1
|
Jiang D, Li P, Lu Y, Tao J, Hao X, Wang X, Wu W, Xu J, Zhang H, Li X, Chen Y, Jin Y, Zhang L. A feedback loop between Paxillin and Yorkie sustains Drosophila intestinal homeostasis and regeneration. Nat Commun 2025; 16:570. [PMID: 39794306 PMCID: PMC11724037 DOI: 10.1038/s41467-024-55255-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/04/2024] [Indexed: 01/13/2025] Open
Abstract
Balanced self-renewal and differentiation of stem cells are crucial for maintaining tissue homeostasis, but the underlying mechanisms of this process remain poorly understood. Here, from an RNA interference (RNAi) screen in adult Drosophila intestinal stem cells (ISCs), we identify a factor, Pax, which is orthologous to mammalian PXN, coordinates the proliferation and differentiation of ISCs during both normal homeostasis and injury-induced midgut regeneration in Drosophila. Loss of Pax promotes ISC proliferation while suppressing its differentiation into absorptive enterocytes (ECs). Mechanistically, our findings demonstrate that Pax is a conserved target gene of the Hippo signaling pathway in both Drosophila and mammals. Subsequent investigations have revealed Pax interacts with Yki and enhances its cytoplasmic localization, thereby establishing a feedback regulatory mechanism that attenuates Yki activity and ultimately inhibits ISCs proliferation. Additionally, Pax induces the differentiation of ISCs into ECs by activating Notch expression, thus facilitating the differentiation process. Overall, our study highlights Pax as a pivotal component of the Hippo and Notch pathways in regulating midgut homeostasis, shedding light on this growth-related pathway in tissue maintenance and intestinal function.
Collapse
Affiliation(s)
- Dan Jiang
- The Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, China
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang, Shanghai, 200240, China
| | - Pengyue Li
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yi Lu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jiaxin Tao
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xue Hao
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaodong Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wei Wu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jinjin Xu
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang, Shanghai, 200240, China
| | - Haoen Zhang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaoyu Li
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yixing Chen
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yunyun Jin
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang, Shanghai, 200240, China.
| | - Lei Zhang
- The Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, China.
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang, Shanghai, 200240, China.
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
2
|
Zipper L, Corominas-Murtra B, Reiff T. Steroid hormone-induced wingless ligands tune female intestinal size in Drosophila. Nat Commun 2025; 16:436. [PMID: 39762218 PMCID: PMC11704138 DOI: 10.1038/s41467-024-55664-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Female reproduction comes at great expense to energy metabolism compensated by extensive organ adaptations including intestinal size. Upon mating, endocrine signals orchestrate a 30% net increase of absorptive epithelium. Mating increases production of the steroid hormone Ecdysone released by the Drosophila ovaries that stimulates intestinal stem cell (ISC) divisions. Here, we uncover the transcription factor crooked legs (crol) as an intraepithelial coordinator of Ecdysone-induced ISC mitosis. For the precise investigation of non-autonomous factors on ISC behaviour, we establish Rapport, a spatiotemporally-controlled dual expression and tracing system for the analysis of paracrine genetic manipulation while tracing ISC behaviour. Rapport tracing reveals that Ecdysone-induced Crol controls mitogenic Wnt/Wg-ligand expression from epithelial enterocytes activating ISC mitosis. Paracrine Wg stimulation is counterbalanced by Crol-repression of string/CDC25 and CyclinB autonomously in ISC. Rapport-based ISC tumours confirm paracrine stimulation through the Ecdysone-Crol-Wg axis on mitotic behaviour, whereas the autonomous anti-proliferative role of Crol in ISC is conserved in models of colorectal cancer. Finally, mathematical modelling corroborates increasing enterocyte numbers and Wnt/Wg-degradation to set a stable post-mating intestinal size. Together, our findings provide insights into the complex endocrine growth control mechanisms during mating-induced adaptations and might help untangling pleiotropic hormonal effects observed in gastrointestinal tumorigenesis.
Collapse
Affiliation(s)
- Lisa Zipper
- Department of Biology, Institute of Genetics, The Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Tobias Reiff
- Department of Biology, Institute of Genetics, The Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
3
|
Sanders EN, Sun HT, Tabatabaee S, Lang CF, van Dijk SG, Su YH, Labott A, Idris J, Marchetti M, Xie S, O’Brien LE. Organ injury accelerates stem cell differentiation by modulating a fate-transducing lateral inhibition circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.29.630675. [PMID: 39803552 PMCID: PMC11722240 DOI: 10.1101/2024.12.29.630675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Injured epithelial organs must rapidly replace damaged cells to restore barrier integrity and physiological function. In response, injury-born stem cell progeny differentiate faster compared to healthy-born counterparts, yet the mechanisms that pace differentiation are unclear. Using the adult Drosophila intestine, we find that injury speeds cell differentiation by altering the lateral inhibition circuit that transduces a fate-determining Notch signal. During healthy intestinal turnover, a balanced ratio of terminal (Notch-active) and stem (Notch-inactive) fates arises through canonical lateral inhibition feedback, in which mutual Notch-Delta signaling between two stem cell daughters evolves to activate Notch and extinguish Delta in exactly one cell. When we damage intestines by feeding flies toxin, mutual signaling persists, but a cytokine relay from damaged cells to differentiating daughters prevents the Notch co-repressor Groucho from extinguishing Delta. Despite Delta persistence, injured organs preserve the Notch-inactive stem cell pool; thus, fate balance does not hinge on an intact circuit. Mathematical modeling predicts that increased Delta prompts faster Notch signaling; indeed, in vivo live imaging reveals that the real-time speed of Notch signal transduction doubles in injured guts. These results show that in tissue homeostasis, lateral inhibition feedback between stem cell daughters throttles the speed of Notch-mediated fate determination by constraining Delta. Tissue-level damage signals relax this constraint to accelerate cell differentiation for expedited organ repair.
Collapse
Affiliation(s)
- Erin N. Sanders
- Department of Molecular and Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Hsuan-Te Sun
- Department of Molecular and Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Saman Tabatabaee
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Charles F. Lang
- Department of Molecular and Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sebastian G. van Dijk
- Department of Molecular and Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Yu-Han Su
- Department of Molecular and Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew Labott
- Department of Molecular and Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Javeria Idris
- Department of Molecular and Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Marco Marchetti
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Shicong Xie
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Lucy Erin O’Brien
- Department of Molecular and Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Chan-Zuckerberg Biohub—San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Stricker AM, Hutson MS, Page-McCaw A. Piezo-dependent surveillance of matrix stiffness generates transient cells that repair the basement membrane. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.22.573147. [PMID: 38187749 PMCID: PMC10769369 DOI: 10.1101/2023.12.22.573147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Basement membranes are extracellular matrix sheets separating tissue layers and providing mechanical support, and Collagen IV (Col4) is their most abundant protein. Although basement membranes are repaired after damage, little is known about repair, including whether and how damage is detected, what cells repair the damage, and how repair is controlled to avoid fibrosis. Using the intestinal basement membrane of adult Drosophila as a model, we show that after basement membrane damage, there is a sharp increase in enteroblasts transiently expressing Col4, or "matrix mender" cells. Enteroblast-derived Col4 is specifically required for matrix repair. The increase in matrix mender cells requires the mechanosensitive ion channel Piezo, expressed in intestinal stem cells. Matrix menders are induced by the loss of matrix stiffness, as specifically inhibiting Col4 crosslinking is sufficient for Piezo-dependent induction of matrix mender cells. Our data suggest that epithelial stem cells control basement membrane integrity by monitoring stiffness.
Collapse
Affiliation(s)
- Aubrie M. Stricker
- Department of Cell and Developmental Biology, Center for Matrix Biology, Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - M. Shane Hutson
- Department of Physics and Astronomy, Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Andrea Page-McCaw
- Department of Cell and Developmental Biology, Center for Matrix Biology, Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
5
|
Wang C, Choi HJ, Woodbury L, Lee K. Interpretable Fine-Grained Phenotypes of Subcellular Dynamics via Unsupervised Deep Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403547. [PMID: 39239705 PMCID: PMC11538677 DOI: 10.1002/advs.202403547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/09/2024] [Indexed: 09/07/2024]
Abstract
Uncovering fine-grained phenotypes of live cell dynamics is pivotal for a comprehensive understanding of the heterogeneity in healthy and diseased biological processes. However, this endeavor poses significant technical challenges for unsupervised machine learning, requiring the extraction of features that not only faithfully preserve this heterogeneity but also effectively discriminate between established biological states, all while remaining interpretable. To tackle these challenges, a self-training deep learning framework designed for fine-grained and interpretable phenotyping is presented. This framework incorporates an unsupervised teacher model with interpretable features to facilitate feature learning in a student deep neural network (DNN). Significantly, an autoencoder-based regularizer is designed to encourage the student DNN to maximize the heterogeneity associated with molecular perturbations. This method enables the acquisition of features with enhanced discriminatory power, while simultaneously preserving the heterogeneity associated with molecular perturbations. This study successfully delineated fine-grained phenotypes within the heterogeneous protrusion dynamics of migrating epithelial cells, revealing specific responses to pharmacological perturbations. Remarkably, this framework adeptly captured a concise set of highly interpretable features uniquely linked to these fine-grained phenotypes, each corresponding to specific temporal intervals crucial for their manifestation. This unique capability establishes it as a valuable tool for investigating diverse cellular dynamics and their heterogeneity.
Collapse
Affiliation(s)
- Chuangqi Wang
- Department of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCO80045USA
- Department of Biomedical EngineeringWorcester Polytechnic InstituteWorcesterMA01609USA
| | - Hee June Choi
- Department of Biomedical EngineeringWorcester Polytechnic InstituteWorcesterMA01609USA
- Vascular Biology Program and Department of SurgeryBoston Children's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Lucy Woodbury
- Department of Biomedical EngineeringWorcester Polytechnic InstituteWorcesterMA01609USA
- Department of Biomedical EngineeringUniversity of ArkansasFayettevilleAR72701USA
| | - Kwonmoo Lee
- Department of Biomedical EngineeringWorcester Polytechnic InstituteWorcesterMA01609USA
- Vascular Biology Program and Department of SurgeryBoston Children's HospitalHarvard Medical SchoolBostonMA02115USA
| |
Collapse
|
6
|
Zambrano-Tipan D, Narváez-Padilla V, Reynaud E. Escargot a Snail superfamily member and its multiple roles in Drosophila melanogaster development. J Cell Physiol 2024; 239:e31269. [PMID: 38572978 DOI: 10.1002/jcp.31269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
The Snail superfamily of transcription factors plays a crucial role in metazoan development; one of the most important vertebrate members of this family is Snai1 which is orthologous to the Drosophila melanogaster esg gene. This review offers a comprehensive examination of the roles of the esg gene in Drosophila development, covering its expression pattern and downstream targets, and draws parallels between the vertebrate Snai1 family proteins on controlling the epithelial-to-mesenchymal transition and esg. This gene regulates stemness, ploidy, and pluripontency. esg is expressed in various tissues during development, including the gut, imaginal discs, and neuroblasts. The functions of the esg include the suppression of differentiation in intestinal stem cells and the preservation of diploidy in imaginal cells. In the nervous system development, esg expression also inhibits neuroblast differentiation, thus regulating the number of neurons and the moment in development of neuronal differentiation. Loss of esg function results in diverse developmental defects, including defects in intestinal stem cell maintenance and differentiation, and alters imaginal disc and nervous system development. Expression levels of esg also play a role in regulating longevity and metabolism in adult stages. This review provides an overview of the current understanding of esg's developmental role, emphasizing cellular and tissue effects that arise from its loss of function. The insights gained may contribute to a better understanding of evolutionary conserved developmental mechanisms and certain metabolic diseases.
Collapse
Affiliation(s)
- Diego Zambrano-Tipan
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Verónica Narváez-Padilla
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Enrique Reynaud
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
7
|
Ignatiou A, Pitsouli C. Host-diet-microbiota interplay in intestinal nutrition and health. FEBS Lett 2024; 598:2482-2517. [PMID: 38946050 DOI: 10.1002/1873-3468.14966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
The intestine is populated by a complex and dynamic assortment of microbes, collectively called gut microbiota, that interact with the host and contribute to its metabolism and physiology. Diet is considered a key regulator of intestinal microbiota, as ingested nutrients interact with and shape the resident microbiota composition. Furthermore, recent studies underscore the interplay of dietary and microbiota-derived nutrients, which directly impinge on intestinal stem cells regulating their turnover to ensure a healthy gut barrier. Although advanced sequencing methodologies have allowed the characterization of the human gut microbiome, mechanistic studies assessing diet-microbiota-host interactions depend on the use of genetically tractable models, such as Drosophila melanogaster. In this review, we first discuss the similarities between the human and fly intestines and then we focus on the effects of diet and microbiota on nutrient-sensing signaling cascades controlling intestinal stem cell self-renewal and differentiation, as well as disease. Finally, we underline the use of the Drosophila model in assessing the role of microbiota in gut-related pathologies and in understanding the mechanisms that mediate different whole-body manifestations of gut dysfunction.
Collapse
Affiliation(s)
- Anastasia Ignatiou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Chrysoula Pitsouli
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
8
|
Tomita-Naito S, Sulekh S, Yoo SK. Insidious chromatin change with a propensity to exhaust intestinal stem cells during aging. iScience 2024; 27:110793. [PMID: 39371074 PMCID: PMC11452737 DOI: 10.1016/j.isci.2024.110793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/25/2024] [Accepted: 08/19/2024] [Indexed: 10/08/2024] Open
Abstract
During aging, tissue stem cells can demonstrate two opposing phenotypes of tissue homeostasis disruption: proliferation and exhaustion. Stem cells can exhaust as a result of excessive cell proliferation or independently of cell proliferation. There are many silent changes in chromatin structures and gene expression that are not necessarily reflected in manifested phenotypes during aging. Here through analyses of chromatin accessibility and gene expression in intestinal progenitor cells during aging, we discovered changes of chromatin accessibility and gene expression that have a propensity to exhaust intestinal stem cells (ISCs). During aging, Trithorax-like (Trl) target genes, ced-6 and ci, close their chromatin structures and decrease their expression in intestinal progenitor cells. Inhibition of Trl, ced-6, or ci exhausts ISCs. This study provides new insight into changes of chromatin accessibility and gene expression that have a potential to exhaust ISCs during aging.
Collapse
Affiliation(s)
- Saki Tomita-Naito
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Shivakshi Sulekh
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, Japan
- Division of Developmental Biology and Regenerative Medicine, Kobe University, Kobe, Japan
| | - Sa Kan Yoo
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, Japan
- Division of Developmental Biology and Regenerative Medicine, Kobe University, Kobe, Japan
- Physiological Genetics Laboratory, RIKEN CPR, Kobe, Japan
| |
Collapse
|
9
|
Nagai H, Adachi Y, Nakasugi T, Takigawa E, Ui J, Makino T, Miura M, Nakajima YI. Highly regenerative species-specific genes improve age-associated features in the adult Drosophila midgut. BMC Biol 2024; 22:157. [PMID: 39090637 PMCID: PMC11295675 DOI: 10.1186/s12915-024-01956-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND The remarkable regenerative abilities observed in planarians and cnidarians are closely linked to the active proliferation of adult stem cells and the precise differentiation of their progeny, both of which typically deteriorate during aging in low regenerative animals. While regeneration-specific genes conserved in highly regenerative organisms may confer regenerative abilities and long-term maintenance of tissue homeostasis, it remains unclear whether introducing these regenerative genes into low regenerative animals can improve their regeneration and aging processes. RESULTS Here, we ectopically express highly regenerative species-specific JmjC domain-encoding genes (HRJDs) in Drosophila, a widely used low regenerative model organism. Surprisingly, HRJD expression impedes tissue regeneration in the developing wing disc but extends organismal lifespan when expressed in the intestinal stem cell lineages of the adult midgut under non-regenerative conditions. Notably, HRJDs enhance the proliferative activity of intestinal stem cells while maintaining their differentiation fidelity, ameliorating age-related decline in gut barrier functions. CONCLUSIONS These findings together suggest that the introduction of highly regenerative species-specific genes can improve stem cell functions and promote a healthy lifespan when expressed in aging animals.
Collapse
Affiliation(s)
- Hiroki Nagai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Yuya Adachi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Tenki Nakasugi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Ema Takigawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Junichiro Ui
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Takashi Makino
- Graduate School of Life Sciences, Tohoku University, 6-3 Aramaki Aza Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Masayuki Miura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Yu-Ichiro Nakajima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
10
|
Wang J, Xue H, Yi X, Kim H, Hao Y, Jin LH. InR and Pi3K maintain intestinal homeostasis through STAT/EGFR and Notch signaling in enteroblasts. J Cell Biochem 2024; 125:e30545. [PMID: 38436545 DOI: 10.1002/jcb.30545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/05/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
To maintain the integrity of the adult gut, the proliferation and differentiation of stem cells must be strictly controlled. Several signaling pathways control the proliferation and differentiation of Drosophila intestinal epithelial cells. Although the modulatory effects of insulin pathway components on cell proliferation have been characterized, their specific role in which cell type and how these components interact with other regulatory signaling pathways remain largely unclear. In this study, we found that InR/Pi3K has major functions in enteroblasts (EBs) that were not previously described. The absence of InR/Pi3K in progenitors leads to a decrease in the number of EBs, while it has no significant effect on intestinal stem cells (ISCs). In addition, we found that InR/Pi3K regulates Notch activity in ISCs and EBs in an opposite way. This is also the reason for the decrease in EB. On the one hand, aberrantly low levels of Notch signaling in ISCs inhibit their proper differentiation into EBs; on the other hand, the higher Notch levels in EBs promote their excessive differentiation into enterocytes (ECs), leading to marked increases in abnormal ECs and decreased proliferation. Moreover, we found that Upd/JAK/STAT signaling acts as an effector or modifier of InR/Pi3K function in the midgut and cooperates with EGFR signaling to regulate cell proliferation. Altogether, our results demonstrate that InR and Pi3K are essential for coordinating stem cell differentiation and proliferation to maintain intestinal homeostasis.
Collapse
Affiliation(s)
- Jiewei Wang
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Hongmei Xue
- Department of Children's Emergency Medicine, Women's and Children's Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xinyu Yi
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Hyonil Kim
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
- College of Life Science, Kim ll Sung University, Pyongyang, North Korea
| | - Yangguang Hao
- Department of Basic Medical, Shenyang Medical College, Shenyang, China
| | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
11
|
Kurogi Y, Mizuno Y, Kamiyama T, Niwa R. The intestinal stem cell/enteroblast-GAL4 driver, escargot-GAL4, also manipulates gene expression in the juvenile hormone-synthesizing organ of Drosophila melanogaster. Sci Rep 2024; 14:9631. [PMID: 38671036 PMCID: PMC11053112 DOI: 10.1038/s41598-024-60269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024] Open
Abstract
Intestinal stem cells (ISCs) of the fruit fly, Drosophila melanogaster, offer an excellent genetic model to explore homeostatic roles of ISCs in animal physiology. Among available genetic tools, the escargot (esg)-GAL4 driver, expressing the yeast transcription factor gene, GAL4, under control of the esg gene promoter, has contributed significantly to ISC studies. This driver facilitates activation of genes of interest in proximity to a GAL4-binding element, Upstream Activating Sequence, in ISCs and progenitor enteroblasts (EBs). While esg-GAL4 has been considered an ISC/EB-specific driver, recent studies have shown that esg-GAL4 is also active in other tissues, such as neurons and ovaries. Therefore, the ISC/EB specificity of esg-GAL4 is questionable. In this study, we reveal esg-GAL4 expression in the corpus allatum (CA), responsible for juvenile hormone (JH) production. When driving the oncogenic gene, RasV12, esg-GAL4 induces overgrowth in ISCs/EBs as reported, but also increases CA cell number and size. Consistent with this observation, animals alter expression of JH-response genes. Our data show that esg-GAL4-driven gene manipulation can systemically influence JH-mediated animal physiology, arguing for cautious use of esg-GAL4 as a "specific" ISC/EB driver to examine ISC/EB-mediated animal physiology.
Collapse
Affiliation(s)
- Yoshitomo Kurogi
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki, 305-8577, Japan
| | - Yosuke Mizuno
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki, 305-8577, Japan
| | - Takumi Kamiyama
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, 305-8577, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
12
|
Huang CC, Tsai MC, Wu YL, Lee YJ, Yen AT, Wang CJ, Kao SH. Gallic acid attenuates metastatic potential of human colorectal cancer cells through the miR-1247-3p-modulated integrin/FAK axis. ENVIRONMENTAL TOXICOLOGY 2024; 39:2077-2085. [PMID: 38100242 DOI: 10.1002/tox.24087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 12/01/2023] [Indexed: 03/09/2024]
Abstract
Colorectal cancer (CRC) exhibits highly metastatic potential even in the early stages of tumor progression. Gallic acid (GA), a common phenolic compound in plants, is known to possess potent antioxidant and anticancer activities, thereby inducing cell death or cell cycle arrest. However, whether GA reduces the invasiveness of CRC cells without inducing cell death remains unclear. Herein, we aimed to investigate the antimetastatic activity of low-dose GA on CRC cells and determine its underlying mechanism. Cell viability and tumorigenicity were analyzed by MTS, cell adhesion, and colony formation assay. Invasiveness was demonstrated using migration and invasion assays. Changes in protein phosphorylation and expression were assessed by Western blot. The involvement of microRNAs was validated by microarray analysis and anti-miR antagonist. Our findings showed that lower dose of GA (≤100 μM) did not affect cell viability but reduced the capabilities of colony formation, cell adhesion, and invasiveness in CRC cells. Cellularly, GA downregulated the cellular level of integrin αV/β3, talin-1, and tensin and diminished the phosphorylated FAK, paxillin, Src, and AKT in DLD-1 cells. Microarray results revealed that GA increased miR-1247-3p expression, and pretreatment of anti-miR antagonist against miR-1247-3p restored the GA-reduced integrin αV/β3 and the GA-inhibited paxillin activation in DLD-1 cells. Consistently, the in vivo xenograft model showed that GA administration inhibited tumor growth and liver metastasis derived from DLD-1 cells. Collectively, our findings indicated that GA inhibited the metastatic capabilities of CRC cells, which may result from the suppression of integrin/FAK axis mediated by miR1247-3p.
Collapse
Affiliation(s)
- Chi-Chou Huang
- Department of Colorectal Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Chang Tsai
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Liang Wu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Cardiovascular Surgery, Surgical Department, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Ju Lee
- Department of Pathology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Pathology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - An-Ting Yen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chau-Jong Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shao-Hsuan Kao
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
13
|
Guo X, Wang C, Zhang Y, Wei R, Xi R. Cell-fate conversion of intestinal cells in adult Drosophila midgut by depleting a single transcription factor. Nat Commun 2024; 15:2656. [PMID: 38531872 DOI: 10.1038/s41467-024-46956-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
The manipulation of cell identity by reprograming holds immense potential in regenerative medicine, but is often limited by the inefficient acquisition of fully functional cells. This problem can potentially be resolved by better understanding the reprogramming process using in vivo genetic models, which are currently scarce. Here we report that both enterocytes (ECs) and enteroendocrine cells (EEs) in adult Drosophila midgut show a surprising degree of cell plasticity. Depleting the transcription factor Tramtrack in the differentiated ECs can initiate Prospero-mediated cell transdifferentiation, leading to EE-like cells. On the other hand, depletion of Prospero in the differentiated EEs can lead to the loss of EE-specific transcription programs and the gain of intestinal progenitor cell identity, allowing cell cycle re-entry or differentiation into ECs. We find that intestinal progenitor cells, ECs, and EEs have a similar chromatin accessibility profile, supporting the concept that cell plasticity is enabled by pre-existing chromatin accessibility with switchable transcription programs. Further genetic analysis with this system reveals that the NuRD chromatin remodeling complex, cell lineage confliction, and age act as barriers to EC-to-EE transdifferentiation. The establishment of this genetically tractable in vivo model should facilitate mechanistic investigation of cell plasticity at the molecular and genetic level.
Collapse
Affiliation(s)
- Xingting Guo
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Chenhui Wang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Yongchao Zhang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Ruxue Wei
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Rongwen Xi
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
| |
Collapse
|
14
|
Veneti Z, Fasoulaki V, Kalavros N, Vlachos IS, Delidakis C, Eliopoulos AG. Polycomb-mediated silencing of miR-8 is required for maintenance of intestinal stemness in Drosophila melanogaster. Nat Commun 2024; 15:1924. [PMID: 38429303 PMCID: PMC10907375 DOI: 10.1038/s41467-024-46119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 02/15/2024] [Indexed: 03/03/2024] Open
Abstract
Balancing maintenance of self-renewal and differentiation is a key property of adult stem cells. The epigenetic mechanisms controlling this balance remain largely unknown. Herein, we report that the Polycomb Repressive Complex 2 (PRC2) is required for maintenance of the intestinal stem cell (ISC) pool in the adult female Drosophila melanogaster. We show that loss of PRC2 activity in ISCs by RNAi-mediated knockdown or genetic ablation of the enzymatic subunit Enhancer of zeste, E(z), results in loss of stemness and precocious differentiation of enteroblasts to enterocytes. Mechanistically, we have identified the microRNA miR-8 as a critical target of E(z)/PRC2-mediated tri-methylation of histone H3 at Lys27 (H3K27me3) and uncovered a dynamic relationship between E(z), miR-8 and Notch signaling in controlling stemness versus differentiation of ISCs. Collectively, these findings uncover a hitherto unrecognized epigenetic layer in the regulation of stem cell specification that safeguards intestinal homeostasis.
Collapse
Affiliation(s)
- Zoe Veneti
- Institute of Molecular Biology and Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Greece.
- Medical School, University of Crete, Heraklion, Greece.
| | - Virginia Fasoulaki
- Institute of Molecular Biology and Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Nikolaos Kalavros
- Spatial Technologies Unit, Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ioannis S Vlachos
- Spatial Technologies Unit, Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Christos Delidakis
- Institute of Molecular Biology and Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Aristides G Eliopoulos
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
15
|
Christensen CF, Laurichesse Q, Loudhaief R, Colombani J, Andersen DS. Drosophila activins adapt gut size to food intake and promote regenerative growth. Nat Commun 2024; 15:273. [PMID: 38177201 PMCID: PMC10767106 DOI: 10.1038/s41467-023-44553-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
Rapidly renewable tissues adapt different strategies to cope with environmental insults. While tissue repair is associated with increased intestinal stem cell (ISC) proliferation and accelerated tissue turnover rates, reduced calorie intake triggers a homeostasis-breaking process causing adaptive resizing of the gut. Here we show that activins are key drivers of both adaptive and regenerative growth. Activin-β (Actβ) is produced by stem and progenitor cells in response to intestinal infections and stimulates ISC proliferation and turnover rates to promote tissue repair. Dawdle (Daw), a divergent Drosophila activin, signals through its receptor, Baboon, in progenitor cells to promote their maturation into enterocytes (ECs). Daw is dynamically regulated during starvation-refeeding cycles, where it couples nutrient intake with progenitor maturation and adaptive resizing of the gut. Our results highlight an activin-dependent mechanism coupling nutrient intake with progenitor-to-EC maturation to promote adaptive resizing of the gut and further establish activins as key regulators of adult tissue plasticity.
Collapse
Affiliation(s)
- Christian F Christensen
- Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 15, Build. 3, 3rd floor, 2100 Copenhagen O, Copenhagen, Denmark
| | - Quentin Laurichesse
- Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 15, Build. 3, 3rd floor, 2100 Copenhagen O, Copenhagen, Denmark
| | - Rihab Loudhaief
- Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 15, Build. 3, 3rd floor, 2100 Copenhagen O, Copenhagen, Denmark
| | - Julien Colombani
- Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 15, Build. 3, 3rd floor, 2100 Copenhagen O, Copenhagen, Denmark.
| | - Ditte S Andersen
- Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 15, Build. 3, 3rd floor, 2100 Copenhagen O, Copenhagen, Denmark.
| |
Collapse
|
16
|
Zipper L, Wagener R, Fischer U, Hoffmann A, Yasin L, Brandes D, Soura S, Anwar A, Walter C, Varghese J, Hauer J, Auer F, Bhatia S, Dugas M, Junk SV, Stanulla M, Haas OA, Borkhardt A, Reiff T, Brozou T. Hyperdiploid acute lymphoblastic leukemia in children with LZTR1 germline variants. Hemasphere 2024; 8:e26. [PMID: 38434521 PMCID: PMC10878188 DOI: 10.1002/hem3.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 03/05/2024] Open
Affiliation(s)
- Lisa Zipper
- Department of Biology, Institute of Genetics, The Faculty of Mathematics and Natural SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Rabea Wagener
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
- German Cancer Consortium (DKTK)partner site Essen/DüsseldorfDüsseldorfGermany
| | - Anna Hoffmann
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Layal Yasin
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Danielle Brandes
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Stavrieta Soura
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Ammarah Anwar
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Carolin Walter
- Institute of Medical InformaticsUniversity of MünsterMünsterGermany
| | - Julian Varghese
- Institute of Medical InformaticsUniversity of MünsterMünsterGermany
| | - Julia Hauer
- Department of PediatricsSchool of Medicine, Technical University of MunichMunichGermany
| | - Franziska Auer
- Department of PediatricsSchool of Medicine, Technical University of MunichMunichGermany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Martin Dugas
- Institute of Medical InformaticsHeidelberg University HospitalHeidelbergGermany
| | - Stefanie V. Junk
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
- Department of Pediatric Hematology and OncologyHannover Medical SchoolHannoverGermany
| | - Martin Stanulla
- Department of Pediatric Hematology and OncologyHannover Medical SchoolHannoverGermany
| | - Oskar A. Haas
- St. Anna Children's Hospital, Pediatric ClinicMedical UniversityViennaAustria
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
- German Cancer Consortium (DKTK)partner site Essen/DüsseldorfDüsseldorfGermany
| | - Tobias Reiff
- Department of Biology, Institute of Genetics, The Faculty of Mathematics and Natural SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Triantafyllia Brozou
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
17
|
Khanbabei A, Segura L, Petrossian C, Lemus A, Cano I, Frazier C, Halajyan A, Ca D, Loza-Coll M. Experimental validation and characterization of putative targets of Escargot and STAT, two master regulators of the intestinal stem cells in Drosophila melanogaster. Dev Biol 2024; 505:148-163. [PMID: 37952851 DOI: 10.1016/j.ydbio.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 10/15/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
Many organs contain adult stem cells (ASCs) to replace cells due to damage, disease, or normal tissue turnover. ASCs can divide asymmetrically, giving rise to a new copy of themselves (self-renewal) and a sister that commits to a specific cell type (differentiation). Decades of research have led to the identification of pleiotropic genes whose loss or gain of function affect diverse aspects of normal ASC biology. Genome-wide screens of these so-called genetic "master regulator" (MR) genes, have pointed to hundreds of putative targets that could serve as their downstream effectors. Here, we experimentally validate and characterize the regulation of several putative targets of Escargot (Esg) and the Signal Transducer and Activator of Transcription (Stat92E, a.k.a. STAT), two known MRs in Drosophila intestinal stem cells (ISCs). Our results indicate that regardless of bioinformatic predictions, most experimentally validated targets show a profile of gene expression that is consistent with co-regulation by both Esg and STAT, fitting a rather limited set of co-regulatory modalities. A bioinformatic analysis of proximal regulatory sequences in specific subsets of co-regulated targets identified additional transcription factors that might cooperate with Esg and STAT in modulating their transcription. Lastly, in vivo manipulations of validated targets rarely phenocopied the effects of manipulating Esg and STAT, suggesting the existence of complex genetic interactions among downstream targets of these two MR genes during ISC homeostasis.
Collapse
Affiliation(s)
- Armen Khanbabei
- Department of Biology, California State University, Northridge (CSUN), USA
| | - Lina Segura
- Department of Biology, California State University, Northridge (CSUN), USA
| | - Cynthia Petrossian
- Department of Biology, California State University, Northridge (CSUN), USA
| | - Aaron Lemus
- Department of Biology, California State University, Northridge (CSUN), USA
| | - Ithan Cano
- Department of Biology, California State University, Northridge (CSUN), USA
| | - Courtney Frazier
- Department of Biology, California State University, Northridge (CSUN), USA
| | - Armen Halajyan
- Department of Biology, California State University, Northridge (CSUN), USA
| | - Donnie Ca
- Department of Biology, California State University, Northridge (CSUN), USA
| | - Mariano Loza-Coll
- Department of Biology, California State University, Northridge (CSUN), USA.
| |
Collapse
|
18
|
Thottacherry JJ, Chen J, Johnston DS. Apical-basal polarity in the gut. Semin Cell Dev Biol 2023; 150-151:15-22. [PMID: 36670034 DOI: 10.1016/j.semcdb.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/24/2022] [Accepted: 12/22/2022] [Indexed: 01/20/2023]
Abstract
Apical-Basal polarity is a fundamental property of all epithelial cells that underlies both their form and function. The gut is made up of a single layer of intestinal epithelial cells, with distinct apical, lateral and basal domains. Occluding junctions at the apical side of the lateral domains create a barrier between the gut lumen and the body, which is crucial for tissue homeostasis, protection against gastrointestinal pathogens and for the maintenance of the immune response. Apical-basal polarity in most epithelia is established by conserved polarity factors, but recent evidence suggests that the gut epithelium in at least some organisms polarises by novel mechanisms. In this review, we discuss the recent advances in understanding polarity factors by focussing on work in C. elegans, Drosophila, Zebrafish and Mouse.
Collapse
Affiliation(s)
- Joseph Jose Thottacherry
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Jia Chen
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom.
| |
Collapse
|
19
|
Pranoto IKA, Lee J, Kwon YV. The roles of the native cell differentiation program aberrantly recapitulated in Drosophila intestinal tumors. Cell Rep 2023; 42:113245. [PMID: 37837622 PMCID: PMC10872463 DOI: 10.1016/j.celrep.2023.113245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/11/2023] [Accepted: 09/26/2023] [Indexed: 10/16/2023] Open
Abstract
Many tumors recapitulate the developmental and differentiation program of their tissue of origin, a basis for tumor cell heterogeneity. Although stem-cell-like tumor cells are well studied, the roles of tumor cells undergoing differentiation remain to be elucidated. We employ Drosophila genetics to demonstrate that the differentiation program of intestinal stem cells is crucial for enabling intestinal tumors to invade and induce non-tumor-autonomous phenotypes. The differentiation program that generates absorptive cells is aberrantly recapitulated in the intestinal tumors generated by activation of the Yap1 ortholog Yorkie. Inhibiting it allows stem-cell-like tumor cells to grow but suppresses invasiveness and reshapes various phenotypes associated with cachexia-like wasting by altering the expression of tumor-derived factors. Our study provides insight into how a native differentiation program determines a tumor's capacity to induce advanced cancer phenotypes and suggests that manipulating the differentiation programs co-opted in tumors might alleviate complications of cancer, including cachexia.
Collapse
Affiliation(s)
| | - Jiae Lee
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Young V Kwon
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
20
|
Hodge RA, Ghannam M, Edmond E, de la Torre F, D’Alterio C, Kaya NH, Resnik-Docampo M, Reiff T, Jones DL. The septate junction component bark beetle is required for Drosophila intestinal barrier function and homeostasis. iScience 2023; 26:106901. [PMID: 37332603 PMCID: PMC10276166 DOI: 10.1016/j.isci.2023.106901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/19/2023] [Accepted: 05/12/2023] [Indexed: 06/20/2023] Open
Abstract
Age-related loss of intestinal barrier function has been documented across species, but the causes remain unknown. The intestinal barrier is maintained by tight junctions (TJs) in mammals and septate junctions (SJs) in insects. Specialized TJs/SJs, called tricellular junctions (TCJs), are located at the nexus of three adjacent cells, and we have shown that aging results in changes to TCJs in intestines of adult Drosophila melanogaster. We now demonstrate that localization of the TCJ protein bark beetle (Bark) decreases in aged flies. Depletion of bark from enterocytes in young flies led to hallmarks of intestinal aging and shortened lifespan, whereas depletion of bark in progenitor cells reduced Notch activity, biasing differentiation toward the secretory lineage. Our data implicate Bark in EC maturation and maintenance of intestinal barrier integrity. Understanding the assembly and maintenance of TCJs to ensure barrier integrity may lead to strategies to improve tissue integrity when function is compromised.
Collapse
Affiliation(s)
- Rachel A. Hodge
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mirna Ghannam
- Institute of Genetics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Emma Edmond
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Fernando de la Torre
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cecilia D’Alterio
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nida Hatice Kaya
- Institute of Genetics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Martin Resnik-Docampo
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tobias Reiff
- Institute of Genetics, Heinrich-Heine-University, Düsseldorf, Germany
| | - D. Leanne Jones
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Medicine, Division of Geriatrics, University of California, San Francisco, San Francisco, CA 94143, USA
- Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
21
|
Zhang Y, Chen R, Gong L, Huang W, Li P, Zhai Z, Ling E. Regulation of intestinal stem cell activity by a mitotic cell cycle regulator Polo in Drosophila. G3 (BETHESDA, MD.) 2023; 13:jkad084. [PMID: 37154439 PMCID: PMC10234410 DOI: 10.1093/g3journal/jkad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/31/2023] [Indexed: 05/10/2023]
Abstract
Maintaining a definite and stable pool of dividing stem cells plays an important role in organ development. This process requires an appropriate progression of mitosis for proper spindle orientation and polarity to ensure the ability of stem cells to proliferate and differentiate correctly. Polo-like kinases (Plks)/Polo are the highly conserved serine/threonine kinases involved in the initiation of mitosis as well as in the progression of the cell cycle. Although numerous studies have investigated the mitotic defects upon loss of Plks/Polo in cells, little is known about the in vivo consequences of stem cells with abnormal Polo activity in the context of tissue and organism development. The current study aimed to investigate this question using the Drosophila intestine, an organ dynamically maintained by the intestinal stem cells (ISCs). The results indicated that the polo depletion caused a reduction in the gut size due to a gradual decrease in the number of functional ISCs. Interestingly, the polo-deficient ISCs showed an extended G2/M phase and aneuploidy and were subsequently eliminated by premature differentiation into enterocytes (ECs). In contrast, the constitutively active Polo (poloT182D) suppressed ISC proliferation, induced abnormal accumulation of β-tubulin in cells, and drove ISC loss via apoptosis. Therefore, Polo activity should be properly maintained for optimal stem cell function. Further analysis suggested that polo was a direct target gene of Sox21a, a Sox transcription factor that critically regulates stem cell activity. Together, this study provided a novel perspective on the correlation between the progression of mitosis and the ISC function in Drosophila.
Collapse
Affiliation(s)
- Ying Zhang
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Science, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Rongbing Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Science, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Liyuan Gong
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Science, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Wuren Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Science, Shanghai 200032, China
| | - Ping Li
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zongzhao Zhai
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Erjun Ling
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Science, Shanghai 200032, China
| |
Collapse
|
22
|
Parres-Mercader M, Pance A, Gómez-Díaz E. Novel systems to study vector-pathogen interactions in malaria. Front Cell Infect Microbiol 2023; 13:1146030. [PMID: 37305421 PMCID: PMC10253182 DOI: 10.3389/fcimb.2023.1146030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/04/2023] [Indexed: 06/13/2023] Open
Abstract
Some parasitic diseases, such as malaria, require two hosts to complete their lifecycle: a human and an insect vector. Although most malaria research has focused on parasite development in the human host, the life cycle within the vector is critical for the propagation of the disease. The mosquito stage of the Plasmodium lifecycle represents a major demographic bottleneck, crucial for transmission blocking strategies. Furthermore, it is in the vector, where sexual recombination occurs generating "de novo" genetic diversity, which can favor the spread of drug resistance and hinder effective vaccine development. However, understanding of vector-parasite interactions is hampered by the lack of experimental systems that mimic the natural environment while allowing to control and standardize the complexity of the interactions. The breakthrough in stem cell technologies has provided new insights into human-pathogen interactions, but these advances have not been translated into insect models. Here, we review in vivo and in vitro systems that have been used so far to study malaria in the mosquito. We also highlight the relevance of single-cell technologies to progress understanding of these interactions with higher resolution and depth. Finally, we emphasize the necessity to develop robust and accessible ex vivo systems (tissues and organs) to enable investigation of the molecular mechanisms of parasite-vector interactions providing new targets for malaria control.
Collapse
Affiliation(s)
- Marina Parres-Mercader
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN, CSIC), Granada, Spain
| | - Alena Pance
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Elena Gómez-Díaz
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN, CSIC), Granada, Spain
| |
Collapse
|
23
|
Galenza A, Moreno-Roman P, Su YH, Acosta-Alvarez L, Debec A, Guichet A, Knapp JM, Kizilyaprak C, Humbel BM, Kolotuev I, O'Brien LE. Basal stem cell progeny establish their apical surface in a junctional niche during turnover of an adult barrier epithelium. Nat Cell Biol 2023; 25:658-671. [PMID: 36997641 PMCID: PMC10317055 DOI: 10.1038/s41556-023-01116-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/23/2023] [Indexed: 04/01/2023]
Abstract
Barrier epithelial organs face the constant challenge of sealing the interior body from the external environment while simultaneously replacing the cells that contact this environment. New replacement cells-the progeny of basal stem cells-are born without barrier-forming structures such as a specialized apical membrane and occluding junctions. Here, we investigate how new progeny acquire barrier structures as they integrate into the intestinal epithelium of adult Drosophila. We find they gestate their future apical membrane in a sublumenal niche created by a transitional occluding junction that envelops the differentiating cell and enables it to form a deep, microvilli-lined apical pit. The transitional junction seals the pit from the intestinal lumen until differentiation-driven, basal-to-apical remodelling of the niche opens the pit and integrates the now-mature cell into the barrier. By coordinating junctional remodelling with terminal differentiation, stem cell progeny integrate into a functional, adult epithelium without jeopardizing barrier integrity.
Collapse
Affiliation(s)
- Anthony Galenza
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Paola Moreno-Roman
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Foldscope Instruments, Inc., Palo Alto, CA, USA
| | - Yu-Han Su
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Lehi Acosta-Alvarez
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Alain Debec
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Institute of Ecology and Environmental Sciences, iEES, Sorbonne University, UPEC, CNRS, IRD, INRA, Paris, France
| | - Antoine Guichet
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | | | - Caroline Kizilyaprak
- Université de Lausanne, Bâtiment Biophore, Quartier Sorge, Lausanne, Switzerland
| | - Bruno M Humbel
- Université de Lausanne, Bâtiment Biophore, Quartier Sorge, Lausanne, Switzerland
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Provost's Office, Okinawa Institute of Science and Technology, Tancha, Japan
| | - Irina Kolotuev
- Université de Lausanne, Bâtiment Biophore, Quartier Sorge, Lausanne, Switzerland
| | - Lucy Erin O'Brien
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
24
|
O'Connell AE, Raveenthiraraj S, Adegboye C, Qi W, Khetani RS, Singh A, Sundaram N, Emeonye C, Lin J, Goldsmith JD, Thiagarajah JR, Carlone DL, Turner JR, Agrawal PB, Helmrath M, Breault DT. WNT2B Deficiency Causes Increased Susceptibility to Colitis in Mice and Impairs Intestinal Epithelial Development in Humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537894. [PMID: 37131772 PMCID: PMC10153278 DOI: 10.1101/2023.04.21.537894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Background and aims WNT2B is a canonical Wnt ligand previously thought to be fully redundant with other Wnts in the intestinal epithelium. However, humans with WNT2B deficiency have severe intestinal disease, highlighting a critical role for WNT2B. We sought to understand how WNT2B contributes to intestinal homeostasis. Methods We investigated the intestinal health of Wnt2b knock out (KO) mice. We assessed the impact of inflammatory challenge to the small intestine, using anti-CD3χ antibody, and to the colon, using dextran sodium sulfate (DSS). In addition, we generated human intestinal organoids (HIOs) from WNT2B-deficient human iPSCs for transcriptional and histological analyses. Results Mice with WNT2B deficiency had significantly decreased Lgr5 expression in the small intestine and profoundly decreased expression in the colon, but normal baseline histology. The small intestinal response to anti-CD3χ antibody was similar in Wnt2b KO and wild type (WT) mice. In contrast, the colonic response to DSS in Wnt2b KO mice showed an accelerated rate of injury, featuring earlier immune cell infiltration and loss of differentiated epithelium compared to WT. WNT2B-deficient HIOs showed abnormal epithelial organization and an increased mesenchymal gene signature. Conclusion WNT2B contributes to maintenance of the intestinal stem cell pool in mice and humans. WNT2B deficient mice, which do not have a developmental phenotype, show increased susceptibility to colonic injury but not small intestinal injury, potentially due to a higher reliance on WNT2B in the colon compared to the small intestine.WNT2B deficiency causes a developmental phenotype in human intestine with HIOs showing a decrease in their mesenchymal component and WNT2B-deficient patients showing epithelial disorganization. Data Transparency Statement All RNA-Seq data will be available through online repository as indicated in Transcript profiling. Any other data will be made available upon request by emailing the study authors.
Collapse
|
25
|
Jneid R, Loudhaief R, Zucchini-Pascal N, Nawrot-Esposito MP, Fichant A, Rousset R, Bonis M, Osman D, Gallet A. Bacillus thuringiensis toxins divert progenitor cells toward enteroendocrine fate by decreasing cell adhesion with intestinal stem cells in Drosophila. eLife 2023; 12:e80179. [PMID: 36847614 PMCID: PMC9977296 DOI: 10.7554/elife.80179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 02/05/2023] [Indexed: 03/01/2023] Open
Abstract
Bacillus thuringiensis subsp. kurstaki (Btk) is a strong pathogen toward lepidopteran larvae thanks to specific Cry toxins causing leaky gut phenotypes. Hence, Btk and its toxins are used worldwide as microbial insecticide and in genetically modified crops, respectively, to fight crop pests. However, Btk belongs to the B. cereus group, some strains of which are well known human opportunistic pathogens. Therefore, ingestion of Btk along with food may threaten organisms not susceptible to Btk infection. Here we show that Cry1A toxins induce enterocyte death and intestinal stem cell (ISC) proliferation in the midgut of Drosophila melanogaster, an organism non-susceptible to Btk. Surprisingly, a high proportion of the ISC daughter cells differentiate into enteroendocrine cells instead of their initial enterocyte destiny. We show that Cry1A toxins weaken the E-Cadherin-dependent adherens junction between the ISC and its immediate daughter progenitor, leading the latter to adopt an enteroendocrine fate. Hence, although not lethal to non-susceptible organisms, Cry toxins can interfere with conserved cell adhesion mechanisms, thereby disrupting intestinal homeostasis and endocrine functions.
Collapse
Affiliation(s)
- Rouba Jneid
- Universite Cote d'Azur, CNRS, INRAESophia AntipolisFrance
- Faculty of Sciences III and Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese UniversityTripoliLebanon
| | | | | | | | - Arnaud Fichant
- Universite Cote d'Azur, CNRS, INRAESophia AntipolisFrance
- Laboratory for Food Safety, University Paris-Est, French Agency for Food, Environmental and Occupational Health & SafetyMaisons-AlfortFrance
| | | | - Mathilde Bonis
- Laboratory for Food Safety, University Paris-Est, French Agency for Food, Environmental and Occupational Health & SafetyMaisons-AlfortFrance
| | - Dani Osman
- Faculty of Sciences III and Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese UniversityTripoliLebanon
| | - Armel Gallet
- Universite Cote d'Azur, CNRS, INRAESophia AntipolisFrance
| |
Collapse
|
26
|
He J, Li X, Yang S, Shi Y, Dai Y, Han S, Wang Y, Lin X, Wei B, Liu Y, Xiu M. Protective effect of astragalus membranaceus and its bioactive compounds against the intestinal inflammation in Drosophila. Front Pharmacol 2022; 13:1019594. [PMID: 36578550 PMCID: PMC9792096 DOI: 10.3389/fphar.2022.1019594] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic and relapsing intestinal inflammation, which currently lacks safe and effective medicines. Astragalus membranaceus (AM), also named Huangqi, is one of the most commonly used fundamental herbs in China. Here, we aimed to investigate mechanism and bioactive compounds of AM on treating sodium dodecyl sulfate (SDS)- induced colitis in Drosophila flies. Our data showed that AM extract (AME) supplementation had no toxic effect in flies, and protected flies against SDS-induced lifespan shortening, intestinal morphological damage, and colon length shortening. Moreover, AME supplementation remarkably rescued SDS-induced intestinal stem cell (ISC) overproliferation and increased reactive oxygen species (ROS) level in the intestine. Mechanistically, AME remarkably rescued the altered expression levels of genes and proteins in c-Jun N-terminal kinase (JNK) and JAK-STAT signaling pathways induced by SDS in gut. Additionally, formononetin, isoliquiritigenin, isorhamnetin, astragaloside I, astragaloside III, vanillic acid, and caffeic acid in AM had protection against SDS-induced inflammatory damage in flies. Taken together, AME could ameliorate the intestinal inflammation partially by suppressing oxidative stress-associated JNK signaling and JAK-STAT signaling pathways. AME may provide a theoretical basis for natural medicine toward treating intestinal inflammatory disease in human.
Collapse
Affiliation(s)
- Jianzheng He
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China,Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xu Li
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shipei Yang
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yan Shi
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yuting Dai
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shuzhen Han
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yixuan Wang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xingyao Lin
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China,Research Center of Traditional Chinese Medicine in Gansu, Gansu University of Chinese Medicine, Lanzhou, China
| | - Benjun Wei
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yongqi Liu
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China,Research Center of Traditional Chinese Medicine in Gansu, Gansu University of Chinese Medicine, Lanzhou, China,*Correspondence: Minghui Xiu, ; Yongqi Liu,
| | - Minghui Xiu
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China,Research Center of Traditional Chinese Medicine in Gansu, Gansu University of Chinese Medicine, Lanzhou, China,*Correspondence: Minghui Xiu, ; Yongqi Liu,
| |
Collapse
|
27
|
Li Y, Liu P, Wang W, Bai Y, Jia H, Yuan Z, Yang Z. Transcriptome analysis reveals the spinal expression profiles of non-coding RNAs involved in anorectal malformations in rat fetuses. J Pediatr Surg 2022; 57:974-985. [PMID: 35725663 DOI: 10.1016/j.jpedsurg.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Despite improvements in anorectal malformation (ARM) therapy, patients might still experience post-operative problems such as fecal incontinence, constipation, and soiling. In particular, the dysplasia of the lumbosacral spinal cord in ARM patients is a major disorder that affects fecal function post-operation. However, the pathological mechanisms involved are still unclear. METHODS The non-coding RNAs (ncRNAs) in the lumbosacral spinal cord of fetal rats with ethylenethiourea-induced ARM were identified using RNA sequencing (RNA-seq) and examined to determine their potential function. The lumbosacral spinal cord was isolated on embryonic day 17 for subsequent RNA extraction and RNA-seq. The transcriptome data was analyzed using bioinformatics analysis, followed by validation using quantitative reverse transcription PCR. RESULTS Compared to the control group, 26 differentially expressed microRNAs (DEMs; 22 upregulated, 4 downregulated) and 112 differentially expressed long non-coding RNAs (63 upregulated, 49 downregulated) were identified in the ARM group. Several DEMs related to development, namely miR-200a-3p, miR-200b-3p, miR-200c-3p, miR-200a-5p, and miR-429, were selected for further analysis. Notably, compared to the control, the relative expression of miR-200 family members was highly upregulated in ARM fetal rats. Furthermore, GO and KEGG enrichment and miRNA-transcription factor-lncRNA/mRNA network analysis was explored to show molecular mechanism underlying DEMs. CONCLUSIONS Our findings suggest the involvement of ncRNAs, especially the miR-200 family members, in the pathogenesis of lumbosacral spinal cord dysplasia in ARM fetal rats.
Collapse
Affiliation(s)
- Yue Li
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Peiqi Liu
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Weilin Wang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuzuo Bai
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huimin Jia
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
28
|
N. Landis G, Ko S, Peng O, Bognar B, Khmelkov M, S. Bell H, Tower J. A screen of small molecule and genetic modulators of life span in female Drosophila identifies etomoxir, RH5849 and unanticipated temperature effects. Fly (Austin) 2022; 16:397-413. [PMID: 36412257 PMCID: PMC9683069 DOI: 10.1080/19336934.2022.2149209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
Mifepristone increases life span in female Drosophila melanogaster, and its molecular target(s) remain unclear. Here small molecule and genetic interventions were tested for ability to mimic mifepristone, or to decrease life span in a way that can be rescued by mifepristone. Etomoxir inhibits lipid metabolism, and significantly increased life span in virgin and mated females, but not males, at 50 µM concentration. Pioglitazone is reported to activate both mammalian PPARγ and its Drosophila homolog Eip75B. Pioglitazone produced minor and inconsistent benefits for female Drosophila life span, and only at the lowest concentrations tested. Ecdysone is a Drosophila steroid hormone reported to regulate responses to mating, and RH5849 is a potent mimic of ecdysone. RH5849 reduced virgin female life span, and this was partly rescued by mifepristone. Mifepristone did not compete with RH5849 for activation of an ecdysone receptor (EcR)-responsive transgenic reporter, indicating that the relevant target for mifepristone is not EcR. The conditional GAL4/GAL80ts system was used in attempt to test the effect of an Eip75B RNAi construct on female life span. However, the 29°C temperature used for induction reduced or eliminated mating-induced midgut hypertrophy, the negative life span effects of mating, and the positive life span effects of mifepristone. Even when applied after mating was complete, a shift to 29°C temperature reduced mating-induced midgut hypertrophy by half, and the life span effects of mating by 4.8-fold. Taken together, these results identify promising small molecules for further analysis, and inform the design of experiments involving the GAL4/GAL80ts system.
Collapse
Affiliation(s)
- Gary N. Landis
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Sebastian Ko
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Oscar Peng
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Brett Bognar
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Michael Khmelkov
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Hans S. Bell
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - John Tower
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
29
|
Bohere J, Eldridge-Thomas BL, Kolahgar G. Vinculin recruitment to α-catenin halts the differentiation and maturation of enterocyte progenitors to maintain homeostasis of the Drosophila intestine. eLife 2022; 11:e72836. [PMID: 36269226 PMCID: PMC9586559 DOI: 10.7554/elife.72836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/11/2022] [Indexed: 11/23/2022] Open
Abstract
Mechanisms communicating changes in tissue stiffness and size are particularly relevant in the intestine because it is subject to constant mechanical stresses caused by peristalsis of its variable content. Using the Drosophila intestinal epithelium, we investigate the role of vinculin, one of the best characterised mechanoeffectors, which functions in both cadherin and integrin adhesion complexes. We discovered that vinculin regulates cell fate decisions, by preventing precocious activation and differentiation of intestinal progenitors into absorptive cells. It achieves this in concert with α-catenin at sites of cadherin adhesion, rather than as part of integrin function. Following asymmetric division of the stem cell into a stem cell and an enteroblast (EB), the two cells initially remain connected by adherens junctions, where vinculin is required, only on the EB side, to maintain the EB in a quiescent state and inhibit further divisions of the stem cell. By manipulating cell tension, we show that vinculin recruitment to adherens junction regulates EB activation and numbers. Consequently, removing vinculin results in an enlarged gut with improved resistance to starvation. Thus, mechanical regulation at the contact between stem cells and their progeny is used to control tissue cell number.
Collapse
Affiliation(s)
- Jerome Bohere
- Department of Physiology, Development and Neuroscience, Downing St, University of CambridgeCambridgeUnited Kingdom
| | - Buffy L Eldridge-Thomas
- Department of Physiology, Development and Neuroscience, Downing St, University of CambridgeCambridgeUnited Kingdom
| | - Golnar Kolahgar
- Department of Physiology, Development and Neuroscience, Downing St, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
30
|
Mukherjee S, Calvi BR, Hundley HA, Sokol NS. MicroRNA mediated regulation of the onset of enteroblast differentiation in the Drosophila adult intestine. Cell Rep 2022; 41:111495. [DOI: 10.1016/j.celrep.2022.111495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 08/17/2022] [Accepted: 09/21/2022] [Indexed: 11/03/2022] Open
|
31
|
Chen J, St Johnston D. De novo apical domain formation inside the Drosophila adult midgut epithelium. eLife 2022; 11:e76366. [PMID: 36169289 PMCID: PMC9545526 DOI: 10.7554/elife.76366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
In the adult Drosophila midgut, basal intestinal stem cells give rise to enteroblasts that integrate into the epithelium as they differentiate into enterocytes. Integrating enteroblasts must generate a new apical domain and break through the septate junctions between neighbouring enterocytes, while maintaining barrier function. We observe that enteroblasts form an apical membrane initiation site (AMIS) when they reach the septate junction between the enterocytes. Cadherin clears from the apical surface and an apical space appears between above the enteroblast. New septate junctions then form laterally with the enterocytes and the AMIS develops into an apical domain below the enterocyte septate junction. The enteroblast therefore forms a pre-assembled apical compartment before it has a free apical surface in contact with the gut lumen. Finally, the enterocyte septate junction disassembles and the enteroblast/pre-enterocyte reaches the gut lumen with a fully formed brush border. The process of enteroblast integration resembles lumen formation in mammalian epithelial cysts, highlighting the similarities between the fly midgut and mammalian epithelia.
Collapse
Affiliation(s)
- Jia Chen
- The Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
| | | |
Collapse
|
32
|
Imp interacts with Lin28 to regulate adult stem cell proliferation in the Drosophila intestine. PLoS Genet 2022; 18:e1010385. [PMID: 36070313 PMCID: PMC9484684 DOI: 10.1371/journal.pgen.1010385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 09/19/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022] Open
Abstract
Stem cells are essential for the development and long-term maintenance of tissues and organisms. Preserving tissue homeostasis requires exquisite control of all aspects of stem cell function: cell potency, proliferation, fate decision and differentiation. RNA binding proteins (RBPs) are essential components of the regulatory network that control gene expression in stem cells to maintain self-renewal and long-term homeostasis in adult tissues. While the function of many RBPs may have been characterized in various stem cell populations, how these interact and are organized in genetic networks remains largely elusive. In this report, we show that the conserved RNA binding protein IGF2 mRNA binding protein (Imp) is expressed in intestinal stem cells (ISCs) and progenitors in the adult Drosophila midgut. We demonstrate that Imp is required cell autonomously to maintain stem cell proliferative activity under normal epithelial turnover and in response to tissue damage. Mechanistically, we show that Imp cooperates and directly interacts with Lin28, another highly conserved RBP, to regulate ISC proliferation. We found that both proteins bind to and control the InR mRNA, a critical regulator of ISC self-renewal. Altogether, our data suggests that Imp and Lin28 are part of a larger gene regulatory network controlling gene expression in ISCs and required to maintain epithelial homeostasis. Stem cells are essential to maintain healthy organs. However, dysregulation of their function is a potential major driver of diseases, including cancer and neurodegeneration, and significantly contributes to the aging process. For these reasons, numerous mechanisms control the ability of stem cells to divide and give rise to functional daughter cells. In this study, we used the Drosophila fruitfly as a genetically amenable experimental model to characterize the function of a conserved protein, the IGF2 mRNA binding protein, in the regulation of adult intestinal stem cells. We found that it is essential for stem cell proliferation under normal conditions and in response to tissue damage. We also report that it interacts with another known regulator, Lin28. Importantly, these two factors largely control stem cell biology and development in mammals, including humans, and are often dysregulated in cancer. This suggests that our work is shedding new light on the conserved mechanisms that maintain long-term stem cell function across organisms.
Collapse
|
33
|
Chen J, St Johnston D. Epithelial Cell Polarity During Drosophila Midgut Development. Front Cell Dev Biol 2022; 10:886773. [PMID: 35846367 PMCID: PMC9281564 DOI: 10.3389/fcell.2022.886773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/30/2022] [Indexed: 11/23/2022] Open
Abstract
The adult Drosophila midgut epithelium is derived from a group of stem cells called adult midgut precursors (AMPs) that are specified during the migration of the endoderm in early embryogenesis. AMPs are maintained and expanded in AMP nests that lie on the basal side of the larval midgut throughout the larval development. During metamorphosis, the larval midgut undergoes histolysis and programmed cell death, while the central cells in the AMP nests form the future adult midgut and the peripheral cells form the transient pupal midgut. Here we review what is known about how cells polarise in the embryonic, larval, pupal and adult midgut, and discuss the open questions about the mechanisms that control the changes in cell arrangements, cell shape and cell polarity during midgut development.
Collapse
Affiliation(s)
| | - Daniel St Johnston
- Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
34
|
Ariyapala IS, Buddika K, Hundley HA, Calvi BR, Sokol NS. The RNA binding protein Swm is critical for Drosophila melanogaster intestinal progenitor cell maintenance. Genetics 2022; 222:6619166. [PMID: 35762963 DOI: 10.1093/genetics/iyac099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
The regulation of stem cell survival, self-renewal, and differentiation is critical for the maintenance of tissue homeostasis. Although the involvement of signaling pathways and transcriptional control mechanisms in stem cell regulation have been extensively investigated, the role of post-transcriptional control is still poorly understood. Here we show that the nuclear activity of the RNA-binding protein Second Mitotic Wave Missing (Swm) is critical for Drosophila melanogaster intestinal stem cells (ISCs) and their daughter cells, enteroblasts (EBs), to maintain their progenitor cell properties and functions. Loss of swm causes ISCs and EBs to stop dividing and instead detach from the basement membrane, resulting in severe progenitor cell loss. swm loss is further characterized by nuclear accumulation of poly(A)+ RNA in progenitor cells. Swm associates with transcripts involved in epithelial cell maintenance and adhesion, and the loss of swm, while not generally affecting the levels of these Swm-bound mRNAs, leads to elevated expression of proteins encoded by some of them, including the fly ortholog of Filamin. Taken together, this study indicates a nuclear role for Swm in adult stem cell maintenance, raising the possibility that nuclear post-transcriptional regulation of mRNAs encoding cell adhesion proteins ensures proper attachment of progenitor cells.
Collapse
Affiliation(s)
| | - Kasun Buddika
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Heather A Hundley
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Nicholas S Sokol
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
35
|
Zipper L, Batchu S, Kaya NH, Antonello ZA, Reiff T. The MicroRNA miR-277 Controls Physiology and Pathology of the Adult Drosophila Midgut by Regulating the Expression of Fatty Acid β-Oxidation-Related Genes in Intestinal Stem Cells. Metabolites 2022; 12:315. [PMID: 35448502 PMCID: PMC9028014 DOI: 10.3390/metabo12040315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Cell division, growth, and differentiation are energetically costly and dependent processes. In adult stem cell-based epithelia, cellular identity seems to be coupled with a cell's metabolic profile and vice versa. It is thus tempting to speculate that resident stem cells have a distinct metabolism, different from more committed progenitors and differentiated cells. Although investigated for many stem cell types in vitro, in vivo data of niche-residing stem cell metabolism is scarce. In adult epithelial tissues, stem cells, progenitor cells, and their progeny have very distinct functions and characteristics. In our study, we hypothesized and tested whether stem and progenitor cell types might have a distinctive metabolic profile in the intestinal lineage. Here, taking advantage of the genetically accessible adult Drosophila melanogaster intestine and the availability of ex vivo single cell sequencing data, we tested that hypothesis and investigated the metabolism of the intestinal lineage from stem cell (ISC) to differentiated epithelial cell in their native context under homeostatic conditions. Our initial in silico analysis of single cell RNAseq data and functional experiments identify the microRNA miR-277 as a posttranscriptional regulator of fatty acid β-oxidation (FAO) in the intestinal lineage. Low levels of miR-277 are detected in ISC and progressively rising miR-277 levels are found in progenitors during their growth and differentiation. Supporting this, miR-277-regulated fatty acid β-oxidation enzymes progressively declined from ISC towards more differentiated cells in our pseudotime single-cell RNAseq analysis and in functional assays on RNA and protein level. In addition, in silico clustering of single-cell RNAseq data based on metabolic genes validates that stem cells and progenitors belong to two independent clusters with well-defined metabolic characteristics. Furthermore, studying FAO genes in silico indicates that two populations of ISC exist that can be categorized in mitotically active and quiescent ISC, of which the latter relies on FAO genes. In line with an FAO dependency of ISC, forced expression of miR-277 phenocopies RNAi knockdown of FAO genes by reducing ISC size and subsequently resulting in stem cell death. We also investigated miR-277 effects on ISC in a benign and our newly developed CRISPR-Cas9-based colorectal cancer model and found effects on ISC survival, which as a consequence affects tumor growth, further underlining the importance of FAO in a pathological context. Taken together, our study provides new insights into the basal metabolic requirements of intestinal stem cell on β-oxidation of fatty acids evolutionarily implemented by a sole microRNA. Gaining knowledge about the metabolic differences and dependencies affecting the survival of two central and cancer-relevant cell populations in the fly and human intestine might reveal starting points for targeted combinatorial therapy in the hope for better treatment of colorectal cancer in the future.
Collapse
Affiliation(s)
- Lisa Zipper
- Institute of Genetics, Department of Biology, The Faculty of Mathematics and Natural Sciences, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany;
| | - Sai Batchu
- Cooper Medical School, Rowan University, Camden, NJ 08102, USA; (S.B.); (Z.A.A.)
| | - Nida Hatice Kaya
- Institute for Zoology and Organismic Interactions, Department of Biology, The Faculty of Mathematics and Natural Sciences, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany;
| | - Zeus Andrea Antonello
- Cooper Medical School, Rowan University, Camden, NJ 08102, USA; (S.B.); (Z.A.A.)
- Cooper University Hospital, Cooper University Health Care, Cooper Medical School, Rowan University, Camden, NJ 08102, USA
| | - Tobias Reiff
- Institute of Genetics, Department of Biology, The Faculty of Mathematics and Natural Sciences, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
36
|
Abstract
In adult insects, as in vertebrates, the gut epithelium is a highly regenerative tissue that can renew itself rapidly in response to changing inputs from nutrition, the gut microbiota, ingested toxins, and signals from other organs. Because of its cellular and genetic similarities to the mammalian intestine, and its relevance as a target for the control of insect pests and disease vectors, many researchers have used insect intestines to address fundamental questions about stem cell functions during tissue maintenance and regeneration. In Drosophila, where most of the experimental work has been performed, not only are intestinal cell types and behaviors well characterized, but numerous cell signaling interactions have been detailed that mediate gut epithelial regeneration. A prevailing model for regenerative responses in the insect gut invokes stress sensing by damaged enterocytes (ECs) as a principal source for signaling that activates the division of intestinal stem cells (ISCs) and the growth and differentiation of their progeny. However, extant data also reveal alternative mechanisms for regeneration that involve ISC-intrinsic functions, active culling of healthy epithelial cells, enhanced EC growth, and even cytoplasmic shedding by infected ECs. This article reviews current knowledge of the molecular mechanisms involved in gut regeneration in several insect models (Drosophila and Aedes of the order Diptera, and several Lepidoptera).
Collapse
Affiliation(s)
- Peng Zhang
- Huntsman Cancer Institute, University of Utah
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| | - Bruce A Edgar
- Huntsman Cancer Institute, University of Utah
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
37
|
Buddika K, Huang YT, Ariyapala IS, Butrum-Griffith A, Norrell SA, O'Connor AM, Patel VK, Rector SA, Slovan M, Sokolowski M, Kato Y, Nakamura A, Sokol NS. Coordinated repression of pro-differentiation genes via P-bodies and transcription maintains Drosophila intestinal stem cell identity. Curr Biol 2022; 32:386-397.e6. [PMID: 34875230 PMCID: PMC8792327 DOI: 10.1016/j.cub.2021.11.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/17/2021] [Accepted: 11/11/2021] [Indexed: 01/26/2023]
Abstract
The role of processing bodies (P-bodies), key sites of post-transcriptional control, in adult stem cells remains poorly understood. Here, we report that adult Drosophila intestinal stem cells, but not surrounding differentiated cells such as absorptive enterocytes (ECs), harbor P-bodies that contain Drosophila orthologs of mammalian P-body components DDX6, EDC3, EDC4, and LSM14A/B. A targeted RNAi screen in intestinal progenitor cells identified 39 previously known and 64 novel P-body regulators, including Patr-1, a gene necessary for P-body assembly. Loss of Patr-1-dependent P-bodies leads to a loss of stem cells that is associated with inappropriate expression of EC-fate gene nubbin. Transcriptomic analysis of progenitor cells identifies a cadre of such weakly transcribed pro-differentiation transcripts that are elevated after P-body loss. Altogether, this study identifies a P-body-dependent repression activity that coordinates with known transcriptional repression programs to maintain a population of in vivo stem cells in a state primed for differentiation.
Collapse
Affiliation(s)
- Kasun Buddika
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Yi-Ting Huang
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | - Sam A Norrell
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Alex M O'Connor
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Viraj K Patel
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Samuel A Rector
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Mark Slovan
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Yasuko Kato
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Akira Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Nicholas S Sokol
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
38
|
Jin Z, Che M, Xi R. Identification of progenitor cells and their progenies in adult Drosophila midgut. Methods Cell Biol 2022; 170:169-187. [DOI: 10.1016/bs.mcb.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Proske A, Bossen J, von Frieling J, Roeder T. Low-protein diet applied as part of combination therapy or stand-alone normalizes lifespan and tumor proliferation in a model of intestinal cancer. Aging (Albany NY) 2021; 13:24017-24036. [PMID: 34766923 PMCID: PMC8610115 DOI: 10.18632/aging.203692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/26/2021] [Indexed: 12/27/2022]
Abstract
Tumors of the intestinal tract are among the most common tumor diseases in humans, but, like many other tumor entities, show an unsatisfactory prognosis with a need for effective therapies. To test whether nutritional interventions and a combination with a targeted therapy can effectively cure these cancers, we used the fruit fly Drosophila as a model. In this system, we induced tumors by EGFR overexpression in intestinal stem cells. Limiting the amount of protein in the diet restored life span to that of control animals. In combination with a specific EGFR inhibitor, all major tumor-associated phenotypes could be rescued. This form of treatment was also successful in a real treatment scenario, which means when they started after the full tumor phenotype was expressed. In conclusion, reduced protein administration can be a very promising form of adjuvant cancer therapy.
Collapse
Affiliation(s)
- Alina Proske
- Department of Molecular Physiology, Zoological Institute, Kiel University, Kiel, Germany
| | - Judith Bossen
- Department of Molecular Physiology, Zoological Institute, Kiel University, Kiel, Germany.,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Kiel, Germany
| | - Jakob von Frieling
- Department of Molecular Physiology, Zoological Institute, Kiel University, Kiel, Germany
| | - Thomas Roeder
- Department of Molecular Physiology, Zoological Institute, Kiel University, Kiel, Germany.,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Kiel, Germany
| |
Collapse
|
40
|
Intravital imaging strategy FlyVAB reveals the dependence of Drosophila enteroblast differentiation on the local physiology. Commun Biol 2021; 4:1223. [PMID: 34697396 PMCID: PMC8546075 DOI: 10.1038/s42003-021-02757-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 10/06/2021] [Indexed: 02/05/2023] Open
Abstract
Aging or injury in Drosophila intestine promotes intestinal stem cell (ISC) proliferation and enteroblast (EB) differentiation. However, the manner the local physiology couples with dynamic EB differentiation assessed by traditional lineage tracing method is still vague. Therefore, we developed a 3D-printed platform “FlyVAB” for intravital imaging strategy that enables the visualization of the Drosophila posterior midgut at a single cell level across the ventral abdomen cuticle. Using ISCs in young and healthy midgut and enteroendocrine cells in age-associated hyperplastic midgut as reference coordinates, we traced ISC-EB-enterocyte lineages with Notch signaling reporter for multiple days. Our results reveal a “differentiation-poised” EB status correlated with slow ISC divisions and a “differentiation-activated” EB status correlated with ISC hyperplasia and rapid EB to enterocyte differentiation. Our FlyVAB imaging strategy opens the door to long-time intravital imaging of intestinal epithelium. Tang et. al. demonstrate a 3Dprinted platform, FlyVAB, for intravital imaging and visualization of the Drosophila posterior midgut at a single-cell level. This method enables tracking of the stem cell lineage in the midgut of the flies constantly for up to 10 days.
Collapse
|
41
|
Bonfini A, Dobson AJ, Duneau D, Revah J, Liu X, Houtz P, Buchon N. Multiscale analysis reveals that diet-dependent midgut plasticity emerges from alterations in both stem cell niche coupling and enterocyte size. eLife 2021; 10:64125. [PMID: 34553686 PMCID: PMC8528489 DOI: 10.7554/elife.64125] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 09/22/2021] [Indexed: 12/27/2022] Open
Abstract
The gut is the primary interface between an animal and food, but how it adapts to qualitative dietary variation is poorly defined. We find that the Drosophila midgut plastically resizes following changes in dietary composition. A panel of nutrients collectively promote gut growth, which sugar opposes. Diet influences absolute and relative levels of enterocyte loss and stem cell proliferation, which together determine cell numbers. Diet also influences enterocyte size. A high sugar diet inhibits translation and uncouples intestinal stem cell proliferation from expression of niche-derived signals, but, surprisingly, rescuing these effects genetically was not sufficient to modify diet’s impact on midgut size. However, when stem cell proliferation was deficient, diet’s impact on enterocyte size was enhanced, and reducing enterocyte-autonomous TOR signaling was sufficient to attenuate diet-dependent midgut resizing. These data clarify the complex relationships between nutrition, epithelial dynamics, and cell size, and reveal a new mode of plastic, diet-dependent organ resizing.
Collapse
Affiliation(s)
- Alessandro Bonfini
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, United States
| | - Adam J Dobson
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - David Duneau
- Université Toulouse 3 Paul Sabatier, CNRS, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Jonathan Revah
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, United States
| | - Xi Liu
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, United States
| | - Philip Houtz
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, United States
| | - Nicolas Buchon
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, United States
| |
Collapse
|
42
|
Drosophila, an Integrative Model to Study the Features of Muscle Stem Cells in Development and Regeneration. Cells 2021; 10:cells10082112. [PMID: 34440881 PMCID: PMC8394675 DOI: 10.3390/cells10082112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
Muscle stem cells (MuSCs) are essential for muscle growth, maintenance and repair. Over the past decade, experiments in Drosophila have been instrumental in understanding the molecular and cellular mechanisms regulating MuSCs (also known as adult muscle precursors, AMPs) during development. A large number of genetic tools available in fruit flies provides an ideal framework to address new questions which could not be addressed with other model organisms. This review reports the main findings revealed by the study of Drosophila AMPs, with a specific focus on how AMPs are specified and properly positioned, how they acquire their identity and which are the environmental cues controlling their behavior and fate. The review also describes the recent identification of the Drosophila adult MuSCs that have similar characteristics to vertebrates MuSCs. Integration of the different levels of MuSCs analysis in flies is likely to provide new fundamental knowledge in muscle stem cell biology largely applicable to other systems.
Collapse
|
43
|
Boumard B, Bardin AJ. An amuse-bouche of stem cell regulation: Underlying principles and mechanisms from adult Drosophila intestinal stem cells. Curr Opin Cell Biol 2021; 73:58-68. [PMID: 34217969 DOI: 10.1016/j.ceb.2021.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/27/2022]
Abstract
Stem cells have essential functions in the development and maintenance of our organs. Improper regulation of adult stem cells and tissue homeostasis can result in cancers and age-dependent decline. Therefore, understanding how tissue-specific stem cells can accurately renew tissues is an important aim of regenerative medicine. The Drosophila midgut harbors multipotent adult stem cells that are essential to renew the gut in homeostatic conditions and upon stress-induced regeneration. It is now a widely used model system to decipher regulatory mechanisms of stem cell biology. Here, we review recent findings on how adult intestinal stem cells differentiate, interact with their environment, and change during aging.
Collapse
Affiliation(s)
- Benjamin Boumard
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, Paris, France
| | - Allison J Bardin
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, Paris, France.
| |
Collapse
|
44
|
Montigny A, Tavormina P, Duboe C, San Clémente H, Aguilar M, Valenti P, Lauressergues D, Combier JP, Plaza S. Drosophila primary microRNA-8 encodes a microRNA-encoded peptide acting in parallel of miR-8. Genome Biol 2021; 22:118. [PMID: 33892772 PMCID: PMC8063413 DOI: 10.1186/s13059-021-02345-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 04/09/2021] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Recent genome-wide studies of many species reveal the existence of a myriad of RNAs differing in size, coding potential and function. Among these are the long non-coding RNAs, some of them producing functional small peptides via the translation of short ORFs. It now appears that any kind of RNA presumably has a potential to encode small peptides. Accordingly, our team recently discovered that plant primary transcripts of microRNAs (pri-miRs) produce small regulatory peptides (miPEPs) involved in auto-regulatory feedback loops enhancing their cognate microRNA expression which in turn controls plant development. Here we investigate whether this regulatory feedback loop is present in Drosophila melanogaster. RESULTS We perform a survey of ribosome profiling data and reveal that many pri-miRNAs exhibit ribosome translation marks. Focusing on miR-8, we show that pri-miR-8 can produce a miPEP-8. Functional assays performed in Drosophila reveal that miPEP-8 affects development when overexpressed or knocked down. Combining genetic and molecular approaches as well as genome-wide transcriptomic analyses, we show that miR-8 expression is independent of miPEP-8 activity and that miPEP-8 acts in parallel to miR-8 to regulate the expression of hundreds of genes. CONCLUSION Taken together, these results reveal that several Drosophila pri-miRs exhibit translation potential. Contrasting with the mechanism described in plants, these data shed light on the function of yet undescribed primary-microRNA-encoded peptides in Drosophila and their regulatory potential on genome expression.
Collapse
Affiliation(s)
- Audrey Montigny
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse 3, CNRS UMR5546, 31320, Auzeville-Tolosane, France
| | - Patrizia Tavormina
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse 3, CNRS UMR5546, 31320, Auzeville-Tolosane, France
| | - Carine Duboe
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse 3, CNRS UMR5546, 31320, Auzeville-Tolosane, France
| | - Hélène San Clémente
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse 3, CNRS UMR5546, 31320, Auzeville-Tolosane, France
| | - Marielle Aguilar
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse 3, CNRS UMR5546, 31320, Auzeville-Tolosane, France
| | - Philippe Valenti
- Laboratoire MCD, Centre de Biologie Intégrative, Université de Toulouse 3, CNRS UMR5077, Bat 4R4, 118 route de Narbonne, 31062, Toulouse, France
| | - Dominique Lauressergues
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse 3, CNRS UMR5546, 31320, Auzeville-Tolosane, France
| | - Jean-Philippe Combier
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse 3, CNRS UMR5546, 31320, Auzeville-Tolosane, France
| | - Serge Plaza
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse 3, CNRS UMR5546, 31320, Auzeville-Tolosane, France.
| |
Collapse
|
45
|
Min S, Choe C, Roh S. AQP3 Increases Intercellular Cohesion in NSCLC A549 Cell Spheroids through Exploratory Cell Protrusions. Int J Mol Sci 2021; 22:ijms22084287. [PMID: 33924231 PMCID: PMC8074759 DOI: 10.3390/ijms22084287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/25/2022] Open
Abstract
Tumor cell aggregation is critical for cell survival following the loss of extracellular matrix attachment and dissemination. However, the underlying mechanotransduction of clustering solitary tumor cells is poorly understood, especially in non-small cell lung cancers (NSCLC). Here, we examined whether cell surface protrusions played an important role in facilitating the physical contact between floating cells detached from a substrate. We employed poly-2-hydroxyethyl methacrylate-based 3D culture methods to mimic in vivo tumor cell cluster formation. The suprastructural analysis of human NSCLC A549 cell spheroids showed that finger-like protrusions clung together via the actin cytoskeleton. Time-lapse holotomography demonstrated that the finger-like protrusions of free-floating cells in 3D culture displayed exploratory coalescence. Global gene expression analysis demonstrated that the genes in the organic hydroxyl transport were particularly enriched in the A549 cell spheroids. Particularly, the knockdown of the water channel aquaporin 3 gene (AQP3) impaired multicellular aggregate formation in 3D culture through the rearrangement of the actomyosin cytoskeleton. Moreover, the cells with reduced levels of AQP3 decreased their transmigration. Overall, these data indicate that cell detachment-upregulated AQP3 contributes to cell surface protrusions through actomyosin cytoskeleton remodeling, causing the aggressive aggregation of free-floating cells dependent on the property of the substratum and collective metastasis.
Collapse
Affiliation(s)
- Sol Min
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea;
| | - Chungyoul Choe
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea;
- Samsung Medical Center, Samsung Biomedical Research Institute, School of Medicine, Sungkyunkwan University, Seoul 06351, Korea
- Correspondence: (C.C.); (S.R.); Tel.: +82-221487353 (C.C.); Tel.: +82-28802333 (S.R.)
| | - Sangho Roh
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea;
- Correspondence: (C.C.); (S.R.); Tel.: +82-221487353 (C.C.); Tel.: +82-28802333 (S.R.)
| |
Collapse
|
46
|
Takemura M, Bowden N, Lu YS, Nakato E, O'Connor MB, Nakato H. Drosophila MOV10 regulates the termination of midgut regeneration. Genetics 2021; 218:6156853. [PMID: 33693718 DOI: 10.1093/genetics/iyab031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/23/2021] [Indexed: 12/22/2022] Open
Abstract
The molecular mechanisms by which stem cell proliferation is precisely controlled during the course of regeneration are poorly understood. Namely, how a damaged tissue senses when to terminate the regeneration process, inactivates stem cell mitotic activity, and organizes ECM integrity remain fundamental unanswered questions. The Drosophila midgut intestinal stem cell (ISC) offers an excellent model system to study the molecular basis for stem cell inactivation. Here, we show that a novel gene, CG6967 or dMOV10, is induced at the termination stage of midgut regeneration, and shows an inhibitory effect on ISC proliferation. dMOV10 encodes a putative component of the microRNA (miRNA) gene silencing complex (miRISC). Our data, along with previous studies on the mammalian MOV10, suggest that dMOV10 is not a core member of miRISC, but modulates miRISC activity as an additional component. Further analyses identified direct target mRNAs of dMOV10-containing miRISC, including Daughter against Dpp (Dad), a known inhibitor of BMP/TGF-β signaling. We show that RNAi knockdown of Dad significantly impaired ISC division during regeneration. We also identified six miRNAs that are induced at the termination stage and their potential target transcripts. One of these miRNAs, mir-1, is required for proper termination of ISC division at the end of regeneration. We propose that miRNA-mediated gene regulation contributes to the precise control of Drosophila midgut regeneration.
Collapse
Affiliation(s)
- Masahiko Takemura
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nanako Bowden
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yi-Si Lu
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eriko Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael B O'Connor
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
47
|
Al Hayek S, Alsawadi A, Kambris Z, Boquete J, Bohère J, Immarigeon C, Ronsin B, Plaza S, Lemaitre B, Payre F, Osman D. Steroid-dependent switch of OvoL/Shavenbaby controls self-renewal versus differentiation of intestinal stem cells. EMBO J 2021; 40:e104347. [PMID: 33372708 PMCID: PMC7883054 DOI: 10.15252/embj.2019104347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/27/2022] Open
Abstract
Adult stem cells must continuously fine-tune their behavior to regenerate damaged organs and avoid tumors. While several signaling pathways are well known to regulate somatic stem cells, the underlying mechanisms remain largely unexplored. Here, we demonstrate a cell-intrinsic role for the OvoL family transcription factor, Shavenbaby (Svb), in balancing self-renewal and differentiation of Drosophila intestinal stem cells. We find that svb is a downstream target of Wnt and EGFR pathways, mediating their activity for stem cell survival and proliferation. This requires post-translational processing of Svb into a transcriptional activator, whose upregulation induces tumor-like stem cell hyperproliferation. In contrast, the unprocessed form of Svb acts as a repressor that imposes differentiation into enterocytes, and suppresses tumors induced by altered signaling. We show that the switch between Svb repressor and activator is triggered in response to systemic steroid hormone, which is produced by ovaries. Therefore, the Svb axis allows intrinsic integration of local signaling cues and inter-organ communication to adjust stem cell proliferation versus differentiation, suggesting a broad role of OvoL/Svb in adult and cancer stem cells.
Collapse
Affiliation(s)
- Sandy Al Hayek
- Faculty of Sciences IIILebanese UniversityTripoliLebanon
- Azm Center for Research in Biotechnology and its ApplicationsLBA3B, EDST, Lebanese UniversityTripoliLebanon
- Centre de Biologie du Développement (CBD)Centre de Biologie Intégrative (CBI)Université de ToulouseCNRSToulouseFrance
| | - Ahmad Alsawadi
- Centre de Biologie du Développement (CBD)Centre de Biologie Intégrative (CBI)Université de ToulouseCNRSToulouseFrance
| | - Zakaria Kambris
- Biology DepartmentFaculty of Arts and SciencesAmerican University of BeirutBeirutLebanon
| | | | - Jérôme Bohère
- Centre de Biologie du Développement (CBD)Centre de Biologie Intégrative (CBI)Université de ToulouseCNRSToulouseFrance
| | - Clément Immarigeon
- Centre de Biologie du Développement (CBD)Centre de Biologie Intégrative (CBI)Université de ToulouseCNRSToulouseFrance
| | - Brice Ronsin
- Centre de Biologie du Développement (CBD)Centre de Biologie Intégrative (CBI)Université de ToulouseCNRSToulouseFrance
| | - Serge Plaza
- Centre de Biologie du Développement (CBD)Centre de Biologie Intégrative (CBI)Université de ToulouseCNRSToulouseFrance
- Present address:
Laboratoire de Recherche en Sciences Végétales (LSRV)CNRSUPSCastanet‐TolosanFrance
| | - Bruno Lemaitre
- Global Health Institute, School of Life SciencesLausanneSwitzerland
| | - François Payre
- Centre de Biologie du Développement (CBD)Centre de Biologie Intégrative (CBI)Université de ToulouseCNRSToulouseFrance
| | - Dani Osman
- Faculty of Sciences IIILebanese UniversityTripoliLebanon
- Azm Center for Research in Biotechnology and its ApplicationsLBA3B, EDST, Lebanese UniversityTripoliLebanon
| |
Collapse
|
48
|
Buddika K, Xu J, Ariyapala IS, Sokol NS. I-KCKT allows dissection-free RNA profiling of adult Drosophila intestinal progenitor cells. Development 2021; 148:dev196568. [PMID: 33246929 PMCID: PMC7803463 DOI: 10.1242/dev.196568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/19/2021] [Indexed: 12/13/2022]
Abstract
The adult Drosophila intestinal epithelium is a model system for stem cell biology, but its utility is limited by current biochemical methods that lack cell type resolution. Here, we describe a new proximity-based profiling method that relies upon a GAL4 driver, termed intestinal-kickout-GAL4 (I-KCKT-GAL4), that is exclusively expressed in intestinal progenitor cells. This method uses UV crosslinked whole animal frozen powder as its starting material to immunoprecipitate the RNA cargoes of transgenic epitope-tagged RNA binding proteins driven by I-KCKT-GAL4 When applied to the general mRNA-binder, poly(A)-binding protein, the RNA profile obtained by this method identifies 98.8% of transcripts found after progenitor cell sorting, and has low background noise despite being derived from whole animal lysate. We also mapped the targets of the more selective RNA binder, Fragile X mental retardation protein (FMRP), using enhanced crosslinking and immunoprecipitation (eCLIP), and report for the first time its binding motif in Drosophila cells. This method will therefore enable the RNA profiling of wild-type and mutant intestinal progenitor cells from intact flies exposed to normal and altered environments, as well as the identification of RNA-protein interactions crucial for stem cell function.
Collapse
Affiliation(s)
- Kasun Buddika
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jingjing Xu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Nicholas S Sokol
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
49
|
Arthurton L, Nahotko DA, Alonso J, Wendler F, Baena‐Lopez LA. Non-apoptotic caspase activation preserves Drosophila intestinal progenitor cells in quiescence. EMBO Rep 2020; 21:e48892. [PMID: 33135280 PMCID: PMC7726796 DOI: 10.15252/embr.201948892] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022] Open
Abstract
Caspase malfunction in stem cells often precedes the appearance and progression of multiple types of cancer, including human colorectal cancer. However, the caspase-dependent regulation of intestinal stem cell properties remains poorly understood. Here, we demonstrate that Dronc, the Drosophila ortholog of caspase-9/2 in mammals, limits the number of intestinal progenitor cells and their entry into the enterocyte differentiation programme. Strikingly, these unexpected roles for Dronc are non-apoptotic and have been uncovered under experimental conditions without epithelial replenishment. Supporting the non-apoptotic nature of these functions, we show that they require the enzymatic activity of Dronc, but are largely independent of the apoptotic pathway. Alternatively, our genetic and functional data suggest that they are linked to the caspase-mediated regulation of Notch signalling. Our findings provide novel insights into the non-apoptotic, caspase-dependent modulation of stem cell properties that could improve our understanding of the origin of intestinal malignancies.
Collapse
Affiliation(s)
- Lewis Arthurton
- Sir William Dunn School of PathologyUniversity of OxfordOxfordshireUK
| | | | - Jana Alonso
- Laboratorio de Agrobiología Juan José Bravo Rodríguez (Cabildo Insular de La Palma)Unidad Técnica del IPNA‐CSICSanta Cruz de La PalmaSpain
| | - Franz Wendler
- Sir William Dunn School of PathologyUniversity of OxfordOxfordshireUK
| | | |
Collapse
|
50
|
Mancheno-Ferris A, Polesello C, Payre F. [OvoL factors: a family of key regulators of epithelium mesenchyme plasticity and stem cells]. Med Sci (Paris) 2020; 36 Hors série n° 1:61-66. [PMID: 33052097 DOI: 10.1051/medsci/2020193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Most prevalent cancers are of epithelial origin and their morbidity often results from secondary tumors. Cancer aggressiveness relates to intratumoral heterogeneity, including rare tumor initiating cells that share many features with adult stem cells. Both normal and cancer stem cells are characterized by their plasticity between epithelial and mesenchymal phenotypes, progressing through a series of reversible intermediates. While a core of regulators (Snail, Zeb1-2,...) is renowned to promote epithelial to mesenchyme transition (EMT), OvoL/Shavenbaby factors now emerge as a family of key epithelial stabilizers. Therefore, pro-EMT and OvoL/Shavenbaby transcription factors could provide a molecular rheostat to control stemness and epithelial-mesenchyme plasticity. We address this question in flies, in which the unique OvoL/Shavenbaby factor offers a powerful in vivo paradigm for functional analyses. Our results show that Shavenbaby is critical for adult stem cell homeostasis, and directly interacts with the Hippo pathway to protect stem cells from death.
Collapse
Affiliation(s)
- Alexandra Mancheno-Ferris
- Centre de Biologie du Développement, Université Paul Sabatier Toulouse III, Bâtiment 4R3, 118 route de Narbonne, 31062 Toulouse, France. - CNRS, UMR5547, Centre de Biologie du Développement, Toulouse, France
| | - Cédric Polesello
- Centre de Biologie du Développement, Université Paul Sabatier Toulouse III, Bâtiment 4R3, 118 route de Narbonne, 31062 Toulouse, France. - CNRS, UMR5547, Centre de Biologie du Développement, Toulouse, France
| | - François Payre
- Centre de Biologie du Développement, Université Paul Sabatier Toulouse III, Bâtiment 4R3, 118 route de Narbonne, 31062 Toulouse, France. - CNRS, UMR5547, Centre de Biologie du Développement, Toulouse, France
| |
Collapse
|