selective autophagic degradation of mitochondria (mitophagy). Gyp1 regulates the dynamic disassembly of the conserved Ypt1-Atg1 complex. Thereby, Gyp1 sets the stage for efficient Atg14 recruitment, and facilitates the critical step from nucleation to elongation of the phagophore. In addition, we identified Gyp1 as a new Atg8-interacting motif (AIM)-dependent Atg8 interaction partner. The Gyp1 AIM is required for efficient formation of the cargo receptor-Atg8 complexes. Our findings elucidate the molecular mechanisms of complex disassembly during phagophore formation and suggest potential dual functions of GAPs in cellular vesicle trafficking. Abbreviations AIM, Atg8-interacting motif; Atg, autophagy related; Cvt, cytoplasm-to-vacuole targeting; GAP, GTPase-activating protein; GEF, guanine-nucleotide exchange factor; GFP, green fluorescent protein; log phase, logarithmic growth phase; NHD, N-terminal helical domain; PAS, phagophore assembly site; PE, phosphatidylethanolamine; PtdIns3P, phosphatidylinositol-3-phosphate; WT, wild-type.
Collapse
Affiliation(s)
- Anne Lisa Mitter
- a Department of Cellular Biochemistry, University Medicine , Georg-August University , Goettingen , Germany
| | - Petra Schlotterhose
- a Department of Cellular Biochemistry, University Medicine , Georg-August University , Goettingen , Germany
| | - Roswitha Krick
- a Department of Cellular Biochemistry, University Medicine , Georg-August University , Goettingen , Germany
| |
Collapse
|
50
|
Osawa T, Alam JM, Noda NN. Membrane-binding domains in autophagy. Chem Phys Lipids 2019; 218:1-9. [DOI: 10.1016/j.chemphyslip.2018.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023]
|