1
|
Missarova A, Dann E, Rosen L, Satija R, Marioni J. Leveraging neighborhood representations of single-cell data to achieve sensitive DE testing with miloDE. Genome Biol 2024; 25:189. [PMID: 39026254 PMCID: PMC11256449 DOI: 10.1186/s13059-024-03334-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Single-cell RNA-sequencing enables testing for differential expression (DE) between conditions at a cell type level. While powerful, one of the limitations of such approaches is that the sensitivity of DE testing is dictated by the sensitivity of clustering, which is often suboptimal. To overcome this, we present miloDE-a cluster-free framework for DE testing (available as an open-source R package). We illustrate the performance of miloDE on both simulated and real data. Using miloDE, we identify a transient hemogenic endothelia-like state in mouse embryos lacking Tal1 and detect distinct programs during macrophage activation in idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Alsu Missarova
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Emma Dann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Leah Rosen
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Rahul Satija
- Center for Genomics and Systems Biology, NYU, New York, USA.
- New York Genome Center, New York, USA.
| | - John Marioni
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Kao YR, Chen J, Kumari R, Ng A, Zintiridou A, Tatiparthy M, Ma Y, Aivalioti MM, Moulik D, Sundaravel S, Sun D, Reisz JA, Grimm J, Martinez-Lopez N, Stransky S, Sidoli S, Steidl U, Singh R, D'Alessandro A, Will B. An iron rheostat controls hematopoietic stem cell fate. Cell Stem Cell 2024; 31:378-397.e12. [PMID: 38402617 PMCID: PMC10939794 DOI: 10.1016/j.stem.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/20/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Mechanisms governing the maintenance of blood-producing hematopoietic stem and multipotent progenitor cells (HSPCs) are incompletely understood, particularly those regulating fate, ensuring long-term maintenance, and preventing aging-associated stem cell dysfunction. We uncovered a role for transitory free cytoplasmic iron as a rheostat for adult stem cell fate control. We found that HSPCs harbor comparatively small amounts of free iron and show the activation of a conserved molecular response to limited iron-particularly during mitosis. To study the functional and molecular consequences of iron restriction, we developed models allowing for transient iron bioavailability limitation and combined single-molecule RNA quantification, metabolomics, and single-cell transcriptomic analyses with functional studies. Our data reveal that the activation of the limited iron response triggers coordinated metabolic and epigenetic events, establishing stemness-conferring gene regulation. Notably, we find that aging-associated cytoplasmic iron loading reversibly attenuates iron-dependent cell fate control, explicating intervention strategies for dysfunctional aged stem cells.
Collapse
Affiliation(s)
- Yun-Ruei Kao
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, USA.
| | - Jiahao Chen
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Rajni Kumari
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Anita Ng
- Karches Center for Oncology Research, the Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Aliona Zintiridou
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Madhuri Tatiparthy
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Yuhong Ma
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Maria M Aivalioti
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Deeposree Moulik
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Sriram Sundaravel
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Daqian Sun
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Juliane Grimm
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Nuria Martinez-Lopez
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, CA, USA; Comprehensive Liver Research Center at University of California Los Angeles, CA, USA
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Ulrich Steidl
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, USA; Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, New York, NY, USA; Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rajat Singh
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, CA, USA; Comprehensive Liver Research Center at University of California Los Angeles, CA, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Britta Will
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, USA; Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, New York, NY, USA; Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Payne S, Neal A, De Val S. Transcription factors regulating vasculogenesis and angiogenesis. Dev Dyn 2024; 253:28-58. [PMID: 36795082 PMCID: PMC10952167 DOI: 10.1002/dvdy.575] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Transcription factors (TFs) play a crucial role in regulating the dynamic and precise patterns of gene expression required for the initial specification of endothelial cells (ECs), and during endothelial growth and differentiation. While sharing many core features, ECs can be highly heterogeneous. Differential gene expression between ECs is essential to pattern the hierarchical vascular network into arteries, veins and capillaries, to drive angiogenic growth of new vessels, and to direct specialization in response to local signals. Unlike many other cell types, ECs have no single master regulator, instead relying on differing combinations of a necessarily limited repertoire of TFs to achieve tight spatial and temporal activation and repression of gene expression. Here, we will discuss the cohort of TFs known to be involved in directing gene expression during different stages of mammalian vasculogenesis and angiogenesis, with a primary focus on development.
Collapse
Affiliation(s)
- Sophie Payne
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| | - Alice Neal
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| | - Sarah De Val
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| |
Collapse
|
4
|
Fechner J, Lausen J. Transcription Factor TAL1 in Erythropoiesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:243-258. [PMID: 39017847 DOI: 10.1007/978-3-031-62731-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Lineage-specific transcription factors (TFs) regulate differentiation of hematopoietic stem cells (HSCs). They are decisive for the establishment and maintenance of lineage-specific gene expression programs during hematopoiesis. For this they create a regulatory network between TFs, epigenetic cofactors, and microRNAs. They activate cell-type specific genes and repress competing gene expression programs. Disturbance of this process leads to impaired lineage fidelity and diseases of the blood system. The TF T-cell acute leukemia 1 (TAL1) is central for erythroid differentiation and contributes to the formation of distinct gene regulatory complexes in progenitor cells and erythroid cells. A TAL1/E47 heterodimer binds to DNA with the TFs GATA-binding factor 1 and 2 (GATA1/2), the cofactors LIM domain only 1 and 2 (LMO1/2), and LIM domain-binding protein 1 (LDB1) to form a core TAL1 complex. Furthermore, cell-type-dependent interactions of TAL1 with other TFs such as with runt-related transcription factor 1 (RUNX1) and Kruppel-like factor 1 (KLF1) are established. Moreover, TAL1 activity is regulated by the formation of TAL1 isoforms, posttranslational modifications (PTMs), and microRNAs. Here, we describe the function of TAL1 in normal hematopoiesis with a focus on erythropoiesis.
Collapse
Affiliation(s)
- Johannes Fechner
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Stuttgart, Germany
| | - Jörn Lausen
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
5
|
Calvanese V, Mikkola HKA. The genesis of human hematopoietic stem cells. Blood 2023; 142:519-532. [PMID: 37339578 PMCID: PMC10447622 DOI: 10.1182/blood.2022017934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/27/2023] [Accepted: 05/13/2023] [Indexed: 06/22/2023] Open
Abstract
Developmental hematopoiesis consists of multiple, partially overlapping hematopoietic waves that generate the differentiated blood cells required for embryonic development while establishing a pool of undifferentiated hematopoietic stem cells (HSCs) for postnatal life. This multilayered design in which active hematopoiesis migrates through diverse extra and intraembryonic tissues has made it difficult to define a roadmap for generating HSCs vs non-self-renewing progenitors, especially in humans. Recent single-cell studies have helped in identifying the rare human HSCs at stages when functional assays are unsuitable for distinguishing them from progenitors. This approach has made it possible to track the origin of human HSCs to the unique type of arterial endothelium in the aorta-gonad-mesonephros region and document novel benchmarks for HSC migration and maturation in the conceptus. These studies have delivered new insights into the intricate process of HSC generation and provided tools to inform the in vitro efforts to replicate the physiological developmental journey from pluripotent stem cells via distinct mesodermal and endothelial intermediates to HSCs.
Collapse
Affiliation(s)
- Vincenzo Calvanese
- Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA
| | - Hanna K. A. Mikkola
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
6
|
Mahony CB, Copper L, Vrljicak P, Noyvert B, Constantinidou C, Browne S, Pan Y, Palles C, Ott S, Higgs MR, Monteiro R. Lineage skewing and genome instability underlie marrow failure in a zebrafish model of GATA2 deficiency. Cell Rep 2023; 42:112571. [PMID: 37256751 DOI: 10.1016/j.celrep.2023.112571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 03/14/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023] Open
Abstract
Inherited bone marrow failure associated with heterozygous mutations in GATA2 predisposes toward hematological malignancies, but the mechanisms remain poorly understood. Here, we investigate the mechanistic basis of marrow failure in a zebrafish model of GATA2 deficiency. Single-cell transcriptomics and chromatin accessibility assays reveal that loss of gata2a leads to skewing toward the erythroid lineage at the expense of myeloid cells, associated with loss of cebpa expression and decreased PU.1 and CEBPA transcription factor accessibility in hematopoietic stem and progenitor cells (HSPCs). Furthermore, gata2a mutants show impaired expression of npm1a, the zebrafish NPM1 ortholog. Progressive loss of npm1a in HSPCs is associated with elevated levels of DNA damage in gata2a mutants. Thus, Gata2a maintains myeloid lineage priming through cebpa and protects against genome instability and marrow failure by maintaining expression of npm1a. Our results establish a potential mechanism underlying bone marrow failure in GATA2 deficiency.
Collapse
Affiliation(s)
- Christopher B Mahony
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Lucy Copper
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Cancer Research UK Birmingham Centre, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Pavle Vrljicak
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Boris Noyvert
- Centre for Computational Biology, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Chrystala Constantinidou
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK; Bioinformatics Research Technology Platform, University of Warwick, Coventry, UK
| | - Sofia Browne
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Yi Pan
- Centre for Computational Biology, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Claire Palles
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Sascha Ott
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK; Bioinformatics Research Technology Platform, University of Warwick, Coventry, UK
| | - Martin R Higgs
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Rui Monteiro
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
7
|
Missarova A, Dann E, Rosen L, Satija R, Marioni J. Sensitive cluster-free differential expression testing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531744. [PMID: 36945506 PMCID: PMC10028920 DOI: 10.1101/2023.03.08.531744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Comparing molecular features, including the identification of genes with differential expression (DE) between conditions, is a powerful approach for characterising disease-specific phenotypes. When testing for DE in single-cell RNA sequencing data, current pipelines first assign cells into discrete clusters (or cell types), followed by testing for differences within each cluster. Consequently, the sensitivity and specificity of DE testing are limited and ultimately dictated by the granularity of the cell type annotation, with discrete clustering being especially suboptimal for continuous trajectories. To overcome these limitations, we present miloDE - a cluster-free framework for differential expression testing. We build on the Milo approach, introduced for differential cell abundance testing, which leverages the graph representation of single-cell data to assign relatively homogenous, 'neighbouring' cells into overlapping neighbourhoods. We address key differences between differential abundance and expression testing at the level of neighbourhood assignment, statistical testing, and multiple testing correction. To illustrate the performance of miloDE we use both simulations and real data, in the latter case identifying a transient haemogenic endothelia-like state in chimeric mouse embryos lacking Tal1 as well as uncovering distinct transcriptional programs that characterise changes in macrophages in patients with Idiopathic Pulmonary Fibrosis. miloDE is available as an open-source R package at https://github.com/MarioniLab/miloDE.
Collapse
Affiliation(s)
- Alsu Missarova
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Emma Dann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Leah Rosen
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Rahul Satija
- Center for Genomics and Systems Biology, NYU
- New York Genome Center
| | - John Marioni
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Genentech, South San Francisco, CA, USA
| |
Collapse
|
8
|
Serina Secanechia YN, Bergiers I, Rogon M, Arnold C, Descostes N, Le S, López-Anguita N, Ganter K, Kapsali C, Bouilleau L, Gut A, Uzuotaite A, Aliyeva A, Zaugg JB, Lancrin C. Identifying a novel role for the master regulator Tal1 in the Endothelial to Hematopoietic Transition. Sci Rep 2022; 12:16974. [PMID: 36217016 PMCID: PMC9550822 DOI: 10.1038/s41598-022-20906-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 09/20/2022] [Indexed: 12/29/2022] Open
Abstract
Progress in the generation of Hematopoietic Stem and Progenitor Cells (HSPCs) in vitro and ex vivo has been built on the knowledge of developmental hematopoiesis, underscoring the importance of understanding this process. HSPCs emerge within the embryonic vasculature through an Endothelial-to-Hematopoietic Transition (EHT). The transcriptional regulator Tal1 exerts essential functions in the earliest stages of blood development, but is considered dispensable for the EHT. Nevertheless, Tal1 is expressed with its binding partner Lmo2 and it homologous Lyl1 in endothelial and transitioning cells at the time of EHT. Here, we investigated the function of these genes using a mouse embryonic-stem cell (mESC)-based differentiation system to model hematopoietic development. We showed for the first time that the expression of TAL1 in endothelial cells is crucial to ensure the efficiency of the EHT process and a sustained hematopoietic output. Our findings uncover an important function of Tal1 during the EHT, thus filling the current gap in the knowledge of the role of this master gene throughout the whole process of hematopoietic development.
Collapse
Affiliation(s)
- Yasmin Natalia Serina Secanechia
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Isabelle Bergiers
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy ,grid.419619.20000 0004 0623 0341Present Address: Therapeutics Discovery, Pharmaceutical Companies of Johnson & Johnson, Janssen Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Matt Rogon
- grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory, Centre for Biomolecular Network Analysis, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christian Arnold
- grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Nicolas Descostes
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, Bioinformatics Services, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Stephanie Le
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Natalia López-Anguita
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy ,grid.419538.20000 0000 9071 0620Present Address: Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Kerstin Ganter
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Chrysi Kapsali
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Lea Bouilleau
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Aaron Gut
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Auguste Uzuotaite
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Ayshan Aliyeva
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Judith B. Zaugg
- grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christophe Lancrin
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| |
Collapse
|
9
|
Latchmansingh KA, Wang X, Verdun RE, Marques-Piubelli ML, Vega F, You MJ, Chapman J, Lossos IS. LMO2 expression is frequent in T-lymphoblastic leukemia and correlates with survival, regardless of T-cell stage. Mod Pathol 2022; 35:1220-1226. [PMID: 35322192 PMCID: PMC9427670 DOI: 10.1038/s41379-022-01063-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/09/2022]
Abstract
T- lymphoblastic leukemia/lymphoma (T-LL) is an aggressive malignancy of immature T-cells with poor overall survival (OS) and in need of new therapies. LIM-domain only 2 (LMO2) is a critical regulator of hematopoietic cell development that can be overexpressed in T-LL due to chromosomal abnormalities. Deregulated LMO2 expression contributes to T-LL development by inducing block of T-cell differentiation and continuous thymocyte self-renewal. However, LMO2 expression and its biologic significance in T-LL remain largely unknown. We analyzed LMO2 expression in 100 initial and follow-up biopsies of T-LL from 67 patients, including 31 (46%) early precursor T-cell (ETP)-ALL, 26 (39%) cortical and 10 (15%) medullary type. LMO2 expression was present in 50 (74.6%) initial biopsies with an average of 87% positive tumor cells (range 30-100%). LMO2 expression in ETP, medullary and cortical T-LLs was not statistically different. In patients with biopsies after initial therapy, LMO2 expression was stable. LMO2 expression was associated with longer OS (p = 0.048) regardless of T-lymphoblast stage or other clinicopathologic features. These findings indicate that LMO2 is a promising new prognostic marker that could predict patients' outcomes and potentially be targeted for novel chemotherapy, i.e. PARP1/2 inhibitors, which have been shown to enhance chemotherapy sensitivity in LMO2 expressing diffuse large B cell lymphoma (DLBCL) tumors by decreasing DNA repair efficiency.
Collapse
Affiliation(s)
- Kerri-Ann Latchmansingh
- Department of Pathology and Laboratory Medicine, Division of Hematopathology, University of Miami/Sylvester Comprehensive Cancer Center & Jackson Memorial Hospital, Miami, FL, USA
| | - Xiaoqiong Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ramiro E. Verdun
- Department of Medicine, Division of Hematology, University of Miami / Sylvester Comprehensive Cancer Center & Jackson Memorial Hospital, Miami, FL, USA
| | - Mario L. Marques-Piubelli
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francisco Vega
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M. James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer Chapman
- Department of Pathology and Laboratory Medicine, Division of Hematopathology, University of Miami/Sylvester Comprehensive Cancer Center & Jackson Memorial Hospital, Miami, FL, USA
| | - Izidore S. Lossos
- Department of Medicine, Division of Hematology, University of Miami / Sylvester Comprehensive Cancer Center & Jackson Memorial Hospital, Miami, FL, USA
| |
Collapse
|
10
|
Atkins SK, Sonawane AR, Brouwhuis R, Barrientos J, Ha A, Rogers M, Tanaka T, Okui T, Kuraoka S, Singh SA, Aikawa M, Aikawa E. Induced pluripotent stem cell-derived smooth muscle cells to study cardiovascular calcification. Front Cardiovasc Med 2022; 9:925777. [PMID: 35958427 PMCID: PMC9357895 DOI: 10.3389/fcvm.2022.925777] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular calcification is the lead predictor of cardiovascular events and the top cause of morbidity and mortality worldwide. To date, only invasive surgical options are available to treat cardiovascular calcification despite the growing understanding of underlying pathological mechanisms. Key players in vascular calcification are vascular smooth muscle cells (SMCs), which transform into calcifying SMCs and secrete mineralizing extracellular vesicles that form microcalcifications, subsequently increasing plaque instability and consequential plaque rupture. There is an increasing, practical need for a large scale and inexhaustible source of functional SMCs. Here we describe an induced pluripotent stem cell (iPSC)-derived model of SMCs by differentiating iPSCs toward SMCs to study the pathogenesis of vascular calcification. Specifically, we characterize the proteome during iPSC differentiation to better understand the cellular dynamics during this process. First, we differentiated human iPSCs toward an induced-SMC (iSMC) phenotype in a 10-day protocol. The success of iSMC differentiation was demonstrated through morphological analysis, immunofluorescent staining, flow cytometry, and proteomics characterization. Proteomics was performed throughout the entire differentiation time course to provide a robust, well-defined starting and ending cell population. Proteomics data verified iPSC differentiation to iSMCs, and functional enrichment of proteins on different days showed the key pathways changing during iSMC development. Proteomics comparison with primary human SMCs showed a high correlation with iSMCs. After iSMC differentiation, we initiated calcification in the iSMCs by culturing the cells in osteogenic media for 17 days. Calcification was verified using Alizarin Red S staining and proteomics data analysis. This study presents an inexhaustible source of functional vascular SMCs and calcifying vascular SMCs to create an in vitro model of vascular calcification in osteogenic conditions, with high potential for future applications in cardiovascular calcification research.
Collapse
Affiliation(s)
- Samantha K. Atkins
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Abhijeet R. Sonawane
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Center for Excellence in Vascular Biology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- *Correspondence: Abhijeet R. Sonawane,
| | - Romi Brouwhuis
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Johana Barrientos
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Anna Ha
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Maximillian Rogers
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Takeshi Tanaka
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Takehito Okui
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Shiori Kuraoka
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Sasha A. Singh
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Center for Excellence in Vascular Biology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Center for Excellence in Vascular Biology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Elena Aikawa,
| |
Collapse
|
11
|
Ho VW, Grainger DE, Chagraoui H, Porcher C. Specification of the haematopoietic stem cell lineage: From blood-fated mesodermal angioblasts to haemogenic endothelium. Semin Cell Dev Biol 2022; 127:59-67. [PMID: 35125239 DOI: 10.1016/j.semcdb.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/19/2022]
Abstract
Haematopoietic stem and progenitor cells emerge from specialized haemogenic endothelial cells in select vascular beds during embryonic development. Specification and commitment to the blood lineage, however, occur before endothelial cells are endowed with haemogenic competence, at the time of mesoderm patterning and production of endothelial cell progenitors (angioblasts). Whilst early blood cell fate specification has long been recognized, very little is known about the mechanisms that induce endothelial cell diversification and progressive acquisition of a blood identity by a subset of these cells. Here, we review the endothelial origin of the haematopoietic system and the complex developmental journey of blood-fated angioblasts. We discuss how recent technological advances will be instrumental to examine the diversity of the embryonic anatomical niches, signaling pathways and downstream epigenetic and transcriptional processes controlling endothelial cell heterogeneity and blood cell fate specification. Ultimately, this will give essential insights into the ontogeny of the cells giving rise to haematopoietic stem cells, that may aid in the development of novel strategies for their in vitro production for clinical purposes.
Collapse
Affiliation(s)
- Vivien W Ho
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - David E Grainger
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hedia Chagraoui
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Catherine Porcher
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Integrative epigenomic and transcriptomic analysis reveals the requirement of JUNB for hematopoietic fate induction. Nat Commun 2022; 13:3131. [PMID: 35668082 PMCID: PMC9170695 DOI: 10.1038/s41467-022-30789-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 05/18/2022] [Indexed: 11/08/2022] Open
Abstract
Human pluripotent stem cell differentiation towards hematopoietic progenitor cell can serve as an in vitro model for human embryonic hematopoiesis, but the dynamic change of epigenome and transcriptome remains elusive. Here, we systematically profile the chromatin accessibility, H3K4me3 and H3K27me3 modifications, and the transcriptome of intermediate progenitors during hematopoietic progenitor cell differentiation in vitro. The integrative analyses reveal sequential opening-up of regions for the binding of hematopoietic transcription factors and stepwise epigenetic reprogramming of bivalent genes. Single-cell analysis of cells undergoing the endothelial-to-hematopoietic transition and comparison with in vivo hemogenic endothelial cells reveal important features of in vitro and in vivo hematopoiesis. We find that JUNB is an essential regulator for hemogenic endothelium specialization and endothelial-to-hematopoietic transition. These studies depict an epigenomic roadmap from human pluripotent stem cells to hematopoietic progenitor cells, which may pave the way to generate hematopoietic progenitor cells with improved developmental potentials.
Collapse
|
13
|
Qiu J, Li Y, Wang B, Sun X, Qian D, Ying Y, Zhou J. The Role and Research Progress of Inhibitor of Differentiation 1 in Atherosclerosis. DNA Cell Biol 2022; 41:71-79. [PMID: 35049366 PMCID: PMC8863915 DOI: 10.1089/dna.2021.0745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 12/23/2022] Open
Abstract
Inhibitor of differentiation 1 has a helix-loop-helix (HLH) structure, belongs to a class of molecules known as the HLH trans-acting factor family, and plays an important role in advancing the cell cycle, promoting cell proliferation and inhibiting cell differentiation. Recent studies have confirmed that inhibitor of differentiation 1 plays an important role in the endothelial-mesenchymal transition of vascular endothelial cells, angiogenesis, reendothelialization after injury, and the formation and rupture of atherosclerotic plaques. An in-depth understanding of the role of inhibitor of differentiation 1 in atherosclerosis will provide new ideas and strategies for the treatment of related diseases.
Collapse
Affiliation(s)
- Jun Qiu
- Department of Cardiology, Medicine School of Ningbo University, Ningbo, China
- Department of Cardiology, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China
- Department of Cardiology, Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo, China
| | - Youhong Li
- Department of Cardiology, Medicine School of Ningbo University, Ningbo, China
| | - BingYu Wang
- Department of Cardiology, Medicine School of Ningbo University, Ningbo, China
- Department of Cardiology, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China
- Department of Cardiology, Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo, China
| | - XinYi Sun
- Department of Cardiology, Medicine School of Ningbo University, Ningbo, China
- Department of Cardiology, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China
- Department of Cardiology, Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo, China
| | - Dingding Qian
- Department of Cardiology, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China
| | - Yuchen Ying
- Department of Cardiology, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China
| | - Jianqing Zhou
- Department of Cardiology, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China
| |
Collapse
|
14
|
Stutt N, Song M, Wilson MD, Scott IC. Cardiac specification during gastrulation - The Yellow Brick Road leading to Tinman. Semin Cell Dev Biol 2021; 127:46-58. [PMID: 34865988 DOI: 10.1016/j.semcdb.2021.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
The question of how the heart develops, and the genetic networks governing this process have become intense areas of research over the past several decades. This research is propelled by classical developmental studies and potential clinical applications to understand and treat congenital conditions in which cardiac development is disrupted. Discovery of the tinman gene in Drosophila, and examination of its vertebrate homolog Nkx2.5, along with other core cardiac transcription factors has revealed how cardiac progenitor differentiation and maturation drives heart development. Careful observation of cardiac morphogenesis along with lineage tracing approaches indicated that cardiac progenitors can be divided into two broad classes of cells, namely the first and second heart fields, that contribute to the heart in two distinct waves of differentiation. Ample evidence suggests that the fate of individual cardiac progenitors is restricted to distinct cardiac structures quite early in development, well before the expression of canonical cardiac progenitor markers like Nkx2.5. Here we review the initial specification of cardiac progenitors, discuss evidence for the early patterning of cardiac progenitors during gastrulation, and consider how early gene expression programs and epigenetic patterns can direct their development. A complete understanding of when and how the developmental potential of cardiac progenitors is determined, and their potential plasticity, is of great interest developmentally and also has important implications for both the study of congenital heart disease and therapeutic approaches based on cardiac stem cell programming.
Collapse
Affiliation(s)
- Nathan Stutt
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Mengyi Song
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Michael D Wilson
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Ian C Scott
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada.
| |
Collapse
|
15
|
Maurya SS. Role of Enhancers in Development and Diseases. EPIGENOMES 2021; 5:epigenomes5040021. [PMID: 34968246 PMCID: PMC8715447 DOI: 10.3390/epigenomes5040021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022] Open
Abstract
Enhancers are cis-regulatory elements containing short DNA sequences that serve as binding sites for pioneer/regulatory transcription factors, thus orchestrating the regulation of genes critical for lineage determination. The activity of enhancer elements is believed to be determined by transcription factor binding, thus determining the cell state identity during development. Precise spatio-temporal control of the transcriptome during lineage specification requires the coordinated binding of lineage-specific transcription factors to enhancers. Thus, enhancers are the primary determinants of cell identity. Numerous studies have explored the role and mechanism of enhancers during development and disease, and various basic questions related to the functions and mechanisms of enhancers have not yet been fully answered. In this review, we discuss the recently published literature regarding the roles of enhancers, which are critical for various biological processes governing development. Furthermore, we also highlight that altered enhancer landscapes provide an essential context to understand the etiologies and mechanisms behind numerous complex human diseases, providing new avenues for effective enhancer-based therapeutic interventions.
Collapse
Affiliation(s)
- Shailendra S Maurya
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Department of Developmental Biology, School of Medicine, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
16
|
Pessoa Rodrigues C, Akhtar A. Differential H4K16ac levels ensure a balance between quiescence and activation in hematopoietic stem cells. SCIENCE ADVANCES 2021; 7:eabi5987. [PMID: 34362741 PMCID: PMC8346211 DOI: 10.1126/sciadv.abi5987] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/21/2021] [Indexed: 05/13/2023]
Abstract
Hematopoietic stem cells (HSCs) are able to reconstitute the bone marrow while retaining their self-renewal property. Individual HSCs demonstrate heterogeneity in their repopulating capacities. Here, we found that the levels of the histone acetyltransferase MOF (males absent on the first) and its target modification histone H4 lysine 16 acetylation are heterogeneous among HSCs and influence their proliferation capacities. The increased proliferative capacities of MOF-depleted cells are linked to their expression of CD93. The CD93+ HSC subpopulation simultaneously shows transcriptional features of quiescent HSCs and functional features of active HSCs. CD93+ HSCs were expanded and exhibited an enhanced proliferative advantage in Mof +/- animals reminiscent of a premalignant state. Accordingly, low MOF and high CD93 levels correlate with poor survival and increased proliferation capacity in leukemia. Collectively, our study indicates H4K16ac as an important determinant for HSC heterogeneity, which is linked to the onset of monocytic disorders.
Collapse
Affiliation(s)
- Cecilia Pessoa Rodrigues
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| |
Collapse
|
17
|
Canu G, Ruhrberg C. First blood: the endothelial origins of hematopoietic progenitors. Angiogenesis 2021; 24:199-211. [PMID: 33783643 PMCID: PMC8205888 DOI: 10.1007/s10456-021-09783-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/10/2021] [Indexed: 12/20/2022]
Abstract
Hematopoiesis in vertebrate embryos occurs in temporally and spatially overlapping waves in close proximity to blood vascular endothelial cells. Initially, yolk sac hematopoiesis produces primitive erythrocytes, megakaryocytes, and macrophages. Thereafter, sequential waves of definitive hematopoiesis arise from yolk sac and intraembryonic hemogenic endothelia through an endothelial-to-hematopoietic transition (EHT). During EHT, the endothelial and hematopoietic transcriptional programs are tightly co-regulated to orchestrate a shift in cell identity. In the yolk sac, EHT generates erythro-myeloid progenitors, which upon migration to the liver differentiate into fetal blood cells, including erythrocytes and tissue-resident macrophages. In the dorsal aorta, EHT produces hematopoietic stem cells, which engraft the fetal liver and then the bone marrow to sustain adult hematopoiesis. Recent studies have defined the relationship between the developing vascular and hematopoietic systems in animal models, including molecular mechanisms that drive the hemato-endothelial transcription program for EHT. Moreover, human pluripotent stem cells have enabled modeling of fetal human hematopoiesis and have begun to generate cell types of clinical interest for regenerative medicine.
Collapse
Affiliation(s)
- Giovanni Canu
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW In hematopoiesis, rapid cell fate decisions are necessary for timely responses to environmental stimuli resulting in the production of diverse types of blood cells. Early studies have led to a hierarchical, tree-like view of hematopoiesis with hematopoietic stem cells residing at the apex and serially branching out to give rise to bipotential progenitors with increasingly restricted lineage potential. Recent single-cell studies have challenged some aspects of the classical model of hematopoiesis. Here, we review the latest articles on cell fate decision in hematopoietic progenitors, highlighting single-cell studies that have questioned previously established concepts and those that have reaffirmed them. RECENT FINDINGS The hierarchical organization of hematopoiesis and the importance of transcription factors have been largely validated at the single-cell level. In contrast, single-cell studies have shown that lineage commitment is progressive rather than switch-like as originally proposed. Furthermore, the reconstruction of cell fate paths suggested the existence of a gradient of hematopoietic progenitors that are in a continuum of changing fate probabilities rather than in a static bipotential state, leading us to reconsider the notion of bipotential progenitors. SUMMARY Single-cell transcriptomic and proteomic studies have transformed our view of lineage commitment and offer a drastically different perspective on hematopoiesis.
Collapse
|
19
|
Harland LTG, Simon CS, Senft AD, Costello I, Greder L, Imaz-Rosshandler I, Göttgens B, Marioni JC, Bikoff EK, Porcher C, de Bruijn MFTR, Robertson EJ. The T-box transcription factor Eomesodermin governs haemogenic competence of yolk sac mesodermal progenitors. Nat Cell Biol 2021; 23:61-74. [PMID: 33420489 PMCID: PMC7610381 DOI: 10.1038/s41556-020-00611-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/25/2020] [Indexed: 01/29/2023]
Abstract
Extra-embryonic mesoderm (ExM)-composed of the earliest cells that traverse the primitive streak-gives rise to the endothelium as well as haematopoietic progenitors in the developing yolk sac. How a specific subset of ExM becomes committed to a haematopoietic fate remains unclear. Here we demonstrate using an embryonic stem cell model that transient expression of the T-box transcription factor Eomesodermin (Eomes) governs haemogenic competency of ExM. Eomes regulates the accessibility of enhancers that the transcription factor stem cell leukaemia (SCL) normally utilizes to specify primitive erythrocytes and is essential for the normal development of Runx1+ haemogenic endothelium. Single-cell RNA sequencing suggests that Eomes loss of function profoundly blocks the formation of blood progenitors but not specification of Flk-1+ haematoendothelial progenitors. Our findings place Eomes at the top of the transcriptional hierarchy regulating early blood formation and suggest that haemogenic competence is endowed earlier during embryonic development than was previously appreciated.
Collapse
Affiliation(s)
- Luke T G Harland
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Claire S Simon
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anna D Senft
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Ita Costello
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Lucas Greder
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ivan Imaz-Rosshandler
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Berthold Göttgens
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - John C Marioni
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
- Wellcome Sanger Institute, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Catherine Porcher
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Marella F T R de Bruijn
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | | |
Collapse
|
20
|
Kucinski I, Gottgens B. Advancing Stem Cell Research through Multimodal Single-Cell Analysis. Cold Spring Harb Perspect Biol 2020; 12:a035725. [PMID: 31932320 PMCID: PMC7328456 DOI: 10.1101/cshperspect.a035725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Technological advances play a key role in furthering our understanding of stem cell biology, and advancing the prospects of regenerative therapies. Highly parallelized methods, developed in the last decade, can profile DNA, RNA, or proteins in thousands of cells and even capture data across two or more modalities (multiomics). This allows unbiased and precise definition of molecular cell states, thus allowing classification of cell types, tracking of differentiation trajectories, and discovery of underlying mechanisms. Despite being based on destructive techniques, novel experimental and bioinformatic approaches enable embedding and extraction of temporal information, which is essential for deconvolution of complex data and establishing cause and effect relationships. Here, we provide an overview of recent studies pertinent to stem cell biology, followed by an outlook on how further advances in single-cell molecular profiling and computational analysis have the potential to shape the future of both basic and translational research.
Collapse
Affiliation(s)
- Iwo Kucinski
- Wellcome-MRC Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, United Kingdom
| | - Berthold Gottgens
- Wellcome-MRC Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, United Kingdom
| |
Collapse
|
21
|
Chestnut B, Casie Chetty S, Koenig AL, Sumanas S. Single-cell transcriptomic analysis identifies the conversion of zebrafish Etv2-deficient vascular progenitors into skeletal muscle. Nat Commun 2020; 11:2796. [PMID: 32493965 PMCID: PMC7271194 DOI: 10.1038/s41467-020-16515-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 04/29/2020] [Indexed: 01/09/2023] Open
Abstract
Cell fate decisions involved in vascular and hematopoietic embryonic development are still poorly understood. An ETS transcription factor Etv2 functions as an evolutionarily conserved master regulator of vasculogenesis. Here we report a single-cell transcriptomic analysis of hematovascular development in wild-type and etv2 mutant zebrafish embryos. Distinct transcriptional signatures of different types of hematopoietic and vascular progenitors are identified using an etv2ci32Gt gene trap line, in which the Gal4 transcriptional activator is integrated into the etv2 gene locus. We observe a cell population with a skeletal muscle signature in etv2-deficient embryos. We demonstrate that multiple etv2ci32Gt; UAS:GFP cells differentiate as skeletal muscle cells instead of contributing to vasculature in etv2-deficient embryos. Wnt and FGF signaling promote the differentiation of these putative multipotent etv2 progenitor cells into skeletal muscle cells. We conclude that etv2 actively represses muscle differentiation in vascular progenitors, thus restricting these cells to a vascular endothelial fate.
Collapse
Affiliation(s)
- Brendan Chestnut
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Satish Casie Chetty
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Andrew L Koenig
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA.,Center for Cardiovascular Research, Washington University School of Medicine, 660S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
22
|
Benetatos L, Benetatou A, Vartholomatos G. Enhancers and MYC interplay in hematopoiesis. J Mol Med (Berl) 2020; 98:471-481. [PMID: 32144465 DOI: 10.1007/s00109-020-01891-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/16/2020] [Accepted: 02/26/2020] [Indexed: 12/18/2022]
Abstract
Transcription requires the fine interplay between enhancers and transcription factors. Enhancers are able to activate transcription of genes involved in normal cell biology, whereas aberrant enhancer activity leads to oncogenesis. MYC is a well-established proto-oncogene involved in half of human cancers amplifying the output of its targets. The crosstalk between MYC and enhancers is known for many years since the discovery of IgH enhancer juxtaposition with MYC in high-grade lymphomas. Here, we focus mainly in the enhancers surrounding MYC in the 8q24 locus. That region comprises several enhancers that associate with other transcription factors, transmembrane receptors, and fusion genes composing complex regulatory networks aberrantly expressed in almost all types of hematological malignancies. Understanding the nature of these interactions in normal blood cells and in leukemias/lymphomas will expand MYC targeting options in the armamentarium against hematological cancers.
Collapse
Affiliation(s)
| | - Agapi Benetatou
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
| | | |
Collapse
|
23
|
Dunican DS, Mjoseng HK, Duthie L, Flyamer IM, Bickmore WA, Meehan RR. Bivalent promoter hypermethylation in cancer is linked to the H327me3/H3K4me3 ratio in embryonic stem cells. BMC Biol 2020; 18:25. [PMID: 32131813 PMCID: PMC7057567 DOI: 10.1186/s12915-020-0752-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/14/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Thousands of mammalian promoters are defined by co-enrichment of the histone tail modifications H3K27me3 (repressive) and H3K4me3 (activating) and are thus termed bivalent. It was previously observed that bivalent genes in human ES cells (hESC) are frequent targets for hypermethylation in human cancers, and depletion of DNA methylation in mouse embryonic stem cells has a marked impact on H3K27me3 distribution at bivalent promoters. However, only a fraction of bivalent genes in stem cells are targets of hypermethylation in cancer, and it is currently unclear whether all bivalent promoters are equally sensitive to DNA hypomethylation and whether H3K4me3 levels play a role in the interplay between DNA methylation and H3K27me3. RESULTS We report the sub-classification of bivalent promoters into two groups-promoters with a high H3K27me3:H3K4me3 (hiBiv) ratio or promoters with a low H3K27me3:H3K4me3 ratio (loBiv). HiBiv are enriched in canonical Polycomb components, show a higher degree of local intrachromosomal contacts and are highly sensitive to DNA hypomethylation in terms of H3K27me3 depletion from broad Polycomb domains. In contrast, loBiv promoters are enriched in non-canonical Polycomb components, show lower intrachromosomal contacts and are less sensitive to DNA hypomethylation at the same genomic resolution. Multiple systems reveal that hiBiv promoters are more depleted of Polycomb complexes than loBiv promoters following a reduction in DNA methylation, and we demonstrate that H3K27me3 re-accumulates at promoters when DNA methylation is restored. In human cancer, we show that hiBiv promoters lose H3K27me3 and are more susceptible to DNA hypermethylation than loBiv promoters. CONCLUSION We conclude that bivalency as a general term to describe mammalian promoters is an over-simplification and our sub-classification has revealed novel insights into the interplay between the largely antagonistic presence of DNA methylation and Polycomb systems at bivalent promoters. This approach redefines molecular pathologies underlying disease in which global DNA methylation is aberrant or where Polycomb mutations are present.
Collapse
Affiliation(s)
- Donnchadh S. Dunican
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU Scotland
| | - Heidi K. Mjoseng
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU Scotland
| | - Leanne Duthie
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU Scotland
| | - Ilya M. Flyamer
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU Scotland
| | - Wendy A. Bickmore
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU Scotland
| | - Richard R. Meehan
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU Scotland
| |
Collapse
|
24
|
Lange L, Hoffmann D, Schwarzer A, Ha TC, Philipp F, Lenz D, Morgan M, Schambach A. Inducible Forward Programming of Human Pluripotent Stem Cells to Hemato-endothelial Progenitor Cells with Hematopoietic Progenitor Potential. Stem Cell Reports 2019; 14:122-137. [PMID: 31839543 PMCID: PMC6962646 DOI: 10.1016/j.stemcr.2019.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 02/08/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) offer a promising platform to model early embryonic developmental processes, to create disease models that can be evaluated by drug screens as well as proof-of-concept experiments for regenerative medicine. However, generation of iPSC-derived hemato-endothelial and hematopoietic progenitor cells for these applications is challenging due to variable and limited cell numbers, which necessitates enormous up-scaling or development of demanding protocols. Here, we unravel the function of key transcriptional regulators SCL, LMO2, GATA2, and ETV2 (SLGE) on early hemato-endothelial specification and establish a fully inducible and stepwise hemato-endothelial forward programming system based on SLGE-regulated overexpression. Regulated induction of SLGE in stable SLGE-iPSC lines drives very efficient generation of large numbers of hemato-endothelial progenitor cells (CD144+/CD73–), which produce hematopoietic progenitor cells (CD45+/CD34+/CD38–/CD45RA−/CD90+/CD49f+) through a gradual process of endothelial-to-hematopoietic transition (EHT). Inducible and robust hemato-endothelial forward programming of human iPSCs Efficient, scalable generation of hemato-endothelial progenitor cells Production of HPCs with HSC-like immunophenotype and multi-lineage potential Whole transcriptome screen for potential regulators of definitive hematopoiesis
Collapse
Affiliation(s)
- Lucas Lange
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Dirk Hoffmann
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Adrian Schwarzer
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Department of Hematology, Oncology, Hemostasis and Stem Cell Transplantation, Hannover Medical School, Hannover 30625, Germany
| | - Teng-Cheong Ha
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Friederike Philipp
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany
| | - Daniela Lenz
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, 02115 Boston, MA, USA.
| |
Collapse
|
25
|
Menegatti S, de Kruijf M, Garcia‐Alegria E, Lacaud G, Kouskoff V. Transcriptional control of blood cell emergence. FEBS Lett 2019; 593:3304-3315. [PMID: 31432499 PMCID: PMC6916194 DOI: 10.1002/1873-3468.13585] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 01/06/2023]
Abstract
The haematopoietic system is established during embryonic life through a series of developmental steps that culminates with the generation of haematopoietic stem cells. Characterisation of the transcriptional network that regulates blood cell emergence has led to the identification of transcription factors essential for this process. Among the many factors wired within this complex regulatory network, ETV2, SCL and RUNX1 are the central components. All three factors are absolutely required for blood cell generation, each one controlling a precise step of specification from the mesoderm germ layer to fully functional blood progenitors. Insight into the transcriptional control of blood cell emergence has been used for devising protocols to generate blood cells de novo, either through reprogramming of somatic cells or through forward programming of pluripotent stem cells. Interestingly, the physiological process of blood cell generation and its laboratory-engineered counterpart have very little in common.
Collapse
Affiliation(s)
- Sara Menegatti
- Developmental Haematopoiesis GroupFaculty of Biology, Medicine and Healththe University of ManchesterUK
| | - Marcel de Kruijf
- Developmental Haematopoiesis GroupFaculty of Biology, Medicine and Healththe University of ManchesterUK
| | - Eva Garcia‐Alegria
- Developmental Haematopoiesis GroupFaculty of Biology, Medicine and Healththe University of ManchesterUK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology GroupCancer Research UK Manchester InstituteThe University of ManchesterMacclesfieldUK
| | - Valerie Kouskoff
- Developmental Haematopoiesis GroupFaculty of Biology, Medicine and Healththe University of ManchesterUK
| |
Collapse
|
26
|
Calvanese V, Nguyen AT, Bolan TJ, Vavilina A, Su T, Lee LK, Wang Y, Lay FD, Magnusson M, Crooks GM, Kurdistani SK, Mikkola HKA. MLLT3 governs human haematopoietic stem-cell self-renewal and engraftment. Nature 2019; 576:281-286. [PMID: 31776511 DOI: 10.1038/s41586-019-1790-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 10/09/2019] [Indexed: 12/13/2022]
Abstract
Limited knowledge of the mechanisms that govern the self-renewal of human haematopoietic stem cells (HSCs), and why this fails in culture, have impeded the expansion of HSCs for transplantation1. Here we identify MLLT3 (also known as AF9) as a crucial regulator of HSCs that is highly enriched in human fetal, neonatal and adult HSCs, but downregulated in culture. Depletion of MLLT3 prevented the maintenance of transplantable human haematopoietic stem or progenitor cells (HSPCs) in culture, whereas stabilizing MLLT3 expression in culture enabled more than 12-fold expansion of transplantable HSCs that provided balanced multilineage reconstitution in primary and secondary mouse recipients. Similar to endogenous MLLT3, overexpressed MLLT3 localized to active promoters in HSPCs, sustained levels of H3K79me2 and protected the HSC transcriptional program in culture. MLLT3 thus acts as HSC maintenance factor that links histone reader and modifying activities to modulate HSC gene expression, and may provide a promising approach to expand HSCs for transplantation.
Collapse
Affiliation(s)
- Vincenzo Calvanese
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA. .,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA.
| | - Andrew T Nguyen
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Timothy J Bolan
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Anastasia Vavilina
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Trent Su
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Lydia K Lee
- Department of Obstetrics and Gynecology, University of California Los Angeles, Los Angeles, CA, USA
| | - Yanling Wang
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Fides D Lay
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Mattias Magnusson
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
| | - Gay M Crooks
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Siavash K Kurdistani
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA.,Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA.,Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Hanna K A Mikkola
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA. .,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA. .,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA. .,Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
27
|
Daniel MG, Rapp K, Schaniel C, Moore KA. Induction of developmental hematopoiesis mediated by transcription factors and the hematopoietic microenvironment. Ann N Y Acad Sci 2019; 1466:59-72. [PMID: 31621095 DOI: 10.1111/nyas.14246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/30/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022]
Abstract
The induction of hematopoiesis in various cell types via transcription factor (TF) reprogramming has been demonstrated by several strategies. The eventual goal of these approaches is to generate a product for unmet needs in hematopoietic cell transplantation therapies. The most successful strategies hew closely to clues provided from developmental hematopoiesis in terms of factor expression and environmental cues. In this review, we aim to summarize the TFs that play important roles in developmental hematopoiesis primarily and to also touch on adult hematopoiesis. Several aspects of cellular and molecular biology coalesce in this process, with TFs and surrounding cellular signals playing a major role in the overall development of the hematopoietic lineage. We attempt to put these elements into the context of reprogramming and highlight their roles.
Collapse
Affiliation(s)
- Michael G Daniel
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York City, New York.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York City, New York.,The Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Katrina Rapp
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York City, New York.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Christoph Schaniel
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York City, New York.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York City, New York.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York.,Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Kateri A Moore
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York City, New York.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York City, New York
| |
Collapse
|
28
|
Castaño J, Aranda S, Bueno C, Calero-Nieto FJ, Mejia-Ramirez E, Mosquera JL, Blanco E, Wang X, Prieto C, Zabaleta L, Mereu E, Rovira M, Jiménez-Delgado S, Matson DR, Heyn H, Bresnick EH, Göttgens B, Di Croce L, Menendez P, Raya A, Giorgetti A. GATA2 Promotes Hematopoietic Development and Represses Cardiac Differentiation of Human Mesoderm. Stem Cell Reports 2019; 13:515-529. [PMID: 31402335 PMCID: PMC6742600 DOI: 10.1016/j.stemcr.2019.07.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 02/02/2023] Open
Abstract
In vertebrates, GATA2 is a master regulator of hematopoiesis and is expressed throughout embryo development and in adult life. Although the essential role of GATA2 in mouse hematopoiesis is well established, its involvement during early human hematopoietic development is not clear. By combining time-controlled overexpression of GATA2 with genetic knockout experiments, we found that GATA2, at the mesoderm specification stage, promotes the generation of hemogenic endothelial progenitors and their further differentiation to hematopoietic progenitor cells, and negatively regulates cardiac differentiation. Surprisingly, genome-wide transcriptional and chromatin immunoprecipitation analysis showed that GATA2 bound to regulatory regions, and repressed the expression of cardiac development-related genes. Moreover, genes important for hematopoietic differentiation were upregulated by GATA2 in a mostly indirect manner. Collectively, our data reveal a hitherto unrecognized role of GATA2 as a repressor of cardiac fates, and highlight the importance of coordinating the specification and repression of alternative cell fates.
Collapse
Affiliation(s)
- Julio Castaño
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Gran Via de L'Hospitalet, 199-203, Hospitalet de Llobregat, Barcelona 08908, Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Sergi Aranda
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona 08036, Spain
| | - Fernando J Calero-Nieto
- Department of Hematology, Wellcome and MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Eva Mejia-Ramirez
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Gran Via de L'Hospitalet, 199-203, Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Jose Luis Mosquera
- Bioinformatics Unit, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, 08908 Spain
| | - Enrique Blanco
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Xiaonan Wang
- Department of Hematology, Wellcome and MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Cristina Prieto
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona 08036, Spain
| | - Lorea Zabaleta
- Laboratory of Hematological Diseases, Fundación Inbiomed, San Sebastian, 20009, Spain
| | - Elisabetta Mereu
- CNAG-CRG, Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Meritxell Rovira
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Gran Via de L'Hospitalet, 199-203, Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Senda Jiménez-Delgado
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Gran Via de L'Hospitalet, 199-203, Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Daniel R Matson
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Holger Heyn
- CNAG-CRG, Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Emery H Bresnick
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Berthold Göttgens
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona 08036, Spain
| | - Luciano Di Croce
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Universitat Pompeu Fabra, Barcelona 08003, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona 08036, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain; Centro de Investigación Biomedica en Red en Cancer (CIBERONIC) ISCIII, Barcelona, Spain
| | - Angel Raya
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Gran Via de L'Hospitalet, 199-203, Hospitalet de Llobregat, Barcelona 08908, Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid 28029, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Alessandra Giorgetti
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Gran Via de L'Hospitalet, 199-203, Hospitalet de Llobregat, Barcelona 08908, Spain.
| |
Collapse
|
29
|
Tian TV, Di Stefano B, Stik G, Vila-Casadesús M, Sardina JL, Vidal E, Dasti A, Segura-Morales C, De Andrés-Aguayo L, Gómez A, Goldmann J, Jaenisch R, Graf T. Whsc1 links pluripotency exit with mesendoderm specification. Nat Cell Biol 2019; 21:824-834. [PMID: 31235934 DOI: 10.1038/s41556-019-0342-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 05/09/2019] [Indexed: 12/19/2022]
Abstract
How pluripotent stem cells differentiate into the main germ layers is a key question of developmental biology. Here, we show that the chromatin-related factor Whsc1 (also known as Nsd2 and MMSET) has a dual role in pluripotency exit and germ layer specification of embryonic stem cells. On induction of differentiation, a proportion of Whsc1-depleted embryonic stem cells remain entrapped in a pluripotent state and fail to form mesendoderm, although they are still capable of generating neuroectoderm. These functions of Whsc1 are independent of its methyltransferase activity. Whsc1 binds to enhancers of the mesendodermal regulators Gata4, T (Brachyury), Gata6 and Foxa2, together with Brd4, and activates the expression of these genes. Depleting each of these regulators also delays pluripotency exit, suggesting that they mediate the effects observed with Whsc1. Our data indicate that Whsc1 links silencing of the pluripotency regulatory network with activation of mesendoderm lineages.
Collapse
Affiliation(s)
- Tian V Tian
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Bruno Di Stefano
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Grégoire Stik
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maria Vila-Casadesús
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - José Luis Sardina
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Enrique Vidal
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Alessandro Dasti
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carolina Segura-Morales
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luisa De Andrés-Aguayo
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Antonio Gómez
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Johanna Goldmann
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,The Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Rudolf Jaenisch
- The Whitehead Institute for Biomedical Research, Cambridge, MA, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thomas Graf
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain. .,Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
30
|
Ben Zouari Y, Molitor AM, Sikorska N, Pancaldi V, Sexton T. ChiCMaxima: a robust and simple pipeline for detection and visualization of chromatin looping in Capture Hi-C. Genome Biol 2019; 20:102. [PMID: 31118054 PMCID: PMC6532271 DOI: 10.1186/s13059-019-1706-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/03/2019] [Indexed: 12/19/2022] Open
Abstract
Capture Hi-C (CHi-C) is a new technique for assessing genome organization based on chromosome conformation capture coupled to oligonucleotide capture of regions of interest, such as gene promoters. Chromatin loop detection is challenging because existing Hi-C/4C-like tools, which make different assumptions about the technical biases presented, are often unsuitable. We describe a new approach, ChiCMaxima, which uses local maxima combined with limited filtering to detect DNA looping interactions, integrating information from biological replicates. ChiCMaxima shows more stringency and robustness compared to previously developed tools. The tool includes a GUI browser for flexible visualization of CHi-C profiles alongside epigenomic tracks.
Collapse
Affiliation(s)
- Yousra Ben Zouari
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- CNRS UMR7104, Illkirch, France
- INSERM U1258, Illkirch, France
- University of Strasbourg, Illkirch, France
| | - Anne M Molitor
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- CNRS UMR7104, Illkirch, France
- INSERM U1258, Illkirch, France
- University of Strasbourg, Illkirch, France
| | - Natalia Sikorska
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- CNRS UMR7104, Illkirch, France
- INSERM U1258, Illkirch, France
- University of Strasbourg, Illkirch, France
| | - Vera Pancaldi
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM U1037, Toulouse, France
- University Paul Sabatier III, Toulouse, France
- Barcelona Supercomputing Center, Barcelona, Spain
| | - Tom Sexton
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France.
- CNRS UMR7104, Illkirch, France.
- INSERM U1258, Illkirch, France.
- University of Strasbourg, Illkirch, France.
| |
Collapse
|
31
|
Foley TE, Hess B, Savory JGA, Ringuette R, Lohnes D. Role of Cdx factors in early mesodermal fate decisions. Development 2019; 146:146/7/dev170498. [PMID: 30936115 DOI: 10.1242/dev.170498] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 03/01/2019] [Indexed: 12/30/2022]
Abstract
Murine cardiac and hematopoietic progenitors are derived from Mesp1+ mesoderm. Cdx function impacts both yolk sac hematopoiesis and cardiogenesis in zebrafish, suggesting that Cdx family members regulate early mesoderm cell fate decisions. We found that Cdx2 occupies a number of transcription factor loci during embryogenesis, including key regulators of both cardiac and blood development, and that Cdx function is required for normal expression of the cardiogenic transcription factors Nkx2-5 and Tbx5 Furthermore, Cdx and Brg1, an ATPase subunit of the SWI/SNF chromatin remodeling complex, co-occupy a number of loci, suggesting that Cdx family members regulate target gene expression through alterations in chromatin architecture. Consistent with this, we demonstrate loss of Brg1 occupancy and altered chromatin structure at several cardiogenic genes in Cdx-null mutants. Finally, we provide evidence for an onset of Cdx2 expression at E6.5 coinciding with egression of cardiac progenitors from the primitive streak. Together, these findings suggest that Cdx functions in multi-potential mesoderm to direct early cell fate decisions through transcriptional regulation of several novel target genes, and provide further insight into a potential epigenetic mechanism by which Cdx influences target gene expression.
Collapse
Affiliation(s)
- Tanya E Foley
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Bradley Hess
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Joanne G A Savory
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Randy Ringuette
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - David Lohnes
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
32
|
Kim YH, Kim BJ, Kim SM, Kim SU, Ryu BY. Induction of cardiomyocyte‑like cells from hair follicle cells in mice. Int J Mol Med 2019; 43:2230-2240. [PMID: 30864673 DOI: 10.3892/ijmm.2019.4133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 03/08/2019] [Indexed: 11/05/2022] Open
Abstract
Hair follicles (HFs) are a well‑characterized niche for adult stem cells (SCs), and include epithelial and melanocytic SCs. HF cells are an accessible source of multipotent adult SCs for the generation of the interfollicular epidermis, HF structures and sebaceous glands in addition to the reconstitution of novel HFs in vivo. In the present study, it was demonstrated that HF cells are able to be induced to differentiate into cardiomyocyte‑like cells in vitro under specific conditions. It was determined that HF cells cultured on OP9 feeder cells in KnockOut‑Dulbecco's modified Eagle's medium/B27 in the presence of vascular endothelial growth factors differentiated into cardiomyocyte‑like cells that express markers specific to cardiac lineage, but do not express non‑cardiac lineage markers including neural stem/progenitor cell, HF bulge cells or undifferentiated spermatogonia markers. These cardiomyocyte‑like cells exhibited a spindle‑ and filament‑shaped morphology similar to that presented by cardiac muscles and exhibited spontaneous beating that persisted for over 3 months. These results demonstrate that SC reprogramming and differentiation may be induced without resulting in any genetic modification, which is important for the clinical applications of SCs including tissue and organ regeneration.
Collapse
Affiliation(s)
- Yong-Hee Kim
- Department of Animal Science and Technology, College of Biotechnology and Natural Resources, Chung‑Ang University, Anseong, Gyeonggi‑do 17546, Republic of Korea
| | - Bang-Jin Kim
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seok-Man Kim
- Department of Animal Science and Technology, College of Biotechnology and Natural Resources, Chung‑Ang University, Anseong, Gyeonggi‑do 17546, Republic of Korea
| | - Sun-Uk Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk‑do 28116, Republic of Korea
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, College of Biotechnology and Natural Resources, Chung‑Ang University, Anseong, Gyeonggi‑do 17546, Republic of Korea
| |
Collapse
|
33
|
Abstract
Hematopoiesis is the process by which mature blood and immune cells are produced from hematopoietic stem and progenitor cells (HSCs and HSPCs). The last several decades of research have shed light on the origin of HSCs, as well as the heterogeneous pools of fetal progenitors that contribute to lifelong hematopoiesis. The overarching concept that hematopoiesis occurs in dynamic, overlapping waves throughout development, with each wave contributing to both continuous and developmentally limited cell types, has been solidified over the years. However, recent advances in our ability to track the production of hematopoietic cells in vivo have challenged several long-held dogmas on the origin and persistence of distinct hematopoietic cell types. In this review, we highlight emerging concepts in hematopoietic development and identify unanswered questions.
Collapse
Affiliation(s)
- Taylor Cool
- Institute for the Biology of Stem Cells, Program in Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - E Camilla Forsberg
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States.
| |
Collapse
|
34
|
Chagraoui H, Kristiansen MS, Ruiz JP, Serra-Barros A, Richter J, Hall-Ponselé E, Gray N, Waithe D, Clark K, Hublitz P, Repapi E, Otto G, Sopp P, Taylor S, Thongjuea S, Vyas P, Porcher C. SCL/TAL1 cooperates with Polycomb RYBP-PRC1 to suppress alternative lineages in blood-fated cells. Nat Commun 2018; 9:5375. [PMID: 30560907 PMCID: PMC6299140 DOI: 10.1038/s41467-018-07787-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 11/23/2018] [Indexed: 01/03/2023] Open
Abstract
During development, it is unclear if lineage-fated cells derive from multilineage-primed progenitors and whether active mechanisms operate to restrict cell fate. Here we investigate how mesoderm specifies into blood-fated cells. We document temporally restricted co-expression of blood (Scl/Tal1), cardiac (Mesp1) and paraxial (Tbx6) lineage-affiliated transcription factors in single cells, at the onset of blood specification, supporting the existence of common progenitors. At the same time-restricted stage, absence of SCL results in expansion of cardiac/paraxial cell populations and increased cardiac/paraxial gene expression, suggesting active suppression of alternative fates. Indeed, SCL normally activates expression of co-repressor ETO2 and Polycomb-PRC1 subunits (RYBP, PCGF5) and maintains levels of Polycomb-associated histone marks (H2AK119ub/H3K27me3). Genome-wide analyses reveal ETO2 and RYBP co-occupy most SCL target genes, including cardiac/paraxial loci. Reduction of Eto2 or Rybp expression mimics Scl-null cardiac phenotype. Therefore, SCL-mediated transcriptional repression prevents mis-specification of blood-fated cells, establishing active repression as central to fate determination processes.
Collapse
Affiliation(s)
- Hedia Chagraoui
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Maiken S Kristiansen
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Medimmune, Granta Park, CB21 6GH, Cambridge, UK
| | - Juan Pablo Ruiz
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Haematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ana Serra-Barros
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Johanna Richter
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Elisa Hall-Ponselé
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- MRC Centre for Regenerative Medicine, SCRM Building, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Nicki Gray
- Computational Biology Research Group, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Dominic Waithe
- Wolfson Imaging Centre, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Kevin Clark
- FACS Facility, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Philip Hublitz
- Genome Engineering Facility, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Emmanouela Repapi
- Computational Biology Research Group, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Georg Otto
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Oxford National Institute for Health Research, Biomedical Research Centre, Haematology Theme, Oxford University Hospital, Oxford, OX3 9DU, UK
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Paul Sopp
- FACS Facility, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Stephen Taylor
- Computational Biology Research Group, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Supat Thongjuea
- Computational Biology Research Group, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Oxford National Institute for Health Research, Biomedical Research Centre, Haematology Theme, Oxford University Hospital, Oxford, OX3 9DU, UK
| | - Paresh Vyas
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Oxford National Institute for Health Research, Biomedical Research Centre, Haematology Theme, Oxford University Hospital, Oxford, OX3 9DU, UK
| | - Catherine Porcher
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK.
| |
Collapse
|
35
|
Wang M, Wang H, Wen Y, Chen X, Liu X, Gao J, Su P, Xu Y, Zhou W, Shi L, Zhou J. MEIS2 regulates endothelial to hematopoietic transition of human embryonic stem cells by targeting TAL1. Stem Cell Res Ther 2018; 9:340. [PMID: 30526668 PMCID: PMC6286587 DOI: 10.1186/s13287-018-1074-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/29/2018] [Accepted: 11/12/2018] [Indexed: 01/10/2023] Open
Abstract
Background Despite considerable progress in the development of methods for hematopoietic differentiation, efficient generation of transplantable hematopoietic stem cells (HSCs) and other genuine functional blood cells from human embryonic stem cells (hESCs) is still unsuccessful. Therefore, a better understanding of the molecular mechanism underlying hematopoietic differentiation of hESCs is highly demanded. Methods In this study, by using whole-genome gene profiling, we identified Myeloid Ectopic Viral Integration Site 2 homolog (MEIS2) as a potential regulator of hESC early hematopoietic differentiation. We deleted MEIS2 gene in hESCs using the CRISPR/CAS9 technology and induced them to hematopoietic differentiation, megakaryocytic differentiation. Results In this study, we found that MEIS2 deletion impairs early hematopoietic differentiation from hESCs. Furthermore, MEIS2 deletion suppresses hemogenic endothelial specification and endothelial to hematopoietic transition (EHT), leading to the impairment of hematopoietic differentiation. Mechanistically, TAL1 acts as a downstream gene mediating the function of MEIS2 during early hematopoiesis. Interestingly, unlike MEIS1, MEIS2 deletion exerts minimal effects on megakaryocytic differentiation and platelet generation from hESCs. Conclusions Our findings advance the understanding of human hematopoietic development and may provide new insights for large-scale generation of functional blood cells for clinical applications. Electronic supplementary material The online version of this article (10.1186/s13287-018-1074-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mengge Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China
| | - Hongtao Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China
| | - Yuqi Wen
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China
| | - Xiaoyuan Chen
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China
| | - Xin Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China
| | - Pei Su
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China
| | - Yuanfu Xu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China
| | - Wen Zhou
- School of Basic Medical Science and Cancer Research Institute, Central South University, Changsha, 410013, China
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Tianjin, 300020, China. .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China.
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Tianjin, 300020, China. .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China.
| |
Collapse
|
36
|
Massaia A, Chaves P, Samari S, Miragaia RJ, Meyer K, Teichmann SA, Noseda M. Single Cell Gene Expression to Understand the Dynamic Architecture of the Heart. Front Cardiovasc Med 2018; 5:167. [PMID: 30525044 PMCID: PMC6258739 DOI: 10.3389/fcvm.2018.00167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/29/2018] [Indexed: 12/21/2022] Open
Abstract
The recent development of single cell gene expression technologies, and especially single cell transcriptomics, have revolutionized the way biologists and clinicians investigate organs and organisms, allowing an unprecedented level of resolution to the description of cell demographics in both healthy and diseased states. Single cell transcriptomics provide information on prevalence, heterogeneity, and gene co-expression at the individual cell level. This enables a cell-centric outlook to define intracellular gene regulatory networks and to bridge toward the definition of intercellular pathways otherwise masked in bulk analysis. The technologies have developed at a fast pace producing a multitude of different approaches, with several alternatives to choose from at any step, including single cell isolation and capturing, lysis, RNA reverse transcription and cDNA amplification, library preparation, sequencing, and computational analyses. Here, we provide guidelines for the experimental design of single cell RNA sequencing experiments, exploring the current options for the crucial steps. Furthermore, we provide a complete overview of the typical data analysis workflow, from handling the raw sequencing data to making biological inferences. Significantly, advancements in single cell transcriptomics have already contributed to outstanding exploratory and functional studies of cardiac development and disease models, as summarized in this review. In conclusion, we discuss achievable outcomes of single cell transcriptomics' applications in addressing unanswered questions and influencing future cardiac clinical applications.
Collapse
Affiliation(s)
- Andrea Massaia
- British Heart Foundation Centre of Research Excellence and British Heart Foundation Centre for Regenerative Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Patricia Chaves
- British Heart Foundation Centre of Research Excellence and British Heart Foundation Centre for Regenerative Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sara Samari
- British Heart Foundation Centre of Research Excellence and British Heart Foundation Centre for Regenerative Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Kerstin Meyer
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Sarah Amalia Teichmann
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Michela Noseda
- British Heart Foundation Centre of Research Excellence and British Heart Foundation Centre for Regenerative Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
37
|
Kang H, Mesquitta WT, Jung HS, Moskvin OV, Thomson JA, Slukvin II. GATA2 Is Dispensable for Specification of Hemogenic Endothelium but Promotes Endothelial-to-Hematopoietic Transition. Stem Cell Reports 2018; 11:197-211. [PMID: 29861167 PMCID: PMC6066910 DOI: 10.1016/j.stemcr.2018.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 01/05/2023] Open
Abstract
The transcriptional factor GATA2 is required for blood and hematopoietic stem cell formation during the hemogenic endothelium (HE) stage of development in the embryo. However, it is unclear if GATA2 controls HE lineage specification or if it solely regulates endothelial-to-hematopoietic transition (EHT). To address this problem, we innovated a unique system, which involved generating GATA2 knockout human embryonic stem cell (hESC) lines with conditional GATA2 expression (iG2-/- hESCs). We demonstrated that GATA2 activity is not required for VE-cadherin+CD43-CD73+ non-HE or VE-cadherin+CD43-CD73- HE generation and subsequent HE diversification into DLL4+ arterial and DLL4- non-arterial lineages. However, GATA2 is primarily needed for HE to undergo EHT. Forced expression of GATA2 in non-HE failed to induce blood formation. The lack of GATA2 requirement for generation of HE and non-HE indicates the critical role of GATA2-independent pathways in specification of these two distinct endothelial lineages.
Collapse
Affiliation(s)
- HyunJun Kang
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, 1220 Capitol Court, Madison, WI 53715, USA
| | - Walatta-Tseyon Mesquitta
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, 1220 Capitol Court, Madison, WI 53715, USA
| | - Ho Sun Jung
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, 1220 Capitol Court, Madison, WI 53715, USA
| | - Oleg V Moskvin
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, 1220 Capitol Court, Madison, WI 53715, USA
| | - James A Thomson
- Morgridge Institute for Research, 330 N. Orchard Street, Madison, WI 53715, USA; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53707-7365, USA; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Igor I Slukvin
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, 1220 Capitol Court, Madison, WI 53715, USA; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53707-7365, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin Medical School, 600 Highland Avenue, Madison, WI 53792, USA.
| |
Collapse
|
38
|
Wang YJ, Huang J, Liu W, Kou X, Tang H, Wang H, Yu X, Gao S, Ouyang K, Yang HT. IP3R-mediated Ca2+ signals govern hematopoietic and cardiac divergence of Flk1+ cells via the calcineurin-NFATc3-Etv2 pathway. J Mol Cell Biol 2018; 9:274-288. [PMID: 28419336 DOI: 10.1093/jmcb/mjx014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 04/10/2017] [Indexed: 12/30/2022] Open
Abstract
Ca2+ signals participate in various cellular processes with spatial and temporal dynamics, among which, inositol 1,4,5-trisphosphate receptors (IP3Rs)-mediated Ca2+ signals are essential for early development. However, the underlying mechanisms of IP3R-regulated cell fate decision remain largely unknown. Here we report that IP3Rs are required for the hematopoietic and cardiac fate divergence of mouse embryonic stem cells (mESCs). Deletion of IP3Rs (IP3R-tKO) reduced Flk1+/PDGFRα- hematopoietic mesoderm, c-Kit+/CD41+ hematopoietic progenitor cell population, and the colony-forming unit activity, but increased cardiac progenitor markers as well as cardiomyocytes. Concomitantly, the expression of a key regulator of hematopoiesis, Etv2, was reduced in IP3R-tKO cells, which could be rescued by the activation of Ca2+ signals and calcineurin or overexpression of constitutively active form of NFATc3. Furthermore, IP3R-tKO impaired specific targeting of Etv2 by NFATc3 via its evolutionarily conserved cis-element in differentiating ESCs. Importantly, the activation of Ca2+-calcineurin-NFAT pathway reversed the phenotype of IP3R-tKO cells. These findings reveal an unrecognized governing role of IP3Rs in hematopoietic and cardiac fate commitment via IP3Rs-Ca2+-calcineurin-NFATc3-Etv2 pathway.
Collapse
Affiliation(s)
- Yi-Jie Wang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Jijun Huang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Wenqiang Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaochen Kou
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Huayuan Tang
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Hong Wang
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiujian Yu
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Kunfu Ouyang
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Huang-Tian Yang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China.,Second Affiliated Hospital, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
39
|
Palpant NJ, Wang Y, Hadland B, Zaunbrecher RJ, Redd M, Jones D, Pabon L, Jain R, Epstein J, Ruzzo WL, Zheng Y, Bernstein I, Margolin A, Murry CE. Chromatin and Transcriptional Analysis of Mesoderm Progenitor Cells Identifies HOPX as a Regulator of Primitive Hematopoiesis. Cell Rep 2018; 20:1597-1608. [PMID: 28813672 DOI: 10.1016/j.celrep.2017.07.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/05/2017] [Accepted: 07/24/2017] [Indexed: 11/30/2022] Open
Abstract
We analyzed chromatin dynamics and transcriptional activity of human embryonic stem cell (hESC)-derived cardiac progenitor cells (CPCs) and KDR+/CD34+ endothelial cells generated from different mesodermal origins. Using an unbiased algorithm to hierarchically rank genes modulated at the level of chromatin and transcription, we identified candidate regulators of mesodermal lineage determination. HOPX, a non-DNA-binding homeodomain protein, was identified as a candidate regulator of blood-forming endothelial cells. Using HOPX reporter and knockout hESCs, we show that HOPX regulates blood formation. Loss of HOPX does not impact endothelial fate specification but markedly reduces primitive hematopoiesis, acting at least in part through failure to suppress Wnt/β-catenin signaling. Thus, chromatin state analysis permits identification of regulators of mesodermal specification, including a conserved role for HOPX in governing primitive hematopoiesis.
Collapse
Affiliation(s)
- Nathan J Palpant
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington School of Medicine, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA.
| | - Yuliang Wang
- Department of Computer Science, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Brandon Hadland
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Rebecca J Zaunbrecher
- Department of Bioengineering, University of Washington School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington School of Medicine, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Meredith Redd
- Department of Bioengineering, University of Washington School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington School of Medicine, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Daniel Jones
- Department of Computer Science, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Lil Pabon
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington School of Medicine, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Rajan Jain
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan Epstein
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Walter L Ruzzo
- Department of Computer Science, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Ying Zheng
- Department of Bioengineering, University of Washington School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington School of Medicine, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Irwin Bernstein
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Adam Margolin
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Charles E Murry
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Medicine/Cardiology, University of Washington School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington School of Medicine, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
40
|
Jha R, Singh M, Wu Q, Gentillon C, Preininger MK, Xu C. Downregulation of LGR5 Expression Inhibits Cardiomyocyte Differentiation and Potentiates Endothelial Differentiation from Human Pluripotent Stem Cells. Stem Cell Reports 2018; 9:513-527. [PMID: 28793247 PMCID: PMC5550222 DOI: 10.1016/j.stemcr.2017.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 01/09/2023] Open
Abstract
Understanding molecules involved in differentiation of human pluripotent stem cells (hPSCs) into cardiomyocytes and endothelial cells is important in advancing hPSCs for cell therapy and drug testing. Here, we report that LGR5, a leucine-rich repeat-containing G-protein-coupled receptor, plays a critical role in hPSC differentiation into cardiomyocytes and endothelial cells. LGR5 expression was transiently upregulated during the early stage of cardiomyocyte differentiation, and knockdown of LGR5 resulted in reduced expression of cardiomyocyte-associated markers and poor cardiac differentiation. In contrast, knockdown of LGR5 promoted differentiation of endothelial-like cells with increased expression of endothelial cell markers and appropriate functional characteristics, including the ability to form tube-like structures and to take up acetylated low-density lipoproteins. Furthermore, knockdown of LGR5 significantly reduced the proliferation of differentiated cells and increased the nuclear translocation of β-catenin and expression of Wnt signaling-related genes. Therefore, regulation of LGR5 may facilitate efficient generation of cardiomyocytes or endothelial cells from hPSCs. LGR5 expression is upregulated in the early stage of cardiomyocyte differentiation Knockdown of LGR5 inhibits differentiation of cardiomyocytes Knockdown of LGR5 increases differentiation of endothelial cells Knockdown of LGR5 decreases the expression of Wnt signaling-related genes
Collapse
Affiliation(s)
- Rajneesh Jha
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA
| | - Monalisa Singh
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA
| | - Qingling Wu
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Cinsley Gentillon
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA
| | - Marcela K Preininger
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Chunhui Xu
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
41
|
Griffiths JA, Scialdone A, Marioni JC. Using single-cell genomics to understand developmental processes and cell fate decisions. Mol Syst Biol 2018; 14:e8046. [PMID: 29661792 PMCID: PMC5900446 DOI: 10.15252/msb.20178046] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/20/2017] [Accepted: 01/19/2018] [Indexed: 12/20/2022] Open
Abstract
High-throughput -omics techniques have revolutionised biology, allowing for thorough and unbiased characterisation of the molecular states of biological systems. However, cellular decision-making is inherently a unicellular process to which "bulk" -omics techniques are poorly suited, as they capture ensemble averages of cell states. Recently developed single-cell methods bridge this gap, allowing high-throughput molecular surveys of individual cells. In this review, we cover core concepts of analysis of single-cell gene expression data and highlight areas of developmental biology where single-cell techniques have made important contributions. These include understanding of cell-to-cell heterogeneity, the tracing of differentiation pathways, quantification of gene expression from specific alleles, and the future directions of cell lineage tracing and spatial gene expression analysis.
Collapse
Affiliation(s)
| | - Antonio Scialdone
- EMBL-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, München, Germany
- Institute of Functional Epigenetics, Helmholtz Zentrum München, München, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, München, Germany
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- EMBL-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| |
Collapse
|
42
|
Bergiers I, Andrews T, Vargel Bölükbaşı Ö, Buness A, Janosz E, Lopez-Anguita N, Ganter K, Kosim K, Celen C, Itır Perçin G, Collier P, Baying B, Benes V, Hemberg M, Lancrin C. Single-cell transcriptomics reveals a new dynamical function of transcription factors during embryonic hematopoiesis. eLife 2018; 7:29312. [PMID: 29555020 PMCID: PMC5860872 DOI: 10.7554/elife.29312] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 02/15/2018] [Indexed: 11/22/2022] Open
Abstract
Recent advances in single-cell transcriptomics techniques have opened the door to the study of gene regulatory networks (GRNs) at the single-cell level. Here, we studied the GRNs controlling the emergence of hematopoietic stem and progenitor cells from mouse embryonic endothelium using a combination of single-cell transcriptome assays. We found that a heptad of transcription factors (Runx1, Gata2, Tal1, Fli1, Lyl1, Erg and Lmo2) is specifically co-expressed in an intermediate population expressing both endothelial and hematopoietic markers. Within the heptad, we identified two sets of factors of opposing functions: one (Erg/Fli1) promoting the endothelial cell fate, the other (Runx1/Gata2) promoting the hematopoietic fate. Surprisingly, our data suggest that even though Fli1 initially supports the endothelial cell fate, it acquires a pro-hematopoietic role when co-expressed with Runx1. This work demonstrates the power of single-cell RNA-sequencing for characterizing complex transcription factor dynamics.
Collapse
Affiliation(s)
- Isabelle Bergiers
- European Molecular Biology Laboratory, EMBL Rome, Monterotondo, Italy
| | | | | | - Andreas Buness
- European Molecular Biology Laboratory, EMBL Rome, Monterotondo, Italy
| | - Ewa Janosz
- European Molecular Biology Laboratory, EMBL Rome, Monterotondo, Italy
| | | | - Kerstin Ganter
- European Molecular Biology Laboratory, EMBL Rome, Monterotondo, Italy
| | - Kinga Kosim
- European Molecular Biology Laboratory, EMBL Rome, Monterotondo, Italy
| | - Cemre Celen
- European Molecular Biology Laboratory, EMBL Rome, Monterotondo, Italy
| | - Gülce Itır Perçin
- European Molecular Biology Laboratory, EMBL Rome, Monterotondo, Italy
| | - Paul Collier
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Bianka Baying
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Martin Hemberg
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | |
Collapse
|
43
|
Vagapova ER, Spirin PV, Lebedev TD, Prassolov VS. The Role of TAL1 in Hematopoiesis and Leukemogenesis. Acta Naturae 2018; 10:15-23. [PMID: 29713515 PMCID: PMC5916730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
TAL1 (SCL/TAL1, T-cell acute leukemia protein 1) is a transcription factor that is involved in the process of hematopoiesis and leukemogenesis. It participates in blood cell formation, forms mesoderm in early embryogenesis, and regulates hematopoiesis in adult organisms. TAL1 is essential in maintaining the multipotency of hematopoietic stem cells (HSC) and keeping them in quiescence (stage G0). TAL1 forms complexes with various transcription factors, regulating hematopoiesis (E2A/HEB, GATA1-3, LMO1-2, Ldb1, ETO2, RUNX1, ERG, FLI1). In these complexes, TAL1 regulates normal myeloid differentiation, controls the proliferation of erythroid progenitors, and determines the choice of the direction of HSC differentiation. The transcription factors TAL1, E2A, GATA1 (or GATA2), LMO2, and Ldb1 are the major components of the SCL complex. In addition to normal hematopoiesis, this complex may also be involved in the process of blood cell malignant transformation. Upregulation of C-KIT expression is one of the main roles played by the SCL complex. Today, TAL1 and its partners are considered promising therapeutic targets in the treatment of T-cell acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- E. R. Vagapova
- The Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, Moscow,119991, Russia
| | - P. V. Spirin
- The Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, Moscow,119991, Russia
| | - T. D. Lebedev
- The Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, Moscow,119991, Russia
| | - V. S. Prassolov
- The Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, Moscow,119991, Russia
| |
Collapse
|
44
|
Zhou J, Sharkey J, Shukla R, Plagge A, Murray P. Assessing the Effectiveness of a Far-Red Fluorescent Reporter for Tracking Stem Cells In Vivo. Int J Mol Sci 2017; 19:E19. [PMID: 29271879 PMCID: PMC5795970 DOI: 10.3390/ijms19010019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/15/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022] Open
Abstract
Far-red fluorescent reporter genes can be used for tracking cells non-invasively in vivo using fluorescence imaging. Here, we investigate the effectiveness of the far-red fluorescent protein, E2-Crimson (E2C), for tracking mouse embryonic cells (mESCs) in vivo following subcutaneous administration into mice. Using a knock-in strategy, we introduced E2C into the Rosa26 locus of an E14-Bra-GFP mESC line, and after confirming that the E2C had no obvious effect on the phenotype of the mESCs, we injected them into mice and imaged them over nine days. The results showed that fluorescence intensity was weak, and cells could only be detected when injected at high densities. Furthermore, intensity peaked on day 4 and then started to decrease, despite the fact that tumour volume continued to increase beyond day 4. Histopathological analysis showed that although E2C fluorescence could barely be detected in vivo at day 9, analysis of frozen sections indicated that all mESCs within the tumours continued to express E2C. We hypothesise that the decrease in fluorescence intensity in vivo was probably due to the fact that the mESC tumours became more vascular with time, thus leading to increased absorbance of E2C fluorescence by haemoglobin. We conclude that the E2C reporter has limited use for tracking cells in vivo, at least when introduced as a single copy into the Rosa26 locus.
Collapse
Affiliation(s)
- Jing Zhou
- Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK.
| | - Jack Sharkey
- Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK.
- Centre for Preclinical Imaging, University of Liverpool, Liverpool L69 3GE, UK.
| | - Rajeev Shukla
- Alder Hey Children's NHS Foundation Trust, Liverpool L12 2AP, UK.
| | - Antonius Plagge
- Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK.
| | - Patricia Murray
- Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK.
- Centre for Preclinical Imaging, University of Liverpool, Liverpool L69 3GE, UK.
| |
Collapse
|
45
|
Lee LK, Ghorbanian Y, Wang W, Wang Y, Kim YJ, Weissman IL, Inlay MA, Mikkola HKA. LYVE1 Marks the Divergence of Yolk Sac Definitive Hemogenic Endothelium from the Primitive Erythroid Lineage. Cell Rep 2017; 17:2286-2298. [PMID: 27880904 PMCID: PMC6940422 DOI: 10.1016/j.celrep.2016.10.080] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 09/01/2016] [Accepted: 10/21/2016] [Indexed: 01/08/2023] Open
Abstract
The contribution of the different waves and sites of developmental hematopoiesis to fetal and adult blood production remains unclear. Here, we identify lymphatic vessel endothelial hyaluronan receptor-1 (LYVE1) as a marker of yolk sac (YS) endothelium and definitive hematopoietic stem and progenitor cells (HSPCs). Endothelium in mid-gestation YS and vitelline vessels, but not the dorsal aorta and placenta, were labeled by Lyve1-Cre. Most YS HSPCs and erythro-myeloid progenitors were Lyve1-Cre lineage traced, but primitive erythroid cells were not, suggesting that they represent distinct lineages. Fetal liver (FL) and adult HSPCs showed 35%-40% Lyve1-Cre marking. Analysis of circulation-deficient Ncx1-/- concepti identified the YS as a major source of Lyve1-Cre labeled HSPCs. FL proerythroblast marking was extensive at embryonic day (E) 11.5-13.5, but decreased to hematopoietic stem cell (HSC) levels by E16.5, suggesting that HSCs from multiple sources became responsible for erythropoiesis. Lyve1-Cre thus marks the divergence between YS primitive and definitive hematopoiesis and provides a tool for targeting YS definitive hematopoiesis and FL colonization.
Collapse
Affiliation(s)
- Lydia K Lee
- Department of Molecular, Cell & Developmental Biology, UCLA, Los Angeles, CA 90095, USA; Department of Obstetrics and Gynecology, UCLA, Los Angeles, CA 90095, USA
| | - Yasamine Ghorbanian
- Sue and Bill Gross Stem Cell Research Center, Department of Molecular Biology & Biochemistry at UCI, Irvine, CA 92697, USA
| | - Wenyuan Wang
- Department of Molecular, Cell & Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Yanling Wang
- Department of Molecular, Cell & Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Yeon Joo Kim
- Department of Molecular, Cell & Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Irving L Weissman
- Institute of Stem Cell Biology and Regenerative Medicine and Ludwig Center, Stanford University, Stanford, CA 94305, USA
| | - Matthew A Inlay
- Sue and Bill Gross Stem Cell Research Center, Department of Molecular Biology & Biochemistry at UCI, Irvine, CA 92697, USA
| | - Hanna K A Mikkola
- Department of Molecular, Cell & Developmental Biology, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
46
|
Beisaw A, Tsaytler P, Koch F, Schmitz SU, Melissari MT, Senft AD, Wittler L, Pennimpede T, Macura K, Herrmann BG, Grote P. BRACHYURY directs histone acetylation to target loci during mesoderm development. EMBO Rep 2017; 19:118-134. [PMID: 29141987 DOI: 10.15252/embr.201744201] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 10/19/2017] [Accepted: 10/25/2017] [Indexed: 12/24/2022] Open
Abstract
T-box transcription factors play essential roles in multiple aspects of vertebrate development. Here, we show that cooperative function of BRACHYURY (T) with histone-modifying enzymes is essential for mouse embryogenesis. A single point mutation (TY88A) results in decreased histone 3 lysine 27 acetylation (H3K27ac) at T target sites, including the T locus, suggesting that T autoregulates the maintenance of its expression and functions by recruiting permissive chromatin modifications to putative enhancers during mesoderm specification. Our data indicate that T mediates H3K27ac recruitment through a physical interaction with p300. In addition, we determine that T plays a prominent role in the specification of hematopoietic and endothelial cell types. Hematopoietic and endothelial gene expression programs are disrupted in TY88A mutant embryos, leading to a defect in the differentiation of hematopoietic progenitors. We show that this role of T is mediated, at least in part, through activation of a distal Lmo2 enhancer.
Collapse
Affiliation(s)
- Arica Beisaw
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany.,Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Pavel Tsaytler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Frederic Koch
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sandra U Schmitz
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Maria-Theodora Melissari
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Anna D Senft
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lars Wittler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Tracie Pennimpede
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Karol Macura
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Bernhard G Herrmann
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Institute for Medical Genetics, Charité-University Medicine Berlin Campus Benjamin Franklin, Berlin, Germany
| | - Phillip Grote
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany .,Institute of Cardiovascular Regeneration, Center for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
47
|
SCL/TAL1: a multifaceted regulator from blood development to disease. Blood 2017; 129:2051-2060. [DOI: 10.1182/blood-2016-12-754051] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022] Open
Abstract
Abstract
SCL/TAL1 (stem cell leukemia/T-cell acute lymphoblastic leukemia [T-ALL] 1) is an essential transcription factor in normal and malignant hematopoiesis. It is required for specification of the blood program during development, adult hematopoietic stem cell survival and quiescence, and terminal maturation of select blood lineages. Following ectopic expression, SCL contributes to oncogenesis in T-ALL. Remarkably, SCL’s activities are all mediated through nucleation of a core quaternary protein complex (SCL:E-protein:LMO1/2 [LIM domain only 1 or 2]:LDB1 [LIM domain-binding protein 1]) and dynamic recruitment of conserved combinatorial associations of additional regulators in a lineage- and stage-specific context. The finely tuned control of SCL’s regulatory functions (lineage priming, activation, and repression of gene expression programs) provides insight into fundamental developmental and transcriptional mechanisms, and highlights mechanistic parallels between normal and oncogenic processes. Importantly, recent discoveries are paving the way to the development of innovative therapeutic opportunities in SCL+ T-ALL.
Collapse
|
48
|
Zhao H, Xu C, Lee TJ, Liu F, Choi K. ETS transcription factor ETV2/ER71/Etsrp in hematopoietic and vascular development, injury, and regeneration. Dev Dyn 2017; 246:318-327. [DOI: 10.1002/dvdy.24483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/13/2016] [Accepted: 12/13/2016] [Indexed: 12/17/2022] Open
Affiliation(s)
- Haiyong Zhao
- Department of Pathology and Immunology; Washington University School of Medicine; St. Louis Missouri
| | - Canxin Xu
- Department of Pathology and Immunology; Washington University School of Medicine; St. Louis Missouri
| | - Tae-Jin Lee
- Department of Pathology and Immunology; Washington University School of Medicine; St. Louis Missouri
| | - Fang Liu
- Department of Pathology and Immunology; Washington University School of Medicine; St. Louis Missouri
| | - Kyunghee Choi
- Department of Pathology and Immunology; Washington University School of Medicine; St. Louis Missouri
- Developmental; Regenerative, and Stem Cell Biology Program, Washington University School of Medicine; St. Louis Missouri
| |
Collapse
|
49
|
Zacher B, Michel M, Schwalb B, Cramer P, Tresch A, Gagneur J. Accurate Promoter and Enhancer Identification in 127 ENCODE and Roadmap Epigenomics Cell Types and Tissues by GenoSTAN. PLoS One 2017; 12:e0169249. [PMID: 28056037 PMCID: PMC5215863 DOI: 10.1371/journal.pone.0169249] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/14/2016] [Indexed: 12/22/2022] Open
Abstract
Accurate maps of promoters and enhancers are required for understanding transcriptional regulation. Promoters and enhancers are usually mapped by integration of chromatin assays charting histone modifications, DNA accessibility, and transcription factor binding. However, current algorithms are limited by unrealistic data distribution assumptions. Here we propose GenoSTAN (Genomic STate ANnotation), a hidden Markov model overcoming these limitations. We map promoters and enhancers for 127 cell types and tissues from the ENCODE and Roadmap Epigenomics projects, today’s largest compendium of chromatin assays. Extensive benchmarks demonstrate that GenoSTAN generally identifies promoters and enhancers with significantly higher accuracy than previous methods. Moreover, GenoSTAN-derived promoters and enhancers showed significantly higher enrichment of complex trait-associated genetic variants than current annotations. Altogether, GenoSTAN provides an easy-to-use tool to define promoters and enhancers in any system, and our annotation of human transcriptional cis-regulatory elements constitutes a rich resource for future research in biology and medicine.
Collapse
Affiliation(s)
- Benedikt Zacher
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität Munich, Germany
- * E-mail: (BZ); (AT); (JG)
| | - Margaux Michel
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Björn Schwalb
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Achim Tresch
- Department of Biology, University of Cologne, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- * E-mail: (BZ); (AT); (JG)
| | - Julien Gagneur
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität Munich, Germany
- * E-mail: (BZ); (AT); (JG)
| |
Collapse
|
50
|
Obier N, Bonifer C. Chromatin programming by developmentally regulated transcription factors: lessons from the study of haematopoietic stem cell specification and differentiation. FEBS Lett 2016; 590:4105-4115. [PMID: 27497427 DOI: 10.1002/1873-3468.12343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 07/26/2016] [Accepted: 07/31/2016] [Indexed: 01/08/2023]
Abstract
Although the body plan of individuals is encoded in their genomes, each cell type expresses a different gene expression programme and therefore has access to only a subset of this information. Alterations to gene expression programmes are the underlying basis for the differentiation of multiple cell types and are driven by tissue-specific transcription factors (TFs) that interact with the epigenetic regulatory machinery to programme the chromatin landscape into transcriptionally active and inactive states. The haematopoietic system has long served as a paradigm for studying the molecular principles that regulate gene expression in development. In this review article, we summarize the current knowledge on the mechanism of action of TFs regulating haematopoietic stem cell specification and differentiation, and place this information into the context of general principles governing development.
Collapse
Affiliation(s)
- Nadine Obier
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, UK
| |
Collapse
|